

Go Beyond Black-box Policies: Rethinking the Design of Learning Agent for Interpretable and Verifiable HVAC Control DAC ’24, June 23-27, 2024, San Francisco, CA, USA

Based on the above observations, our primary goal is to address

the limitations associated with the policy stochasticity in existing

MBRL methods. We aim to develop a novel approach characterized

by determinism, where every input corresponds to a decision with

a certainty of 100%. This eliminates safety concerns arising from

the unpredictability of controllers. Furthermore, it enables us to

determine and evaluate its behavior in unseen environments before

deployment, i.e., veri�cation of the underlying policy. This is critical

for identifying and mitigating potential controller faults, ensuring

consistent and accurate operation.

3 Proposed Approach
Our proposed procedure is illustrated on the left side of Fig.2. The

procedure starts from the historical data of the building thermal

dynamics, extracts a decision tree policy, veri�es the safety of the

policy, and deploys it to the building edge device. The rest of this

section describes our approach in three parts. First, we introduce

veri�cation criteria for HVAC control policies based on the domain

knowledge about HVAC operation safety. Then, we describe our pol-

icy extraction procedure that automatically constructs the decision

tree policy using the learned black-box system dynamics model.

Lastly, we describe two algorithms to formally and probabilistically

verify the extracted policy against the veri�cation criteria.

3.1 Veri�cation Criteria For HVAC Control
We focus on the precise air temperature control of a thermal zone

during occupied hours. Hence, we de�ne the set of "safe" states

as B ∈ [z, I], where [z, I] is the prede�ned comfort range. Given

the said safety criterion, we aim to construct a set of veri�cation

criteria to check the policy’s output (the setpoint) for an in�nite

set of inputs (the building state and disturbances). Ideally, these

criteria should be the tightest boundaries on the policy outputs.

Satisfying the boundaries provides a safety guarantee, while not

interfering with the e�ective operation of the data-driven policy.

To construct these criteria, we �rst divide the input building

states into three subsets by domain knowledge, then develop veri�-

cation for each of the input subsets. When the zone temperature

violates the comfort range, it is always desirable for the HVAC

system to provide responsive heating/cooling in an e�ort to correct

the temperature. The amount of heating/cooling it should provide

is, however, hard to determine. For instance, if the disturbances

rapidly cool the zone, and the zone temperature is only 0.5◦� too

warm than the comfort range, then blindly setting to the lowest

setpoint for the next time step (15 minutes) without considering

the changing rate of zone temperature can result in the zone tem-

perature dropping below the comfort range. To mitigate the risk of

under/overshooting, we only bound the setpoint to be above the

zone temperature when the zone is too cold, and below the zone

temperature when the zone is too warm while allowing the MBRL

agent to determine the exact setpoint in that range.

When the zone temperature is within the comfort range, we

only need to make sure that the setpoint selected by the policy

keeps the zone temperature within the comfort range in the future.

This is a sequential decision problem that is di�cult to manually

solve. It is the reason that MBRL is applied in the �rst place. In

addition, the stochasticity of the disturbances makes it di�cult to

verify all possible combinations of disturbances. Hence, we adopt

probabilistic veri�cation [3, 4], which estimates the probability of

the system reaching the fail states within � time steps into the

future. Formally, we construct a forward reachability tube [13] in

Eq.3, i.e., all the possible states reachable within � time steps given

the policy c . We then estimate the safe probability and compare it

with the probability threshold ; speci�ed by the building manager.

Finally, we combine all three criteria and de�ne them in Eq. 4.

Note that veri�cation criteria #2 and #3 are stronger than #1 be-

cause they are not probabilistic - satisfying these criteria provides a

100% guarantee on the policy behavior. Thus, our three-component

criteria are stronger than applying probabilistic veri�cation to the

entire input space.

R
+ (B0) |

�
c =

�⋃

C=0

{BC ∈ S | BC+1 = 5 (BC , 3C , 0C),

0C ∼ c (BC , 3C) for C ∈ [0, �]} (3)

veri�ed(c) ⇐⇒




#1 : E[I ≥ BC ≥ z] > ; ∀BC ∈ R
+ (B0) |

∞
c ,

#2 : c (BC , 3C) < BC if BC > I,

#3 : c (BC , 3C) > BC if BC < z

(4)

3.2 Policy Extraction using Black-box System

Dynamics Model
We start from the standard MBRL components [1, 9]: historical

dataset T : {(B, 3, 0, B′)} extracted from the building management

systems (BMS), a system dynamics model 5̂ learned from the said

dataset, and a stochastic optimizer '(. Our goal is to produce a

decision tree) : (S × D) → A which takes the current zone

temperature, current disturbances, and outputs a setpoint which

will be actuated in the next time step. To do that, we employ a two-

stage process. First, we construct a decision dataset Π : {(B, 3, 0)}

consisting of the policy input and the approximated optimal action.

