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Abstract—Precise robot localization at the tree level is essential
for smart agriculture applications such as precision disease
management and targeted nutrient distribution. Existing methods
fail to achieve the required accuracy. We propose OrchLoc,
a fingerprinting-based localization solution that achieves tree-
level precision using a single Long Range (LoRa) gateway. Our
approach utilizes channel state information (CSI) across eight
channels as a localization fingerprint. To minimize labor-intensive
site surveys for fingerprint database construction and mainte-
nance, we develop a CSI generative model (CGM) that learns
the relationship between CSI vectors and their corresponding
locations. The CGM is fine-tuned using CSI data from static
agricultural LoRa sensor nodes, enabling continuous finger-
print database updates. Extensive experiments in two orchards
demonstrate that OrchLoc effectively achieves accurate tree-level
localization with minimal overhead, improving robot navigation.

Index Terms—In-Orchard Localization, LoRaWAN, Finger-
printing, Generative Diffusion Model

I. INTRODUCTION

Robots have become essential in precision agriculture for
tasks such as pruning, harvesting, and spraying [1], [2], [3],
[4]. These robots operate at the tree level, performing targeted
actions to optimize resource use. For instance, proactive health
assessments on individual trees enable timely interventions,
preventing disease spread [5]. In viticulture, precise nutrient
and pesticide delivery tailored to each vine reduces resource
consumption while enhancing crop quality [6].

While meter-level localization is readily achievable in ur-
ban environments [7], [8], achieving tree-level localization
in orchards remains challenging. Conventional approaches,
including wheel encoders [9], Simultaneous Localization and
Mapping (SLAM) [10], [11], and Global Positioning Sys-
tem/Inertial Navigation System (GPS/INS) [12], lack the preci-
sion to differentiate individual trees. Wheel encoders are prone
to slipping in muddy conditions [13], while camera-based
SLAM is affected by variable lighting, obstructions, high
power consumption, and uneven terrain [14]. Light Detection
and Ranging (LIDAR)-based SLAM provides high accuracy
but is prohibitively expensive (over $10,000) [15], [16], [17].
GPS/INS systems [12] offer a cost-effective and energy-
efficient solution by using GPS to correct inertial navigation
drift [12]. However, even advanced methods like Real-Time
Kinematic (RTK) GPS suffer from signal obstruction due
to tree canopies [12], [14]. Our experiments in a pistachio
orchard reveal an average GPS error of 7.9 m, and state-of-
the-art GPS/INS methods [12] result in a tracking error of 9.1
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m. Such errors make precise navigation infeasible, given that
the typical tree spacing is less than 4.9 m.

Long Range (LoRa) networks, known for their wide cov-
erage and low power consumption, have been deployed in
orchards for applications such as smart irrigation [18], [19]
and pest monitoring [20], [21]. This paper explores leveraging
existing LoRa infrastructure for in-orchard localization. A
robot’s position is determined based on the packets it transmits
to a LoRa gateway, and integrating LoRa-based localization
with inertial navigation enhances overall positioning accuracy.

Several algorithms have been proposed for LoRa local-
ization [22], [23], [24], but they are ineffective in orchards.
These methods rely on multiple gateways receiving the same
packet, whereas orchard deployments often use sparse gateway
placement to reduce costs, leaving many sensor nodes within
range of only a single gateway. Moreover, they assume a direct
propagation path between nodes and gateways. In orchards,
however, gateways are mounted on high poles for broader
coverage, while nodes are positioned under tree canopies for
environmental monitoring. As a result, a direct propagation
path between the transmitter and receiver is rare due to
obstructions from leaves and trunks, limiting the effectiveness
of existing LoRa-based localization approaches.

This paper presents OrchLoc, a LoRa-based localization
system for orchards that operates with a single gateway. We
introduce a novel LoRa signal fingerprint, the channel state
information (CSI), derived from the amplitude and phase
spectra of signals received across eight channels by a dual-
antenna gateway. Unlike Wi-Fi CSI fingerprinting methods,
which separately process amplitude [25] and phase [26], [27],
we design a location classifier with complex-valued Fully-
Connected (FC) layers to process CSI fingerprints holistically.
Experimental results demonstrate that our classifier improves
precision by 20.3% and 46.7% compared to amplitude-only
and phase-only approaches, respectively.

As a fingerprint-based localization system [28], OrchLoc
faces two key challenges: the labor-intensive fingerprint site
survey in large orchards and the aging of fingerprints. To ad-
dress these challenges, this paper introduces two observations
that enable efficient fingerprint database building and updating:
* (i) Media Homogeneity: Locations with sensor nodes de-
ployed for precision agriculture can periodically collect CSI
fingerprints to update their fingerprints over time. However,
updating fingerprints at locations without sensor nodes remains
a challenge. While CSI fingerprints vary across locations,
LoRa signals primarily propagate through three media: air,
foliage, and ground. Our experiments reveal that each medium
exhibits consistent intrinsic shadowing effects, which can be
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Fig. 1. Illustration of the workflow of OrchLoc. The combination of pre-training and fine-tuning stages is referred to as the turbo-training scheme.

learned from a subset of locations and generalized to others.
* (ii) Spatial Homogeneity: The uniform tree shapes and struc-
tured layouts in modern orchards allow for even LoRa gateway
distribution, segmenting the orchard into distinct areas, each
covered by a specific gateway. Each gateway maintains its own
fingerprint database, and our experiments demonstrate high
similarity in CSI fingerprints across areas, allowing one area’s
database to generate fingerprints for others.

Inspired by advances in generative models [29], [30], we
introduce a CSI Generative Model (CGM) to generate CSI
fingerprints based on location IDs '. As depicted in Figure 1,
leveraging the CGM, we propose a turbo-training scheme
for efficient fingerprint database construction and updates in
orchards. First, we pre-train the CGM using fingerprints from a
reference area, taking advantage of its representative features
due to Spatial Homogeneity. Next, the pre-trained CGM is
fine-tuned with sensor node data from a new area, capturing
local features to enhance adaptability. By treating the CGM as
a ”’signal propagation model,” Media Homogeneity ensures that
the fine-tuned CGM can generate CSI fingerprints for locations
without sensor nodes. These generated fingerprints enable
classifier updates without manual fingerprint measurements.

CGM employs a location-aware diffusion model (LoDM) to
generate CSI data for each location. It leverages a complex-
valued U-Net framework and attention layers to learn the
latent relationship between CSI data and location IDs. How-
ever, directly inputting raw CSI data and location IDs into
LoDM limits its modeling capability, as location IDs alone
lack shadowing-specific information crucial for generating
location-dependent data. Additionally, low-dimensional CSI
vectors increase the risk of overfitting. To address these chal-
lenges, the CGM integrates specialized representers for both
CSI and location IDs. A complex-valued autoencoder-based
CSI representer transforms CSI data into high-dimensional
vectors that capture key latent features. Meanwhile, the lo-
cation representer models the First Fresnel Zone (FFZ), an
ellipsoidal region surrounding the direct path between trans-
mitter and receiver that contains most of the transmitted signal
energy [31]. It quantifies the proportions of foliage, air, and
ground within the FFZ and incorporates the communication
distance and direction to construct a detailed FFZ vector.

I'The terms “location ID,” “tree ID,” and “location (tree)” are used inter-
changeably to denote the unique identifier for each tree in the orchard.

This approach provides a more robust, physically informed
representation than using location IDs alone.

We collect thirteen CSI fingerprint databases over thirteen
data collection rounds spanning four months in a pistachio
orchard area and gather ten databases from ten areas across
two pistachio orchards. The turbo-training scheme consistently
maintains an average precision of 96.3% and recall of 97.6%
over four weeks. Across the ten areas, OrchLoc achieves
an average precision of 89.6% and recall of 91.8%, with a
localization error of just 1.2 m. Furthermore, replacing GPS
with OrchLoc for robot navigation reduces navigation error by
61.3% using the Neural Kalman Filter algorithm [12].

In summary, this paper makes the following contributions:

* We develop OrchLoc, achieving tree-level in-orchard lo-
calization accuracy using a single LoRa gateway.

* We enhance CGM to generate high-quality CSI finger-
prints by incorporating a location-aware diffusion model, a
CSI representer, and an FFZ-based location representer.

» Extensive experiments validate the system’s localization
accuracy and its effectiveness in improving robot navigation.

II. PRELIMINARY
A. LoRa Primer

LoRa employs Chirp Spread Spectrum (CSS) modulation
to transmit signals [32], [33]. In CSS, a chirp is a signal
whose frequency continuously increases or decreases across
a bandwidth, referred to as up-chirps and down-chirps, re-
spectively. A LoRa packet is modulated into a sequence of
chirps, beginning with preambles. These preambles typically
consist of a fixed number of standard up-chirps, such as
eight in LoRa Wide Area Network (LoRaWAN) [34]. The
frequency of these up-chirps starts at the minimum value and
progressively sweeps to the maximum frequency within the
bandwidth. This structured preamble enables the measurement
of CSI by comparing received chirps with a reference up-chirp.

B. Diffusion Models

Diffusion models are a class of probabilistic generative
models that reconstruct data by reversing a noise corruption
process [35]. This work focuses on the Denoising Diffusion
Probabilistic Model (DDPM) [29], illustrated in Figure 2,
which consists of forward and reverse Markov chains.
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Fig. 2. Illustration of the standard diffusion models.
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(b) Reverse Markov chain

The forward Markov chain, depicted in Figure 2(a), pro-
gressively transforms data into an isotropic Gaussian distri-
bution N(0, ) by incrementally adding Gaussian noise with
zero mean and variance (3, over time steps ¢ € [1,7]. Here, T
denotes the total number of diffusion steps, and f3; increases
with ¢. The identity matrix I represents independent and
identically distributed noise across all dimensions.

