ANOSOV FLOWS WITH THE SAME PERIODIC ORBITS
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ABSTRACT. In | ], it was proved that transitive pseudo-Anosov flows on any closed 3-
manifold are determined up to orbit equivalence by the set of free homotopy classes represented
by periodic orbits, provided their orbit space does not contain a feature called a “tree of scalloped
regions.” In this article we describe what happens in these exceptional cases: we show what
topological features in the manifold correspond to trees of scalloped regions, completely classify
the flows which do have the same free homotopy data, and construct explicit examples of flows
with the same free homotopy data that are not orbit equivalent.

1. INTRODUCTION

This article concerns the classification of Anosov flows on 3-manifolds, a problem which dates
back to Smale [ ]. Since flows may always be reparameterized, the relevant notion of classifi-
cation is up to orbit or isotopy equivalence. Flows ¢; and ¢ on a manifold M are orbit equivalent
if there exists a homeomorphism of M sending orbits of one to orbits of the other, and isotopically
equivalent if the homeomorphism can be taken to be isotopic to the identity.'

The classification problem is particularly interesting on 3-manifolds, where we have both large
families of examples and a rich structure theory. In | ] it was shown that transitive (pseudo)-
Anosov flows are “essentially” classified by the set of free homotopy classes of their periodic orbits.
More specifically, | , Theorem 1.3] gives a complete invariant of such flows up to orbit
equivalence, which in many cases reduces to simply knowing this free homotopy data. In the
present work, we make the notion of “essentially classified by” precise, describing exactly which
Anosov flows on which manifolds have the same free homotopy classes of periodic orbits, and which
topological feature in M is responsible for the additional invariant beyond periodic orbits needed
in [ |, thus completing the classification program started there.

For an Anosov flow ¢ on a closed three-manifold M, let P(¢) denote the set of unoriented free
homotopy classes of periodic orbits, that is

P(¢) = {[y] : v or y* is freely homotopic to a periodic orbit}
where [y] denotes a conjugacy class in 71 (M). We show the following.

Theorem 1.1 (Classifying Anosov flows by periodic orbits). Let ¢1, ¢2 be Anosov flows on a closed
3-manifold M, at least one of which is transitive. If P(¢1) = P(¢2), then both flows are transitive,
and there exists a finite (possibly empty) collection of Seifert pieces of the JSJ decomposition of M
which are scalloped and periodic for both ¢1 and ¢o and such that (up to isotopy equivalence) ¢o
1s obtained from ¢, by a periodic Seifert flip on each piece.

Conversely, any Anosov flow 1 obtained from an Anosov flow ¢ by applying periodic Seifert
flips to scalloped periodic Seifert pieces satisfies P(¢) = P().

A scalloped periodic Seifert piece for a flow ¢ on M is a piece P of the JSJ decomposition of
M such that the free homotopy class of a regular fiber is represented by a periodic orbit of ¢
and for each boundary surface of P there is an independent element (not a power of the fiber) of
its fundamental group represented by a periodic orbit of ¢. Very roughly, a periodic Seifert flip
is a cut-and-paste construction that reverses the direction of the flow along the periodic orbits
representing the fiber in a periodic Seifert piece. We describe this construction in detail, show that
in the transitive case it gives a unique flow up to isotopy equivalence (Theorem 3.7), and show
that the construction may be applied to any periodic Seifert piece of an Anosov flow (Theorem
3.6). The precise definition of periodic Seifert flip uses the framework of spines from | ], we
defer this to Section 3 — see Definition 3.5. A consequence of our work (together with | D) is

1Here as in [ ], we do not ask for the orbit equivalence to preserve the direction of orbits.
1
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that applying a flip to the same piece twice results in a flow isotopically equivalent to the original,
hence the name “flip”.

Remark 1.2. Though stated in terms of isotopy equivalence, Theorem 1.1 has a counterpart clas-
sification of flows up to orbit equivalence. In general, since 3-manifolds admitting Anosov flows
are K(m, 1) spaces, any automorphism of 71 (M) is realized by a diffeomorphism. Thus, one has
P(¢p1) = O0P(¢2) for some map € on free homotopy classes induced by an automorphism of 71 (M)
if and only if there exists a diffeomorphism © of M such that P(¢;) = P(©opa0071); and © can
be taken to induce §. Thus, by composing with automorphisms of 71 (M), Theorem 1.1 classifies
Anosov flows up to orbit equivalence.

The terminology “scalloped” comes from the feature of the orbit space of a flow called a tree of
scalloped regions, which is the feature responsible for the additional invariants beyond P(¢) given
in [ ]. (See Section 2 for precise definitions.) A second goal of this work is to show that
these regions in the orbit space correspond to scalloped periodic Seifert pieces of M:

Theorem 1.3. The orbit space of an Anosov flow ¢ contains a tree of scalloped regions if and
only if some Seifert piece P of the JSJ decomposition of M has both its fiber, and an independent
element of the fundamental group of each boundary component represented by periodic orbits of ¢.
Moreover, each such piece P corresponds to a unique (up to the action of w1 (M) ) tree of scalloped
Tegions.

Finally, we also prove that P(¢) alone is not a complete invariant. Though not explicitly stated
there, from | ] one can obtain an upper bound (depending on the topology of M) on the
number of Anosov flows on M with the same set of free homotopy classes of periodic orbits. Here,
we prove this bound is sharp.

Corollary 1.4. Given a manifold M with k distinct Seifert pieces, there are at most 28 non-orbit
equivalent transitive Anosov flows with a given set of free homotopy classes represented by periodic
orbits.

Conversely, for every k € N there are examples of manifolds M with exactly k distinct Seifert
pieces which support 28 non-orbit equivalent transitive Anosov flows with identical sets of free
homotopy classes of periodic orbits.

One nuance in this result is that, while performing a Seifert flip always results in a flow which
is not isotopy equivalent to the original flow (see Proposition 6.4), showing that the resulting flow
is not orbit equivalent to the original is not straightforward. In fact, there exist examples where,
due to some hidden symmetry, applying a periodic Seifert flip to a flow ¢ results in a flow which
is orbit equivalent to ¢. See Example 7.4.

1.1. Pseudo-Anosov and non-transitive flows. We have chosen to limit the scope of much
of this article to Anosov flows, instead of pseudo-Anosov flows as was treated in [ ]. We
do this for only one reason: in order to build a flip on a scalloped periodic piece of an Anosov
flow, we use the gluing theorem of | ]. While their theorem is likely to generalize to the
pseudo-Anosov setting, such a generalization is not immediate. As it is beyond the scope of this
article to provide such a generalization, we instead restrict ourselves to Anosov flows. Once a
generalization of | ] for pseudo-Anosov flows is known, all the results of the present article
will automatically extend to that setting.

Nevertheless, several of the proofs we do give apply already to pseudo-Anosov flows. For the
convenience of the reader, we state here the most general versions of the results already obtained.

The definitions of scalloped periodic Seifert pieces and flips make sense for pseudo-Anosov flows,
and we use this level of generality throughout Section 2. Theorem 1.3 holds for pseudo-Anosov
flows (transitive or not); this is the statement of Theorem 2.26 proved in Section 2.3.

The proof that two periodic flips of each other have the same free homotopy data holds for
pseudo-Anosov flows with no changes (see Proposition 6.1), and that proof does not require the
flows to be transitive either. As explained above, it is for the proof of the existence of the flip
that we use | |. However, for totally periodic pseudo-Anosov flows, which are pseudo-Anosov
flows on graph-manifolds such that each of the Seifert pieces has its fiber direction represented
by a periodic orbit, the work of Barbot and Fenley | , ] allows one to construct a flip
explicitly on any piece without using [ ]. In particular, in this setting we do not need the
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transitivity assumption either — we use transitivity in the proof of Proposition 5.3 in order to be
able to easily apply the statement of | , Theorem 1.5], but see Remark 5.4.

Thus, we have the following existence result

Theorem 1.5. If ¢ is either an Anosov flow or a totally periodic pseudo-Anosov flow (not neces-
sarily transitive) with a scalloped periodic Seifert piece P, then there exists an Anosov, or pseudo-
Anosov, flow 1 obtained from ¢ by a periodic Seifert flip on P.

We also have the following generalization of (each direction of) Theorem 1.1.

Theorem 1.6. Let ¢ and i be two (not necessarily transitive) pseudo-Anosov flows that are
periodic flips of each other. Then P(¢) = P ().

Theorem 1.7. Let ¢1, ¢o be either Anosov flows on M, or totally periodic pseudo-Anosov flows,
at least one of which is transitive. If P(p1) = P(d2) then ¢1 and ¢o are isotopically equivalent or
obtained from one another by periodic Seifert flips as in Theorem 1.1.

In fact, a careful reading of | | shows that in the above result, it is enough to ask for
one of the flows to be Anosov or one of the flows to be totally periodic, because equality of
the free homotopy data will force both flows to be Anosov or both flows to be totally periodic.
More precisely, | , Section 5] uses only the free homotopy data of pseudo-Anosov flows to
construct a natural map between the associated orbit spaces, whenever this free homotopy data
agrees. Though this map may have discontinuities, it preserves adjacency of g-invariant lozenges
for any g € w1 (M), which is enough to deduce whether there are singular points or a tree of
scalloped regions in the orbit space.

Outline. Section 2 discusses background on the orbit space of a pseudo-Anosov flow and how
features of the orbit space correspond to topological features in the supporting 3-manifold. This
includes the new result that embedded scalloped surfaces are always isotopic to cutting surfaces of
the JSJ decomposition. We pay special attention to manifolds which are not necessarily orientable,
filling in gaps in the literature in this case. The section concludes with the proof of Theorem 1.3.

Section 3 extends the notion of spine to periodic pieces of pseudo-Anosov flows in non-orientable
manifolds, and using this gives the precise definition of periodic Seifert flip and statements of
existence and uniqueness. Sections 4 to 6 are devoted to the constructions of flips and the proof
of Theorem 1.1.

Section 4 constructs pairs of (partially defined) “flipped flows” on elementary models represent-
ing neighborhoods of unions of weakly embedded Birkhoff annuli, and proves that every neighbor-
hood of a spine of an Anosov flow in a periodic piece is represented by such a model. In Section 5
we show how to glue these models along the boundary to obtain Anosov flows, and in Section 6
we use the results of | ] to show uniqueness (up to isotopy) of flips, and finish the proof of
Theorem 1.1. Finally, in Section 7 we discuss the question of isotopy and orbit equivalence of flips
and give examples.

Acknowledgements. TB was partially supported by the NSERC (Funding reference number
RGPIN-2017-04592). SF was partially supported by NSF DMS-2054909. KM was partially sup-
ported by NSF CAREER grant DMS-1933598 and a Sloan fellowship.

2. TOPOLOGICAL FEATURES OF M AND THEIR COUNTERPARTS IN THE ORBIT SPACE

Throughout this section we assume M is a compact 3-manifold equipped with a pseudo-Anosov
flow ¢. We do not recall the definitions of Anosov or pseudo-Anosov flows here, one can refer e.g.,
to | ] or | ] for a general introduction. In particular, M is irreducible.

2.1. Structures in the orbit space. The orbit space of a flow ¢ on M is obtained by lifting
¢ to a flow ¢ on the universal cover M, and then passing to the quotient Oy := M/ ~ where
each orbit of 5 is collapsed to a point. It is a fundamental theorem that, for pseudo-Anosov flows
on 3-manifolds, Oy is always homeomorphic to R? (| , ). The lifts of the stable and
unstable foliations of ¢ project to one-dimensional, transverse foliations F* and F* of Oy, with
isolated prong singularities if the flow is pseudo-Anosov rather than genuinely Anosov.
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The action of m (M) on M descends to an action on Oy by homeomorphisms preserving F*
and F*. Under this action, fixed points in Oy of a nontrivial element g € m; (M) are exactly the
projections to Oy of the lifts of periodic orbits in the same free homotopy class as g or g~ .

Much more can be read off the action of 71 (M) on Oy. In fact, by [ , Theorem B| (stated
for Anosov flows, but the proof applies also to pseudo-Anosov flows), the action of 71 (M) on Oy
completely determines the isotopy equivalence class of the flow. Thus, a priori, everything about
a flow can be recovered from the structure of the orbit space and action of 71 (M), although in
practice this is quite difficult to do. Nevertheless, the orbit space has become an essential tool
and we begin by quickly recalling some essential structural features and their relationship with
topological features of M from previous work of Barbot and Fenley. Further background and some
illustrations can be found in | ] and references therein, or the general surveys | ) ].

Definition 2.1. Two leaves (or half leaves) I in F° and I* in F* are said to make a perfect fit
if they have empty intersection, but “just miss” each other. That is, there is an arc 7° starting at
a point of I° and transverse to F* and an arc T starting at [* transverse to F" such that

i) every leq 0 at intersects the interior of T° intersects I*, an
; leaf k° of F° that int ts the interi S int ts " d
i) every leq ) at intersects the interior of " intersects 1°.

