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cost [31, 57]. All these applications need to deploy a large number of sensors across the orchards,
e.g., tens or even hundreds of acres. LoRa is a promising solution with a communication range of
several miles, allowing gateways to receive sensor data in a large �eld [10, 21, 25, 47]. However,
this range is only achievable in free space [9, 22], which is rarely found in orchards.
Our preliminary experimental results reveal that in an almond orchard, LoRa signals can only

be reliably transmitted up to 140 mwith a Spreading Factor (SF) of 10; whereas LoRa signals with
the same hardware and transmission parameters can reach a communication distance of 2 km in
free space. In orchards, LoRa sensor nodes are typically installed close to the ground, under the tree
canopy.Meanwhile, LoRa gateways are often placed on towers of 6–10m, because there are no high
buildings on farms and it is expensive to construct taller towers. As a result, the energy of wireless
signals may be absorbed and re�ected by the ground, which can a�ect the LoRa signal propagation.
In addition, the wireless signal from a sensor nodemust penetrate through the canopies of multiple
trees to reach a gateway.
In this article, we study the propagation modeling [40] of LoRa signals in orchard environment,

which requires to estimate the attenuation of wireless signals as they propagate through all media
between the transmitter and the receiver, such as air and tree canopy. Although two propagation
models [16, 35] for LoRa have been developed for large-scale urban scenarios, they cannot be used
in orchards. For example, for a sensor node in orchards, its signal propagation varies signi�cantly
across di�erent directions, since the signal traverse di�erent distances in canopies. In addition, sev-
eral foliage propagation models [27, 45, 62] have been studied for wireless signals passing through
trees. They are developed for high-frequency channels (e.g., 5 GHz in satellite communications)
but not applicable to LoRa links. The propagation characteristics of low-frequency LoRa signals
are di�erent from high-frequency signals, and these foliage propagation models do not consider
the impact of the ground on LoRa signal propagation.
To study the characteristics of LoRa signal propagation in orchards, we conduct a series of ex-

periments using a gateway and a LoRa sensor node. The latter is deployed at di�erent locations
for experiments (Section 4.1 for details). Based on our experimental results, we made three obser-
vations. (1) If the sender and the receiver are both under trees, then the link quality of the visual
line-of-sight (LoS) path is worse than that of non-visual LoS paths.When a wireless signal passes
through a tree, it may penetrate, scatter (i.e., re�ected or refracted), or di�ract around the tree. This
power loss is known as shadowing e�ect, which needs to be analyzed from a three-dimensional
(3D) perspective. (2) Due to the long wavelength of LoRa signals, wireless signals can easily di�ract
from tree trunks and branches. (3) The low installation height of LoRa sensor nodes means that
the ground has an apparent shadowing impact on signal propagation.
Based on the observations above, this article presents FLog, a wireless signal propagation model

designed for LoRa links in orchards. It is inspired by the regular layout of orchards, where all trees
are aligned and have a similar shape and canopy density, as they are planted and pruned at the
same time. The shape of a tree can be modeled by a few parameters, including tree height, trunk
height, and canopywidth. The layout of an orchard can bemodeled by the shape of its trees and the
spacing distances between rows and columns. Given the locations of a sensor node and a gateway,
we can leverage our 3D orchard model to study the complex shadowing e�ect that the wireless sig-
nal will experience from the sensor node to the gateway. Based on the shadowing e�ect analysis,
our wireless propagation model can calculate the attenuation that the signal will have as it travels
through the air and tree canopies. Combining the prede�ned transmission settings, including
antenna gains and transmission power, we can calculate the strength of the received LoRa signal.
FLog adopts the First Fresnel Zone (FFZ) to capture the complex shadowing e�ect caused by

tree canopies and ground in orchards. FFZ is a 3D ellipsoid region with two focus points located
at the node and the gateway. This zone carries most of the signal energy received by the receiver.
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Di�erent links have their unique portions of the wireless transmission media in their FFZs. To
calculate the portion of each medium for a transmission pair, we perform numerical sampling in
the FFZ. Each sampling point may encounter free space, trees, or the ground. The portions of
sampling points in each medium over the total number of points are used as weights for pro�ling
the shadowing e�ect. These weights are used to combine the intrinsic path loss exponent (PLE)

of each transmission medium, resulting in the �nal PLE of the classic Log-Normal Shadowing
model in the FFZ.
Beside the weights, we also need to determine the intrinsic PLEs for each medium in FLog. We

obtain these parameters by �tting the collected packets’ signal strength using the nonlinear least
square algorithm [51]. Furthermore, we adapt these parameters to environmental variation based
on a few recently received packets.
To demonstrate the applications of our propagation model, we use FLog to determine gateway

coverage. A LoRa node is considered to be covered by a gateway if the Packet Delivery Ratio

(PDR) exceeds 80% [74, 76]. The PDR is computed using aBit Error Ratio (BER)model [20], with
inputs of Signal-to-Noise Ratio (SNR) and SF. We use FLog to estimate the SNR for any LoRa
nodes and a gateway and thus the coverage of that gateway under di�erent transmission settings.
Extensive experiments have been conducted in two almond orchards and one walnut orchard.

The results show that FLog can reduce path loss estimation errors by up to 42.7% compared to
the Log-Normal Shadowing model. Additionally, FLog provides more accurate PDR estimation for
gateway coverage, reducing the estimation error by 70.3% compared to the Log-Normal Shadow-
ing model. Numerical analysis shows that FLog can facilitate scheduling fewer gateways while
maintaining reliable link quality.
In summary, this article makes three major contributions:

—We study the propagationmodeling problem ofwireless LoRa signals in orchards and explain
why path loss models only considering the direct ray blockage are unsuitable for the orchard
scenario.

—We propose FLog, a novel interpretable propagation model for LoRa networks in orchards. It
leverages the �rst Fresnel zone theory and the regular tree layout of orchards to model the
complex shadowing e�ect caused by tree canopies and the ground with minimal overhead.

— Extensive experiments demonstrate the e�ectiveness of FLog. A gateway coverage study
shows the usability of FLog. We release FLog source code on GitHub [4].

2 Background and Motivation

After a brief introduction to the basic LoRa concepts and the Log-Normal Shadowing model, we
conduct experiments to study LoRa links in free space and orchards.

2.1 LoRa Primer

The LoRa adopts Chirp Spread Spectrum (CSS) modulation to facilitate long-distance and low-
power communication [29, 39, 69, 70].

The sensory data undergoes a series of encoding operations at the sender side to improve its
over-the-air resilience. These operations consist of Forward Error Correction (FEC) encoding,
whitening, diagonal interleaving, and gray mapping, and are followed by CSS modulation of the
encoded data into multiple symbols. Each symbol represents an integer from 0 to 2SF −1, where SF
determines the number of bits in each symbol. To modulate a symbol, a base chirp with an initial
frequency is shifted by a step of BW /2SF , where BW is the frequency channel bandwidth.
At the receiver side, LoRa performs demodulation and decoding. Demodulation identi�es a sym-

bol’s value by measuring its chirp’s initial frequency, and the resulting signal is subjected to FFT
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to obtain the amplitude spectrum of each received symbol. Each frequency bin corresponds to a
possible symbol value, and the symbol value with the highest amplitude is identi�ed by the fre-
quency bin. The recognized symbols are then concatenated into a binary sequence that undergoes
Gray demapping, deinterleaving, and dewhitening in sequence. The original sensory data can be
obtained by FEC decoding.
Frequency Band: LoRa operates on license-free radio frequency bands, such as 915 MHz in

North America. It can transmit over long distances of several miles or more in rural areas. In
contrast, high-frequency bands such as 2.4 GHz or 5 GHz used byWiFi have a short communication
range, typically limited up to 45 m indoors [19, 64]. This short communication distance makes it
di�cult to provide coverage for orchards that span several acres.
Expected Signal Power (ESP): LoRa de�nes the ESP to quantify the received signal

strength [16, 34, 35], which is derived from the measured Received Signal Strength Indicator

(RSSI) and SNR,

ESP = RSSI + SNR − 10 · log10
(
1 + 100.1·SNR

)
, (1)

where the unit of ESP and RSSI is decibel-milliwatts (dBm) and the unit of SNR is decibels (dB).
The RSSI and SNR are reported from the LoRa gateway for each received packet.