Then, we utilize the CART (Classi�cation and Regression Trees)

algorithm[15] to automatically construct a decision tree to �t the

decision dataset. We now describe both procedures.

3.2.1 Decision Dataset GenerationThe entries of Π are produced

by distilling the stochastic decisions of an MBRL HVAC controller

into deterministic decisions. Given the system dynamics model, the

MBRL controller uses a stochastic optimizer, e.g. random shooting,

to approximate the optimal setpoint [1, 9]. Let 0̂ = ĉ (B, 3) be the

setpoint approximated by the stochastic optimizer, ? (0̂) be its distri-

bution obtained by Monte Carlo method. We de�ne 0∗ as the most

frequent 0 in ? (0̂) and append (B, 3, 0∗) to the decision dataset.

Ideally, dataset Π contains the optimal decision for all possible

combinations of the inputs, which allows the learned policy to

generalize to unseen states. However, this introduces a unique

challenge. Empirically, the overhead to sample an optimal decision

for one input averages to 500 milliseconds with Intel i9-11900KF

and GeForce RTX 3080Ti. If we tentatively divide each continuous

input variable into 20 bins (which is sparse, considering the outdoor

temperature generally spans 0◦� −36◦�) and measure the resulting

density using this sampling strategy, it will take 205 samples to

obtain 1 sample per bin on average, which takes around 444 hours.

Fortunately, for HVAC control, we do not need to sample every

possible input. Recent work by An et al. [1] found that each city

has a unique distribution of input states resulting from their unique

Go Beyond Black-box Policies: Rethinking the Design of Learning Agent for Interpretable and Verifiable HVAC Control DAC ’24, June 23-27, 2024, San Francisco, CA, USA

Algorithm 1: Decision path veri�cation

1 for each leaf node)8 do

2 % = {)0, · · · ,)8 } ← extract path from)0 to)8

3 � = R
|X |

⊲ initialize state box boundaries

4 for)9 ∈ (% \)8) do

5 � ← �
⋂
(input box of the rules from)9 to)9+1)

6 if � ⊆ ((BC > I) ∨ (BC < z))
⋃
R
|X |−1) then

7 check criteria compliance by Eq.4

comparison rules. If a fail case is detected, we correct it by editing

the setpoint in the failed leaf node to themedian of the comfort zone.

Although this disregards the potential under/overshooting issue, it

guarantees that the HVAC system corrects the zone temperature

towards the correct direction, as speci�ed in Section 3.1.

3.3.2 Verifying Criterion #1.This criterion estimates the probability

of failure within � time steps starting from a safe state, de�ned by

the forward reachability tube in Eq. 3 given the policy. Again, we

utilize the augmented input distribution ?̂ (G) that we developed in

Section 3.2.1 to sample the more frequent scenarios. One possible

procedure to estimate the failure probability is to sample ?̂ (G) and

run bootstrap predictions to obtain a trajectory of � time steps,

then check each step in the trajectory for failure. However, the

bootstrap procedure prohibits parallelism and has low computa-

tional and space e�ciency, since it makes � predictions for each

time step in a trajectory only to verify one input. Instead of boot-

strapping for � time steps, we show that verifying only one time

step ahead is equivalent to the �rst method with any � , and has

higher computational e�ciency.

Proof. Let (denote the entire input space subject to the #1

criterion. We divide it into two subsets by the true veri�cation

results of its elements, and let � be the set of failed inputs and # be

(\ � de�ned by Eq.4. The true veri�cation result of the #1 criterion

is, thusly, ? =
|� |
|# |

. Let '+ (G) |) be the forward reachability tube of

G de�ned in Eq.3, which contains a trajectory {G, · · · , G� }. We use

bootstrap and G ∈ # ⇐⇒ {G ′, · · · , G� } ∈ (.