The reverse chain, illustrated in Figure 2(b), reverses this
transformation using a denoising module with a noise predictor
parameterized by deep neural networks. The predictor esti-
mates the noise in the corrupted data x; at step ¢ and subtracts
it to obtain x;_;. This iterative denoising process continues
from 7' to 1, ultimately reconstructing the original data xg.
To generate new samples, a random vector is drawn from
a Gaussian distribution and denoised via ancestral sampling
through the reverse Markov chain [36].

The success of this sampling process relies on accu-
rately training the reverse Markov chain to approximate
the time-reversed forward chain. This involves optimiz-
ing 6 so that the joint distribution of the reverse process,
py (X0, X1, ...,Xr), closely matches that of the forward pro-
cess, ¢ (Xo,X1,...,x7). To achieve this, the noise predictor
is trained to estimate the noise added during the forward
process, taking as input: (i) the time step ¢, indicating the noise
level, and (ii) the corrupted sample x;. The network outputs
the predicted noise €y, enabling accurate iterative denoising
to recover xgo. By precisely predicting the noise, the model
supports high-quality sample generation from Gaussian noise.

1II. MOTIVATION

This section examines the impact of GPS accuracy on the
navigation performance of the GPS/INS system.

We use the public dataset [12], where a robot navigates
a farm over a total trajectory length of 2.0 km. The robot
is equipped with a Bosch BNOO55 to record INS data. An
OptiTrack 13W-P MoCa system captures the robot’s initial
position and continuous velocity, providing ground truth for
trajectory evaluation. To simulate orchard GPS accuracy (7.9
m), we introduce Gaussian noise with a mean of 7.9 m and a
standard deviation of 1.0 to the real coordinates.

For GPS/INS navigation system, the Extended Kalman Fil-
ter (EKF) [37] fuses GPS and INS data, using GPS to correct
INS drift. The Neural Kalman Filter (Neurl-KF) [12] predicts
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Fig. 3. Robot trajectory error is measured as the root-mean-square er-
ror (RMSE) between the predicted and ground truth trajectories.

the robot’s velocity and position from INS data via a neural
network, refining estimates through Kalman filtering with GPS
updates. As shown in Figure 3, the navigation error, measured
by the root-mean-square error (RMSE) between predicted
and true trajectories, averages 11.6 m with EKF and 9.1 m
with Neurl-KF. These large errors result from the system’s
reliance on GPS for correcting cumulative INS drift. When
GPS accuracy degrades, as in orchard environments, the ability
to compensate for INS drift is significantly reduced, leading
to substantial navigation errors. Such inaccuracy makes GPS-
based robot navigation impractical in orchards, where tree
spacing is typically around 4.9 m (e.g., almond orchards). This
paper proposes an alternative to GPS for correcting INS drift.

IV. LOCALIZATION USING OrchLoc

We begin by introducing CSI for LoRa signals and de-
signing a location classifier that leverages complex-valued
FC blocks to process complex-valued data, enabling CSI
fingerprint-based localization. We then identify two key chal-
lenges in fingerprint-based in-orchard localization and present
two observations that offer solutions in orchard environments.

A. CSI Fingerprint

CSI characterizes how signals propagate from sender to
receiver across different carrier frequencies and multiple
paths [38]. In Wi-Fi systems, CSI is obtained by transmit-
ting known pilot symbols at specific subcarriers, followed
by applying the Fast Fourier Transform (FFT) to convert
the received time-domain signal into the frequency domain.
Estimation algorithms, such as Least Squares, are then used
to compute the channel frequency response at the pilot sub-
carriers. However, this method is not applicable to LoRa, as
CSS modulation operates without dedicated pilot symbols.

1) Extracting CSI for LoRa: To extract stable CSI data
for LoRa, we apply a series of processing steps: de-chirping,
FFT, preamble calibration, phase rotation compensation for
amplitude calculation, and phase estimation based on the phase
difference between two antennas. Upon receiving a packet, the
CSI, represented as a complex number capturing the channel
frequency response, is obtained by comparing the amplitude
and phase spectra of the packet preambles with those of
a standard up-chirp. The preambles are well-calibrated, as
described in [39], for subsequent calculations.

Amplitude: The process begins with de-chirping and ap-
plying FFT to the preambles, expressed as Y (f) = F[r(¢)],
where a peak is identifiable at the first frequency bin. The CSI
amplitude is determined as the ratio of the peak height of the
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received preamble to that of the standard up-chirp. To mitigate
the impact of FFT phase rotation on peak height estimation,
phase rotation at frequencies f and f — BW is compensated.
This is achieved by optimizing the summation of Y (f) - e/¢
and Y (f — BW) over ¢ € [0, 27].

Phase: The phase of the peak is first computed from two
antennas. Next, the phase difference between the two antennas
is derived to obtain more stable phase data over time [39], [40].

These operations ensure the extraction of stable CSI data
while minimizing potential interference from other wireless
systems operating in the same unlicensed frequency band.
Notably, we do not account for cell edge interference from
adjacent gateways, as in the United States, LoRa gateways are
configured to operate on different frequency channels [41],
preventing signal interference between neighboring gateways.

CSI Fingerprint Vector xo: Unlike Wi-Fi, where a packet
occupies multiple channels, a LoRa packet is transmitted
on only one channel at a time. Given a gateway operating
across eight channels, nodes are instructed to transmit eight
packets, each on a separate channel. Thus, a CSI fingerprint
X is obtained with dimensions (2, 8), capturing the frequency
response across eight channels for both antennas.

Fingerprint Database: CSI fingerprints are collected at
M = 64 locations (trees) within a gateway’s coverage area,
with each location positioned 2.0 m to the right of a tree,
as shown in Figure 14(b). At each location, 160 packets are
recorded. Each set of eight consecutive packets, transmitted
across the eight channels, forms a CSI vector, yielding 20
CSI vectors per location. A data augmentation technique [42]
is applied to generate an additional 80 CSI vectors per location
by introducing Gaussian noise to the initial 20 CSI vectors.
This noise is sampled from a zero-mean Gaussian distribution,
with the standard deviation for each dimension determined by
the standard deviation of the collected 20 CSI vectors.

2) Spatial Resolution: We utilize the Multiple Signal
Classification (MUSIC) algorithm [43] and the t-Distributed
Stochastic Neighbor Embedding (t-SNE) technique [44] to
analyze the spatial resolution of CSI fingerprints from both
physical and representation learning perspectives.

The MUSIC algorithm is applied to LoRa samples collected
from two antennas to assess signal strength at various angles.
This process is repeated across eight channels to generate
spatial spectra for each location, with each location positioned
2.0 m to the right of a tree. Figure 4 illustrates distinct spatial
spectra for two neighboring locations, corresponding to two
adjacent trees, indicating differences in signal arrival angles
at the gateway. This distinction confirms that LoRa signals
can effectively differentiate adjacent locations in orchards.

Unlike traditional methods that use time-of-arrival (TOA) or
direction-of-arrival (DOA) as location-specific features [45],
[46], which explicitly measure signal travel time or arrival
direction, CSI captures complex interactions between trans-
mitted signals and surrounding objects. Each CSI vector
encodes a spatial signature, incorporating distortions caused by
reflections, diffractions, and scattering. Since these distortions
depend on the spatial geometry of the transmitter, receiver, and
environment, CSI inherently embeds location-specific features.
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Fig. 5. Representation of all loca-
tions in an area using t-SNE [44].

Fig. 4. Spatial spectra of two adja-
cent locations (trees) in an area.

Furthermore, Figure 5 presents the results of applying t-
SNE [44], a widely adopted technique that reduces high-
dimensional data to a two-dimensional space while preserving
the pairwise similarity structure of the original data, to the CSI
fingerprints across all locations. Markers of different colors
and shapes represent distinct locations, and CSI data from the
same locations exhibit a clear clustering effect, confirming the
high spatial resolution of CSI fingerprints.

B. Complex-Valued Location Classifier

Flattening the CSI vector into a one-dimensional real-
valued format enables traditional methods such as K-Nearest
Neighbors (KNN) to be applied for localization. However,
this transformation can degrade the spatial features of the CSI
vector, compromising interdependencies among its elements.
To mitigate this, we introduce a complex-valued FC block that
effectively integrates both amplitude and phase information.

1) Complex-Valued FC Layer: The complex-valued FC
layer consists of two real-valued neurons that separately pro-
cess the real and imaginary parts of the input. If the input is
represented as ¢ = u + ¢ - v, where u and v denote the real
and imaginary components, the transformation is defined as:

u=0(Re(w-c+b)), vV =c(m(w-c+b)) (1)

where w = wy, + 1 - Wy, is the weight matrix, b = b, +¢- b,
is the bias term, and o is the ReLLU activation function.

2) Transition to Real-Valued FC Layer: We employ two
complex-valued FC layers. To connect the complex-valued FC
layers with real-valued FC layers, we compute the absolute
values of the outputs from the second complex-valued FC
layer and use them as input to the real-valued layer. After
transitioning to real-valued representations, the extracted fea-
tures pass through two additional real-valued FC layers, each
followed by a ReLU activation function. The final real-valued
FC layer consists of M neurons, corresponding to the number
of locations (trees) within a gateway’s coverage area. The
output is processed by a softmax function, transforming the
logits into a probability distribution over M locations:

~exp(zm)
Pm =5
> j—1exp(2;)
where z,, is the logit output for location m.

3) Loss Function: To train the location classifier, we em-

ploy the cross-entropy loss function [47]:

2)

M
L==73 ymlogpm 3)
m=1
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Fig. 6. Localization accuracy across thirteen data collection rounds.

where v, is a one-hot encoded vector representing the true
location ID. This loss function ensures that the predicted
probability distribution aligns with the ground truth labels. By
minimizing this loss, the model learns to classify a CSI vector
into its corresponding location (tree) ID.