2.2 Log-Normal Shadowing Model

The Log-Normal Shadowing model is widely used to predict the received signal power [46]. The
ESP of a received packet, Prx , is calculated as follows [46]:

Prx = Ptx +Gtx +Grx − PL, (2)

where Ptx represents the transmission power in decibel-milliwatts,Gtx andGrx denote the trans-
mitting and receiving antenna gains in decibels relative to isotropic (dBi), respectively. The last
term PL is the path loss [55] in decibels and can be calculated via the Log-Normal Shadowing
model [46],

PL (d) = PL (d0) + 10 · n · log
(
d

d0

)
+ Xσ , (3)

where the distance between a LoRa node and a gateway is denoted as d in meters, n is the PLE, and
Xσ is a zero-mean Gaussian distribution with a standard deviation of σ . The reference path loss

PL (d0) is obtained from �eld measurements at a reference distance of d0, where d0 is normally set

to 1 m [16]. Based on our collected packets, we obtained an average PL (d0) of 78.59 dBm.
When considering a speci�c distance, the model represents the path loss as a Gaussian distribu-

tion with a mean of PL(d0) + 10n log
(
d
d0

)
and a standard deviation of σ . As the model produces

a distribution, its accuracy cannot be assessed against a single measurement. Instead, we use the
mean as the model’s predictive result, enabling the calculation of the absolute error relative to
the measured signal strength. In the following, unless speci�ed otherwise, the output of the Log-
Normal Shadowing model is assumed to be the mean value.

2.3 Free Space Scenario

We conducted an experiment to measure the LoRa link quality in the free space. Figure 1(a) shows
that a LoRa node is placed at four locations with distances of 0.5, 1.0, 1.5, and 2 km. The nodes and
gateway are installed on two poles with heights of 6 and 10 m, respectively. The nodes transmitted
packets periodically with SF10, Ptx = 14 dBm, a bandwidth of 125 kHz, and a coding rate of 4/5.
Figure 2(a) depicts the experimental results. Even at a distance of 1.5 km, the link’s SNR remains

above the receiving sensitivity threshold (i.e., −7.5 dB for SF7). This indicates that LoRa nodes
can transmit packets using SF7 at distances of up to 1.5 km in free space. However, the SNR at
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Fig. 1. The deployment layout of the almond orchard and illustration for di�erent directions.

Fig. 2. The measured link quality (SNR) in the free space and almond orchard.

a distance of 1.0 km is lower than that at 1.5 and 2.0 km, primarily because buildings and trees
obstruct the propagation path, as illustrated in Figure 1(a). This highlights the signi�cant impact
of blockages on link quality.

2.4 Orchard Scenario

Figure 1(c) depicts an almond orchard where trees are organized tidily to facilitate uniform alloca-
tion of sunlight, water, and soil nutrients. LoRa nodes and the gateway are deployed in orchards
as shown in Figure 1(b). The nodes are typically positioned on the ground or attached to the main
branches, measuring data related to soil and tree health. The installation height is usually between
the ground and the canopy, less than 1.2 m (e.g., 0.45 m in our implementation). Meanwhile, the
gateway is mounted on top of a pole or tower (e.g., 10 m in our implementation), providing long
communication coverage, as shown in Figure 11. Therefore, the signals from sensor nodes nor-
mally pass through three media: free space, the ground, and trees in orchards.

2.4.1 Short Communication Distance. We conducted an investigation of link quality in an al-
mond orchard. The position of the gateway is �xed in the center between two adjacent almond
trees in a row. We then move the locations of LoRa nodes in the row, the communication distance
between the node and gateway ranges from 15 to 90 m with a step of 15 m. The transmission set-
tings were identical to those outlined in Section 2.3. From Figure 2(b), we observed a signi�cant
reduction in communication: At only 90 m, the SNR was −12.0 dB. As a result, SF10 was necessary
for a reliable communication distance of 90 m. Conversely, SF7 was suitable for distances of 1.5
km in free space. By �tting our collected data, we found that the PLE in the almond orchard was
2.95. This value is larger than that of free space, indicating a shorter communication distance, and
re�ects the high path loss in the orchard caused by tree blockage.

2.4.2 Large Deviation at Di�erent Directions. We then measured the received signal strength
in seven directions, ranging from 0◦ to 90◦ in 15◦ increments for a �xed distance, as depicted in
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Fig. 3. The measured link quality (ESP) at di�erent directions for two communication distances.

Table 1. Notations Used in This Article

Notations Meaning

ESP Expected signal power.
PLE The path loss exponent (PLE) of a LoRa link.
α The PLE when the space is �lled with air.
β The PLE when the space is �lled with foliage.
γ The PLE when the space is �lled with the ground.
Popen The portion of free space within the propagation path.
Pf ol iaдe The portion of the foliage within the propagation path.
Pдround The portion of the ground within the propagation path.
pдap The distance between two adjacent sampling planes.
Nr ef The number of sampling points of the �rst sampling plane.

Figure 1(c). Figure 3 shows the ESP of the received signal at di�erent directions for communication
distances of 80 and 120m. The dotted red line represents the average ESP in seven directions for one
distance. The results indicate a signi�cant variation in the signal ESP across di�erent directions,
with discrepancies of up to 13 dBm, such as −105 dBm vs. −118 dBm at 0◦ and 45◦.

According to Equation (3), the Log-Normal Shadowing model predicts a mean ESP value for a
given distance, as shown by the black line in Figure 3. Although the predicted ESP with the Log-
Normal Shadowing model is close to the average ESP, with errors of less than 1 dBm, the overall
ESP error across all the collected data can exceed 4 dBm due to the signi�cant deviation in signal
strength across di�erent directions. This �nding motivates us to develop a new propagation path
loss model that can account for the variation in signal strength across di�erent directions.

3 Strawman Solution

This section develops a strawman solution to model link quality in orchards. We �rst build an or-
chard 3D pro�le. Using this pro�le, we specify the PLE of a Log-Normal Shadowing model. Table 1
summarizes the notations used in this article.

3.1 3D Modeling of Orchards

AbstractingOneTree: Botanists have developed several detailed treemodels based on physiolog-
ical knowledge [53]. However, these models require precise measurements of the shapes of trunks,
branches, and leaves for all trees in an orchard, which is a labor-intensive process. We adopt a
simple solution proposed by Torrico et al. [58]. It pro�les the trunk as a cylinder and abstracts the
crown as an ellipsoid with varying horizontal and vertical radii, as shown in Figure 1(b). To create
a pro�le of a tree, we need to measure its height, trunk height, canopy width, and trunk radius.
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Abstracting an Orchard: Orchards typically have a uniform layout, with trees being planted
at the same time of year and exhibiting similar shapes. To analyze an orchard, we adopt a Cartesian
coordinate system with the x-axis and y-axis representing the directions along and across rows,
respectively. We also measure the distances between adjacent rows and adjacent trees in one row,
which determine the positions of all trees in the Cartesian coordinate system.

Therefore, by adding two parameters, we can extend treemodeling to orchardmodeling.With all
of these parameters as input, we can reconstruct the orchard as 3D shapes, which can be translated
into point clouds. Speci�cally, given the position of any point, we can determine whether it falls
within the foliage or not.

3.2 Adapting PLE with Line Shadowing

Figure 4 depicts the signal propagation path between a LoRa node and a gateway, where the path is
viewed as a direct line. The path includes both free space and foliage portions, which can have dif-
ferent shadowing e�ects on the signals. Thus, it is intuitive to consider these two parts separately.
To achieve this, we calculate the free space and foliage portions along the propagation path’s

direct line, denoted as Popen and Pf ol iaдe , respectively. To calculate the foliage portion Pf ol iaдe , we
equally split the direct line into numerous points. If a point is in the tree, then the foliage points
increase by 1; otherwise, the free space points increase by 1. Finally, the foliage portion Pf ol iaдe is
obtained by dividing the foliage points by the total number of points, which is similar to the free
space portion calculation. The sum of these portions should be equal to 1.
As free space and foliage have di�erent shadowing e�ects, they have di�erent PLEs in the Log-

Normal Shadowing model. To account for this heterogeneity, we propose an adaptive PLE calcula-
tion approach. This involves separating the path into two types of media (free space and foliage)
and then recombining them together,

PLEcomb = Popen · α + Pf ol iaдe · β, (4)

where α denotes the free space PLE and β is the PLE when the space is �lled with foliage. To
determine the values of α and β , we perform a least square �tting on a collected dataset. The �nal
PLEcomb is a compromise between the two values. For example, if Popen = 1, then it means that no
trees are present and the path can be treated as free space. Once we have determined the PLEcomb ,
we can calculate the total path loss using the Log-Normal Shadowing model.