4 leaf K% of F* that int ts the interi Y oint ts 1®

Definition 2.2. A lozenge L with corners = and y is the open subset of O “bounded” by two
pairs of half-leaves starting at x and y making perfect fits. Precisely, let x,y be two orbits in Oy
and suppose 13" and vy are half leaves, where the subscript denotes the starting point and the
superscript their respective foliation, such that 3 and r, make a perfect fit, as do ry andry. Then

L:={pe Oy |Fp)Nri#0 and F°(p) Nry # 0}

is called a lozenge, the half-leaves 75" and r;* are called its sides, and x and y the corners. A
closed lozenge is the union of a lozenge with its sides and corners.

u

Definition 2.3. A chain of lozenges is a union of closed lozenges that satisfies the following
connectedness property: for any two lozenges L, L’ in the chain, there exist lozenges Ly, ..., L, in
the chain such that L = Loy, L' = Ly, and, for all i, L; and L;11 share a corner (and may or may
not share a side). We say a chain of lozenge is maximal if it is not contained in a strictly larger
chain.

We often pass back and forth between M and Oy, using “lozenge” also to mean the union of
orbits in M that project to a lozenge in Oy.

Lozenges and chains of lozenges play a fundamental role because of the following results of
Fenley.

Proposition 2.4 (Fixed points are in chains of lozenges, Theorem 3.3 of | . Ife#ye Oy
are both fized by some nontrivial element g € w1 (M), then there exists a chain of lozenges fixed by
g and containing both x and y as corners.

Translating this picture to M , this says that lifts of freely homotopic periodic orbits in M are
connected by a chain of lozenges.

Remark 2.5. Notice that one consequence of this result is that if a non-trivial element g € w1 (M)
fixes at least two points in Oy, then it fixes a unique maximal chain of lozenges.

For the next statement, recall that leaves of a foliation are non-separated if they represent
non-separated points in the leaf space of the foliation.

Proposition 2.6 (Nonseparated leaves are in lines of lozenges, Theorem D of | D). If two
leaves l1,ls in F° or F* are non-separated then there exists a nontrivial element g € w1 (M) fizing
both.

This is proved for Anosov flows in | ], but the proof carries through directly in the more
general pseudo-Anosov case.

We call a chain of lozenges C a line of lozenges if there exists a single leaf of F° or F* that
intersects every lozenge in C. Equivalently, a chain of lozenges is a line if any two adjacent lozenges
share a stable side, or any two adjacent lozenge share an unstable side. Combining Propositions
2.4 and 2.6 with the fact that any g-invariant leaf contains a fixed point for g, one sees easily that
any pair of nonseparated leaves always lies in a line of lozenges fixed by some nontrivial element g.
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In [Fen98, Theorem 5.2], Fenley shows that any infinite line of lozenges is in fact contained in
a bi-infinite line that has a special structure called a scalloped region described below (again, the
proof applies generally to pseudo-Anosov flows though the theorem is stated for Anosov, see also
[BFM22, Lemma 2.32]). Though technical, the definition is simply describing the picture shown
in Figure 1 of a trivially foliated open region of Oy that can be expressed as a bi-infinite line of
lozenges in two different ways.

Definition 2.7 (Scalloped region). A scalloped region is an open, unbounded set U C O, with
the following properties:
(i) The boundary OU consists of the union of two families of stable leaves li’s,lZ’s and two
families of unstable leaves l,lcu, li’“, indezed by k € 7Z.
(ii) The leaves of each family 1;)°, k € Z, 0 = s,u are pairwise non-separated.
(i) The boundary leaves are ordered so that there exists a (unique) leaf f,i’s that makes a
perfect fit with l,lc’u and l,lc’fl. Moreover, the sequence of leaves f,i’s accumulates on the
leaves Uiezlil’s as k — oo, and on Uiezl?’s as k — —oo. The analogous statement holds

for leaves making perfect fits with the other families lfc’”.
(iv) The bifoliation is trivial inside U, i.e., for allx #y € U, F5(x) N F(y) # 0 and F*(y) N
F(x) # 0 and U contains no singular points.

1;°

b s NN

i—1

1
fi

A INATNAT LA TINANAL

FiGUuRrE 1. A line of adjacent lozenges and a scalloped region. The leaves fij " are
vertical (blue), f{* are horizontal (red).
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A scalloped region is associated with exactly two distinct infinite lines of lozenges: The lozenges
in one of them all intersect a common stable leaf, and in the other chain of lozenges they intersect
a common unstable leaf. The scalloped region is the union of the lozenges in one of these chains
plus the half leaves which are contained in the closure of “consecutive” lozenges in such a chain.
We say that L is a lozenge in a scalloped region if it is a lozenge of one of the two such chains of
lozenges. Equivalently L is a lozenge in a scalloped region U if L is contained in U.

We use the following elementary lemma on the structure of scalloped regions.

Lemma 2.8. Let U, U’ be scalloped regions with U NU’ # (. If U # U’, then their intersection
is equal to LN L' for some well defined, unique lozenges L of U and L' of U’'. See Figure 2. As
a special case, if U' = a(U) £ U for some a € G, then L # L' and o has a unique fized point in
Oy, which lies in LN L'.

Proof. Suppose UNU’" # () and U # U’. We will show that, up to switching F* and F¥, there
exists a unique lozenge L in U such that the F* saturation of L does not contain U but does
contain U’ and a unique lozenge L’ of U’ such that the F* saturation of L’ does not contain U’
but does contain U. In this case, we will then have UNU’' = LN L'.

First, observe neither region can be properly contained in the other, so some leaf of QU intersects
(and therefore necessarily crosses) U’. Up to switching F* and F*, say this is a leaf [* of F*. Notice
that I* is entirely contained in OU, so must cross the scalloped region U’. Thus, I* either contains
the side of a lozenge of U’, or it passes through a lozenge of U’. In either case, since [° is in
the boundary of U, the product structure of U then implies that U lies in the F* saturation of
a uniquely determined lozenge L’ of U’. This lozenge L' is either crossed by [, or L’ has a side
contained in [* and L’ intersects U. This implies in particular that U N U’ = U N L’. Similarly,
the product structure of U’ implies that U’ must lie in the F* saturation of a unique, well defined
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FIGURE 2. The intersection of two scalloped regions.

lozenge L of U. Thus, UNU’' = U’' N L, and as a consequence U NU’' = LN L', where L, L’ are
well determined, unique lozenges, L of U and L' of U’.

Note that it is possible that L = L', and the lozenges are equal to U N U’. In that case U U U’
are part of a chain of lozenges.

To prove the second statement in the lemma, assume again for concreteness that U lies in the
F*° saturation of L’. Here L’ is a well defined, unique lozenge of o(U) = U’. Let I be the interval
of leaves of F* that meet the closure L. This is a proper subset of the interval of leaves that meet
U. Thus, «(I) is a subset of the interior of I, so a has a fixed leaf that intersects L’. Similarly,
applying a~! to the interval of leaves of F* meeting the closure of L/, we find a fixed leaf for «
that intersects L. Hence there is a fixed point for o on Oy, which lies in L N L’. Now it is easy to
see that this fixed point of o cannot be the corner of a lozenge because it lies in a scalloped region
(see, e.g., | , Lemma 2.29]), so a has only one fixed point by Proposition 2.4. Moreover,
a(l)y=L"so L#L. O

Definition 2.9. A tree of scalloped regions T' C Oy is a chain of lozenges such that each lozenge
in T shares each of its four sides with some other lozenge in T

The terminology “tree of scalloped regions” is justified by the following elementary observation.

Lemma 2.10. Let T be a tree of scalloped regions. Then any lozenge L in T is contained in
exactly two distinct scalloped regions, each a subset of T.

Proof. Pick a pair of opposite sides of L. By definition of tree of scalloped regions, both sides are
adjacent to other lozenges of T'. Iterating this, one produces a bi-infinite line of lozenges in T'. By
[ , Theorem 5.2], the union of these lozenges gives a scalloped region. Using the other pair of
opposite sides of L, one gets a distinct scalloped region. These two scalloped regions are the only
ones containing L. O

We note one more fact for future reference.

Lemma 2.11. If T is a tree of scalloped regions in Oy, then there exists a nontrivial g € m (M)
fixing all corners of lozenges in T. Furthermore, T is the mazximal chain of g-invariant lozenges
in the following sense: Any chain preserved by g is either a sub-chain of T, or contains an infinite
line of lozenges associated with a scalloped region in T'.

The fact that g preserves chains other than sub-chains of T is simply due to the fact that
scalloped regions can be realized as chains of lozenges in two different ways, hence when g preserves
a scalloped region, it preserves two distinct chains of lozenges (only one of which is a sub-chain of
7).

Proof. The first statement is a direct consequence of Proposition 2.6. For the second statement,
note first that T is a maximal chain, so by Remark 2.5 no other lozenge has corners fixed by g (or
any of its powers). Suppose now that C is a g-invariant chain of lozenges, which is not a subchain
of T. Then g and all its powers acts freely on C.
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Let g be a corner of C. Then ¢ cannot be in the interior of any scalloped region in T'. In addition
if ¢ is in a boundary component £ of a scalloped region in T so that £ is fixed by g, then ¢ is fixed
by g as well, contradiction. It follows that given a scalloped region U in T', then there is a unique
boundary leaf ¢ of U (which is not fixed by g), so that either ¢ € £ or ¢ separates U from gq.

Note that ¢ is not contained in 7', but is in the “other” boundary of the scalloped region U in
T. The leaves £, g(¢) are non-separated from each other. It follows that the minimal chain from ¢
to g(c) (which is contained in C) has to have a lozenge with a side in ¢ and a lozenge with a side
in g(¢), and each is contained in U. By g invariance it follows that C contains the other infinite
line of lozenges associated with U — the one not contained in T

This finishes the proof of the lemma. U

2.2. Cutting surfaces in M. We now describe topological features of a 3-manifold M with a
pseudo-Anosov flow that give rise to the features in the orbit space of the flow described above.
The case of interest to us is when M has nontrivial JSJ decomposition. We do not assume M is
orientable, so the cutting surfaces of the JSJ decomposition may be tori or Klein bottles. When P
is a Seifert piece, the boundary of P is the union of cutting surfaces adjacent to P. Note that this is
not necessarily the same as the topological boundary of P in M as various boundary surfaces of P
may be glued to each other in pairs. We recall two definitions briefly mentioned in the introduction.

Definition 2.12 (Following | ). P is called a periodic Seifert piece for ¢ if there is a Seifert
fibration of P such that a regular fiber is freely homotopic to a periodic orbit of ¢.

Definition 2.13. A my-injective torus or Klein bottle in M is called o scalloped surface if its
fundamental group contains two independent elements that are freely homotopic to periodic orbits
of ¢. A periodic Seifert piece P is called a scalloped piece if each of its boundary surfaces is a
scalloped surface.

Remark 2.14. By | ] (and | , Theorem 4.1] for the pseudo-Anosov case), a pseudo-Anosov
flow on a closed Seifert manifold is necessarily orbit equivalent to the lift of a geodesic flow on the
unit tangent bundle of a hyperbolic orbifold (and hence Anosov). In particular, a closed Seifert
manifold cannot be a periodic Seifert piece for such flow, nor can a closed Seifert manifold admit
a scalloped surface.

Convention. In this article we will say that a set S in M projects to a chain of lozenges C, or a
scalloped region U, in Oy if the closure of w(S) is equal to the closure of C, or the closure of U, in

Oy, where m: M — Oy denotes the projection map.

The reason for the above convention is that we will be considering lifts S of tori or Klein
bottles, such that their projections 7(S) always contain the interiors of the lozenges in a chain
C, but may either contain a corner or a side of each lozenge (though never both). What is of
primary importance to us is that these chains or scalloped regions are naturally associated to S
and invariant under the appropriate conjugate of 71 (S) when S is the lift of S to M.

The following statement is shown within the proof of | , Theorem B] (but with different
terminology there). See also Lemma 5.5 of | ] for a proof of a more general statement. While
these assume M orientable (and hence take 7 (S) = Z?), orientability is not used in an essential
way, and one obtains the result below with the same proof.

Proposition 2.15 (| , D). Let S be a scalloped surface and Sa lift of S to M. Then,
up to homotopy of S, the projection 0f§ to Oy is a scalloped region.

Moreover, zf:S’V is chosen to be the lift invariant under m(S), then there are independent elements
g1 and ga for w1 (S) such that g1 translates one family of lozenges making up the scalloped region,
while preserving each lozenge in the other, and go preserves the lozenges of the first family and
translates (or, in the case of a Klein bottle, translates and reflects) the other.

Our next goal (Lemma 2.25) is to show that embedded scalloped surfaces are always isotopic to
cutting surfaces of the JSJ decomposition of M. Before this, we recall a few results from [ ]
that show cutting surfaces of the JSJ decomposition can be taken in good position with respect to
the flow.
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Definition 2.16. A Birkhoff annulus is an immersed closed annulus in M bounded by periodic
orbits of ¢, with interior transverse to ¢. A Birkhoff surface is a torus or Klein bottle formed by
a union of Birkhoff annuli glued along their boundary components.