C. Performance and Challenges

Over four months, we conduct thirteen rounds (1 to r13) of
CSI measurements in an area with M = 64 locations (trees),
referred to as Area A in Figure 14(a). In each round, we
collect a CSI fingerprint database for all locations, resulting in
thirteen distinct datasets recorded at different times: »1 (07/06,
first day AM), r2 (07/06, first day PM), 3 (07/07, second
day), r4 (07/08, third day), r5 (07/15, tenth day), 76 (07/22,
seventeenth day), and so on. Each database measurement
round, covering all M = 64 locations, lasts approximately
four hours. Environmental parameters observed during each
round are listed in Table 1. Each database is split into training
and testing sets with a 7:3 ratio. The location classifier, trained
solely on the r1 training set, is then evaluated on testing sets
from 71 to r13 without retraining on rounds 72 to r13.

Figure 6 illustrates the consistently high accuracy of our
classifier across the first five rounds (r1-r5), with average pre-
cision and recall stabilizing above 89.8% and 91.1%, respec-
tively. This stability is attributed to three key factors: First, the
integration of techniques proposed in Section IV-A1, including
de-chirping, FFT, phase rotation compensation for amplitude
calculation, and phase difference estimation using two anten-
nas, enhances CSI stability [39], [40]. Second, environmental
conditions remain relatively stable during this period, as shown
in Table I. Specifically, an average temperature increase of
only 3.1°C from rl to r2-r5 suggests that the fingerprint
database remains robust when temperature fluctuations are
within this threshold. Finally, orchards typically experience
minimal external disturbances such as human activity or
vehicular traffic, further contributing to stability.

Aging Problem: Figure 6 also reveals a noticeable decline
in classifier accuracy starting from round 76, with precision
and recall dropping to 56.8% and 66.5%, respectively. This
degradation is primarily caused by a shift in fingerprint
distribution due to changing environmental conditions from
round 76 onward compared to round 1. In particular, Table I
highlights a substantial temperature increase of 10.5°C from
r1 to r6 and r7. These results indicate that periodic updates to
the CSI fingerprint database are necessary when temperature
variations exceed 3.1°C to maintain classifier accuracy.

Vast Orchard: In a 100-acre orchard with row and column
spacing of 6.7 m and 4.9 m, and a LoRa communication range

TABLE I
ENVIRONMENTAL DYNAMICS STATISTICS ACROSS THIRTEEN DATA
COLLECTION ROUNDS OVER FOUR MONTHS.

Date Hum (%) Tem (°C) Pre (mm)  Win (m/s)
07/06 (rl) 39.0 £8.5 26.7+26 0.0+0.0 2.1+0.1
07/06 (r2) 34.3+3.5 31.0+09 0.0+00 19+03
07/07 (r3) 42,3+ 3.1 299+04 00+£00 21404
07/08 (r4) 43. 7+ 1.5 278+15 0.0+0.0 2.1+0.3
07/15 (r5) 56.3+18.6 31.2+58 00+£00 08+04
07/22 (r6) 39.3+11.5 36.8+27 0.0+£00 1.0+0.2
07/29 (r7) 24.7+3.5 35.5+07 0.0+0.0 2.0+£0.0
11/18 (18) 79.0 + 9.0 169+13 02403 22+1.3
11/19 (r9) 47.3+0.6 15.8+0.2 0.0+0.0 51403
11/25 (r10)  46.0 £2.0 15.3+0.9 0.0+£0.0 1.7+0.1
12/09 (r11) 49.6 +2.1 14.3+£0.5 0.04+0.0 1.44+0.2
12/16 (r12) 47.6 +8.6 11.9+ 3.1 0.0£0.0 1.44+04
12/23 (r13) 69.5£3.3 15.1+0.5 0.0£0.0 1.140.2

* Hum: Humidity, Tem: Temperature, Pre: Precipitation, Win: Wind

of 120 m, the orchard is divided into 29 areas, each containing
19 x 26 trees (locations) [48]. Allocating three minutes per
location for data collection results in a total survey time of 29.8
days. The requirement for periodic database updates further
complicates this process, making site surveys impractical.

D. Two Key Observations

We identify two key observations in orchards that help
reduce labor for building and updating the fingerprint database.

1) Media Homogeneity: In orchards, signals propagate
through three primary media: air, foliage, and ground. Each
medium introduces distinct shadowing effects on signal prop-
agation, which remain consistent across different locations.
An experiment focusing on Received Signal Strength Indica-
tor (RSSI) estimation is conducted to illustrate this concept.

The Log-Normal Shadowing model ("Log™) [31] is used
to estimate the RSSI of received LoRa packets. This model
employs the Path Loss Exponent (PLE) to characterize the
shadowing effects of different media on signal propagation.
Since signals in orchards traverse air, foliage, and ground, PLE
is decomposed into three components [48]:

PLE:Pairxa+PfoliageXﬁ""PgroundX’y 4)

where Fguir, Protiage, and Pgroung represent the proportions
of air, foliage, and ground in the signal propagation zone. The
parameters «, 3, and  denote the intrinsic PLE values for
signals propagating through each respective medium.

We collect RSSI data at four orchard locations over four
weeks. Data from the first week are used to fit the values
of a, 8, and . The Log model is then evaluated over the
following three weeks in two scenarios: (i) without updating,
and (ii) updating «, 3, and y using data from a single location.

Figure 7 presents the estimation error for both cases. In
case 2, the error is reduced from 13.9 dB to 5.7 dB across all
locations compared to case 1. This improvement is attributed
to the media homogeneity in orchards, where all locations
share the same «, 3, and v values. Thus, updating the Log
model with data from just one location effectively enhances
accuracy across the entire orchard. In contrast, urban environ-
ments contain diverse media, complicating PLE decomposition
and reducing the effectiveness of this updating scheme.

Hence, in orchards, updating propagation models with data
from a subset of locations improves accuracy across the area.
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2) Spatial Homogeneity: In modern orchards, trees have
uniform shapes and structured layouts. The orchard is divided
into multiple areas, each with a uniform tree arrangement and
covered by a LoRa gateway. Each gateway maintains a CSI
fingerprint database for its coverage area. The similarity of
these databases across areas, resulting from layout uniformity,
is referred to as spatial homogeneity.

To quantify this similarity, we use the Peak Signal-to-Noise
Ratio (PSNR) to compare the spatial spectra of identical
location IDs across different areas. PSNR is defined as:

max (X )2
PSNR = 10 - log,, (MSE(X, X’)) 5)
where X represents the spatial spectra of a location ID from
one area, and X' is the corresponding spectra from another
area for the same location ID. max(X)? denotes the maximum
possible power of the spectra, while MSE(X, X”) represents
the mean squared error (MSE) between the two spectra. Higher
PSNR values indicate greater similarity between spectra, as
PSNR is inversely related to MSE. Smaller spectral differences
suggest structural consistency in CSI fingerprints.

As illustrated in Figure 8, the PSNR for the same location
IDs across two areas reaches up to 25.1 dB, indicating strong
spectral similarity. Additionally, Figure 9 presents the PSNR
distribution of spatial spectra for corresponding location IDs
across six areas, showing that 86.7% of the spectra have a
PSNR above 20 dB. Similar spatial spectra correspond to
comparable CSI fingerprints, as they reflect signals propagat-
ing through similar environments. These findings confirm that
various areas within the orchard exhibit spatial homogeneity.

V. WORKFLOW OF OrchLoc

Figure 1 illustrates the workflow of OrchLoc, which effi-
ciently builds and updates databases in orchards. OrchLoc op-
erates in three stages: pre-training, fine-tuning, and inference.

* In pre-training, we designate one area as a reference and
collect CSI fingerprints from all its locations to serve as an
initial database. This database pre-trains the CSI Generative
Model (CGM), which integrates a location-aware diffusion
model with CSI and FFZ-based location representers, enabling
the generation of CSI fingerprints for various locations.

* In fine-tuning, the process is designed for both building
and updating the fingerprint database for a specific area:

(i) Building: Fingerprints from locations equipped with static
sensor nodes are used to fine-tune the pre-trained CGM,
adapting it to local variations. These static sensor nodes are

Angle (degrees)

Fig. 8. Spatial spectra of the same loca-
tion ID from two areas (PSNR: 25.1 dB).
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Fig. 9. Spatial spectra similarity across
corresponding locations in six areas.
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Fig. 10. Architecture of the CSI Generative Model (CGM).

already deployed in orchards for precision agriculture appli-
cations, such as soil moisture monitoring. The refined CGM
generates fingerprints for locations without sensors, which are
then combined with data from sensor-equipped locations to
create a complete database. This database is subsequently used
to train the area-specific complex-valued location classifier.
(ii) Updating: Instead of fine-tuning the initial pre-trained
CGM, the most recent area-specific refined CGM is fine-tuned
to account for temporal environmental changes.

¢ In inference, the trained location classifier estimates the
robot’s location given its current CSI measurement.

The pre-training and fine-tuning stages, collectively referred
to as turbo-training, leverage two key observations in orchards:
First, using fingerprints from all locations in a reference area
exploits spatial homogeneity, as the database characteristics of
this area mirror those of other areas. Second, the success of
fine-tuning across all locations is due to media homogeneity.
Although the CGM is more complex than the Log model, its
parameters function similarly to Log’s «, (3, and 7, which
represent the shadowing effects of different media on CSI
fingerprints. Thus, the fine-tuned CGM parameters remain
applicable across all locations within an area.

VI. CSI GENERATIVE MODEL

Figure 10 outlines the three components of the CGM.