From experimental results in Figure 20(c), the strawman solution (marked as “LLog”) can provide
di�erent estimations in di�erent directions, but this model underestimates or overestimates the
path loss in some directions. The possible reason is that we modeled the propagation path as a
direct line. But the surrounding area also plays a role for the signal propagation.

4 The Design of FLog

This section presents tree validations via the empirical analysis of the LoRa signal propagation in
orchards. We then introduce a path loss model based on the FFZ.

4.1 Empirical Analysis of LoRa Signal Propagation

To design a path loss model for orchards, it is crucial to understand how the signal propagates
within this environment. Therefore, we conducted three preliminary experiments to investigate
the LoRa signal propagation in orchards.

4.1.1 Visual Line-of-Sight Path. At frequencies around 900 MHz, the wavelength facilitate
di�raction around obstacles. This implies that radio waves can “bend” and may not necessarily
demand a direct line of sight [23]. We have conducted experiments to validate this assertion.
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Fig. 4. The illustration of the strawman solution. Fig. 5. The visual and non-visual LoS paths.

Figure 5(a) shows the experimental setup where a gateway is positioned at the lower-left cor-
ner, and four di�erent locations are selected to place LoRa nodes in varying directions but with the
same communication distance of 60m between the gateway and nodes. The gateway and nodes are
placed at a height of 0.45 m. Locations #1 and #2 have the visual LoS propagation path, while loca-
tions #3 and #4 have the non-visual LoS path that passes through two and ten trunks, respectively.
At each location, a LoRa node transmits packets periodically for 3 min with an interval of 1.5 s.

According to Figure 5(b), location #3 with the non-visual LoS path achieves the highest ESP,
which is even higher than the visual LoS path (i.e., location #1 and #2). Furthermore, despite having
ten trunks in location #4, this non-visual LoS path still attains a comparable ESP to the visual LoS
path at locations #1 and #2. In summary, we conclude as follows:

Observation 1. In orchards, the surrounding environment around the visual LoS path plays a

pivotal role in determining the strength of LoRa signal.

4.1.2 Di�racted Signal Strength. Di�raction refers to the propagation of waves behind an ob-
struction.
Figure 6(a) shows the setup of experiments, where the green circles represent tree trunks. In

both settings #1 and #2, there is one trunk located between the nodes and the gateway. The di�er-
ence is that in setting #2, the trunk is positioned very close to the gateway antenna, resulting in
signi�cantly weaker di�racted waves [41, 72].

Although setting #3 has �ve trunks between the gateway and node, resulting in weaker pene-
trating signal power, Figure 6(b) shows that its signal power is similar to that of setting #1. Fur-
thermore, we can see that setting #2 exhibits the lowest signal strength, with a di�erence of more
than 6 dBm compared to setting #1 and 4 dBm compared to setting #3. This leads us to the second
validation as follows:

Observation 2. Comparing setting #1 with #2, di�raction plays a crucial role in LoRa signal prop-

agation. Comparing setting #1 with #3, the signal power from di�raction outweighs the power trans-

mitted in the direct line.

4.1.3 Ground Absorption. Signal propagation in orchards can be impacted by the low height
of nodes, resulting in the absorption of signal energy by the ground. To investigate this e�ect on
signal power, we conducted experiments in a free sand region without any obstacles. The experi-
ments involved �xing the horizontal distance at 100 m and maintaining the sensor height at 0.45
m while varying the gateway height to 0.5, 1, and 1.5 m, as illustrated in Figure 7(a). The results,
shown in Figure 7(b), reveal that increasing the gateway height leads to an increase in the received
signal power.

Observation 3. When the sender and receiver are in close proximity to the ground, a signi�cant

portion of the signal power can be absorbed by the ground.
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Fig. 6. The di�racted signal strength. Fig. 7. The e�ect of ground absorption.

Fig. 8. The illustration of FFZ.

All of these validations demonstrate that the link quality can be in�uenced by the surrounding
objects, and the “path” cannot be considered as simply the visual LoS path between the sender and
receiver. Instead, more attention should be given to the surrounding regions along the visual LoS
path when estimating path loss. To address this issue, we propose the adoption of FFZ in path loss
calculations, as it takes into account the surrounding environment.

4.2 First Fresnel Zone for LoRa Signal

The FFZ refers to the 3D ellipsoid region around the direct path through which the received signal
passes. Figure 8 depicts that a point P lies on the surface of the FFZ if and only if√

d21 + r
2
+

√
d22 + r

2
= (d1 + d2) +

λ

2
, (5)

where λ refers to the wavelength. This equation quanti�es confocal prolate ellipsoidal-shaped
regions with the sender and receiver located at two focal points. This theory suggests that all
media within the FFZ shadows the signal, not just media along the direct path.

Based on Equation (5), the volume of the FFZ increases proportionally with wavelength. For
instance, at a distance of 100 m, the maximum radius of the FFZ could be 2.8 m. This highlights
the need to quantify the shadowing of the surrounding area over the direct path.

4.3 Design of FLog

This section provides the design details, including the overview, portion quanti�cation, intrinsic
PLE �tting, and parameter adaptation mechanism.

4.3.1 Overview. Except for the foliage and free space, we also need to consider the ground
shadowing e�ect. Because the FFZ of the LoRa signal has intersections with the ground due to the
low height of sensor nodes. Therefore, we update the �nal PLE calculation Equation (4) as follows:

PLEcomb = Popen · α + Pf ol iaдe · β + Pдround · γ , (6)

where two new variables, Pдround and γ , are introduced to represent the ground shadowing e�ect.
The values of α , β , and γ correspond to the intrinsic PLEs when the wireless signal propagates
through free space, foliage, and ground, respectively. The portion of free space, foliage, and
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Fig. 9. The illustration of sampling.

Table 2. Average Sampling Results at 60 m vs. p_дap

p_дap (m) 0.25 0.3 0.35 0.5 1.0

Popen 0.686 0.686 0.687 0.690 0.702

Pf ol iaдe 0.313 0.313 0.312 0.309 0.297

ground in the FFZ is denoted by Popen , Pf ol iaдe , and Pдround , respectively. The �nal PLEcomb in
the FFZ is obtained as a weighted combination of α , β , and γ , where the corresponding weights
are Popen , Pf ol iaдe , and Pдround . In an orchard, all the pairs of senders and receivers share the
same α , β , and γ , but have di�erent �nal PLEcomb due to the varying weights. The next two
subsections explain how to determine their values.

4.3.2 Portion�antification. The weights of each media in an FFZ are calculated by computing
the volume of each media and dividing it by the total volume of the FFZ. However, computing
this volume requires solving a triple integral in a constrained 3D space, which is computationally
intensive and time-consuming. In this article, as shown in Figure 9, we used a sampling approach
by dividing the FFZ into multiple planes with equal spacing. Each plane was then further sampled
into numerous points.
Speci�cally, we incremented the number of corresponding media points by one if a sampling

point was located within that media. For example, if a sampling point was in free space, then
we incremented the free space points by one. The portion of each media was then calculated by
dividing the number of points contained in that media by the total number of points in the FFZ.
Therefore, the sum of the portions for all three media types should be one.