Definition 2.17. A Birkhoff surface or annulus S is called weakly embedded if the complement
of the periodic orbits in S is embedded.

The following result relates Birkhoff surfaces and invariant chains of lozenges. The forward
direction is immediate from the definition, and the backward direction is proven in Proposition 6.7
of | ].2

Proposition 2.18 (| ] Proposition 6.7). Let S be a Birkhoff surface. Then a lift S to M
projects to a chain of lozenges invariant under (a conjugate of) w1 (S).

Conversely, suppose C is a chain of lozenges that is invariant by a subgroup T of w1 (M), iso-
morphic to Z? or m (K), with no strict subchain preserved by T'. Then there exists a 1 -injective
torus or Klein bottle in M, with fundamental group (conjugated to) I' and such that one of its lifts
projects to C.

Using this, we can show the following converse statement to Proposition 2.15.

Lemma 2.19. Let U be a scalloped region in Og. Then there is a mi-injective torus or Klein

bottle S in M with a lift S in M which projects to U. Moreover, the stabilizer of U contains the
corresponding conjugate of w1(S) as a finite index subgroup.

Proof. The first part of the argument follows [ , Lemma 2.33], we outline it for convenience.
Let U be a scalloped region, and consider the finite index subgroup of its stabilizer that preserves
each of the four families of boundary leaves. Considering the action on the families l , and 1,167“,
each g sends l]C to some l,€ Y (where m depends only on g). This gives a homomorphlsm from
this group to Z2, whose image is a rank 2 subgroup (so isomorphic to Z?) since Proposition 2.6
shows that some nontrivial elements act trivially on each factor. Now apply Proposition 2.18, to

find the Birkhoff torus or Klein bottle S. O

The next lemma says that, after isotopy, one may upgrade such a scalloped surface to be
transverse to the flow.

Lemma 2.20. Suppose that S is a scalloped surface in M. Then S is isotopic to an embedded
surface transverse to the flow. This surface is unique up to isotopy along flow-lines.

This is proved in | ] when M is orientable and contains no one-sided Klein bottles. We
give a proof that applies in the general setting.

Proof Let S be a scalloped surface. By Proposition 2.15, up to a homotopy of S, there is a lift
S of S to M that projects to a scalloped region in Oy. Let U C M be the union of orbits in this
scalloped region; this is fixed by 71(S) and the quotient of U by m1(S) is homotopic to S. Let G
be the stabilizer of U in w1 (M). Then (with appropriate choice of base point) m1(S) C G, and is
a subgroup of finite index by Lemma 2.19. We will show that in fact G = 71(S), by using some
3-manifold topology.

Let M; be the (infinite) cover of M associated with G. Let ¢ be the flow lifted to M; and let
V' be the projection of U C M to M;. We may choose one G-invariant surface C’ in U, that is
transverse to 5 and whose projection to Oy is the scalloped region given by the projection of U.
Calling C’ the projection of C’ to Mj, we obtain that V is homeomorphic to C’ x R, with the
flow-lines of |y giving the product decomposition, m1(C’) = G, and there is an embedded copy
of C’ transverse to the flow.

Since 71(S) C G with finite index, we have that S lifts to an embedded compact surface S’
in M. The surface S’ is homotopic in M; to an embedded surface in V' (which carries all the
topology of Mj). Since M; is irreducible and Haken, S’ is isotopic into V 22 C’ x R, by a classical
result of Waldhausen | ]. We further get that S’ is isotopic into C’ x [—1,1]. Theorem 10.5
of | ] now implies that S’ is isotopic to C’, which shows that m1(S) is in fact equal to G.

2There is a typo in the statement of Proposition 6.7 of [ ], where they write string of lozenges, instead of
chain. But the proposition and its proof holds for any chain of lozenges, not just strings.
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The next step is to show that the projection of ¢’ to M can be homotoped to an embedded
surface. Denote the projection of C’ by C. Since m1(S) = G, C is homotopic to S in M. Put C
in general position moving points slightly along flow lines. If it is already embedded, we are done;
otherwise consider the finitely many curves of self intersection of C. As in the proof of | ,
Theorem B], one may apply an isotopy to remove any null-homotopic curves of self-intersection,
by sliding part of the immersed surface C' while keeping the rest fixed. This is done carefully in
lemmas 7.11, 7.12 and 7.13, pages 144-147 of | ].

Now we show that C cannot have any non null-homotopic curves of self-intersection. Assume
for contradiction that 7 is such a curve in C'. Think of C' as the image of an immersion f: L — M
where L is a closed surface, and let 7* C L be a simple closed curve in L with f(7*) = 7. We will
use this to produce a curve a € w1 (M) \ 71(S), with the property that a(U) = U. This contradicts
the fact proven earlier that m(S) is the stabilizer of U.

A priori, the restrictions of the map f to 7% may or may not be injective, and we treat these
cases separately.

Case 1 (f: 7" — 7 is not injective). Since f is locally injective, we may then find a sub-arc of 7*
where f is injective on the interior but whose endpoints are mapped to the same point in M. Thus
the image is a closed curve v in M, contained in C'. Considering o as a deck transformation, we
have a(U) NU # (. By Lemma 2.8, either «(U) = U, or « has a unique fixed point in U. Since
f: 7 — 7 is a finite cover, it follows that some positive power o™ is the image of an element in
m1(L), i.e., in m1(S). This means that o (U) = U, which is impossible since « has a unique fixed
point inside U.

Case 2 (f: 7 — 7 is injective). We now assume that for any self intersection curve 7 of C
and preimage 7* under f, then the restriction f: 7% — 7 is injective. Since 7 is a curve of self
intersection of C, it follows that f~!(7) contains another component 3* besides 7*. There is an
arc o in L from 7* to 8*. We can adjust the endpoint in 8* so that a := f(a*) is a closed curve
in M. As in the first case, a(U)NU # (.
There are three possibilities in this situation:
(1) The curves 7*, 8* are both two sided in L. Then 7*, 8* are isotopic in L, and applying f
gives o~ lra = 71
(2) The curves 7*, 8* are both one sided in L (so L is necessarily a Klein bottle). Then the
squares of these curves are homotopic to curves in L which are isotopic to each other.
Consequently, a~ 172 = 72;
(3) Up to switching 7%, 8*, we have that 7* is one sided and 8* is two sided in L. Consequently,

a r2a =71,

Since 7(U) = U, the equations in possibilities (1)—(3) above imply that either Ta(U) = a(U)
or 72a(U) = a(U). Thus we always have 72a(U) = «(U). Suppose now that a(U) # U. By
Lemma 2.8, there exist lozenges L, L' of U and «(U) respectively, such that «(U)NU = LN L'
and L # L'. Thus, 72 fixes both U and «a(U), and it therefore fixes the four points of intersection
of the sides of L and L’. This is a contradiction since 7 is nontrivial.

Once again, we conclude that a(U) = U, so ais in 71 (S) and does not produce self intersections
of C.

This shows that C' is embedded. As C is embedded and homotopic to .S, applying Waldhausen’s
theorem [ ], gives that S is isotopic to C as desired.
The proof of uniqueness of the surface C follows exactly as in the argument in | ] g

Building on Lemma 2.20, the next proposition says that we have good representatives for both
scalloped and non-scalloped cutting surfaces.

Proposition 2.21 (Barbot, Fenley). Let S be a cutting surface of the JSJ decomposition of M.
Then S is homotopic to a weakly embedded Birkhoff surface, and

(1) If S is scalloped, then it may be isotoped to an embedded surface transverse to the flow,
which is unique up to isotopy along flow lines.

(2) If S is not scalloped then the Birkhoff surface is not unique up to homotopy along flow
lines, but w1 (S) leaves invariant a unique minimal bi-infinite chain of lozenges C, and for
any Birkhoff surfaces S, the unique lift S stabilized by m1(S) projects to C.
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We call the transverse surface (in the first case), or the weakly embedded Birkhoff surface (in the
second) a good representative for the cutting surface.

Given Lemma 2.20, it remains only to prove statement (2). This is proved in | ], but is not
completely transparent since it occurs within the proof of Theorem 6.10. We give an outline and
further references, and provide the necessary details to treat the possibly non-orientable setting.

Proof. Ttem (1) has already been proved in Lemma 2.20. So, we suppose that S is not scalloped.
We assume first that M is orientable. Let S be a cutting surface of the JSJ decomposition of M,
since we are in the orientable setting m(S) = Z? and therefore by [ , Lemma 5.3] it preserves
a chain of lozenges. (If there are two distinct such chains, then | , Lemma 5.5] states that S
must be scalloped.)

Let C be a minimal (with respect to inclusion) 7 (S)-invariant chain of lozenges. Since S is an

embedded torus, Step 1 of the proof of Theorem 6.10 of | | shows that no corner of C has any
point of its orbit under 71 (M) in the interior of any lozenge of C. In the language of [ ], C
is simple (see also | , Corollary 6.11]). Thus by | , Proposition 6.7], C corresponds to a

weakly embedded Birkhoff torus that is homotopic to S. More precisely C is the projection to the
orbit space of the unique lift S of S stabilized by 7 (S). This proves item (2) in the case where
M is orientable.

If M is non-orientable, one may pass to the orientable double cover Mof M. A cutting surface
S in M will lift to an incompressible torus Sin M. We only need to justify that S is also a cutting
surface of M. This is by definition if at least one side of S is atoroidal. If both sides of it are
Seifert fibered then these project down to necessarily distinct Seifert fibered pieces of M (since S
is a cutting surface), so the fibers on either sides are different homotopy classes in the torus; hence
Sis a cutting surface for M and we may apply the argument above to find a good representative
in M and then project back down to M. ([l

Good representatives for cutting surfaces can be obtained simultaneously, as follows.

Proposition 2.22 (Good form for cutting surfaces | ], Théoreme E). Given any number
of distinct cutting surfaces, one can choose good representatives that are either disjoint, or have
pairwise intersections only along periodic orbits of Birkhoff surfaces. Moreover, when two such
Birkhoff surfaces intersect, they do not cross each other.

While Barbot proves this in the setting where M is orientable, the proof carries through in
general, given our Proposition 2.21 above.
Using this, we make the following definition which we will use frequently in the next section.

Definition 2.23. Suppose P is a piece of the JSJ decomposition of M. By Proposition 2.22 one
may homotope each boundary surface to a good representative. We call the resulting set (obtained
from P by this operation on boundary components) the good representative for P.

Note that the good representative may not be a submanifold, because certain periodic orbits in
boundary components may end up coinciding after homotopy — this is also why homotopy rather
than isotopy is needed in the definition.

We record for future reference the following useful property of good representatives.

Lemma 2.24 (See Theorem B of | D). If P is the good representative of a periodic Seifert
piece, then the only orbits contained in P are periodic and have powers agreeing with a reqular
fiber.

This is proved in Section 7 of | ] for orientable manifolds, but holds generally by passing to
the orientable cover.

Lemma 2.25. Any embedded scalloped surface is homotopic to a cutting surface of the JSJ de-
composition of M.

Proof of Lemma 2.25. Let S be a scalloped surface for a pseudo-Anosov flow ¢ in M. As explained
in Remark 2.14, this implies that M has nontrivial JSJ decomposition.

Since S is mi-injective, the JSJ decomposition theorem (more precisely, its uniqueness part, see
e.g., | ]) implies that S is either homotopic to a cutting surface (in which case we are done),
or can be isotoped to lie in a necessarily Seifert piece P. Our goal is to show S is peripheral in P.
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Since P has non-empty boundary, there are no horizontal tori or Klein bottles, so one element of
m1(S) represents the fiber direction. Call this g.

Consider the lift S of S to M which is invariant under m1(S), and let U be the projection of
S to the orbit space, i.e., the scalloped region associated to S. The group m(S) stabilizes U,
and in fact is either equal to, or finite index in, the stabilizer of U (Lemma 2.19). Now choose a
boundary component Z of P. If S = Z we are done; otherwise 71(Z) does not virtually stabilize
U, so contains some element f such that f2(U) # U.

However, f2gf~2 = g, which does stabilize U, and also stabilizes f2(U) # U. Thus, g stabilizes
two distinct scalloped regions. We claim this means that g cannot act freely on oU. If it did act
freely, then it would freely permute the connected components of the complement of U. However,
the structure of scalloped regions forces f2(U) to intersect at least one, and at most two, connected
components of O\ U. Thus, g cannot act freely, and hence represents a periodic orbit of the flow.
In particular, P is a periodic piece.

Since S is scalloped, by definition there exists an independent element h € 71(S) representing
a periodic orbit of ¢. Recall that U can be realized in two ways as a line of lozenges, and by
Proposition 2.15, we may choose such an h such that it fixes each lozenge in one line, and translates
by a shift along the other.