* (i) The location-aware diffusion model (LoDM), receiving
input from CSI and location representers, learns the relation-
ship between CSI fingerprints and location IDs.

* (ii) The CSI representer employs a complex-valued autoen-
coder, where the encoder ® transforms low-dimensional CSI
into a high-dimensional signal vector zg, and the decoder ¥
reconstructs the raw CSI X from the signal vector zy gener-
ated by the LoDM module.
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e (iii) For the location representer, the location ID is
converted into an FFZ vector y via FFZ modeling, which is
then processed by an FFZ encoder I into a link vector (.

Pairs of CSI fingerprints and their corresponding location
IDs are fed into the CGM for training. To generate CSI
fingerprints, the trained CGM takes a location ID and Gaussian
noise matching the size of the CSI fingerprint as input.

A. CSI Representer

Raw CSI fingerprint inevitably contains measurement noise
from environmental factors such as fluctuating atmospheric
conditions and transient disturbances. Directly using noisy CSI
data can mislead the localization model, causing it to interpret
transient variations as meaningful features. Additionally, low-
dimensional CSI representations often suffer from overfit-
ting [49], where the model becomes overly specialized to
specific data patterns, degrading its generalization capability to
unseen CSI samples. To address these challenges, we adopt an
autoencoder-based transformation to derive high-dimensional
CSI representations that enhance robustness against noise and
improve feature expressiveness.

Our autoencoder consists of an encoder ¢ and a decoder W,
both composed of three complex-valued FC layers. The en-
coder progressively expand in dimension, while the decoder
symmetrically contracts, ultimately reconstructing the raw CSI
vector Xg. To ensure non-linearity in feature extraction, a
ReLU activation function follows each FC layer. This trans-
formation serves two purposes:

Mapping low-dimensional CSI into a structured higher-
dimensional space enables the encoder to filter out high-
frequency noise while preserving essential localization fea-
tures. The complex-valued FC layers jointly process amplitude
and phase information, capturing richer spatial dependencies
that raw CSI representations fail to encode explicitly. This
approach is similar to kernel methods in Support Vector
Machines (SVMs) [50], where low-dimensional data points
are mapped into a higher-dimensional space for improved sep-
arability. Likewise, our autoencoder generates structured high-
dimensional CSI features, enhancing localization accuracy.

To train the complex-valued autoencoder, we minimize the
reconstruction error using the Lo loss function:

L1, (%0, %0) = [|x0 — %03 (6)

where x( represents the original CSI vector, and X denotes
the reconstructed CSI vector from the decoder. The Ly loss
function computes the squared Euclidean distance between
these two vectors, ensuring that the reconstructed CSI closely
approximates the original input data.

B. Location Representer

The location representer incorporates FFZ modeling and an
FFZ encoder to learn the location representation.

1) FFZ Modeling: The CSI vector is labeled with a location
ID ranging from 1 to M, typically represented as a one-hot
vector of length M, with a single bit set to 1 for the specific ID.
However, one-hot encoding has limitations, such as reduced
training efficiency and the lack of physical location context

# Node
%  Gateway

Fig. 11. Illustration of the First Frozen Zone (FFZ) modeling.

to guide the LoDM in learning CSl-location relationships.
To address this, FFZ modeling is introduced. It transforms
a location ID into a 7-element FFZ vector y that encapsulates
physical factors influencing signal transmission.

The FFZ (Figure 11) represents a 3D ellipsoid region where
most of the signal’s energy is concentrated, with focal points
aligned to the 3D coordinates of the node and gateway.
In orchards, the FFZ consists of three media—air, foliage,
and ground—each contributing distinct shadowing effects on
the signal. To characterize the signal path, we calculate the
proportions of these three media within the FFZ.

To achieve this, a 3D representation of the orchard is
constructed using a Cartesian coordinate system, where the
x- and y-axes align along and across orchard rows, and the z-
axis points upward from the gateway’s position on the ground.
Uniform tree spacing determines tree positions on the x- and
y-axes, while trees are modeled as cylinders (trunks) and
ellipsoids (crowns), requiring only measurements of height and
canopy width. Since trees exhibit consistent growth patterns
within an orchard, modeling based on a single representative
tree enables an efficient 3D representation

Using the 3D coordinates of the FFZ’s focal points and
its mathematical formulation [31], the FFZ is mapped onto
the established coordinate system. Sampling points within the
FFZ are analyzed to determine their interactions with air, trees,
or ground. The proportion of each medium is calculated by
comparing the number of sampling points interacting with
each medium to the total points within the FFZ.

Furthermore, both distance and direction between the node
and gateway influence the received signal. To account for
these factors, the normalized distance and 3D direction are
incorporated, resulting in a 7-dimensional FFZ vector y.

NOTE: Since localization is performed independently within
each gateway’s coverage region, transformations between dif-
ferent gateways’ coordinate systems are unnecessary. The
FFZ vector is computed solely within each gateway’s lo-
cal coordinate system. This design parallels the Log-Normal
Shadowing model, where the RSSI depends on the relative
distance between the node and the gateway rather than absolute
global positions. By maintaining independent local coordinate
systems, the model remains scalable and robust, simplifying
localization while ensuring accurate location estimation within
each gateway’s coverage area.

2) FFZ Encoder: The FFZ vector y captures factors in-
fluencing the CSI vector, providing the LoDM with physical
location information to learn the CSI-location relationship.
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Fig. 12. Architecture of the Location-Aware Diffusion Model (LoDM).

However, due to uniform orchard layouts, the same FFZ
vectors are generated for identical location IDs across different
areas, limiting the LoDM’s ability to adapt to new areas. To
overcome this, the FFZ encoder I' transforms the FFZ vector
y into the link vector (. Comprising multiple real-valued FC
layers with ReLU activation, it is co-trained with the LoDM.
By refining the FFZ encoder during LoDM fine-tuning, the
model adapts to local geometrical variations in new areas.

C. Location-Aware Diffusion Model

We develop the LoDM to generate CSI fingerprints across
various locations, inspired by the DDPM [29].

1) Overview: Figure 12 illustrates the architecture of our
LoDM, which consists of two Markov chains: forward and
reverse. In the forward chain, unlike DDPM, which introduces
noise to raw data, we apply noise to signal vectors zg (high-
order representations of raw CSI vectors x(), generating a
sequence of noisy signal vectors z;. This is achieved by
incrementally adding Gaussian noise to zg at each step t.

In the reverse chain, the key task is to accurately remove
noise from the noisy signal vector via the denoise module.
Considering location effects on the signal, the module takes
both the noisy signal vector z; and the link vector ( as inputs
to estimate noise in z; at each time step ¢. Attention layers
are incorporated to fuse the signal and link vectors, enhancing
the noise estimation process. Subtracting this estimated noise
from z; produces z;_;, which serves as input for the next
denoising step at ¢t — 1. This iterative process continues from
T to 1, ultimately recovering the initial signal vector z.

Generating a signal vector requires a link vector ( and
a random vector zp sampled from a Gaussian distribution,
followed by ancestral sampling through the reverse chain [36].

2) Denoise Module: Figure 13 illustrates the denoise mod-
ule, which features a deep neural network-based noise pre-
dictor. It integrates a complex-valued U-Net, an embedding
layer, and attention layers to estimate noise in the noisy signal
vector z;, given the time step ¢ and link vector ¢. The module
then subtracts the estimated noise from z;, generating noisy
signal vector z;_; for the next time step ¢ — 1.

Complex-Valued U-Net Backbone: The U-Net backbone,
shown in Figure 13, consists of contracting and expansive
paths. The contracting path (right trapezoid) compresses the

Predict
noise

Noise predictor €y

Fig. 13. Architecture of the denoise module with noise predictor.

signal vector to extract key features and identify global trends.
Conversely, the expansive path (left trapezoid) reconstructs the
data, capturing fine details and preserving spatial correlations.
This dual architecture enables the model to process the com-
plex dimensions of the signal vector effectively.

In detail, the contracting path includes downsampling layers
with 1D convolutions (increasing channel count), ReLU activa-
tions, residual layers (dotted lines), and a complex-valued FC
layer for dimensionality reduction. The expansive path consists
of upsampling layers with 1D convolutions (decreasing chan-
nel count), ReL.U activations, residual layers, and a complex-
valued FC layer for dimensional expansion.

Embedding Layer: The time step ¢ is transformed from
an integer into a vector using Sinusoidal Position Embed-
dings [51]. This embedding vector is then added to both the
input and intermediate layers of the predictor.

Attention Layer: The noise predictor integrates the link
vector ( via a cross-attention layer [51], [52], [53], enabling
the model to focus on location-relevant features. This improves
the model’s ability to generate accurate signal vectors for
each location. The link vector ( is incorporated into both
downsampling and upsampling layers of the U-Net backbone
through cross-attention mechanisms:

: <QK 3 )
Attention(Q, K, V) = softmax | ——— | - V @)
Vd

where Q = Wgo - m; (2¢), K = Wi - ¢, and V = Wy - (
are computed using learnable projection matrices Wq, Wk,
and Wy . Here, 7; represents an intermediate layer of the U-
Net backbone. The scaling factor v/d ensures training stability,
where d is the hidden feature size.

3) Summary: Our system differentiates location fingerprints
through a structured combination of spatial encoding and
deep learning mechanisms. The location representer extracts
the link vector ¢, which encodes spatial dependencies across
different locations. This vector is integrated at every sampling
layer in the U-Net, ensuring spatial consistency throughout
the generative process. This approach parallels conditional
diffusion models, where conditioning information guides gen-
eration while preserving essential spatial details.