Sampling Planes: The �rst sampling plane is located at d0 = 1m, which is the reference dis-
tance in the Log-Normal Shadowing model. The remaining sampling planes are equally spaced
at an interval of p_дap. We change the value of p_дap from 0.15 to 0.35 m to calculate the por-
tions of di�erent mediums. Table 2 shows that there is no signi�cant impact on sampling results
for di�erent p_дap values less than 0.5 m. Considering the computational burden and sampling
e�ectiveness, we empirically set p_дap = 0.25m.
The number of sampling points in each plane varies and is proportional to the signal energy in

the plane, which is calculated by multiplying the power �ux density by the area of the plane. The
radius of the plane can be determined via Equation (5). The power �ux density of a sampling plane
decreases proportionally to the square of the distance [46], i.e., 4πd2, indicating that the number of
sampling points in each plane should similarly decrease with distance. Therefore, the total number
of sampling points on a plane i is given by N i

plane
= Nr ef · Si / 4πd2i , where Nr ef is a constant

that can be adjusted to control the total number of sampling points, Si is the area of plane i , and
di is the distance between the sender and the plane i . Table 3 indicates that Nr ef has no impact on
sampling results if the sampling points are adequate. We set Nr ef as 590 k in the experiments.
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Table 3. Average Sampling Results at 60 m vs. Nr ef

Nr ef 2360 k 590 k 148 k 74 k 18 k

Popen 0.686 0.686 0.686 0.686 0.687

Pf ol iaдe 0.313 0.313 0.313 0.313 0.313

Table 4. Comparison of the Sampling Point Numbers for Trees of the Same Shape and Distance to

the Sensor Node, But in Di�erent Areas of the FFZ

#Sampling points in canopy #Sampling points in trunk

A tree in the middle of FFZ 73,076 1,568

A tree at the edge area of FFZ 5,692 129

Sampling Points in a Plane: Due to di�raction loss, the power �ux density of the received
signal is higher along the major axis than at the edge of the FFZ [41, 72]. Accordingly, we prioritize
sampling at the circle center over sampling at the edge. Speci�cally, we �rst determine the number
of sampling circles within this plane and then progressively increase their radii quadratically from
the center to the edge.
In this way, the sampling points are denser when closer to the major axis, as shown in Figure 9.

Table 4 provides an example of two trees with the same shape and distance to the sensor nodes,
but triggering substantially di�erent numbers of sampling points, re�ecting the rationale that trees
along the major axis should be prioritized due to higher power �ux density.

4.3.3 Intrinsic PLE Fi�ing. To calculate the �nal PLEcomb in Equation (6), we also need to de-
termine the values of α , β , and γ . The process for obtaining these values is outlined below.
To determine the value of γ , we utilized non-foliage data from Figure 7 and applied the least

square algorithm to Equation (6), where Pf ol iaдe = 0 and α = 2. This yielded a value of γ = 5.39.
The ground’s dynamic nature poses challenges to algorithmic stability due to its high PLE, which
signi�cantly a�ects signal strength. Incorporating its variability can skew PLE values for air and
trees, potentially impeding algorithm convergence. To maintain stability, we keep the ground’s
PLE constant and adjust the PLEs of air and trees to o�set any ground variations. Hence, the 5.39
will serve as the default for the remainder of the article unless otherwise noted.

To determine the values of parameters α and β , we collected packets at multiple pairs of
transceivers in our testbed, as described in Section 5.1.4. For each pair, we calculated three portions:
Popen , Pf ol iaдe , and Pдround . We then combined Equations (1)–(3) to obtain the �nal PLEcomb , us-
ing the RSSI and SNR values obtained after receiving a packet. Thus, the only unknown variables
in Equation (6) are α and β . We then employed a least square error �tting algorithm to determine
the optimal values of α and β .

4.3.4 Parameter AdaptationMechanism. For long-termmaintenance, the estimation needs to be
adapted to ensure continuously high accuracy. Speci�cally, the parameters in Equation (6) could
be impacted by di�erent environmental dynamics, which can be categorized into four scenarios:

(1) Short-term environmental noise variation.
(2) Transient weather changes, e.g., temperature.
(3) Foliage density changes on a yearly cycle due to the growth and loss of leaves and fruits.
(4) Long-term foliage shape changes: Shape changes as trunk and branch grow over years.

To mitigate the impact of dynamic (1), we collect multiple packets to compute the average signal
power as the reference signal power at a given location. Environmental dynamics (2) and (3) can
a�ect α and β in Equation (6). To recalibrate these two parameters, we use the most recently
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Fig. 10. Workflow of the FLog, where the term device refers to both the LoRa node and the gateway.

received N packets from all sensor nodes. When a new packet is received, we obtain its measured
ESP. Thus, the ESP of the pastN×M packets fromMnodes will formN×M equations to recalibrate
α and β , as shown in the example equations below (where i = 1, 2, . . . ,N and j = 1, 2, . . . ,M):
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(7)

The new α and β could be �tted by employing the non-linear least square algorithm on the set of
equations shown above. We empirically set N = 5. Note that all links in an orchard at the same
cycle share the same α , and β .
The dynamic (4) refers to changes in the 3D pro�le of the orchard, which a�ect Popen and Pf ol iaдe

in Equation (6) for all nodes but not α and β . To handle this dynamic, it is necessary to remeasure
the tree height, trunk height, and canopy width to rebuild the 3D pro�les. This is expected to be
done every year or even longer.

4.4 Workflow of FLog

Figure 10 summarizes how FLog works, including all modules mentioned in the previous section
and their input and output. The farmer provides input parameters for generating the 3D orchard,
and FLog estimates the link quality between any two locations in the orchard based on these pa-
rameters. The user can choose a con�guration that they think is best suited for their orchard.
Speci�cally, FLog requires the following parameters from the farmer: tree pro�le, layout, and de-
ployment parameters.

(1) Tree Parameters: Tree height, trunk height, and canopy width: They are used to build the 3D
pro�le of a single tree. As the growth accumulates, the user may measure these parameters
every year or longer.

(2) Layout Parameters: The distances between adjacent rows and adjacent trees in one row
are required for the layout con�guration. These factors will never change. There might be
several blank positions for removed dead trees. FLog also accepts such input or updates.

(3) Sensor and gateway position (optional): If the application requirements dictate the place-
ment of the sensor and gateway, then the user should input their designated positions. Or
we can determine the optimal position based on FLog.

Using the parameters above, FLog creates an FFZ between any two locations. It then calculates
the portion of foliage, free space, and the ground within this zone and estimates the link quality
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via Equations (2), (3), and (6). Additionally, FLog utilizes a parameter resetting mechanism to tune
our model’s parameters, which adapts to di�erent environmental dynamics.
We made the assumption that all trees share the same shape. While this generalization might

seem oversimpli�ed, it is a necessary approach considering the impracticality of measuring every
individual tree’s shape. To account for this simpli�cation, we �t each medium’s PLE to ensure our
model aligns well with the measured signal strength. This helps mitigate the potential impact of
our tree shape simpli�cation on system performance.

4.5 Applications of FLog

FLog can be used to deploy LoRa networks in orchards, e.g., determining gateway coverage, sensor
placement, and network resource allocation. We use gateway coverage as an example to demon-
strate the application of FLog.

4.5.1 Gateway Coverage Estimation Application. Our path loss model can estimate gateway cov-
erage by determining if a gateway can cover a speci�c location. Speci�cally, if the PDR exceeds
80%, then a gateway could cover a given location [74, 76]. Thus, our path loss model can estimate
the PDR prior to deploying LoRa networks.
Packet Devilry Ratio: PDR can be estimated by the BER and packet size, which is calculated

as follows [44]:

PDR = (1 − BER)8·Sp , (8)

where Sp is the packet size in bytes, e.g., 8 bytes in our implementation; the BER is calculated by
Equation (9).
BERCalculation: LoRa links are exposed to environmental noise (e.g., additive white Gaussian

noise) and other types of noises. The quality of LoRa links can be quanti�ed by SNR. Once SNR
and SF are determined, we can calculate BER using Equation (9) [20]:

BER ≈ 0.5 ·Q

�����

√
SNR · (M + 1) −

(
(HM )2 − π 2

12

)1/4
√
HM −

√
(HM )2 − π 2

12 + 0.5

������
, (9)

whereM = 2SF −1,HM =
∑M

k=1
1
k
denotes theMth harmonic number.Q(x) = 1√

2π
·
∫ ∞
x

exp(−y2

2 )dy
is theQ-function, i.e., the tail function of the standard normal distribution. Considering that LoRa
is the orthogonal signaling, 0.5 before the Q-function means that for a symbol error, only half of
the bits in the symbol could be in error [44]. The Q-function part models the probability that the
magnitude of noise envelopes is larger than the magnitude of LoRa signals of interest envelopes,
which are modeled as Rayleigh distribution and Rician distribution, respectively.