Let v be a periodic orbit of ¢ which is the projection of one of the orbits fixed by h in the
boundary of U. Choose a good representative for the piece P (abusing notation, we denote this
also by P) so that all the periodic orbits in P have a power freely homotopic to the fiber direction,
as in Lemma 2.24. Then ~ cannot be contained in P. If 7y is disjoint from P, then the free homotopy
between vy and a loop representing h in .S C P must pass through a boundary of P. That is, h is
peripheral in P. This implies that .S was in face a cutting surface, so we are done.

Thus, we are left with examining the case where ~ intersects some boundary component Z’, but
is not freely homotopic into it. Since P is assumed to be a good representative, by Proposition
2.21, Z' is either scalloped and transverse or represented by a weakly embedded Birkhoff surface,
thus v intersects it transversely. Let C be the maximal 71 (Z’)-invariant chain of lozenges, and ¥
the lift of v intersecting C. Since v intersects Z’ transversely and is assumed not homotopic into
Z', 7 is not a corner but rather contained in the interior of a lozenge. But h € m(Z), so C is
h-invariant, meaning that h cannot have any interior fixed point, a contradiction. This eliminates
this case and finishes the proof. O

2.3. Proof of Theorem 1.3. Theorem 1.3 was the statement that for Anosov flows, trees of
scalloped regions correspond to scalloped periodic Seifert pieces. We in fact prove a more precise
statement in the more general setting of pseudo-Anosov flows, as follows.

Theorem 2.26. Let ¢ be a pseudo-Anosov flow on a closed 3-manifold M. The orbit space of
¢ contains a tree of scalloped regions if and only if ¢ has a scalloped periodic Seifert piece P.
Moreover, each tree of scalloped regions is the mazimal chain of lozenges fized by (a conjugate of)
the fiber direction of a unique scalloped periodic piece.

Proof. Let T C O be a tree of scalloped regions. By Lemma 2.11, there exists a nontrivial
g € m1 (M) that fixes every corner of every lozenge in T. Choose a minimal such g, i.e., such that
no root of g also fixes each corner. The proof of | , Proposition 1.2] shows that the centralizer
C(g) of g in w1 (M) is (conjugate to) the fundamental group of a Seifert piece P, with g representing
the Seifert fiber; in other words P is periodic. We assume P to be a good representative of the
piece. .

To prove that P is scalloped, we analyze its boundary surfaces. Let P be the lift of P to M which
is invariant under 71 (P). Let S be a torus or Klein bottle in the boundary of P. By Proposition
2.21, S is either a transverse torus or a Birkhoff surface containing some periodic orbits with a
power freely homotopic to g. Let S be a lift of S to P invariant under g.

By Proposition 2.21, 71(S) has a minimal invariant chain of lozenges C which is the projection
of §; if S is scalloped this is the associated scalloped region which can be expressed as a chain in
two ways; and if not the chain C is unique. Since g leaves invariant C and fixes all corners of T
(as in Lemma 2.11) the chain C is either a subchain of T" or defines one of its scalloped regions. In
that latter case we can replace C by the subchain of T' defining that same scalloped regions.
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Fix some lozenge L in C. We will show that orbits passing through 7(L) go from one scalloped
boundary component S; of P to another, Ss. Since by definition of L, these are orbits passing
through S, we conclude S is either S7 or S; and thus is scalloped.

To show this, we use the structure of 7. Lemma 2.10 says that L is contained in exactly two
distinct scalloped regions in T', say Uy and Uz. By Lemma 2.25 together with Proposition 2.18,
each U; corresponds to the lift to M of a cutting surface. Let S; and Ss be the cutting surfaces
whose lifts project to U; and Us respectively. Since U; and Us are both fixed by g, the surfaces Sy
and Ss contain loops that are freely homotopic to the Seifert fiber of P. Therefore they must be
in the boundary of P, rather than in other pieces. Now all orbits whose images are in the interior
of L intersect both S; and S» when crossing P. Thus, S must be equal to either Sy or Sz, so S is
scalloped.

Since the choice of S was arbitrary, we conclude that P is a scalloped Seifert piece, as claimed.
This proves the direct statement of the proposition.

Conversely, suppose that the we have a periodic Seifezc/ piece P such that each of its boundary
surfaces Sy, ..., .S, are scalloped. Let P be a lift of P to M, and G =~ 71 (P) be the subgroup fixing
P. Let ~ be the lift of a periodic orbit of ¢ which is contained in ﬁ, and let g € G be the element
representing the fiber of P, so that gy = 7. Let C be the unique maximal chain of lozenges fixed
by g (see Remark 2.5). We will show that C is a tree of scalloped regions, i.e., that every corner in
C admits a lozenge in each of its 2p quadrants (recall, we are assuming the flow is pseudo-Anosov
so may have singular orbits). We first show the following:

Claim 2.27. Any corner of C is an orbit contained in the interior of P.

Proof. Let x’ be a corner of C, so it is fixed by g, and so by Proposition 2.4 there is a chain C' of
lozenges connecting x’ to . Suppose for contradiction that z’ is not contained in P. Then there
is a lozenge L in C’, so that one corner of L, call it x is contained in P and the other corner, call
it y is not contained in P. Notice that y cannot intersect P for otherwise it would pass through
one of the boundaries of P, and hence be in the interior of a lozenge with a corner in the chain C,
which is an impossible configuration for corner points.

Let Y be the component of oP separating x from y. Notice that the projection of Y to the
orbit space contains L. Since 7(Y") is a scalloped surface, it follows that the projection of Y to the
orbit space is a scalloped region U. Now, this scalloped region U intersects either both the stable
leaves of & and y or their unstable leaves. Thus x and y are both in the forward flow side (in the
first case, because points in Y would have forwards orbits accumulating to = or y) or both in the
backward flow side of Y (in the second case). Hence, Y cannot separate = from y, contradicting
the definition of Y. |

Using the claim above, we now show C is a tree of scalloped regions. Let ¢ be any corner in
C. By the above claim, the orbit ¢ is contained in the interior of P. We want to show that each
quadrant of ¢ contains a lozenge of C with ¢ as corner. To do this, pick any quadrant and take
another orbit b in that quadrant, close enough (in M ) to ¢ so that b intersects P. Then, since P
is a periodic Seifert piece, b must also intersect one of the planes bounding P (which are the lifts
of the boundary surfaces Z;). Since these surfaces are all scalloped, b, seen in O, must be a point
of a scalloped region U invariant by ¢g. In particular, the quadrant of ¢ containing b has a lozenge
in C. This concludes the proof. O

3. SPINES AND PERIODIC SEIFERT FLIPS

To precisely state the definition of a periodic Seifert flip and give its construction we need

to recall some framework developed in [ ], and generalize it to the case of non-orientable
manifolds. This is the notion of the spine of a periodic Seifert piece.
In | , Theorem B] Barbot and Fenley show that, under the assumption that M is orientable,

any periodic Seifert fibered piece for a pseudo-Anosov flow on M has a spine. A spine is a connected
finite union of weakly embedded, elementary Birkhoff annuli, such that a small e-neighborhood of
the spine is a representative for the piece P. FElementary means that the restriction of the stable
or unstable foliations to one annulus do not have compact leaves aside from the boundary periodic
orbits. This spine serves as a combinatorial model for the flow on that piece — one needs only to
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keep track of the way the annuli are assembled together, as well as a choice of orientation for the
periodic orbits (see | , Theorem DJ).

Orientability is only used at the end of the proof given in | |, and not in an essential way; the
only modification required is that one must allow for non-orientable Birkhoff surfaces. Thus, the
construction of spines also applies to our more general setting. For completeness, and because we
will reference aspects of the construction later on, we recall the steps given in | ] and comment
on the use of orientability.

Theorem 3.1 (Generalizing | ] Theorem B to the non-orientable setting). Let P be a peri-
odic Seifert piece for a pseudo-Anosov flow on M (not assumed orientable). Then there exists a
connected, finite union of weakly embedded, elementary Birkhoff annuli in M such that a small
e-neighborhood of this union is a representative for the piece P. This union of annuli is called a
spine.

Remark 3.2. As will be clear from the proof, the spine is constructed from combinatorial data in
the orbit space. Thus, it is unique up to isotopy along flow-lines. For this reason, one often says
the spine rather than a spine, but we will occasionally want to work with an explicit realization of
weakly embedded elementary Birkhoff annuli and so refer to this as a spine.

Proof. Let P be a periodic Seifert fibered piece of an Anosov or pseudo-Anosov flow ¢ on M. By
Remark 2.14 we have P # M. Let h € m (M) represent a regular fiber of P and let o € Oy be a
point fixed by h.

Let C, C Oy be the maximal chain of lozenges containing « as a corner. Let 7 be the graph (in
fact, it is easy to see this graph is a tree) whose vertices are corners of lozenges in C, with edges
between the two corners of the same lozenge. This graph naturally embeds in C,, which gives it
the structure of a fat graph®. Since the fiber h is in the center of 71 (P), the action of 71 (P) on Oy
preserves 7. Moreover, as 71 (P) is not cyclic it contains a Z? subgroup, and since stabilizers of
corners are cyclic, some element of m (P) must therefore act freely on 7.

The pruned tree T' C T is defined to be the unions of all axes of elements of 71 (P) acting freely

(see | ). If P is assumed to be scalloped and the flow Anosov, one will always have 7' = T,
as we describe below. In general, this may not be the case, and one instead proves that 7' is
m1(P)-invariant and connected, hence a subtree (see | , p. 1935]).

Since the scalloped Anosov case is that of interest to us, we note some other properties special
to this setting and explain briefly why 77 = 7. In the scalloped, Anosov setting, C, will be a tree
of scalloped regions and 7 is a 4-regular tree. All the elements whose powers are not a power of
the fiber act freely on the graph and each vertex is in some axis (because for every vertex v there
are two Z? subgroups that leave invariant a scalloped region whose boundary contains v). In the
pseudo-Anosov case, the same holds except that some vertices may have degree 2p, with p > 2,
coming from the singular prongs.

The next step is to show that no element of 71 (M) sends a vertex of T’ to a point in the interior
of a lozenge of T7'. Again, this is easy to show in the case where C, is a tree of scalloped regions
(no point inside a scalloped region can be a corner of a lozenge, see e.g., [ , Lemma 2.29]),
and in general this follows from arguments of | , Section 6], where the assumption that M
is orientable is not used. This property implies that each lozenge of 7' corresponds to the lift
of a weakly embedded Birkhoff annulus in M — it is the projection to O of the lift of a Birkhoff
annulus (with boundary given by the corners of the lozenge), and by | , Theorem D], the
fact that no vertex is sent to the interior of the lozenge by an element of w1 (M) means this Birkhoff
annulus can be taken weakly embedded. Moreover, | , Proposition 6.7] (which also does not
assume M is orientable) shows that this may be done simultaneously for all lozenges of 7' in a
71 (P)-equivariant way.

We now consider the quotient of 77 by m1(P). Since w1 (P) is finitely generated, and 7" is a
union of axes of elements of 71 (P), the quotient contains no infinite ray, and one then argues easily
that 77/m1(P) is finite. Consider the (finite) union of lozenges making up a finite fundamental
domain for this action, and the corresponding weakly embedded Birkhoff annuli. Standard cut
and paste arguments allow one to realize the union of these annuli as a weakly embedded surface
— this is in fact the same machinery as is used to obtain weakly embedded surfaces in the proof of

3A fat graph is a graph together with an embedding into a surface S that deformation retracts to the graph.
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Propositions 2.21. Let B denote this union. One now must show that some small neighborhood
of B in M is a representative of the piece P, which completes the proof.

Here the arguments of Section 7 of | ] go through without modification. In brief, one
considers a small neighborhood U of B, and lifts it to a connected subset U C M. If U is chosen
small enough, since 7’ was m;(P)-invariant, U’ will be diffeomorphic to ¥’ x R, where ¥’ is a
surface that deformation retracts to the tree 7' to give its fatgraph structure. Thus, Uis simply
connected. This implies that U has incompressible boundary, hence is a Seifert piece representing
P. |

Remark 3.3. Our primary use of spine is in the setting where P is a scalloped Seifert piece for
an Anosov flow. In this setting, the combinatorial data of the spine is encoded by the quotient
of T = T’ (the fat tree corresponding to the 7 (P)-invariant tree of scalloped regions in @) and
its corresponding Birkhoff surfaces, which are a union of Birkhoff annuli, one for each lozenge of
T /m1(P). In the next section we will reverse this process, showing that each periodic Seifert piece
has nice coordinates by assembling it out of basic “model” pieces. This will allow us to describe
the flip of a flow in coordinates.

Definition 3.4. Two flows 1 and ¢ on M with a common periodic Seifert piece P are said to have
the same spine in P if there exists a union of weakly embedded annuli in M that are elementary
Birkhoff annuli for both flows and whose union serves as a spine for both flows.

Note that while having the same spine forces a direct correspondence between periodic orbits
on P (these are precisely the boundaries of the annuli), it does not make any requirement on the
direction of these orbits. This brings us to the definition of flip.