Attention mechanisms within the U-Net emphasize the most
distinctive spatial features in CSI data. Since the CSI vector
spans multiple channels and antennas, the attention layers
selectively highlight spatial variations critical for location dif-
ferentiation. By learning to focus on these fine-grained spatial
patterns, CGM ensures that the generated CSI fingerprints
accurately correspond to their respective locations.
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D. Calibration

Our continuous turbo-training scheme updates the finger-
printing dataset regularly, ensuring that the localization clas-
sifier is retrained to maintain high accuracy over time. Turbo-
training efficiently adapts the CGM in dynamic environments
with small, incremental changes, eliminating the need for full
retraining. However, if the classifier’s accuracy drops signif-
icantly, it indicates that turbo-training alone is insufficient
to refresh the fingerprinting database. In such cases, more
extensive calibration is required.

A larger portion of location data—or even the entire
dataset—may need to be recollected and used to retrain
the CGM. This is particularly crucial in environments with
significant changes, such as the seasonal transition from a full-
leaf orchard to a no-leaf setting, where physical conditions
alter drastically. Such shifts can render previously collected
fingerprints obsolete, making turbo-training alone inadequate
for maintaining classifier accuracy.

To address this, we combine calibration with turbo-training.
Calibration enables the CGM to adapt to major environmental
changes by retraining on a broader dataset, while turbo-
training continuously manages smaller updates in stable condi-
tions. This joint strategy ensures that the localization classifier
remains accurate and reliable, even in environments subject to
substantial and unpredictable variations.

E. Generalizability to Other Environments

While our system has potential applications in various
environments, such as wild forests, its generalizability depends
on two key factors: an accurate 3D environment model for
location representation and the presence of media and spatial
homogeneity. These factors are essential for constructing and
updating the fingerprint database. However, this reliance on
spatial homogeneity also limits OrchLoc ’s applicability to
environments with highly irregular layouts, such as forests,
urban areas, or orchards with significant terrain variations.
Its effectiveness may degrade in scenarios where trees are
unevenly distributed, as the lack of uniform spacing disrupts
the consistency of fingerprinting patterns.

Additionally, since our method does not incorporate cross-
domain adaptation techniques, its direct deployment in or-
chards with different crop species, canopy densities, or plant-
ing patterns may require extensive recalibration. Forests, in
particular, introduce greater complexity due to irregular tree
placement, species variations, and differences in age and
shape, posing significant challenges [54]. This variability
complicates fingerprinting and increases labor intensity for
dataset collection and model adaptation.

Future research could explore lightweight adaptation of
OrchLoc to more complex environments, such as through
transfer learning-based methods [55], [56], [57], [58]. Potential
approaches include integrating domain adaptation techniques
to recalibrate CSI fingerprints across different environments,
employing meta-learning strategies for efficient adaptation,
or incorporating additional environmental sensing modali-
ties (e.g., LIDAR or hyperspectral imaging) to enhance ro-
bustness in highly heterogeneous landscapes.

VII. IMPLEMENTATION

Hardware: LoRa nodes are custom-built using the SX1276
Radio [59] on Arduino Uno boards [60]. The bladeRF 2.0 Soft-
ware Defined Radio (SDR) [61], connected to a Raspberry Pi
4, is used to receive LoRa samples, and is equipped with two
antennas spaced 14.0 cm apart—Iess than half the wavelength
of the LoRa signal. Although dual-antenna configurations are
not standard in commercial LoRa gateways, our setup explores
their feasibility for in-orchard localization [62], [63]. Collected
samples are processed on a local computer with an Intel(R)
Core(TM) i9-11900KF @ 3.50 GHz CPU, while training
is accelerated by an NVIDIA GeForce RTX 3080 Ti GPU,
though GPUs are not required for inference.

Training of Location Classifier: The input layer requires
data in the format X = {z,,7;} € R™*2 where the first and
second columns represent the real and imaginary parts of the
inputs, respectively. Thus, we flatten the (2, 8) CSI vector into
a 16-element column vector (! = 16) and compute the real and
imaginary components for each element. The output layer size
corresponds to the number of locations M.

Training of CGM: The CSI representer shares the same
input format as the classifier. Its encoder generates the signal
vector zy with dimensions (2,128). The location representer,
using FFZ modeling, creates a 7-element FFZ vector y. The
FFZ encoder then outputs a link vector ¢ of length 32. To
mitigate overfitting, a dropout layer with a probability of
0.1 is incorporated into both the CSI representer and the
FFZ encoder. The CSI representer is trained using the Adam
optimizer with a batch size of 256 and a learning rate of 0.001.

For the LoDM model, Gaussian noise with a mean of zero
and variance (; is introduced in the forward process. The
variance J3; increases linearly from 5, = 10~ to By = 0.02,
where T' represents the total number of time steps in the
diffusion process. We set 7" = 1000. The noise predictor is
trained to minimize the discrepancy between predicted and
actual noise. Training continues until a predefined convergence
criterion is met, either by reaching the maximum number of
epochs or achieving a loss below a specified threshold. In our
implementation, training runs for a maximum of 300 epochs
or until the loss falls below 0.01. The chosen hyperparameters
align with those recommended in [29].

For the noise predictor’s learning, which depends on signal
and link vector pairs, we employ the Lo loss:

Lropm = Ea(xe),yte~N(0,1) |ll€ — €0 (2,1, T (}’))Hg} ®)

where z; is the noisy version of zyg = ®(x() at time step
t, with T'(y) producing the link vector (. The time step ¢
is sampled uniformly from {1,...,T}, € represents the true
noise added to z;, and €y(z,t,I'(y)) is the predicted noise.
The noise predictor €y and the FFZ encoder I' are jointly
optimized through this loss function. This co-optimization
ensures that both components are trained simultaneously,
enabling the system to predict noise while effectively encoding
the environmental characteristics of the FFZ. By aligning their
training, the model improves its ability to handle noisy data
and capture unique signal propagation effects within the FFZ.
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VIII. EVALUATION

We evaluate OrchLoc by analyzing its temporal and spatial
performance in Sections VIII-B and VIII-C. Benchmarking
results are presented in Section VIII-D, followed by a case
study on robot navigation in Section VIII-E. Section VIII-F
examines the effectiveness of the proposed components, while
Section VIII-G investigates factors influencing system perfor-
mance. Finally, Section VIII-H evaluates OrchLoc’s overhead.

A. Experimental Setup

1) Datasets: Pistachio orchards, a major economic crop
producing approximately 1.1 billion pounds in 2021 [64],
are selected for our evaluation. Figure 14(a) illustrates our
pistachio orchard testbed, which is divided into multiple areas,
each containing M = 64 trees. Area A serves as the reference
area. In this orchard, trees are arranged with a spacing of 4.9
m between columns and 6.6 m between rows, with an average
height of 6.1 m and a canopy width of 2.3 m. Within each
area, LoRa nodes are positioned adjacent to the 64 trees, each
placed 2.0 m to the right of a tree. At each node location,
LoRa nodes transmit a packet to the gateway. As shown in
Figure 14(b), the nodes and gateway are installed at heights
of 0.45 m and 10.0 m, respectively. The system is configured
with a transmission power of 14 dBm, a spreading factor of
10, a bandwidth of 125 kHz, and a coding rate of 4/5.

Temporal Dimension Dataset: Thirteen CSI fingerprint
databases, referred to as r1 to r13, are collected in Area A
over thirteen rounds spanning four months, as listed in Table I.

Spatial Dimension Dataset: Ten CSI fingerprint databases
are collected from six areas (A, B,C,D, E, F) in one pis-
tachio orchard, as shown in Figure 14(a), and four ar-
eas (B2,C2, D2, E2) in another pistachio orchard.

Training and Testing Sets: To maintain balanced location
labels, each database partitions fingerprints for each location
into training and testing sets with a 7:3 ratio.

2) Baselines: We evaluate the performance of OrchlLoc
against various location classifiers.

* GPS: We use Google Maps in satellite mode with an IC
5941 GPS radio [65] to determine location IDs and compare
them with actual physical locations.

* RSSI: RSSI data from eight channels is used for location
identification via real-valued FC layers.

* AMP: Only the amplitude of CSI data is used for location
identification via real-valued FC layers.

* PHA: Similarly, only the phase of CSI data is used for
location identification via real-valued FC layers.

* KNN: The CSI vector is flattened into a one-dimensional
vector, and KNN is applied as the classifier.

3) Performance Criteria: The location classifier maps a
CSI vector to a specific location ID, making this a classifi-
cation task. Using the testing dataset, we evaluate OrchlLoc
by computing the average precision and recall, which are then
translated into localization error.

* Precision and recall are computed for each location:
Precision is the ratio of correctly identified instances to all
predictions for that location, while recall is the ratio of correct
identifications to the total instances at that location. These
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Fig. 14. Tllustration of the orchard testbed setup.

two metrics serve as indicators of the classifier’s accuracy and
reliability in identifying tree locations.

The importance of precision and recall depends on the
application. For instance, in disease detection among trees,
high recall is crucial to ensure all potentially diseased trees
are flagged for further inspection, prioritizing complete iden-
tification over false positives. Conversely, other applications
may require higher precision to minimize false identifications.

* Localization error is quantified as the Euclidean distance
between the actual and predicted location IDs, considering
the specific row and column spacing within the orchard. Each
tree is assigned a unique location ID, with a reference point
situated 2.0 m to the left of the tree’s trunk.

B. Temporal Dimension Performance

The performance of OrchLoc is influenced by various envi-
ronmental dynamics, categorized into three types: (i) short-
term weather changes (e.g., temperature fluctuations), (ii)
foliage density changes, (iii) long-term foliage shape changes.