Signal-to-Noise Ratio: In Equation (1), we can obtain the SNR as long as the ESP and RSSI is
known. Fortunately, given any node and gateway location, the ESP could be predicted by our path
loss model. We obtain the received RSSI by averaging the all collected data. By this way, we can
compute the expected SNR as follows:

SNR = 10 · log10
1

10
RSSI−ESP

10 − 1
. (10)

In Section 5.4, we will compare the predicted gateway coverage by using three path loss models.

4.5.2 Benefits for Farmers. We will use the example of gateway coverage estimation to analyze
the bene�ts for farmers o�ered by FLog. If the estimated propagation path loss is greater than the
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actual value, then more gateways will be required than necessary, leading to an increase in gate-
way building costs. Conversely, if the estimated path loss is less than the actual value, then some
nodes may not be able to connect with gateways, rendering the sensor network incomplete and
unsuitable for practical applications. Thus, an inaccurate propagation model can signi�cantly im-
pact the e�ciency and e�ectiveness of the sensor network. In Section 5.4, we quantify the bene�ts
using real measurements in a speci�c orchard.

4.5.3 Obstacles with Non-uniform Geo-distributions and Shapes. For missing trees that are cut
down due to illness, we can easily delete the tree from the 3D modeling by inputting the index.
For forests where trees are irregularly placed and di�er in species, age, and shape, surveying and
mappingwould be labor intensive. In these cases, we can use satellite images and radars to estimate
the shapes of trees [15]. For urban areas, buildings are constructed using di�erent materials and
have varying PLEs. Additionally, large smooth surfaces create mirroring re�ections, resulting in
re�ection-based multipath being the major component, which is di�erent from the orchards. We
suggest using NeRF-based solutions for urban cases [77].

4.5.4 Reverse Uses for Wireless Media Sensing. Given that changes in PLE are primarily driven
by variations in foliage density, FLog can also be used inversely to estimate orchard biomass. Specif-
ically, it can assess leaf health in the spring and fruit mass during the summer and fall [5]. This
approach o�ers the advantage of wide-area sensing without the need for specialized hardware.
However, achieving reliable results requires larger datasets spanning various tree ages and hun-
dreds of orchards to facilitate robust, controlled comparisons. We leave this exploration for future
work when FLog is widely adopted.

5 Evaluation

We evaluate the overall performance of FLog in Section 5.2, Then, we study the performance under
di�erent factors in Section 5.3, followed by the performance on the application study in Section 5.4.

5.1 Experiment Se�ing

5.1.1 Hardware Implementation. Figure 11 depicts the used hardware of LoRa node and gate-
way. LoRa nodes are handcrafted with SX1276 Radio [2] on the Arduino Uno host boards [3]. They
are equipped with a 3,000-mAh power bank. They work in the frequency band 904.3 MHz. The
RAK831 Pilot Gateway [56] is used as the LoRa receiver to receive LoRa packets. It consists of a
Raspberry-Pi 3, an RAK831 LoRa Concentrator and a converter board with GPS for routing the sig-
nals between the Raspberry and the RAK831. Both nodes and gateways are using omni-directional
antennas, with antenna gains of 5 and 3 dBi, respectively. The gateway executes a thread of LoRa
Packet Logger [1] that demodulates packets and stores them as comma-separated values �les. Our
model is implemented with Python script on a PC server with an Intel Core i9-11900KF @ 3.50
GHz CPU with 16 cores. The packet reception information on the gateways are aggregated in the
cloud server with Kubernetes and auto-con�guration [32, 66].

5.1.2 Benchmarks. We compare the performance of FLog with the following multiple baselines.

— Log-Normal Shadowing Model [46]: It is calculated by Equation (3). We use the collected data
to �t PLE in the orchard scenario. It is referred to as “Log.”

— Line-based Log-Normal Shadowing Model: It is our strawman solution, which is introduced
in Section 3. We call it “LLog.”

— Empirical Foliage Loss Models: They include Weissberger [62], ITU Recommendation

(ITU-R) [45], COST235 [27], Two-ray ground-re�ection model [78] and Okumura-Hata
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Fig. 11. The hardware implementation. Fig. 12. The testbed layout in an almond orchard.

models [16]. All these models that are parameterized or have multiple variants have been
carefully evaluated and reported as their best performance.

5.1.3 Performance Criteria. The estimation accuracy is quanti�ed by errors between the pre-
dicted ESP and the corresponding actual value for each packet. The unit of errors is decibel-
milliwatts,

ESP error = (yi − ŷi ) , (11)

where yi is the measured ESP for the ith received packet and ŷi is the predicted ESP value.

5.1.4 Experiments in an Almond Orchard. We chose almond orchards as the main focus of our
evaluation, since they are a critical agriculture industry in the US. In 2021, the US produced 2.5
billion pounds of almonds, with a value of over 7 billion dollars [59]. Moreover, the estimated
almond acreage in California was 1.64 million acres, making it the largest producer of almonds in
the world [59]. We also tested FLog in a walnut orchard, which is another dominant arbor crop.

Figure 12 shows locations of LoRa nodes and a gateway in an almond orchard with a size of 200
× 200 m2. In this orchard, trees are planted in a line with 4.88 m distances, and lines are separated
by 6.66 m. The almond trees are 6.1 m in height and 2.8 m in width. The heights of the LoRa node
and the gateway are set as 0.45 and 10 m. The transmission power is 14 dBm, SF is 10, bandwidth
is 125 kHz, and coding rate is 4/5. We collect packets from the spatial and temporal dimensions to
evaluate our model.
We do not rely on the GPS to determine the physical locations of LoRa nodes, due to its large

localization error in orchards [50, 68]. Instead, we take advantage of the uniform arrangement
of trees in orchards. Trees are consistently spaced both along the rows and across columns. By
counting the number of trees, we can accurately compute the distance between any two positions.
Speci�cally, we use a 3D Cartesian coordinate system to represent these positions: the x- and y-
axes correspond to the directions along and across the orchard rows, respectively, while the z-axis
points upwards. The origin of this system is aligned with the gateway’s position on the ground.We
determine the distance between any nodes and the gateway using the Euclidean distance formula.

5.1.5 Datasets. We measure the received packets at a large number of locations in an orchard.
We also conduct experiments at some locations for months.

Spatial Dimension Dataset: As shown in Figure 12, the gateway is located in the lower-left
corner of one of the 90◦ fan-shaped areas of the orchard. We have deployed LoRa nodes at 56
locations across this fan-shaped area to collect packets. For each received packet, we calculate
the ESP by using its RSSI and SNR. The nodes are placed at communication distances ranging
from 20 to 160 m, with a step size of 20 m. We measured seven directions ranging from 0◦ to
90◦, with a step size of 15◦. At each location, the nodes transmit an 8-byte packet to the gateway
every 1.5 s for a duration of 1.5 min. The experiment was conducted for a duration of 10 hours in

ACM Trans. Sensor Netw., Vol. 21, No. 2, Article 22. Publication date: March 2025.



22:16 K. Yang et al.

Fig. 13. The ESP deviation distribution for two di�erent communication distances.

the autumn of 2,022, and 2,900 packets were collected in total. The ESP ranges from −125 to −85
dBm, corresponding to an SNR range of [−15, 7] dB. The collected data is unavoidably a�ected
by the environmental noise at each location. We compute the average ESP at each location as
the reference ESP. The ESP deviation is obtained by comparing the average ESP and the collected
ESP of each packet. Figure 13 shows that the ESP deviation at two distances generally follows a
Gaussian distribution with a deviation of 1.1 and 1.0 dBm.
Given the consistent planting patterns, we deduce that patterns, signal strengths, and propa-

gation characteristics observed in one quadrant will re�ect those in the remaining three. Conse-
quently, by strategically positioning our gateway in a corner, we can capture representative data
without the need for exhaustive measurements across the entire orchard.