Definition 3.5. A pseudo-Anosov flow v on M is obtained by a periodic Seifert flip of ¢ if, up
to isotopy equivalence, there is a scalloped periodic Seifert piece P for ¢ (and 1) that is a good
representative for both flows, and such that ¢ and v are isotopic on M ~ P and have the same
spine in P, but each periodic orbit of ¢ in this spine has the opposite orientation as the identical
periodic orbit of .

It is not obvious from the definition that a flip on a specific piece exists or is unique (see Remark
5.5). However, we will show the following in Sections 5.2 and 6.1 respectively.

Theorem 3.6 (Existence). If ¢ is a Anosov flow with a periodic Seifert piece P, then there exists
a flow ¥ obtained from ¢ by a periodic Seifert flip.

Theorem 3.7 (Uniqueness). If ¢ and ¢’ are each obtained from a transitive Anosov flow ¢ by a
flip on a periodic Seifert piece P, then 1 and v’ are isotopy equivalent.

These are both essential to the classification theorems stated in the introduction, and their proofs
occupy the next few sections. We begin by giving a precise coordinate description of periodic Seifert
pieces of Anosov flows.

4. MODEL FLOWS AND THEIR FLIPS

Theorem 3.1 states that a periodic Seifert piece can be realized as a small neighborhood of
a union of weakly embedded Birkhoff annuli. As described in | , section 8], there is a nice
coordinate model for a small neighborhood of a Birkhoff annulus; this is the manifold N homeo-
morphic to I x I x S* with flow generated by the vector field X+ (or X ) described below. Thus,
to describe a periodic Seifert piece, it suffices to describe how to glue copies of N together. Such
gluings are discussed in | , Section 6] for orientable manifolds, and also described implicitly in
the discussion at the end of the proof of Theorem B of | ]. Some additional subtlety arises in
the non-orientable case, so we give an explicit, and slightly different version of the construction,
adapted to our purposes.
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FIGURE 3. The model block with flow 1™; The shaded region is a Birkhoff annulus.

4.1. Model Seifert pieces. Let N = I x I x S, where [ = [-7/2,7/2] and S* = R/Z, with
coordinates (z,v,2). Fix some A > 1, and define vector fields X* by*

i=0,
i = cos?(x) + sin?(y) sin®(z)
% = £ Asin(x) cos(y).

Let 9% be the flows defined by X*. Here and going forward, we abuse terminology somewhat
and say “fow” even though the orbits of ¢)* enter and exit N, and so the flow is not defined for
all time.

We call ¢~ the flip of 4™, and vice versa. Note that this flip is not the same thing as reversing
the direction (i.e., reversing the time parameter of the flow), rather reversing time is obtained by a
flip followed by a reflection in the y-coordinate. We emphasize some important properties of 1)=:

Observation 4.1. The flows * have the following properties

e There are only two closed orbits ay = {—m/2} x {0} x St and ay = {7/2} x {0} x St,
with a1 going in the positive z-direction for ¥+ and negative z-direction for 1~ and the
opposite for as.

e Both flows are incoming through the boundary I x {—m/2} x S' and both are outgoing
through the boundary I x {m/2} x S*.

e Both flows are tangent to the boundaries {£m/2} x I x St.

e For both flows, we have that {—m/2} x [—7/2,0] x St is the stable manifold of oy and
{—m/2} x [0,7/2] x S is the unstable manifold of ay. Similarly, {m/2} x [-7/2,0] x S*
and {m/2} x [0,7/2] x S are (respectively) the stable and unstable manifolds of cg in N
for both flows.

o The annulus B = [—7/2,7/2] x {0} x S* is a Birkhoff annulus of both flows.

Notice also that the parameter A controls how much shearing there is in the z-direction as orbits
go through the block, the larger the A\, the more shear. This control is used to prove hyperbolicity
of the flows built from gluing such pieces, see Lemma 5.2. For the remainder of this section, we fix
such a A and suppress any dependence of the flows 1* on \.

It is easy to show that any embedded Birkhoff annulus of a pseudo-Anosov flow on a manifold
M has a neighborhood that is orbit equivalent to N with the model flow ¥* (or equivalently with
the model flow ¥, as there is a homeomorphism of N obtained by reflecting in the x = 0 plane
taking one to the other). Annuli that are only weakly embedded admit neighborhoods that are
local embeddings of N, injective on the interior but possibly non-injective on the faces containing
the periodic orbits.

Two copies of (IN,%T) can be glued together along a stable or unstable manifold face of a
periodic orbit as in Figure 4 left, provided that they are oriented so that the incoming boundaries
are adjacent, and the flows agree on the glued face. This is achieved by flipping the z-coordinate

4n [ ], the y and z coordinates are reversed compared to what we have here. For our purposes it will be
convenient to have the S fiber as the last coordinate.
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FIGURE 4. Left: two model blocks glued along a half-face, the rear/right block is
flipped vertically. Orbits a; are labelled according to the block Ny. Right: lifting
these blocks to M and projecting to Oy gives two adjacent lozenges with corners
fixed by the element representing the fiber. In this image, the flow direction is out
of the page, towards the reader.

direction of one of the blocks. Gluing four around a corner produces a standard neighborhood of
a periodic orbit in a periodic Seifert piece; using only two pieces produces singular Seifert fibers.
This is described explicitly in coordinates in the following constructions. After describing these
local models, we will then prove that every periodic Seifert piece of an Anosov flow is obtained by
gluings of this form, with fiber given by the z direction.”

Construction 4.2 (Gluing model blocks around a nonsingular fiber). Let Ny,... N4 be copies of
N with flows 7", ...9] copies of Y. Let (2,1, 2;) denote the coordinates on N;.

Glue the half-face {—m/2} x [—=7/2,0] x St of N7 to the half-face {m/2} x [-m/2,0] x S of Ny by
the map (y1,21) — (y2, —22). Glue the adjacent half-face {r/2} x[0,7/2,]x .St of N to the half-face
{—m/2} x[0,7/2] x St of N3 by (ya,22) = (y3, —23), the adjacent half-face {—7/2} x [-7/2,0] x S*
of N3 to {m/2} x [-m/2,0] x S! in Ny, and the remaining half-faces of Ny and Ny, each time by
flipping the z-coordinate. The flows 1, glue together, the result is a model neighborhood of a
regular, periodic orbit corresponding to {—m/2} x {0} x St in N;. The glued manifold has an
obvious product structure, a trivial circle bundle over a surface.

Construction 4.3 (Gluing around an isolated singular Seifert fiber). Let Ni, Ny be copies of
N with flows 1] as above, and glue {—n/2} x [-7/2,0] x S* of N; to the half-face {7/2} x
[-7/2,0] x S of Ny as above. Now glue the adjacent half-faces {—m/2} x [0,7/2] x St of N; and
{m/2} x [0,7/2] x S* of Ny by the map (y1,21) — (y1, —21 + 1/2), where the z coordinate is taken
mod 1. Again, the flows glue together. The z-coordinate direction gives a Seifert fibration on the
resulting manifold with boundary, with isolated singular fiber given by the glued periodic orbit.

Construction 4.4 (Gluing a reflector arc). Let Ny, Ny be copies of N with flows 1/)1" and glue
{—7/2} x [-7/2,0] x S of N; to the half-face {n/2} x [~7/2,0] x S of Ny as above. Now, glue
the half-face {—m/2} x [0,7/2] x ST of Ny to itself by (y1,21) — (y1,21 + 1/2), and similarly glue
the half-face {m/2} x [0,7/2] x S* of Ny to itself by (y1,21) — (y1, 21 + 1/2). This commutes with
X7 so gives a flow on the quotient manifold. This manifold has a Seifert fiber structure with an
arc of singular fibers.

Remark 4.5. Note that all three gluing constructions can be performed with X~ and ¥~ used in
place of X T, , giving well-defined local model flows.

Definition 4.6 (Model flows and their flips). We call @ model flow any flow on a Seifert piece P
obtained by gluing blocks N," (or blocks N,v~ ) as in Constructions 4.2 - 4.4. If ¢ is obtained
by gluing copies of N,y, we denote by ¢~ the flow obtained by the same gluings of N but with
Y~ instead of Yt on each copy. We call ¢~ the flip of ¢, and refer to ¢ as a flipped pair.

5There are more possible gluings for pseudo-Anosov flows, see [ , ] for examples.
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FIGURE 5. Local structure of the 4-regular tree 7' (grey) and surface ¥', indicat-
ing how to glue blocks. The product of each 2-cell with R can be thought of as
N, where 7' x R is the lift of the Birkhoff annulus in the cell.

Proposition 4.7 (Periodic pieces are represented by models). Let P be a scalloped periodic Seifert
piece of an Anosov flow ¢ in good position (equivalently, since all boundary surfaces are transverse
in this case, represented by a small neighborhood of its spine). Then (P, ) is orbit equivalent to a
flow obtained by gluing copies of (N,¥T) around periodic orbits as in Constructions 4.2 — 4.4.

We call such a flow obtained by gluing the model blocks a model flow on P.

Proof. The proof uses the description of spines for scalloped periodic Seifert pieces. Let P be a
scalloped periodic Seifert piece of flow ¢. We need to put good coordinates on P to identify it with
glued copies of N. B

Recall from the proof of Theorem 3.1 that P is homeomorphic to a small neighborhood of the
lift B of a weakly embedded Birkhoff surface B, the lift B is homeomorphic to 7/ x R, and Pis
homeomorphic to ¥’ x R, where T is the (pruned) tree, and ¥’ is a surface giving 7' a fatgraph
structure. The vertices of 7’ correspond exactly to the lifts of the periodic orbits, and edges are the
lifts of Birkhoff annuli. We may give ¥’ a 71 (P)-equivariant simplicial structure as follows: take
one 2-cell for each edge of 77, bounded by 6 one-cells, such that the edges adjacent to vertices of
T’ project to local stable and unstable manifolds of the periodic orbits as in Figure 5. This means
that for each 2-cell ¢, the product ¢ x R with vector field generating the flow is homeomorphic to
a copy of the universal cover N of the block N with the lift of X*. The faces of N (including the
half-faces bounded by periodic orbits) correspond to the boundary faces of ¢ x R.

We now describe how to put convenient global coordinates on P so that we can explicitly realize
it as a union of copies of N , with deck group acting so that the quotient is locally modelled on the
gluings from constructions 4.2 — 4.4. First, remove small disjoint fibered neighborhoods of each
singular fiber, and let Py denote the resulting space. Then P, is a S' bundle over a surface with
boundary. Let o denote a section for this bundle structure, and think of o as embedded in P.

Lift o to a surface o in the universal cover P = ¥/ x R. Put coordinates on R so that o C X' x {0}
and so that the action of an element g of 7w representing the regular fiber translates vertically by
1. The fundamental group of P is generated by m (o), the regular fiber, and for each removed
neighborhood of an isolated singular fiber, appropriate generators of its fundamental group (in our
case, we will soon see that the only singularities of the quotient orbifold are isolated cone points
and reflector arcs, so these neighborhoods will all be solid tori or solid Klein bottles and have
fundamental group Z). See e.g. | ] for background on generalized Seifert fiber structures,
including the non-orientable setting.

Adjusting our coordinates on R if needed, we may assume that all generators act by fiberwise
isometries, i.e., maps of the form (p, z) — (h1(p), h2(z)) where hy is an automorphism of the pair
T',%" and hs an isometry of R. The automorphisms of 7”7, ¥’ must further send edges representing
local stable (respectively, unstable) manifolds to local stable (resp. unstable) manifolds. This
means that any singular points of the orbifold given by the space of fibers in the Seifert fiber
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structure on P are order 2 cone points or reflector arcs. Thus, the generators of neighborhoods of
singular fibers act by compositions of automorphisms of ¥’ and translations z — z £+ 1/2 in the
vertical direction. _

For each 2-cell ¢ of ¥/; identify ¢ x R with N = (I x I) x R respecting the product structures
as follows. First, fix an identification of ¢ with I x I preserving orientation and sending 7' N
¢ to [-m/2,7/2] x {0} and incoming/outgoing and stable/unstable manifold edges of ¢ to the
corresponding edges of I x I x{0} in N. This defines a map in the (z,y) coordinates on I x I, extend
this to be either the identity or z — —z on the third coordinate, depending on the orientation
of the vertical orbits in ¢ x R C P so that they match the image. We may choose the (z,y)
coordinate map to be equivariant with respect to the action of 7 (P) on X' by first specifying it
on a fundamental domain. Using this identification, the lift of the vector field X to N agree on
the glued faces (as does X 7).

Thus, we have a copy of ¥/ x R = P with globally defined vector field obtained by glued copies
of X (or by X ™) that descends to the quotient by the action of 71 (P). The induced flow on the
quotient manifold, by construction, has the same spine as ¢ on P. Again, by construction, the
local model in the quotient about a vertex of T is exactly one of those described in Constructions
4.2 —4.4. |

Corollary 4.8. Let ¢ be an Anosov flow and ¢p the restriction of ¢ to a scalloped periodic Seifert
piece P, assumed in good position. Then ¢p has a flip, i.e., a flow on P which has the same spine
but periodic orbits in opposite direction.