1) Dynamics (i) and (ii): Weather variations across thirteen
rounds are detailed in Table I, while rapid pistachio growth in
July suggests changes in foliage density [66]. To adapt to these
dynamics from rounds 72 to r13, we randomly select 30% of
location fingerprints from each round’s database training set
for updates using the turbo-training scheme, thereby refreshing
the classifier. The updated classifier then identifies location IDs
for the CSI measurements in each round’s testing set.

Figure 15 illustrates that before round r7, our classifier
achieves an average precision of 96.3% and recall of 97.6%,
with a localization error of 0.4 m. This validates the ef-
fectiveness of turbo-training in managing dynamics i and ii,
eliminating the need for manual CSI fingerprint collection.

However, by round 78, approximately three months after
the initial data collection in round 71, Figure 15 shows a
significant decline in performance despite turbo-training. To
address this issue, the CGM model is recalibrated at round r8
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Fig. 15. Performance in Area A from data collection rounds r2 to r13,
comparing results without (w/o) and with (w/) the turbo-training scheme.

by retraining it from scratch with data from all locations in
that round. Turbo-training is then applied for rounds 79 to 13,
and Figure 16 confirms that OrchLoc maintains high accuracy
after this calibration. These results suggest that OrchLoc may
require periodic calibration, such as once per season.
OrchLoc is beneficial during periods of dense foliage, as
thick foliage can significantly hinder GPS signals. During
seasons with sparse foliage, such as late autumn or winter,
simpler GPS/INS systems may be sufficient for navigation due
to clear GPS signals [12], rendering OrchLoc unnecessary.
The random selection of 30% of location fingerprints in each
round is an intentional design choice that reflects real-world
scenarios, where sensor placements can vary due to factors
like terrain and canopy density. This approach prevents the
classifier’s performance from relying on specific static node
placements and validates its robustness across diverse spatial
subsets. Although the 30% subset changes in each round, the
consistently high performance observed in spatial dimension
experiments (Section VIII-C) shows that these gains are not
merely the result of accumulated spatial coverage. Instead,
they demonstrate the system’s ability to generalize within each
round, even when trained on a limited and randomly selected
subset of locations. These experimental settings underscore the
flexibility of OrchLoc in adapting to dynamic orchard condi-
tions and reinforce its robustness for real-world deployments.
2) Dynamic (iii) - Long-Term Foliage Shape Changes:
Foliage shape changes over the years due to trunk and branch
growth. To evaluate this impact, we collect data in another
pistachio orchard with slightly different traits than the first:
row and column spacing of 6.6 m and 4.8 m, and average tree
dimensions of 5.8 m in height and 2.1 m in width. We collect
fingerprint databases from four areas (B2, C2, D2, and E2) in
the second orchard. In each area, 30% of the locations’ training
sets are randomly selected for the turbo-training scheme, with
the CGM pre-trained on data from Area A in the first orchard.
The updated classifiers are then tested in these areas to evaluate
their adaptability to long-term foliage shape changes.
Figure 17 presents OrchLoc ’s performance in the second
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Fig. 16. Performance following calibration at data collection round 78.
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Fig. 17. Performance under long-term foliage shape changes (using the second
pistachio orchard to simulate foliage shape changes in the first orchard).

orchard, with recall values of 79.3%, 71.9%, 72.1%, and
63.1%, and median localization errors of 2.8, 3.5, 4.1, and
5.3 m across four new areas. Despite some performance
degradation due to orchard differences, the results remain
promising, achieving an average precision of 63.8% and recall
of 71.6% without manual data collection. This validates Or-
chLoc’s ability to reduce labor costs in training data collection
for new orchards, demonstrating its efficiency and adaptability.

C. Spatial Dimension Performance

The turbo-training scheme is applied in five new ar-
eas (B,C,D,E, and F) of the first orchard, with 30% of
each area’s training data randomly selected for turbo-training.
This results in well-trained location classifiers for each area,
which are then used for testing.

Figure 18 demonstrates OrchLoc’s effectiveness in new
areas of the first orchard. We achieve precision values of
95.9%, 93.3%, 93.9%, 89.7%, and 87.1%, along with median
localization errors of 0.5, 0.7, 0.8, 1.3, and 2.1 m in areas
B,C,D, E, and F, respectively. A notable trend is the per-
formance degradation with increasing distances from area A,
likely due to data distribution shifts caused by local variations.
The accuracy in these areas is lower than in Figure 15,
potentially due to both spatial and temporal diversity, as the
data is collected in new areas and at different times relative
to area A. To mitigate this, incorporating additional location
data for turbo-training may be beneficial.

Potential Benefit: Consider a 100-acre orchard divided into
36 areas, each containing a grid of 30 x 25 trees (locations).
Assuming that data collection at each location takes three
minutes, collecting CSI data for a single area requires approx-
imately 37.5 hours. Extrapolating this to the entire orchard,
the conventional process would demand a staggering 1,350
hours. OrchLoc introduces a significant time-saving advantage.
By collecting CSI data from only one representative area
and leveraging trained models for the remaining areas, we
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Fig. 18. Localization accuracy in the five areas of the first pistachio orchard.

exploit spatial similarity within the orchard. This reduces data
collection time from 1,350 hours to just 37.5 hours, achiev-
ing a 36-fold reduction. Moreover, maintaining the database
requires periodic site surveys. OrchLoc eliminates this need
by leveraging already deployed agricultural static sensor nodes
and media homogeneity to automatically update the fingerprint
database. Not only does this approach streamline the process,
but it also maintains the integrity and quality of localization.

D. Benchmark Study

We assess five baselines on the dataset from Area A at
round 1. The RSSI-based, amplitude-based, and phase-based
classifiers use three FC layers. Amplitude and phase data are
derived from CSI, while RSSI is computed using collected [
and @ samples. For the KNN-based classifier, the location
ID for a CSI vector in the test dataset is determined by
finding the k£ nearest CSI vectors in the training dataset via
Euclidean distance and assigning the most common ID among
the neighbors. After a grid search, we set k = 5.

Figure 19 shows that GPS has the lowest precision and
recall, at 18.8% and 9.4%, respectively, with a median lo-
calization error of 7.9 m. This is due to dense tree canopies
obstructing GPS signals. Instead of correctly pinpointing the
location ID, GPS often identifies neighboring rows or columns.

OrchLoc outperforms RSSI, AMP, and PHA, improving
precision by 56.6%, 20.3%, and 46.7%, and recall by 41.9%,
15.4%, and 34.3%, respectively. The median localization errors
using RSSI, amplitude, phase, and CSI are 4.6, 2.7, 4.7, and
0.5 m, highlighting CSI’s superiority in location identifica-
tion. While amplitude alone is limited, incorporating phase
information enriches location matching. Unlike simple FC
layers, our complex-valued classifier fully utilizes CSI data,
enhancing accuracy. KNN records precision and recall of
94.3% and 93.7%, compared to OrchLoc’s 96.3% and 97.6%.
OrchLoc’s complex-valued FC block effectively captures the
interaction between amplitude and phase in CSI, surpassing
simple flattening approaches.

Additionally, the benchmark study supports the argument
that classifier complexity is not the primary factor in localiza-
tion accuracy. As demonstrated in Figure 19, even the simple
KNN classifier achieves strong performance, with precision
and recall values close to those of OrchLoc. This result
indicates that the key determinant of localization accuracy is
the model’s ability to differentiate CSI data across locations
rather than the complexity of the classifier itself.

Since our approach is classifier-agnostic, a FC layer serves
as an effective backbone, balancing accuracy and compu-
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Fig. 19. Localization accuracy in area A with six different location classifier.
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Fig. 20. Comparison of robot navigation performance in an orchard: GPS vs.
OrchLoc enhanced with INS data.

tational efficiency while allowing for alternative classifiers
if needed. Convolutional neural network (CNN)-based mod-
els [67] could also be integrated within our framework, poten-
tially offering advantages in certain scenarios, depending on
the structure of the CSI data and computational trade-offs.

E. Case Study: Robot Navigation in Orchard

To evaluate OrchLoc for robot navigation in orchards, we
utilize the public dataset [12], described in Section III, to
simulate a robot’s path. The process begins by aligning the
robot’s starting point with a specific tree in the orchard, with
the initial speed set parallel to a tree row. The dataset follows
a time-series format, containing INS data and ground truth
coordinates for each timestamp. To integrate CSI data at each
moment, we identify the nearest tree to the corresponding
coordinate, retrieve all CSI measurements from that tree, and
randomly select one to associate with the timestamp. GPS data
is assigned in the same manner. The selected CSI vectors are
then input into OrchLoc to infer location coordinates.

We combine GPS/INS and OrchLoc/INS by applying the
state-of-the-art Neurl-KF [12]. Figure 20(a) visualizes the re-
constructed trajectories, where OrchLoc demonstrates superior
accuracy. As shown in Figure 20(b), OrchLoc yields lower
navigation errors compared to GPS, averaging 1.2 m vs. 3.1
m. These results highlight OrchLoc’s potential to enhance
navigation accuracy in GPS-challenged environments. The
improved GPS accuracy in Figure 20 compared to Figure 3
is due to the simulation method incorporating tree location
priors. Unlike the direct addition of Gaussian noise to real
coordinates, tree locations remain fixed, reducing uncertainty.

F. Ablation Study

This section evaluates the effectiveness of OrchLoc’s com-
ponents in constructing a database for a new area. By default,
the CGM is pre-trained in area A and fine-tuned using the
training data from 30% of the locations in area B.

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on July 22,2025 at 17:26:55 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3587206

IEEE TRANSACTIONS ON MOBILE COMPUTING

1.0 :...........I._.:.f-‘""———' hi
08 i " 68
i~ 51 o
w 0.6 { Q ©
Q = ° g
Q | T °
0.471 | === Turbo-training CGM 34 ° i 5
0.2 === W/o pre-training CGM 17 i
1 Turbo-training classifier
0.0 0 7 14 21 28 35 RA SE LR FE FF FU LA

Localization error (m) Methods

(a) CGM model
Fig. 21. Effectiveness of the proposed components in the CGM.