Temporal Dimension Dataset: We collected another dataset that covers four environmental
dynamics, as described in Section 4.3.4. Four LoRa nodes are deployed at four locations randomly
selected from Figure 12 to collect long-term data over a period of 4weeks in the spring (January and
February 2023). The transmission settings used for collecting the data are the same as those used
for the spatial dimension data. We collected data continuously for 24 hours each week, resulting
in a dataset of 69,173 packets. The dataset contains three environmental dynamics: (1) Short-term
environment variations. (2) Transient weather changes, including temperatures ranging from 26.2
to 65.5◦F and precipitation ranging from 0 to 0.15 inch/hour. (3) Foliage density changes. In the
�nal week of the 4-week period, almond trees started to bloom with �owers. By combining this
with the spatial dimension data, foliage density can be classi�ed into three categories: trees with
dense leaves, trees without leaves, and trees with �owers.
Finally, dynamic (4), the long-term foliage shape changing, was emulated by collecting data in

another almond orchard, where the almond trees have a height of 4.5 m and width of 2.6 m, which
corresponds to changing trunks and branches, compared to the almond trees shown in Figure 12.

Fitting and Testing Data: In the spatial dimension of the data, we used measurements col-
lected from four randomly selected distances to �t the parameters in our path loss models, such
as α and β . These measurements are referred to as �tting data. The data from the remaining four
communication distances were used as testing data. To obtain the optimal parameter values on the
�tting data, we employed the least square approximation method. These parameter values were
then used to estimate the ESP on the testing dataset.

5.2 Overall Performance

We evaluated the performance of all modes on both spatial and temporal dimension data. To mea-
sure the impact of di�erent distances on estimation error, we combined all directions’ data at one
distance. For a speci�c distance, we studied the performance of all models in di�erent directions
with an interval of 15◦.

5.2.1 Spatial Dimension. In the �tting and testing data, four communication distances were

randomly selected from eight distances in our testbed. Therefore, there are
(8
4

)
= 70 combinations
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Fig. 14. The overall performance of three models for di�erent communication distances and directions. Fig-

ure (a) does not draw the fi�ed curve of the LLog and FLog, it is because they have di�erent estimated values

at di�erent directions for one communication distance. Panel (c) plots the estimated value in di�erent direc-

tions when the horizontal distance between LoRa nodes and the gateway is 60 m. The curve of the Log model

is a horizontal line, which could not handle the direction.

to select the �tting and testing data. For each set of �tting data, we obtained corresponding �tted
values of α and β . After analyzing all 70 combinations, we found that the mean value of α was 1.98
with a standard deviation of 0.11, while the mean value of β was 5.07 with a standard deviation of
0.17. This result provides the interpretable clues for the shadowing feature of media. We report all
the estimation errors for these 70 combinations in Figure 14(b).
Communication Distance: Figure 14(a) presents the estimated curves of Log with changing

communication distances. We do not draw the curve of the LLog and FLog, because they have
di�erent estimated values in di�erent directions for a given distance, while the Log model has
one average value for each distance. We can observe a trend wherein the measured ESP correlates
linearly with the logarithm of the distance. Figure 14(b) quanti�es the estimation error for di�erent
models in the CDF curve (cumulative distribution function). The average error of FLog is only
2.85 dBm, showing great performance improvement over other models in terms of link quality
estimation. In particular, FLog decreases the ESP estimation error of Log and LLog by 42.7% and
35.2%, respectively. This is because Log does not consider the in�uence of direction on the received
signal power and can only estimate the signal power based on the communication distance in
Equation (3).

Although LLog is aware of the ESP variation in di�erent directions, it only considers the obstacle
of lines between the node and gateway. However, the signal is concentrated in the FFZ based on the
di�raction theory [46] and our preliminary experiments in Section 4. Therefore, FLog developed a
more reasonable model to consider the shadowing e�ects in the FFZ.
Direction: Figure 14(c) and (d) present the �tted curves of all models and the estimation errors

with di�erent directions at a horizontal distance of 60 m. It is observed that Log is unaware of
directions and thus provides a horizontal line as the estimated curve, which remains unchanged
for di�erent directions. Although LLog considers the in�uence of direction, it produces unstable
performance. At direction 75◦, LLog produces the largest error, that is, 5.93 dBm. This is due to the
fact that LLog considers only the shadowing in the line of the propagation path, which results in
overestimating or underestimating the ESP of the received signal.
Empirical Foliage Loss Models: Table 5 presents the average estimation ESP error on the test

data for �ve di�erent foliage loss models. These foliage models provide worse prediction accuracy
compared with the Log, LLog, and FLog models. There are three reasons for the poor performance.
First, these models are developed using di�erent frequency channels and have di�erent attenua-

tion in the same situation, since the wavelength is di�erent. Thus, the empirical models cannot be
directly applied to our scenarios. Second, these loss models have no adjustable parameters to adapt
to di�erent scenarios. However, the Log-Normal Shadowing model can adapt to various situations
by �tting its parameters, such as PLE. Hence, it can perform well if we �t it with the collected data
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Table 5. The ESP Estimation Error for Other Models

Models Weis. ITU-R COST235 O-H Two-ray

ESP Error (dBm) 41.6 111.2 87.4 12.7 72.3

Fig. 15. Impact of the dynamic (2): humidity. Fig. 16. Impact of the dynamic (2): temperature.

Fig. 17. Impact of the dynamic (2): precipitation. Fig. 18. Impact of the dynamic (2): wind speed.

on the speci�c case, compared with those path loss models with �xed parameters. Third, those
models cannot handle the ESP deviation in di�erent directions. This is similar to the Log-Normal
Shadowing model. They can only consider the e�ect of the communication distance on the signal
strength but not on other factors such as directions.

5.2.2 Temporal Dimension. We use temporal dimension data to test the models’ performance
on the three di�erent environmental dynamics. We apply our parameter resetting mechanism to
all path loss models, which uses themost recently received packets to calibrate models’ parameters.
Note that the environmental dynamic (1) was addressed by averaging the received ESP of multiple
packets.
Environmental Dynamic (2) - Transient Weather Changes: We �rst obtain the tempera-

ture, precipitation, wind speed, and humidity from a weather station [52]. Next, we group the data
based on the value range of corresponding weather factors at the time of collection. Figures 15–18
illustrate the ESP values and ESP estimation error of FLog under di�erent weather conditions.
Figure 16 depicts that ESP at 36◦C and 66◦C is higher than that at 26◦C and 36◦C. Figure 17 shows

the discrepancy in di�erent precipitation levels. They are caused by waterproof cover deformation.
There is no explicit di�erence if the data trace of that node (the blue line in Figure 28) is removed.

As shown in these four �gures, models achieve no increased ESP prediction error for di�er-
ent temperatures, humidity, wind speed, and precipitation levels. FLog always outperforms Log
and LLog in any weather condition groups, with an average improvement of 39.8% and 41.5%, re-
spectively. This indicates the e�ectiveness of our parameter resetting mechanism in adapting to
dynamic (2). It is reasonable, because the proposed mechanism can adjust the values of parameters
α and β based on the recently received packets. We analyzed the received ESP of LoRa signals un-
der di�erent temperature and precipitation conditions. Our �ndings indicated that the di�erence
in signal power at di�erent temperatures or precipitations was small. This small di�erence may
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Fig. 19. Impact of the dynamic (3): foliage density. Fig. 20. Impact of the dynamic (4): foliage shape.

be attributed to the e�ects of atmospheric and vapor molecules on electromagnetic waves, which
become more apparent at frequencies exceeding 10 GHz. However, the absorbance for 900 MHz
bands at short distances (≤50 km) is negligible [36, 38].

Environmental Dynamic (3) - Foliage Density Changes: In the spatial and temporal dimen-
sion dataset, foliage density has three statuses: trees with dense leaves, trees without leaves, and
trees with �owers, which are referred to as “AUT,” “SPR w/o f,” and “SPR w/ f,” respectively. We use
our proposed parameter resetting mechanism to adapt to this dynamic. Figure 19 illustrates the
received signal power and ESP estimation error for the three foliage density statuses. Figure 19(a)
indicates that foliage density signi�cantly impacts the received signal power. FLog handles foliage
density variations by continuous parameter re�tting scheme. In particular, Figure 19(b) shows that
FLog is capable of adapting well to this dynamic, with estimation errors of 2.85, 3.61, and 1.42 dBm
across three foliage density states.
Environmental Dynamics (4) - Long-Term Foliage Shape Changes: We collected data

in another almond orchard to evaluate the impact of growing stages on our proposed method,
which we refer to as environmental dynamic (4). The transmission settings of the nodes were the
same as those used in the testbed, and we collected data at three communication distances with
seven di�erent directions (0°, 15°, 30°, 45°, 60°, 75°, and 90°). We used the parameters �tted from
the testbed data to estimate the link quality in the new orchard. To reconstruct the 3D structure,
FLog requires measuring one tree, as described in Section 4.4. The new 3D structure will be used
to calculate Popen , Pf ol iaдe in Equation (6).
The results, shown in Figure 20, indicate that FLog achieved an average estimation error that

was reduced by 48.3% and 16.2%, compared to Log and LLog, respectively. Figure 20(a) shows that
the Log model could roughly �t the measured signal over the communication distance. However,
FLog’s performance was comparable to the overall performance reported in Section 5.2, with an
average ESP of 2.51 dBm compared to 3.42 dBm for Log. This con�rms that FLog is insensitive to
di�erent almond �elds and growing conditions.
Figure 20(b) illustrates that LLog achieved a similar ESP error to FLog. This could be attributed to

the smaller shape of trees in this orchard, and LLog generates a smaller shadowing media portion,
closer to that of FLog. The statistics indicate that the two methods had comparable estimations of
Pf ol iaдe , averaging 0.17 and 0.24. Hence, LLog delivers a performance comparable to FLog.