Proof. By Proposition 4.7, up to orbit equivalence ¢p is obtained by gluing copies of N, as in
4.2 —4.4. Let ¢p be the flow of the vector field obtained by performing the exact same gluings
of copies of N, but replacing X with X~ in each copy. This defines a flow on P by Remark
4.5. By construction qSIf, and ¢, have the same spine, but the direction of each periodic orbit is
reversed. O

Remark 4.9. Notice that the changed directions of periodic orbits of qb?, and ¢, are the only
dynamical differences between the model and its flip in the following sense: there exists an orbit
of qi)jS between two boundaries of P if and only if there also exists one for ¢,. Moreover, these
orbits are freely homotopic relative to boundary, i.e., this property holds even for lifts of boundary
surfaces in the universal cover of P.

While we have shown how to “flip” a piece, we have not yet shown that a flip ¢ can be glued
back into the manifold M to produce an Anosov flow. This is the goal of the next section.

5. BUILDING PERIODIC SEIFERT FLIPS BY GLUING

In this section we first show that we can glue transverse boundary components of a model (P, qblj_-t,)
to each other to obtain hyperbolic plugs in the sense of [ ] (recalled below), provided that
the parameter A is chosen sufficiently large. We then show how to use this structure to perform a
Seifert flip of a flow on a general 3-manifold that admits a scalloped periodic Seifert piece, proving
Theorem 3.6. The uniqueness of flips (Theorem 3.7) will be proved in Section 6.

The reason for this two-step approach is because a Seifert piece P of a manifold can have some
of its boundary components glued to each other, and the others glued to other pieces. Thus, there
are two types of gluings that we need to do in order to insert model flows and flips into a manifold.

5.1. Hyperbolic plugs and BBY-gluing. Recall the definition of hyperbolic plugs: A hyperbolic

plug is a 3-manifold with boundary V equipped with an Anosov flow ¢ that is transverse to the

boundary and such that its maximal invariant set A is non-empty and hyperbolic. Notice that the

stable manifold of A induces a lamination £} on the incoming boundary 9;,V" of (V,¢). Similarly,

the unstable manifold of A induces a lamination £ on the outgoing boundary 9,,:V" of (V, 9).
The model flows constructed in the previous section are already examples:

Lemma 5.1. Any model flow (P,¢) or (P,¢~) on a Seifert piece is a hyperbolic plug. Moreover,
if % is a flipped pair, then [,;Jr = Lj_ and the unstable boundary laminations agree also.

Proof. By construction the only orbits of ¢* that are completely contained in P are the vertical
orbits, i.e., those in the fiber (or z-coordinate) direction. The union of periodic orbits is the
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maximal invariant sets for each flow, so ¢+ are already hyperbolic on their maximal invariant sets.
The stable and unstable manifolds of the periodic orbits agree for ¢ and ¢, since, as noted in
Observation 4.1, this is true of the flows ¥»* on N, and our gluing preserves stable and unstable.
Thus, the boundary laminations of ¢ and ¢~ agree. O

We would like to also retain the property of being a plug after possibly gluing some boundary
components of these pieces together. The following lemma shows that this is indeed the case.

Lemma 5.2. Let ¢pp be a model flow on a scalloped periodic Seifert piece P. Let T € Oyt P and
T’ € 9;, P be a union of tori or Klein bottles in the boundary of P on which the flow is, respectively,
outgoing and incoming. Let h: T — T’ be a map which is linear on each component, in the sense
that the derivative of h is constant in the (x, z)-coordinates coming from each model block. Assume
no closed leaf of h(L|1) is homotopic in T to a closed leaf of L5|1:. Then the flow induced by ¢p
on P = P/(T ~y, T') is a hyperbolic plug.

This result is proven in [ ] when the manifold is orientable and for the case that all the
incoming tori are glued to the outgoing tori, in which case one obtains a true Anosov flow instead
of just a hyperbolic plug. The same strategy works in our slightly more general case, we give a
sketch for convenience, using slightly different arguments.

Proof. First we define a surface of section and we set some notation. For each orbit representing a
fiber in P take a small closed disc centered on a point of the orbit, transverse to the flow, chosen
such that these discs are pairwise disjoint. Let X denote the union of these transverse discs. Thus,
Y is a compact surface with the property that every orbit in the maximal invariant A intersects
the interior of X, and such that the return time is uniformly bounded — i.e., it is a local section
of ¢p in P. Let P = P/(T ~}, T'), let 7: P — P denote the quotient map, and let ¢ denote the
induced flow on P. By construction, ¥ U m(T) is a surface of section of ¢ on P.

Let f: XU n(T) — L UT(T) be the first return map of ¢. It is standard that showing uniform
hyperbolicity of the map f is enough to show hyperbolicity of the flow ¢ on its maximal invariant.
The flow ¢p also gives partially defined “return” or hitting maps between subsurfaces, which we
denote as follows. Let foyusin: T" — T (defined only on the complement of the stable foliation of
the vertical orbits) be the first return or hitting map of orbits of ¢p from T’ to T, and similarly
let also fx: X — X, fyin: T" — ¥ and four,s: ¥ — T denote the hitting maps between these
subsurfaces, restricted to the domains on which they are defined. Note that f lifts to a map in P
that piecewise agrees with either fs, fs in, h o four,x or an appropriate restriction of ko fous in-

With this set-up, the proof consists in showing that, for a large enough choice of parameter
A in the definition of the model flow, the map h o fousin is hyperbolic. Since the vertical (i.e.,
fiber direction) orbits are also hyperbolic, taking a small enough section ¥ will then give the
hyperbolicity of f and ends the proof.

Hyperbolicity of ho fout in is proved in | , Sec. 8 pp. 1944-45] with an argument that applies
directly here. In brief, by using the (z, z)-coordinates given by the model flow from N on each
connected component of the domain of foy;,in in 77, one shows that a good choice of unstable cone
is one centered around h.(0/0z), and thin enough so that it does not contain 9/9z. Similarly, a
good stable cone is centered around h;!(9/9z) and does not contain 9/dz. It is then easy to see
that for A > 1 the expansion in the unstable cone under the map ho fous,ir is as large as we want,
and same for the stable cones under the inverse. (]

5.2. Existence of flips: Proof of Theorem 3.6. We return now to our main goal. Namely, we
suppose M is a closed 3-manifold with Anosov flow ¢ and scalloped periodic Seifert piece P. In the
previous section, we constructed a pair of model flows ¢% on P (with entering/exiting boundary)
with the same spine as ¢ on P, and we now want to glue these together with the restriction of ¢
to M ~ P to produce a pair of flows on M. We have also shown that qﬁlig are hyperbolic plugs in
the sense of | ]. The only issue to gluing them using the techniques of | ] is that the
condition of having filling laminations, which is necessary to use Theorem 1.5 of | ] directly,
is generally not satisfied here. This issue will be sidestepped by being more careful about the use
of | ], an idea suggested to us by Frangois Béguin. By doing this, we prove the following,
which combined with Remark 5.4 below immediately gives Theorem 3.6
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Proposition 5.3. Let ¢ be a transitive Anosov flow on M and P a scalloped periodic Seifert piece.
Let (;SIiD be associated model flows on P with the same spine as ¢|p, as constructed in Proposition
4.7. Then the restriction of the flow ¢|p\p on M\ P and d)lig on P may be glued along boundary
components, via maps isotopic to identity, to produce flows on M that are Anosov, have the same
spines as ¢ on P and such that their restrictions to M \ P are isotopic to that of <Z>|M\p.

Remark 5.4 (Non-transitive setting). As will become apparent in the proof, the only reason we
ask ¢ to be transitive in Proposition 5.3 is in order to be able to apply Theorem 1.5 of | 1,
where the assumptions are that a hyperbolic plug needs to be both filling and saddle, in order
for the gluing to lead to an Anosov flow. However, the assumption of having a saddle is not
actually needed for | , Theorem 1.5] to hold, and a version of this (in a much more general
context) is proved in works of Neige Paulet [ ]. Consequently, Proposition 5.3 holds also for
non-transitive Anosov flows.

Proof of Proposition 5.3. Let ¢ and P be as in the statement of the proposition. Let Q@ = M \ P.
We emphasize that @ is not necessarily a piece of the JSJ decomposition of M. If Q = () then the
proposition already holds by Lemma 5.2. The argument is exactly the same for ngJ]S and ¢ so we
work only with gb]JS from here on.

Since P is a scalloped Seifert piece, the boundary surfaces of P and @ are all transverse to ¢.
As above, we denote by 0;,Q, 0put@ the boundaries of () where the flow respectively enters or
exists . In the piece P, we further subdivide the boundary components into four classes: 837?,
99, P which are the boundaries where the flow ¢ goes from @ to P and from P to @ respectively,

out

and 0F P, 9% , P which are the incoming and outgoing boundaries where the flow goes from P to

P. 1t is possible that 87 P and 07, P are empty (in which case the work from Lemma 5.2 is not
needed in the proof). Note that no boundaries of @ are glued together.

For each pair S, S5’ with S € 95, Q U 85QutP uol,Pand S’ € 9;,QU 8SLP U df P, such that S
and S’ represent the same surface in M, we let hg g/ : S — S’ denote the gluing map, i.e. the map
which projects to the identity between the images of S and S’ in M.

First we treat the gluings between boundaries of P. If S and S’ are two such surfaces, the
definition of scalloped says that m1(S) ~ m1(S’) has fundamental group generated by periodic
orbits. These correspond to closed unstable (respectively stable) leaves in S and S’ (respectively).
Thus, hg,s does not send the free homotopy class of any closed stable leaf to a closed unstable.
By Lemma 5.2, we can glue S to S’ using a map that is linear with respect to the coordinates
(z, z) coming from the model flow on each block N described in section 4, which is in the isotopy
class of hg s/; and doing this for all surfaces S,5" in 9, P and 9% P (respectively) we can obtain
a hyperbolic plug P, ¢ from ¢7. Notice that for this new plug, 8;, P = % P and 9y P = 0%, P.

Then, we glue the outgoing surfaces in 9,,,:Q for the flow ¢¢ to the corresponding ones in 9;,, P =
831P for the flow ¢ using the original gluing maps. Since the transversality of the laminations is
preserved and there are no new recurring orbits, Proposition 1.1 of | ] implies that, after
this gluing, we obtain a new hyperbolic plug R, ¢r. Note also that, in addition to transversality
being preserved, the closed orbits of the laminations intersect, so the gluing is again scalloped.

Finally, we glue R, ¢ to itself by gluing dpui R = Oput P to 0;n R = 0;, @ again using the original
associated maps hg g (or more formally, we use the composition of hg g with the map conjugating
¢|p to the model flow ¢|p). Since ¢ was assumed to be transitive, ¢|g does not contain any
attractor nor repeller (and nor does ¢|p or ¢, by construction). By construction, ¢z is isotopically
equivalent to ¢ on ) and to Y on P, thus ¢» has no attractor or repeller basic sets. So all we have
to do to satisfy the hypotheses of Theorem 1.5 of | ] is to show that the unstable laminations
of ¢ on 9, R are filling. To this end, let A be a connected component of the complement of the
unstable lamination in a surface of 9,u; R = Opu: P. Then the backward orbit of any point through
A exit in some component of 9;, R = 0;,Q, so in particular must have crossed a cutting surface, call
it Z, between @ and P. As noted above, all of these surfaces have been glued in such a way that
they are scalloped, i.e. closed leaves of the stable and unstable laminations intersect, the image of
A on Z under the backwards flow is a rectangle bounded by two segments of leaves of the stable
lamination in Z and two segments of leaves of the unstable lamination. In particular, A must be a
strip (i.e., bounded by two unstable leaves that accumulate onto two compact leaves, see [ ,
Definition 3.11]). Since all the complements of the unstable laminations in d,,¢R are strips, the
unstable lamination is by definition filling in 0,,; R, and similarly for the stable lamination in 0;, R.
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Thus | , Theorem 1.5] applies and we obtain the manifold M with an Anosov flow gb&
which is isotopically equivalent to ¢ on @ and to ¢p on P. The same construction applies with
¢~ used in place of ¢, giving a flow ¢, on M. |

Remark 5.5. A technicality of the gluing theorem of | ] is that given a filling saddle hyperbolic
plug (V, X) and an appropriate® gluing map h: 9,V — 0;,V/, it is first necessary to isotope the
flow X and isotope the map h in order to ensure that the resulting glued flow is Anosov (the precise
notion used is called a strong isotopy of the triple (V, X, h) in | D-

Left open in | | is whether two Anosov flows obtained from different, but strongly iso-
topic, plugs are necessarily isotopically equivalent (see | , Question 1.7]). This was answered
positively in | ] for orientable manifolds when the resulting Anosov flows are transitive.