(b) CSI and location representer

1) Turbo-Training Scheme: We consider two alternatives to
the turbo-training: (i) training CGM from scratch and (ii) pre-
training CGM but fine-tuning only the location classifier.

Figure 21(a) illustrates that these two alternatives lead
to location errors of 4.3 m and 8.9 m, respectively. The
first alternative performs poorly because the CGM struggles
to learn CSl-location relationships without pre-training, as
different locations exhibit distinct spatial characteristics. The
second alternative is less effective due to the limited modeling
capacity of the location classifier [68], which consists solely
of multiple FC layers. Its simplistic architecture and lack of
physical location information hinder its ability to effectively
generalize CSI-location relationships to new orchard areas.

2) CSI and Location Representers: To evaluate the per-
formance of our CSI and location representers in area B,
we experiment with six variations of LoDM inputs. "RA”
utilizes the raw CSI vector xg and the location ID’s one-hot
vector. ”SE” omits the signal encoder, directly inputting the
raw CSI vector. "LR” employs only the location ID’s one-hot
vector, excluding the location representer. ”FE” provides the
FFZ vector to LoDM while omitting the FFZ encoder. ”FF”
bypasses FFZ modeling, feeding the one-hot vector to the FFZ
encoder before passing it to LoDM. Finally, "FU” incorporates
both the CSI and location representers.

The quality of the generated data is quantified using the
Fréchet Inception Distance (FID) [29], which measures the
similarity between real and generated CSI fingerprints. Lower
FID values indicate higher-quality generated CSI fingerprints.

Figure 21(b) illustrates that utilizing both the CSI and
location representers significantly enhances performance. The
average FID decreases from 49.7 to 10.9, accompanied by
notable improvements in precision (from 67.4% to 94.1%)
and recall (from 72.1% to 95.9%). Moreover, integrating FFZ
modeling with the FFZ encoder proves more effective than
employing either component separately. Using only the signal
encoder results in an FID of 19.9 and a precision of 86.5%.

3) Location-Aware Diffusion Model: In LoDM, the atten-
tion layer is used to integrate location information into the
denoise module. An alternative approach involves concatenat-
ing the location information with the intermediate vector of
the U-Net network in the noise predictor, referred to as "LA”
in Figure 21(b). Results indicate that employing the attention
layer reduces the average FID, demonstrating a more effective
integration of location information into LoDM. This enhances
the model’s ability to capture the CSI-location relationship,
thereby improving CSI generation across different locations.
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Fig. 22. Impact of the number of locations used in the turbo-training scheme.

4) Synthetic Fingerprint Quality Across Rounds and Areas:
In our previous ablation study, we confirm that our design
components effectively learn the relationship between CSI
fingerprints and locations. Given a location ID, OrchLoc gener-
ates high-quality corresponding CSI fingerprints. However, its
capability for temporal and spatial adaptation across different
rounds and areas requires further validation.

To this end, we analyze the impact of the turbo-training
scheme on localization accuracy across multiple data collec-
tion rounds and areas. Specifically, as shown in Figures 15-18,
we train the classifier using CGM-generated synthetic CSI data
and evaluate it on real-world collected data across different
locations and collection rounds. If the synthetic data does
not align with the real-world collected data, the turbo-training
scheme cannot improve accuracy [69]. Figures 15-18 indicate
that our turbo-training scheme significantly enhances localiza-
tion accuracy, demonstrating that CGM-generated fingerprints
generalize well across temporal and spatial variations. This
confirms that the generated synthetic data exhibits a distribu-
tion similar to real data, validating its high quality.

Temporal Adaptation: Figures 15 and 16 illustrate that
CGM-generated fingerprints adapt well across multiple rounds.
Without turbo-training, a classifier trained at round r1 suffers
performance degradation in later rounds due to environmental
changes. By incorporating CGM-synthesized data through
turbo-training, the classifier preserves high accuracy in subse-
quent rounds. However, after significant seasonal transitions,
as observed between r7 and r8, recalibration with real data
becomes necessary, highlighting the need for periodic updates
when substantial distribution shifts occur.

Spatial Adaptation: Figures 17 and 18 confirm the ability
of CGM-generated fingerprints to generalize across different
areas. In the first orchard, the classifier maintains high ac-
curacy across multiple areas (B, C, D, E, F') with our turbo-
training. However, in the second orchard, which has a slightly
different tree layout, performance declines, even when turbo-
training is applied with 30% of the locations’ training data.
This suggests that while CGM-synthesized fingerprints en-
hance generalization, significant structural variations across
regions still necessitate additional recalibration.

G. Parameter Study

Unless specified otherwise, the turbo-training involves pre-
training the CGM in area A and fine-tuning it with training
data from 30% of the locations in area B. The accuracy of
the trained classifier is evaluated on the testing set of area B.
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1) Ratios of Fine-Tuning Data: We explore the impact
of varying fine-tuning location ratios from 5% to 40%. As
illustrated in Figure 22, performance improves as the number
of locations used for fine-tuning the CGM increases. OrchLoc
achieves 94.1% precision, 95.9% recall, and an average lo-
calization error of 0.8 m in area B when the ratio exceeds
30%. However, ratios below 20% result in significantly lower
performance, with only 51.9% precision at a 10% ratio. Thus,
deploying sensor nodes at a minimum of 30% of the locations
in a new area is essential to maintaining high performance.

OrchLoc requires the deployment of LoRa sensor nodes at
30% of the trees in an area. This relatively dense deployment
aligns with current trends in precision agriculture, where fine-
grained measurements of orchards are becoming increasingly
essential for optimal farm management and sustainability [1],
[2]. In the future, the challenge will be to maintain high
accuracy while potentially reducing the number of required
deployment locations. Several promising research directions
include: (i) Incorporating information from other modalities,
such as satellite images, to provide additional contextual data
that could enhance the learning process; (ii) Utilizing active
learning strategies to intelligently select the most informative
locations; (iii) Investigating hybrid models that combine both
supervised and unsupervised techniques, which may improve
accuracy with fewer deployment locations.

In addition to the ratio of deployed nodes, the spatial
distribution of these nodes also affects performance. Our
experiments consider a scattered distribution of sensor nodes,
which ensures coverage across the entire orchard. A scattered
deployment aligns with principles of spatial sampling theory,
which emphasize the importance of maximizing spatial cov-
erage, minimizing sampling bias, and capturing local spatial
variability for accurate representation of the propagation envi-
ronment [70]. Such a deployment enables the CGM to learn
from a diverse set of signal propagation paths, reflecting in-
teractions with different media—air, foliage, and ground—and
enhancing the generalizability of the generated fingerprints
to areas without direct sensor coverage. In contrast, a con-
centrated distribution of sensors in a limited region risks
overfitting to local propagation characteristics and reducing
the system’s ability to generalize to the rest of the orchard.
Therefore, guided by spatial sampling theory, deploying sensor
nodes in a scattered manner is more effective in providing the
fine-tuning data needed for robust and accurate localization.

2) Training Epoch of Noise Predictor: To assess the impact
of training epochs on performance, we pre-train and fine-
tune the CGM with varying epochs, ranging from 50 to 300.
As shown in Figure 23, increasing the number of training
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epochs improves both precision and recall. This improvement
is attributed to the noise predictor becoming more effective at
accurately estimating noise in the noisy signal vector z;, as
evidenced by the decreasing validation loss in Figure 23.

3) Position of LoRa Node: Typically, the LoRa node is
placed 2.0 m to the right of each tree during CSI data
collection. To evaluate the impact of node position offset
on CSI data distribution, the node is placed at five different
locations around the predetermined spot for each tree, repeated
for six trees. Figure 24 presents the CSI data visualized via
t-SNE [44]. The data exhibit a clear clustering effect, where
data from the same tree cluster together, while those from
different trees remain distinct. This indicates that, despite
position offsets at each location, the data collected near a given
tree maintain a similar distribution.

4) Number of Sampling Layers in Noise Predictor: The
noise predictor incorporates multiple sampling layers within
its contracting and expansive paths. We vary the number of
these layers from 2 to 5 in our experiments. Figure 25 shows
that increasing the number of layers from 2 to 4 enhances
precision from 74.2% to 94.1%. However, further increasing
to 5 layers reduces precision to 70.5%. While fewer layers may
fail to adequately extract latent CSI-location relationships, an
excessive number of layers can significantly reduce the vector
length, potentially leading to information loss.

5) Length of Signal Vector: To evaluate the impact of signal
vector length on performance, we pre-train and fine-tune the
CGM using vector lengths of 26, 27, 28, and 2°. Figure 26
illustrates that recall improves from 89.7% at 2° to 95.9% at
27 but declines to 81.5% and 66.3% as the length increases
to 2% and 2°, respectively. A shorter vector length results in
a coarse representation of the CSI vector, whereas a longer
length significantly increases the model size, from 17.1 MB
at 27 to 178.4 MB at 2°. This larger model size requires
extensive training data, which is challenging with limited data
availability, ultimately leading to degraded performance.

H. Overhead of OrchLoc

Robot: For a single localization inference, the robot trans-
mits eight two-byte packets and receives the localization result
from the gateway, a process that takes 1.4 s at SF10 (the lowest
data rate permitted in the US). Given the robot’s velocity of
0.3 m/s [71], typical of agricultural robots, this corresponds to
a movement of 0.42 m within the 1.4 s interval. As shown in
Figure 24, such a minor positional shift has a negligible impact
on CSI data quality. For robots operating at higher speeds,
incorporating periodic 1.4 s pulses for localization helps
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mitigate potential accuracy degradation. In terms of power
consumption, at 0.4 W over 1.4 s, the energy consumption per
localization inference is 0.56 J. Thus, OrchLoc is a low-power,
sustainable solution well-suited for agricultural deployments.