5.3 Generalizability Study

To evaluate the generalizability under various experimental settings, we collect wider datasets
under di�erent orchard species, di�erent gateway heights, and sensor heights.

5.3.1 Impact of Orchard Species. Di�erent orchard types can introduce varying shadowing ef-
fects, making it logical to expect distinct β values for each species. Recognizing the distinct foliage
shape and density di�erences between walnut and almond trees, we selected the walnut orchard
to ascertain the adaptability of FLog in such varied settings.
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Fig. 21. The illustration of the almonds and walnuts

of the experiments.

Fig. 22. The shape comparison between walnuts

and almonds in the experiments.

Fig. 23. The impact of the orchard species. Fig. 24. The impact of the gateway height.

To �t parameters in a walnut orchard, we collected data at a horizontal distance of 50 m and
90 m in three directions (30◦, 60◦, and 90◦). We then utilized three path loss models with newly
�tted parameters to estimate the ESP in the same walnut orchard, the evaluation is conducted on
the data collected at 70 m in three di�erent directions (30◦, 60◦, and 90◦). All other transmission
settings remained the same as the testbed.
As shown in Figure 23(a), similar trends were observed in the walnut orchard as in the almond

orchard, i.e., the ESP of the received signal decreased with increasing communication distance.
Figure 23(b) reports the CDF of the ESP estimation error for di�erent models, which shows that
FLog provides the highest estimation accuracy. The FLog reduced the error by 15.4% and 18.0%
for the Log and LLog models, respectively. The illustration of the orchards and tree shapes are in
Figures 21 and 22.

5.3.2 Impact of Gateway Height. We investigated the e�ect of gateway height on performance
gain by conducting experiments at varying heights. The maximum height of our tripod was 12 m,
and we set the gateway height at 8, 10, and 12 m, with a �xed horizontal distance of 80 m between
the sensor and the gateway. We collected data in four di�erent directions at each gateway height
(0◦, 30◦, 60◦, and 90◦).

The results, shown in Figure 24(a), demonstrate that the ESP of the received signal increases as
the gateway height increases from 8 to 12 m, which matches the expectation. Figure 24(b) shows
that FLog could �t the measured ESP well at all gateway heights, compared to the other two meth-
ods. Besides, LLog performed worse than Log, because Pf ol iaдe in LLog overreact to the change
of gateway height, e.g., Pf ol iaдe was incorrectly estimated at an average of 0.541. Therefore, LLog
performed worse than the other two models.

5.3.3 Impact of Sensor Height. We also investigated the e�ect of sensor height on performance
gain. Placing the sensor on the ground can signi�cantly a�ect signal propagation, so we varied
the sensor height to observe the impact. We tested heights of 0.15, 0.45, and 1.2 m, with a �xed
horizontal distance of 80 m between the sensor and the gateway. Each height corresponds to a
classical deployment position of sensors: on the ground, tied on the trunk, and hanged on the
branches. We collected data in four directions at each sensor height, i.e., 0◦, 30◦, 60◦, and 90◦.
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Fig. 25. The impact of the sensor height. Fig. 26. Impact of the transmission parameters.

Fig. 27. Impact of packet size and sensing cycle.
Fig. 28. The received signal power at four nodes over

a period of 4 weeks.

Figure 25(a) shows that increasing the sensor height from 0.15 to 0.45 m improved the received
signal’s ESP. However, the signal strength decreased when the sensor height was 1.2 m, likely due
to the almond tree’s leaves blocking the signals at the LoRa nodes. Therefore, we set the sensor
height to 0.45 m. Figure 25(b) displays the estimated ESP error for the three methods, with FLog

performing the best compared to Log and LLog models. Notably, FLog reduced the average ESP
error by 27.1% and 12.0%, respectively. The experiment also suggests that tying the sensor node to
the trunk is the best option.

5.3.4 Impact of Transmission Parameters. We conducted experiments to study the e�ects of
various parameters on our model. Theoretically, transmission power, antenna gain, frequency, and
SF do not have a direct impact on the path loss exponent, which is what the link quality models
aim to estimate. The packet size may slightly a�ect the calculation of SNR on the hardware and
thus lead to a variation in ESP. Figures 26 and 27(a) show the estimation error for di�erent SFs,
frequency bands, and packet sizes, and the results demonstrate that none of these parameters have
a signi�cant e�ect on the ESP.

5.3.5 Impact of Sensing Cycle. We utilize the most recently received N packets to perform the
parameter resetting mechanism, where N is set to 5. The performance of this mechanism may be
in�uenced by the sensing cycle, which is the time between two adjacent transmitted packets. In
our testbed, each node sends 45 packets every 15 min with a 20-s interval. To simulate a 15-minute
sensing cycle, we use the 1st, 46th, 91st, 136th, and 181st packets to recalibrate our model’s param-
eters, which are then used to predict the link quality of the 226th packet. This allows us to employ
our parameter resetting mechanism at di�erent sensing cycles. Figure 27(b) shows the error bars
with di�erent sensing cycles for three models, depicting the standard deviation from the average.
We can �nd that the duration of the sensing cycle has a minimal impact on the performance of our
model. Speci�cally, compared to a sensing cycle of 20 s, the estimation errors of FLog increase by
0.87%, 4.03%, and 9.56% with sensing cycles of 3 min, 15 min, and 1 hour. Figure 28 illustrates the
received signal power over a period of 4 weeks. It can be observed that the link quality at a par-
ticular location in the orchards remains relatively consistent, indicating that changing the sensing
cycle has minimal impact on the estimation error.
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Fig. 29. The values of parameter of α and β under

di�erent ratios of the fi�ing and testing data.

Fig. 30. Illustration of collecting data in a new al-

mond orchard for gateway coverage estimation.

It should be noted that for node #1, there were two signi�cant changes in ESP at packet in-
dexes 4,316 and 8,633, respectively. The �rst change occurred due to a gusty wind that caused the
waterproof cover behind the antenna to lift up like a re�ection mirror, resulting in a signi�cant
increase in ESP. The cover was manually recovered at the second change point, which caused the
ESP to return to normal levels. Although this incident caused an increase in errors, its impact on
the comparison between di�erent sensing cycles is negligible. This is because two outliers would
only a�ect �ve estimations in our parameter resetting mechanism. Second, during the last week of
the 4-week period, almond trees began to bloom with �owers, resulting in a signi�cant decrease
in the received LoRa signal power for all four nodes.

5.3.6 Impact of Ratio between Fi�ing and Testing Dataset. In the previous sections, the default
ratio is 4:4. We evaluated our model with ratios of 5:3 and 6:2. The settings of 5:3 and 6:2 had a
similar performance to the ratio of 4:4, with a negligible di�erence in average estimation error of
0.09 and 0.04 dBm. We also reported the obtained values of the α and β in Figure 29. The error
bar represents one standard deviation from the average. We �nd that the �tted values of α and β

under di�erent ratios have no di�erences. Therefore, we only report the results for the ratio of 4:4.
This result also provides the trustworthiness of the model interpretability. In the temporal do-

main, we notice that α remains relatively stable in di�erent seasons, while β varies notably. This
is primarily caused by foliage density changes.