In our context, the necessity of that isotopy in [ ] means that, a priori,

e there could be lots of different flows obtained as a periodic Seifert flip of an Anosov flow
?,

e if 1) is obtained from ¢ by a periodic Seifert flip on P via Proposition 5.3, and ¢’ is obtained
from ) via a periodic Seifert flip on P, then ¢’ and ¢ could a priori be non isotopically
equivalent, and

e in the construction of Proposition 5.3, if we glue the model flow of ¢|p (without flipping)
back to ¢|g, we might obtain a flow ¢’ that is inequivalent to the original ¢.

One might be able to adapt the arguments of | ] to our context, and show that all these
constructions yield isotopically equivalent flows. Instead, we will prove here that these flows are
isotopically equivalent by using the main theorem of | | and the result of the next section.

6. FREE HOMOTOPY DATA OF PERIODIC SEIFERT FLIPS

In this section we show that performing a periodic Seifert flip on a flow does not change the set
of free homotopy classes represented by periodic orbits. We use this to show that transitive flows
have a unique (up to orbit equivalence) flip for each scalloped periodic Seifert piece, completing
the proof of Theorem 3.7. We also prove Theorem 1.1, the classification theorem.

In addition to the work in the previous sections, these proofs use as input the results of | ,
and in particular the notion of the sign data of a tree of scalloped regions, applicable to any pair
of transitive pseudo-Anosov flows with common sets of free homotopy classes of periodic orbits.
We review these notions in Section 6.2.

6.1. Flips preserve free homotopy data.

Proposition 6.1. Let ¢ be an Anosov flow with a scalloped periodic piece P. Let 1 be a periodic
Seifert flip of ¢ on P in the sense of Definition 3.5. Then P(p) = P(v).

To prove this, we begin with an elementary lemma about orbits that cross scalloped surfaces.

Lemma 6.2. Let ¢ be any Anosov flow on a manifold M, and let Z = {Z;} denote the set of all
lifts to M of all scalloped cutting surfaces for ¢ in M. For distinct Z;, Z;, write Z; <¢ Z; if there
is an (oriented) orbit of ¢ from Z; to Z;. Then the relation <4 is transitive

Proof. The proof proceeds by translating this picture to the orbit space of ¢. Each Z; corresponds
to a scalloped region U; in Og. An orbit passes through Z; and Z; if and only if U; N U; # 0; the
orbit is represented by a point x in the intersection. The structure of scalloped regions, specifically,
that they are product-foliated regions bounded by families of nonseparated leaves, constrains their
possible overlaps. Specifically, if for two scalloped regions we have U; N U; # (), then there is a
lozenge L in U; such that L D U; NU; and U; intersects the two sides of L on the boundary of Us.
In other words, either

(1) Uj is contained in the stable saturation of a lozenge of U;, whose unstable sides are in 90U,
or
(2) Uj is contained in the unstable saturation of a lozenge of U;, whose stable sides are in 9U;.

6Appropriaﬂ:e here means strongly transverse, i.e., the stable lamination on 9;,V together with the image by h
of the unstable lamination on 9oyt V must extend to a pair of transverse foliations, see [ ] for more details.
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We claim that the orbit is oriented from Z; to Z; in the first case, and has the opposite orientation
in the second. To see this, suppose v is an orbit oriented from Z; to Z;. Then, there is some small
e-neighborhood of v in F*(v) so that orbits in this neighborhood travel alongside v from Z; to
Z;. Any positive ray in F®(y) must eventually intersect the e-neighborhood of any positive ray
of . Therefore, we deduce that any point in F*(y) N Z; will have a forward orbit in F*(v) N Z,.
Translating this statement into the orbit space, this means that F*(y) N U; C F*(y) N U;. Thus,
U; is contained in the stable saturation of a lozenge L of U;, where the unstable sides of L are
contained in OU; (and intersect Uj).

Having established the claim, the desired conclusion follows immediately: if Z; <4 Z; and
Z; <¢ Zy, this forces Uy to be contained in the stable saturation of a lozenge from U; whose
unstable boundary leaves are contained in 9U;, hence Z; < Zj. O

Proof of Proposition 6.1. Suppose 1 is obtained from ¢ by a periodic Seifert flip on P. Since
(after some isotopy equivalence) ¥ and ¢ agree on M \ P, there is a bijective correspondence
between unoriented homotopy classes of their periodic orbits contained in M \ P. Further, the
only periodic orbits of either flow that stay in P are those freely homotopic to the Seifert fiber, so
we also have a correspondence for these. Hence to prove that P(¢) = P(¢), we only have to show
a correspondence between the orbits crossing P.

Let Z denote the set of all lifts to M of all boundary cutting surfaces of P. By assumption,
these are all scalloped for both ¢ and . Suppose g € w1 (M) is represented by a periodic orbit «

of 1 that crosses P. Then there is a lift & to an orbit of 1; in M such that g translates along a.
Let Z1,Zs,...Z, € Z be lifts of scalloped surfaces crossed, in order, by the oriented orbit & such
that Z,, = g(Z1). We choose these sequentially so that & does not cross any element of Z between
Zi and Z;4q, so we have Z1 <y Za <y ... <y Zp.

Now we consider the flow ¢, and the associated order <, on Z defined in Lemma 6.2. Consider
any consecutive pair Z;, Z;y1, 1 <i <n — 1. The projection of the segment of & between Z; and
Z;41 either lies in P or in M ~ P. If it lies in M \ P, then (since ¢ and v are isotopic on M ~\ P)
it corresponds to a segment of an oriented orbit (with the same orientation) of ¢ from Z; to Z;41,
thus we have Z; <4 Z;41. If it lies in P, then since ¢ and 1) are flips of each other on P, there exists
an oriented orbit of ¢ that goes from Z; to Z; 41 (see Remark 4.9), and so again Z; <4 Z;41. By
Lemma 6.2, we have Z1 <4 ... <g Z, = g(Z1). Thus, letting U denote the associated scalloped
region in Oy, we have Uy N gU; # 0. As we noted in the proof of Lemma 6.2, this means that gU;
is contained in the (stable or unstable) saturation of a lozenge of Uy, hence g contracts the interval
of (unstable or stable) leaves that pass through U;, giving a leaf fixed by ¢ in U;. Similarly, we
have g~ 'U; NU; # 0 and hence a leaf of the other foliation is also fixed, thus a fixed point for g in
O, representing a periodic orbit in the free homotopy class of g*!. Thus, P(v)) C P(¢) and by a
symmetric argument we have equality. O

6.2. Sign data for trees of scalloped regions. The definition of sign is somewhat difficult to
parse within the context of [ | since it is stated in the process of defining a map between
orbit spaces of two flows. But the essence of the idea is simple: when two transitive pseudo-Anosov
flows have the same free homotopy data, there is a natural, well defined map between dense subsets
of their respective orbit spaces that sends lozenges to lozenges and g-invariant trees of scalloped
regions to g-invariant trees of scalloped regions, but on any particular tree of scalloped regions, it
may preserve or reverse the dynamics of g. This binary information (preserve versus reverse) is
the notion of same or opposite sign.

Our next goal is to prove that periodic Seifert flips change the sign on the tree of scalloped
region associated to the Seifert piece. To do that, we need to explain the definition of sign a bit
more formally.

Signs — set-up. Suppose ¢1, ¢ are transitive pseudo-Anosov flows on a manifold M with P(¢1) =
P(p2).” We assume that at least one flow has a tree of scalloped regions in its orbit space. In
particular, the flow is not R-covered, which puts us in the main setting of | ].

Let O; denote the orbit space of ¢; and let ONY denote the set of points in O; which are fixed
by some nontrivial element of 71 (M) and not the corner of any lozenge. By | , Lemma 2.30],

"By [ , Proposition 2.38|, assuming only one is transitive, the fact that P(¢1) = P(¢2) implies the other
is as well.
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ONC is dense in O;. Let
PNC(p;) == {g € m (M) | 3z € ONC with gz = z}.

By | , Proposition 4.14], we have PV (¢;) = PN¢(¢2). By Proposition 2.4, each  in ON¢
is the unique fixed point of some nontrivial g € 71(M). Thus, there is a well-defined bijection
H: ONC — ONC sending the unique fixed point of g on O; to its unique fixed point on Q. By
construction, this map is 71 (M )-equivariant, satisfying H(gz) = gH (z).

Lemma 5.25 of | | show that H sends points inside a g-invariant lozenge to points in some
g-invariant lozenge in O and preserves the property of being in a common g-invariant lozenge.
Thus, for a lozenge L, we may speak unambiguously of its image H (L), meaning the lozenge in
Oy whose intersection with ON is H(L N ONY). H also preserves the property of pairs of points
being in adjacent lozenges sharing a side. It is further shown that H extends continuously to a
well-defined map on all intersections of leaves of non-corner points, with the same equivariance,
and lozenge-preserving properties listed above, as well as preserving the property of points being
on a common leaf of a foliation. Up to reversing the direction of one flow, this extended map
(which we also denote by H) sends leaves of F“(¢1) to those of F*(¢2) and leaves of F*(¢1) to
those of F*(¢s), wherever it is defined.

The main result of | ] shows that, in the absence of any trees of scalloped regions, this
map H in fact extends to a homeomorphism O; — O, that conjugates the actions of 1 (M) on
the two orbit spaces. Moreover, in the case where there do exist trees of scalloped regions, only
one type of discontinuous behavior may occur, which we explain now.

Signs as markers of discontinuity. Suppose that L and L’ are adjacent lozenges in O, with
corners fixed by g. For concreteness, suppose the shared side of L and L' is in F* and the
action of g on this leaf is expanding (the other cases are completely analogous). Then H(L) and
H(L') are adjacent lozenges in Oy, with corners fixed by g. If H did extend to a m-equivariant
homeomorphism, then the shared side of H(L) and H(L') would be a leaf on which g was expanding.
This is in fact typically the case, the only possible exceptions being if L and L’ lie in a tree of
scalloped regions.

If T is a tree of scalloped regions in O; with corners fixed by g, then (since H preserves lozenges
and adjacency of lozenges), H(T) is a tree of scalloped regions in Oy with corners fixed by g as well.
If, for one pair of adjacent lozenges L and L’ in T as above, their images H(L) and H(L’) have a
shared side on which g has the same dynamics as shared side of L and L', then | , Lemma
5.37] implies that this also holds for every pair of adjacent lozenges. Thus, the map induced by H
on lozenges in T either globally respects or reverses the dynamics of g on shared sides. In the first
case, T' and H(T') are said to have the same sign, and otherwise that they have opposite sign.

With this background, we can prove the following.

Proposition 6.3 (Flips change sign). Suppose that ¢2 is a transitive Anosov flow obtained from ¢1
by a periodic Seifert flip on a scalloped piece P, and let T be the tree of scalloped regions associated
to P for ¢1. Then H(T) is the tree of scalloped regions associated to P for ¢o, and ¢1 and ¢po have
opposite signs on T and H(T).

Proof. For the proof, we may assume that P is in good position for both flows, the restrictions of
¢1 and ¢o to M \ P agree up to an isotopy, and using Proposition 4.7, that ¢; is represented on P
by a model flow ¢}5 and ¢o by its flip ¢. By proposition 6.1, we have P(¢1) = P(¢2). As above,
we let O; denote the orbit space of ¢;.

Let g € m (M) represent the fiber direction of P, and T; in O; the associated tree of scalloped
regions with all corners fixed by g. Note that To = H(T1), since Ty is the maximal chain of
g-invariant lozenges in Os.

By the density of ON® explained above, we may find a lift  of a periodic orbit of ¢, fixed by
h € 71 (M), so that the unique fixed point of h lies in a lozenge L of T;. Consider a lozenge L’
adjacent to L in O and intersecting F*(y). Let N’ be the block in P which projects to L. Since the
action of 71 (P) on P is cocompact, we may find k € w1 (P) such that L, L’ and k(L) lic in a line of
lozenges, in that order. In other words, there are distinct lozenges L = Lo, L' = Ly, ... Ly, = k(L)
with L; sharing a side with L;;1 and intersecting F*(v). By mi-equivariance of the map H and
the fact that it preserves lozenges, stable and unstable leaves, and adjacency, we have that H(L)
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is the lozenge in Oy containing the unique fixed point of h, that H(kL) = kH (L), and that H(L')
is adjacent to H(L) and between L and kH (L) on a line of lozenges all intersecting F*(H (7y)).

We now translate this picture back to P C M. The lozenges L and L’ (or any adjacent pair along
the line) are the projections to O of lifts of adjacent Birkhoff annuli in P contained in adjacent
model blocks for ¢; in P, as in Figure 4, where « passes through the lift of a block associated to L.
Let N (the universal cover of the block labelled N; in the figure) denote the block which projects
to L in Oy, and N’ the adjacent block which projects to L’. Continuing along adjacent blocks
glued along the stable manifolds of their periodic orbits, one eventually arrives at k(N), which is
separated from N by N

Suppose for concreteness that the direction of the element g representing the fiber is the positive
z direction in the block associated to L, i.e., agrees with the orientation of the periodic orbit s
in that block. (This is the situation shown in Figure 4, as in the figure, we use aq to denote the
(lifted) orbit where the blocks corresponding to L and L’ are glued). Then, the action of g is
expansive on F*(ag) in Oy, since its direction agrees with that of as.