Now, instead of bootstrapping, we repeatedly sample start state

G ∼ (and check if G ′ = 5̂ (G,) (G)) ∈ (, such that G ′ ∈ (⇐⇒

G ∈ # . For any G ∈ � , there will be two cases: G ′ ∈ (∨ G ′ ∉ (. If

G ′ ∉ (, then G is correctly classi�ed to � . Otherwise, there must be

another G 9 ∈ {G
′, · · · , G� } that is not safe. In this case, G 9−1 will be

classi�ed to � , because the immediate next state will be G 9 , which

is not safe. Since G will be classi�ed to # and G 9−1 to � , |� | does

not change. Therefore, it correctly estimates the true
|� |
|# |

. □

The procedure in the above proof allows more parallelism and

fewer model predictions per input. With higher computational

e�ciency, we verify the �rst criterion using this method.

4 Evaluation
We assess our approach with a high-�delity simulator in an envi-

ronment including weather and layout for a fair evaluation.

4.1 Platform and Implementation Details
Softwares. We used EnergyPlus [10] for industrial-level build-

ing simulation, PyTorch 2.0.0 for deep learning tasks, Python 3.9,

scikit-learn 1.3.2 for decision tree modeling, and Sinergym [12]

Pittsburgh Tucson

Total No. of nodes 1199 3291

No. of leaf nodes (unique path) 599 1646

Safe probability estimated by crit. #1 94.6% 95.1%

No. of nodes corrected by crit. #2 0 0

No. of nodes corrected by crit. #3 0 88

Table 2: Veri�cation results for two cities.

for virtual testbed that facilitates interaction with EnergyPlus in

Python. Sinergym sends the selected setpoint to the EnergyPlus

simulation session, which returns the states back through Sinergym.

All software used for our experiment is open source. We used Intel

i9-11900KF and GeForce RTX 3080Ti graphic cards for computing.

Implementation details.Weused consistent experiment hyper-

parameters throughout the experiment. For deep learning, we em-

ployed settings of epochs=150, learning_rate = 1e-3, andweight_decay

= 1e-5. We used MSE (Mean Squared Error) as the loss criterion and

Adam as the optimizer for all training. For decision data genera-

tion, we used noise_level=0.01. For decision tree construction using

CART [15], we left the depth unbounded, and the split threshold

was set to its default value. When employing the RS stochastic op-

timizer, we adopted the optimal hyperparameter con�guration as

validated in [9], speci�cally sample_number=1000 and horizon=20.

Environment selection.We conducted our simulation with a

463<2 building with �ve di�erent zones [12] in two climate-distinct

cities from January 1st to January 31st. To ensure generalizability,

we selected two cities with distinct climates: Pittsburgh (ASHRAE

4A) and Tucson (ASHRAE 2B), each serving as representatives of

unique climate types [18]. For the simulation, we utilized actual

2021 TMY3 weather data speci�c to these cities [12].

4.2 Results

4.2.1 Building Control.We deploy the policies into the simulated

building, monitor the simulation states, and evaluate their perfor-

mance by energy consumption and violation rate. We select three

benchmarks: the building’s default rule-based controller [12], the

MBRL agent [9], and the current state-of-the-art method CLUE [1].

We �tted a DT policy for each of the cities and veri�ed them

against the proposed criteria. The results are shown in Table 2.

Then, we deploy the policies in the simulated buildings and record

their building control performances, shown in Fig. 4. The lower-

left direction in Fig. 4 represents the direction of improvement.

Compared with the default controller, CLUE [1] saves 129.6 kWh

and 32.5 kWh per month for two cities respectively, while our

method saves 149.6 kWh and 71.8 kWh, seeing a 68.4% increase in

energy savings and a 14.8% increase in human comfort on average.

Compared with the existing controller, we demonstrate our

method’s deterministic behavior in the same environment (Fig.5).

Despite using MBRL’s decisions, our approach is energy-e�cient,

addressing MBRL’s stochasticity by selecting the most frequent ac-

tion (Section 3.2.1), con�rming its e�ectiveness in building control.

4.2.2 Data E�iciency.Our proposed DT policy requires an o�ine

decision data generation procedure described in Section 3.2.1 before

deployment. In this section, we empirically test the amount of deci-

sion data required for our controller to reach optimal performance.

We iterate through di�erent numbers of decision data entries, �t

a DT policy, deploy the policy to a simulated building, and record