5.4 Gateway Coverage Estimation

In this section, we evaluate the ESP estimation error using newly collected data from a new almond
orchard. To estimate the gateway coverage, we collected data in a new manner as illustrated in
Figure 30. The orchard was divided into multiple grids with an equal size of 19.2 × 19.2 m, resulting
in a total of 8× 8 grids. The transmission settings were kept the same as in the testbed.We collected
40 packets at each grid and used the average ESP of the received 40 packets as the ESP ground truth.

ESP Estimation: Figure 31(a) displays the average ESP measurements at each grid, demon-
strating that ESP decreases as communication distance increases. To predict ESP values, we used
the �tted parameters for the three models in the testbed. Figure 31(b)–(d) depicts the estimated
ESP with Log, LLog, and FLog models. The Log model typically underestimates ESP, producing a
darker blue, whereas the LLog model tends to overestimate ESP, resulting in a lighter blue. The
generated ESP map using FLog is the most similar to the ground truth, indicating the lowest ESP
estimation error.
PDR Estimation: PDR can be used as an indicator of the gateway coverage map. If PDR is

greater than 80% [71, 74, 76], then we consider the grid to be covered by the gateway for a speci�c
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Fig. 31. ESP prediction results of three models in an almond orchard with 8 × 8 grids.

Fig. 32. The PDRs predicted by three models in an almond orchard with 8 × 8 grids.

SF. We also compute the ground truth of the PDR in each grid by dividing the number of correctly
received packets by the total number of sent packets.
The results in Figure 32 show that SF7 can cover a large portion of the grids with a PDR of 100%.

FLog achieves the average estimation error of 0.14, signi�cantly lower than 0.26 and 0.46 of Log
and LLog. Log underestimates the ESP of the received signal, ending up estimating that only eight
grids can be covered, while LLog overestimates the received ESP, predicting that the gateway can
cover almost all grids.
Reducing Construction Cost of Gateways: Given the cost of building a gateway with a

height of 10 m consuming $15,400, building fewer gateways while maintaining reliable link qual-
ity would be advantageous. We use the above almond orchard with a 10-acre orchard as an ex-
ample. FLog suggests only two gateways with a height of 10 m to cover all nodes and it ends
up with communication failure. In contrast, Log suggests using seven gateways, which would in-
crease the cost of building gateways to 107,800 dollars. However, LLog suggests using only one
gateway but with communication failure in approximately 20% of the area. Such failures can lead
to water waste or yield drop, negatively a�ecting the performance of many smart agricultural
applications [17, 18, 33].

5.5 Computational E�iciency

FLog is generally e�cient in computation, due to its interpretabilty. Speci�cally, PLE �tting and
link quality calculation can be �nished in 89 ms. The largest computation workload lies in the
sampling process, as shown in Figure 9. The total time is proportional to the number of sampling
points, which is positively correlated with 1/p_дap and Nr ef in Tables 2 and 3 and depends on
CPU performance. In our implementation, the average sampling time for all 56 sensor locations
in Section 5.2 is 97.1 s, which is satisfactory for the requirements, since resampling is conducted
only for long-term shape changes.

6 Related Work

Modeing LoRa Link Quality: There have been several empirical studies conducted on the LoRa
link quality [7–9, 11, 16, 35, 48, 54, 63, 65, 67]. For example, Adrian et al. [75] select locations of
sensors and gateways to provide a LoS signal propagation path in FFZ. Demetri et al. [16] utilize
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remote sensing to quantitatively analyze the composition of land covers along LoRa links. Based
on the dominant land-cover type along the link, they decide the right version of the Okumura-Hata
model from two variants [28, 42, 46]. However, their method is not applicable in orchard scenarios.
(1) Since orchards typically only have one type of land cover (i.e., trees), their method will ignore
local spatial shadowing features such as the amount of space blocked by trees between the sensor
nodes and the gateway. (2) The Urban model has deterministic parameters that are empirically
�tted for cellular signals, which are typically received by base stations with high antenna heights,
unlike LoRa gateways used in orchards.
Extensivemeasurements [9, 11, 48, 65, 73] have been conducted in various environments, such as

indoor, urban, rural, and multi-�oor buildings. Based on these measurements, empirical path loss
models have been derived. Although these models performwell on their collected data, they do not
consider the unique features of orchards, e.g., large deviations of the received signal powers in dif-
ferent directions that cannot be modeled via satellite images. FLog is a model based on FFZ theory,
which can capture the wireless signal propagation mediums in orchards through 3D modeling.

Foliage E�ect on Wireless Signals: The foliage has been observed to have a pronounced
in�uence on link quality [30]. Numerous empirical foliage loss models have been introduced, in-
cluding theWeissberger model [62], the ITU-R model [45], and the COST235 model [27]. However,
implementing these models in orchards poses challenges for several reasons. First, they operate
over di�erent frequency bands, resulting in varying attenuation levels. Second, a majority of these
models are deterministic, lacking �exible parameters to suit diverse orchard scenarios. Third, their
representations of foliage are rather simplistic (e.g., assumed to be uniformly distributed in space),
making them ill suited for handling signi�cant signal power variations across di�erent directions.
The two-ray ground-re�ection model [78] is tailored for open environments with a direct LOS

path between the transmitter and receiver. However, introducing foliage complicates the signal
propagation paths, rendering this model unsuitable for the orchard context.
Furthermore, some models, inspired by the classical multi-wall-multi-�oor indoor propagation

paradigm [37], have considered the foliage e�ect. For instance, Gomez et al. [24] leverage a neural
network to predict path loss across a foliage barrier, accounting for barrier thickness and vege-
tation density. Nevertheless, in actual orchard setups, foliage does not adhere to �xed-thickness
wall models. Anzum et al. [6] statistically evaluate the attenuation induced by trunks and canopies
along the transmission path. Their assumptions align with the preliminary LLog model and exclu-
sively evaluate scenarios where trees lie directly between the transmitter and receiver. To summa-
rize, while the multi-wall multi-�oor model provides insightful perspectives for indoor settings, it
fails to capture the intricate spatial dynamics of orchards. Contrarily, FLog gauges link quality by
taking into account both the surrounding trees and the open spaces within FFZ.
LaPS [15] leverages remote sensing and LiDAR to locate trunks in forests and pro�le the canopy

size of each tree. Then it uses multi-regression to get the shadowing parameters of each tree in
the rectangular area along the path. FLog advances by utilizing the FFZ to judge the involvement
of each canopy and mitigating the LiDAR scanning by leveraging the tidy layout of orchards.
Empirical Studies on LoRa Links: Bor et al. [9] discovered that in rural areas, communica-

tion distance could extend up to 3 km if the gateway is placed on a 100 m tall building. Cente-
nario et al. [11] quanti�ed the number of LoRa gateways required for citywide communication
coverage and found that LoRa coverage could span up to 2 km when the gateway is placed in
a high-building area. This article presents experimental results that demonstrate a signi�cant re-
duction in communication distances in orchards due to the large attenuation of signal strength
when gateways are deployed at limited heights. Cattani et al. [10] conducted experiments in in-
door, outdoor, and underground settings and found that link reliability varied with environmental
changes such as temperature. Voigt et al. [61] conducts simulations to analyze the in�uence of the
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in-network interference [14] from the other LoRa networks working over the same deployment
area. The authors conclude that deploying additional gateways can make sure that all LoRa nodes
are within the communication coverage of one of them. Orestis et al. [22] constructs the coverage
probability by considering the ALOHA protocol, where the collisions happen if two packets with
the same frequency channel and SF arrive at the gateway simultaneously. FLog develops a path
loss propagation model for the orchard, paralleling research in these models.

Hakim et al. recognized the Fresnel zone non-clearance e�ect caused by low antenna height as
a major component for obstacle loss, but lack a comprehensive approach for FFZ modeling [26].
FLog provides an in-depth analysis of LoRa signal propagation in orchards, culminating in a so-
phisticated path loss propagation model grounded in the FFZ.

7 Conclusion

This article presents FLog, a propagation model for LoRa signals in orchards. We �rst investigated
the propagation characteristics of LoRa signals in orchards, revealing strong di�raction caused
by trees and the ground. To capture these features, FLog estimates link quality by calculating the
PLE in the Log-Normal Shadowing model for any pair of nodes and gateway using the FFZ theory.
Extensive experiments demonstrate the e�ectiveness of our model.
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