Now, we consider ¢2. By construction, its restriction to P is constructed out of blocks glued
in the same manner, and with the same action of m;(P), but with (the lift of) ¥* on each block
replaced with ¥ ~. Thus, the directions of the periodic orbits in each block are reversed, but stable
and unstable manifolds are preserved. In particular, the action of g is contracting on F*(as).
Projecting this picture back down to Oy will now give us the desired conclusion: First observe
that N projects to the unique lozenge H (L) in O containing H (7). Since k(N) is separated from
N by N’ and H is m1(M)-equivariant and preserves adjacency and lines of lozenges, it means
that kH(L) = H(kL) is separated from H(L) by H(L'). Thus, H(L) and H(L’) share the side
containing the projection of as to 5%, As we noted above, the action of g is contracting on this
stable side. This, by definition, says the signs of T} and 75 disagree. O

6.3. Proof of uniqueness of flips, non-isotopy equivalence, and classification of flows.
Using the work of the previous subsection, we can now easily deduce that periodic Seifert flips are
unique (up to isotopy equivalence), that they always change the isotopy-equivalence class of a flow,
and prove our main classification result.

Proof of Theorem 3.7 (Uniqueness of flips). Suppose ¢ is a transitive Anosov flow and v and ¢’
are two flows, each separately obtained from ¢ by doing a periodic Seifert flip on a periodic Seifert
piece P. By Proposition 6.1, P(¢) = P(¢p) = P(¢'). By Proposition 6.3 ¢ and ¢’ have opposite
signs as ¢ on the tree of scalloped regions corresponding to P, so their signs agree. If ¢ has any
other periodic Seifert pieces, 1 and 1 also have the same signs (agreeing with that of ¢) on those.
Thus, ¢ and 1" have the same signs on trees of scalloped regions and the same set of unoriented free
homotopy classes represented by periodic orbits, so by [ , Theorem 1.3] they are isotopically
equivalent. O

Proposition 6.4. Suppose that ¢1 is a transitive Anosov flow on M, and ¢- is obtained from
¢1 by a periodic Seifert flip. Then ¢1 and ¢o are not orbit equivalent by any map isotopic to the
identity.

Proof. Since P(¢1) = P(p2), we have a w1 (M )-equivariant map H from a dense subset of O; to
a dense subset of Oy as described above, where if z is the unique fixed point of g € 7 (M) in
Oy, then H(x) is the unique fixed point of g in Os. If there is a homeomorphism h, isotopic to
identity, that sends orbits of ¢; to that of ¢o, then an appropriate lift h of h will send each unique
fixed point of an element g of 7 (M) in O; to its unique fixed point in Oy. In other words, it
will coincide with H on a dense set. Since h is continuous and w1 equivariant, this implies that
H would have a continuous equivariant extension, contradicting the fact that flips have opposite
signs (Proposition 6.3). O

Proof of Theorem 1.1 (Classification of flows). The converse part of Theorem 1.1 was proved above
in Proposition 6.1. So we only need to prove the other direction.

8Establishing this fact is the reason we introduced the element k, using only the property that H preserves
adjacency, one cannot rule out he possibility that H(L) shares the side of L containing ;.
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Let ¢1 and ¢o be Anosov flows, at least one of which is transitive, and assume P(¢1) = P(¢p2).
By | , Proposition 2.38], this implies they are both transitive. By Theorem 1.3 of | 1,
either ¢; and ¢, are isotopy equivalent or there is at least one scalloped Seifert piece P in M on
which ¢1 and ¢o have a different sign (here we abuse terminology somewhat and say P instead
of “the tree of scalloped regions corresponding to P”). Let 15 be the flow obtained from ¢ by a
periodic Seifert flip on P. By Proposition 6.1, P(¢2) = P(¢2), and by Proposition 6.3, the sign
of 1o now agrees with that of ¢y on P. By construction the sign has not changed on any other
scalloped periodic piece. Thus, applying a flip to each of the scalloped pieces on which signs differ,
we obtain a flow ¢, such that P(¢) = P(¢1) and all signs agree, so by | , Theorem 1.3], v
and ¢; are isotopically equivalent. O

7. ORBIT AND ISOTOPY EQUIVALENCE CLASSES OF FLIPS

In this section, we discuss how periodic Seifert flips change the orbit equivalence class of a flow.
We showed in Proposition 6.4 that applying a periodic Seifert flip always results in a flow that is
not isotopy equivalent to the original flow. But, it is possible that a flip does not change the orbit
equivalence class (as we show in Example 7.4) due to some extra symmetries. Nevertheless, by
ruling out these symmetries one can construct large families of examples of non orbit-equivalent
flows with the same free homotopy data. We do this now, which will prove Corollary 1.4.

7.1. Building non-orbit equivalent examples. Proposition 4.7 says that periodic Seifert flows
can be obtained by gluing model blocks. For simplicity, we will only use the type of gluing in
Construction 4.2, so only need to specify the combinatorial arrangement of the blocks to be glued
together. This is a construction already done in | , section 8], and we adopt their language
and notation.

Definition 7.1. (see | ]) An admissible fatgraph X is a graph X embedded in a compact
surface with boundary ¥ that deformation retracts to X, and that satisfies the following properties:

(1) the valence of every vertex is even, and

(2) the set of boundary components of ¥ is partitioned into two subsets, called the outgoing
and the incoming boundaries, so that every edge e of X has an incoming boundary on one
of its sides, and an outgoing boundary on the other side.

(8) each loop in X corresponding to a boundary component contains an even number of edges.

We will always take our examples to have all vertices of degree four.

Given an admissible fatgraph X, one may associate a copy of a model flow ¥ on N to each
edge of the fat graph, and glue appropriate stable or unstable leaves of the vertical orbits according
so that the outgoing (resp. incoming) labels on the components of 9% correspond to the outgoing
(resp. incoming) annuli of N as in Construction 4.2. If all vertices have valence 4, the gluings
around each vertex are exactly as in Construction 4.2; higher valence vertices give singular orbits
of pseudo-Anosov flows.

The result of the gluing is a compact Seifert manifold with boundary that is a circle bundle over
¥, with a flow that is incoming on some boundary tori and outgoing on others. Item (3) in the
definition ensures that the boundary components are tori rather than Klein bottles, which makes
it easier to work with.

We now build examples for the proof of Corollary 1.4. We note that many examples of arbitrarily
many non-orbit equivalent Anosov flows on the same manifolds have been built in the past (see
[ , , ]), the point here is that we can build arbitrarily many that have the same
free homotopy data. Our procedure is quite general and can easily be adapted to give examples of
pseudo-Anosov flows as well.

We use as input families of admissible fatgraphs with the properties that they are pairwise non-
homeomorphic surfaces, have at least two vertices, and each have one vertex that is preserved by
all automorphisms. A family of examples X,, is described in Figure 6 below, with the additional
property that all vertices have valence 4, so that the associated flow has no singular orbits.

Construction 7.2. Let X7, X5,...X,, be admissible fatgraphs constructed as in figure 6, with
pairwise non-homeomorphic surfaces X1,...,%,. Thus each X; has a vertex v; that is preserved
by all fatgraph automorphisms. Let P; be the Seifert pieces with model flows \; associated to X;
as in | ] and let o; denote the orbit associated to v;.
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FIGURE 6. An admissible fatgraph X; — one identifies the top and bottom as well
as the right and left sides by translation. (For clarity, only some of the boundary
components of the associated surface are shown). The highlighted vertex is the
unique vertex that is not adjacent to any “quadrilateral” boundary component (a
boundary component following exactly 4 edges), thus invariant under all automor-
phisms. To produce a family of examples, take X,, to be the result of replacing
the 2 bottom rows of squares with 2n rows.

For each i, choose a boundary torus T; of P; that intersects the stable annulus of 0;. The flows
are all incoming on these tori. Also, choose a boundary torus T of P; that intersect the unstable
annulus of o;, these are outgoing for the flows. Glue T; to T}, (with indices taken modulo n).
Glue the remaining boundary tori of the P; together in incoming/outgoing pairs, chosen so that,
aside from the already specified T; and Tj( , no torus intersecting an unstable or stable annulus of
any o; is glued to any other such torus. One has a great deal of flexibility in the gluing, the main
property we need of the resulting manifold M is that the P; are indeed Seifert pieces of the JSJ
decomposition (so one must not glue the fiber direction in one piece to that in another), and that
the manifold is orientable, which will be important in the proof.

Provided the constant A in the definition of the model flows has been chosen large enough (as
in Lemma 5.2 above), with such a gluing, one easily verifies that the transitivity condition of
[ , Proposition 1.6] is satisfied, so we obtain a totally periodic, transitive, Anosov flow ¢ on
the resulting graph manifold M.

Now, to prove Corollary 1.4, it suffices to prove the following.

Proposition 7.3. Let M, ¢ be obtained as in Construction 7.2. Suppose that 1; is obtained from
¢ by a Seifert flip along P;. Then ¢ and ; are not orbit equivalent, and for any i # j, ¢¥; and ¥,
are not orbit equivalent.

Proof. Suppose first for contradiction that f: M — M was an orbit equivalence between ; and
¢. (The strategy to show 1; and v, are inequivalent is essentially the same, and we treat this
at the end.) Since the surfaces ¥; are pairwise non-homeomorphic, the Seifert pieces P; are non-
homeomorphic, so f preserves each piece. Theorem D of | ] (or, more simply, the construction
and properties of spines) implies that f induces an automorphism of each of the fat graphs X,
hence preserves the special vertices v; and their associated orbits o;. Thus f preserves the isotopy
classes of the tori T; in M, since these are characterized by their intersections with the stable and
unstable annuli of the orbits o;.

By definition of Seifert flip, the direction of v; and ¢ differ on o; but agree on o; for j # i.
Assume as a first case that f is an oriented orbit equivalence, preserving the direction of the flow.
Then f reverses the fiber direction of F;, but preserves that of P; when j # .

Consider any j # ¢. Since f preserves T}, it preserves the orientation of the stable annulus of
0j, and similarly, it preserves T]f so preserves the orientation of the unstable annulus of o;, and
hence is orientation preserving on P;. Similarly, since f reverses the direction of the fiber on F;,
but preserves T; and 77, then it must be orientation reversing on P;. This is a contradiction since
M was assumed orientable.
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The case where f reverses the direction of the flow is handled similarly; here f must reverse the
orientation of P; for j # i but preserve that of P;.

Finally, in order to show ; and 1); are not orbit equivalent, one runs exactly the same proof,
and shows that any candidate f for an orbit equivalence between v; and v; would have to preserve
orientation on Py, for k # 4, j and reverse that on P; and P, or vice versa, depending on whether
f preserved or changed the direction of the flow. O

7.2. Orbit equivalent flips. By contrast with the previous section, our next example shows that
some nontrivial Seifert flips do produce orbit equivalent flows.

Example 7.4. Consider a 2-holed torus fatgraph as in Figure 7. This has a nontrivial symmetry
that preserves orientation, preserves the two boundary components and exchanges the two vertices.

S S

C
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=

B

.
=
(D

o A /6

FIGURE 7. A fatgraph with two vertices and four edges (with indicated gluings),
seen also as a quotient of a fatgraph in R?

One way to describe this concretely is as follows: Let ¥ denote R? with a small e-ball or square
removed about every point of the lattice Z2, and let X C 3 be the fatgraph with vertices at the
half-integer points Z2 4+ (1/2,1/2) in X, and horizontal and vertical edges between adjacent points.
Then the graph X of Figure 7 is the quotient of X by the lattice I" of translations generated by
(2,0) and (1,1), and the ambient surface X is the quotient of 3. We note in particular that the
action of I on X has two distinct orbits of vertices, hence the two vertices in the quotient.

The linear map (z,y) — (—y,2) on R? has order 4, preserves the lattice I' and graph X,
exchanges the two I'-orbits of vertices of X, and preserves the I'-orbits of boundary components of
X. Thus, it descends to an order 4 automorphism of X C ¥ preserving boundary and exchanging
the two vertices.

Let o denote this symmetry of the associated Seifert fibered space ¥ x S, trivial on the S*
fibers. By construction, ¢ is an orbit equivalence between the model flow ¢ on ¥ x S' and its
flip ¢~

Now we consider M the manifold obtained by gluing two copies of ¥ x S! along their boundary
tori. We can obtain two flows on M, called ¢; and ¢, by gluing either two copies of ¢ or one
copy of ¢ and one of ¢~. By definition, ¢; is a periodic Seifert flip of ¢o. Since o is isotopic to
identity on the boundaries, one can construct a homeomorphism & that realizes ¢ on one copy of
¥ x S' and the identity on the other. Then the conjugate of ¢, by & is also a flip of ¢1. So by
uniqueness of flips (Theorem 3.7) ¢ is isotopically equivalent to the conjugate of ¢1 by 7, i.e., ¢1
and ¢o are orbit equivalent.
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