Sensory LoRa Node: LoRa nodes deployed in orchards for
agricultural tasks transmit eight packets across eight channels.
Segmenting sensing data for transmission over individual
channels minimizes additional energy consumption. While this
increases the risk of packet collisions, it can be mitigated
through careful scheduling, leveraging the week-long high
accuracy of the location classifier, and employing MAC pro-
tocols or collision resolution techniques [39], [72], [73].

Gateway: The gateway is responsible for fine-tuning the
CGM, generating CSI data, and performing inference. We
evaluate memory requirements and execution time. As shown
in Table II, the location classifier has minimal memory us-
age (0.02 MB) and a running time of (31.4 ms).

Labor: OrchLoc requires only a one-time measurement
of orchard parameters for 3D modeling. This includes tree
parameters (height, trunk height, and canopy width), orchard
layout (row and column spacing), and the positions of sensors
and gateways, which are easily determined due to the uniform
deployment throughout the orchard.

IX. RELATED WORK

A. Agricultural Robot Navigation

GPS/INS integrates INS data with GPS data using a Kalman
filter-based algorithm for robot navigation [12], [74]. For
example, Neurl-KF [12] employs a neural network to estimate
a robot’s velocity and location from raw inertial data, refining
these estimates with GPS data through a Kalman filter to
enhance navigation accuracy. These algorithms rely heavily
on GPS precision to correct drift in INS sensors. However, in
orchard environments, GPS accuracy is significantly degraded
due to signal blockage from crop canopies, posing a major
challenge [12], [74]. Although RTK GPS improves localization
accuracy, its deployment requires substantial infrastructure,
including base stations throughout the orchard, making it
economically impractical for many agricultural operations. In
contrast, our system leverages the existing LoRa network
infrastructure in orchards to provide a reliable and cost-
effective positional reference for INS sensors.

B. Localization by LoRa Network

The limited bandwidth of LoRa, at only 125 kHz [75],
[76], poses challenges for directly applying conventional lo-
calization algorithms, which are typically designed for Wi-
Fi, Bluetooth, or cellular networks [77] due to their reliance
on higher bandwidths [78], [79]. For instance, cellular-based
localization often requires densely deployed base stations,
which is impractical in agricultural settings where cell tower
density is notably low, thus reducing accuracy. Moreover, data
transmission and service fees make such approaches cost-
prohibitive for agriculture.

Current research on localizing LoRa nodes employs tech-
niques such as Time Difference of Arrival (TDoA) [23], [80],
Angle of Arrival (AoA) [81], or path loss models [82]. For

TABLE 11
MEMORY OCCUPANCY (UNIT: MB) AND TIME CONSUMPTION (UNIT: MS).
CSI representer LoDM Classifier
Memory 0.15 17.1 0.02
Time 77.2+14.8 843.3+65.2 31.4+9.1

example, Seirios [81] achieves a median localization error of
4.4 m across a 6,000 m?2 area using AoA-based localization
with multiple dual-antenna gateways. However, these methods
typically require at least three gateways and depend on a direct
signal path between the node and gateway, conditions that
are often unavailable in orchard environments. In contrast, our
system introduces a fingerprinting-based localization approach
using a single gateway, overcoming the limitations of multi-
gateway setups and reliance on direct signal paths.

Existing LoRa fingerprinting-based localization approaches
typically use RSSI as a fingerprint [83], [84], [85], [86]. These
methods match RSSI measurements from multiple gateways
with a database to determine a LoRa node’s location. However,
they assume that a packet is received by multiple gateways,
which is infeasible in orchards. In contrast, OrchLoc enables
in-orchard fingerprinting-based localization by extracting CSI
fingerprints using a single dual-antenna gateway.

C. CSI-based Fingerprinting in Wi-Fi

CSlI-based fingerprinting is a key technique for localization
with Wi-Fi [25], [26], [27]. These methods typically rely
on either amplitude or phase independently, neglecting the
combined information between them. OrchLoc incorporates
a complex-valued classifier to effectively capture the latent
relationships between the amplitude and phase of CSI data.

D. Crowdsourcing in Wi-Fi

Crowdsourcing has been applied to collect fingerprints
for Wi-Fi-based indoor localization [87], [88]. For instance,
Zee [87] leverages smartphones’ inertial sensors to map fin-
gerprints onto indoor layouts during routine user movement.
EZ [88] integrates crowd-sourced Wi-Fi measurements with
wireless propagation physics, employing a log-distance path
loss model and a genetic algorithm to determine access point
locations and propagation characteristics, enabling localization
through trilateration. However, crowdsourcing is impractical in
orchards, as it would require numerous robots to navigate the
area and precisely track trajectories via INS sensors, both of
which pose significant challenges in this environment.

E. Generative Models for Wireless Signals

Recent studies have explored generative models for wireless
signal modeling [89], [90], [91]. For instance, NeRF? [89]
segments 3D spaces into voxels for signal strength estimation,
but this approach is impractical in large orchards due to the
massive number of voxels required. WiNeRT [90] computes
received signals based on environmental meshes, which are
unavailable in orchards. In contrast, this paper adapts diffusion
models to synthesize CSI data across different locations.
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F. Transfer Learning-Based Localization

Several studies have explored transfer learning for CSI-
based localization across multiple environments [55], [56],
[57]. For example, Foliadis et al. [55] introduce a multi-
environment meta-learning approach to adapt deep learning
models across environments, improving spatial adaptation but
not addressing temporal stability. Wang et al. [56] propose
DJMDAN, which aligns feature distributions to mitigate do-
main shifts. Li et al. [57] explore CNN-based transfer learning
for Wi-Fi localization, reusing feature extraction layers with
minimal retraining. Jiao et al. [58] propose a few-shot meta-
learning-based CSI fingerprinting method with task-weighted
loss. Although these transfer learning-based methods focus on
diverse environments, they do not address long-term localiza-
tion stability. Essentially, OrchLoc is not a transfer learning
model for different environments; instead, it operates within
similar tree layout areas in an orchard while maintaining
localization accuracy over time.

X. DISCUSSION AND FUTURE WORK
A. Why Diffusion Models

We choose diffusion models for their ability to itera-
tively refine noisy data into structured outputs, leveraging
an autoregressive process similar to large language mod-
els (LLMs). This iterative approach progressively captures
relationships between CSI fingerprints and location IDs. Ex-
isting diffusion model-based works have demonstrated their
high-fidelity data generation capabilities [29]. Compared to
alternative generative approaches such as Generative Ad-
versarial Networks (GANs) [92] and Variational Autoen-
coders (VAESs) [68], diffusion models offer several advantages.

* First, they provide stability and training efficiency by
avoiding the challenges of mode collapse and instability in-
herent in GANSs. Since diffusion models do not rely on an
adversarial setup, they follow a simpler denoising trajectory.

» Second, they offer superior expressiveness and data fi-
delity. Unlike VAEs, which often produce blurry outputs
due to a trade-off between reconstruction quality and latent
space regularization, diffusion models preserve fine-grained
structural details of the original data.

* Third, their autoregressive nature simplifies data genera-
tion by decomposing it into multiple steps, unlike GANs and
VAEs, which generate data in a single step.

* Finally, the denoising mechanism of diffusion models
enhances robustness to random noise, making them more
resilient to environmental variations than GANs and VAEs.

B. Connection with Transfer Learning-Based Localization

Existing transfer learning-based localization methods focus
on spatial adaptation across multiple environments [55], [56],
[57], [58]. OrchLoc differs in two key aspects.

¢ Unlike transfer learning-based methods that adapt models
across environments, OrchLoc operates within a single orchard
environment with a structured tree layout to maintain spatial
homogeneity. Essentially, OrchLoc is not designed to function
across environments. Future research could explore adapting
OrchLoc to complex environments using transfer learning.

» Second, existing transfer learning-based approaches do
not address long-term temporal variations in the fingerprint
database, known as the aging problem. In contrast, our work
integrates a generative diffusion model and a turbo-training
scheme to stabilize fingerprints over time.

C. Why Not Complex Gaussian Noise in LoDM

We choose real-valued Gaussian noise instead of complex
Gaussian noise in our LoDM framework to avoid fundamen-
tal challenges that could compromise model effectiveness.
Real-valued Gaussian noise ensures a well-structured forward
process, enabling direct reparameterization and stable noise
estimation, whereas complex Gaussian noise complicates the
reverse denoising process, potentially leading to instability.
Additionally, complex Gaussian noise requires modeling both
real and imaginary covariance terms, significantly increasing
computational overhead and breaking key assumptions neces-
sary for efficient sampling. Furthermore, our neural network
already captures essential relationships between amplitude and
phase in CSI data, eliminating the need for an explicit complex
Gaussian formulation. While complex Gaussian noise could
offer potential benefits, we plan to explore its theoretical and
practical implications in future work.

XI. CONCLUSION

We present OrchLoc, a fingerprinting-based in-orchard lo-
calization system that achieves tree-level accuracy using a
single LoRa gateway. OrchLoc leverages CSI-based finger-
prints and incorporates a complex-valued FC block as the
classifier for precise location estimation. To efficiently build
and maintain the CSI fingerprint database across the orchard,
we design a turbo-training scheme powered by the CGM, sig-
nificantly reducing labor costs. Extensive experiments validate
the effectiveness and robustness of OrchLoc.

This work does not raise any ethical concerns. Code is avail-
able at https://github.com/kangyang73/orchloc_mobisys24.
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