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Generative Diffusion Model-Assisted Efficient
Fingerprinting for In-Orchard Localization

Kang Yang, Yuning Chen, and Wan Du Member, IEEE

Abstract—Precise robot localization at the tree level is essential
for smart agriculture applications such as precision disease
management and targeted nutrient distribution. Existing methods
fail to achieve the required accuracy. We propose OrchLoc,
a fingerprinting-based localization solution that achieves tree-
level precision using a single Long Range (LoRa) gateway. Our
approach utilizes channel state information (CSI) across eight
channels as a localization fingerprint. To minimize labor-intensive
site surveys for fingerprint database construction and mainte-
nance, we develop a CSI generative model (CGM) that learns
the relationship between CSI vectors and their corresponding
locations. The CGM is fine-tuned using CSI data from static
agricultural LoRa sensor nodes, enabling continuous finger-
print database updates. Extensive experiments in two orchards
demonstrate that OrchLoc effectively achieves accurate tree-level
localization with minimal overhead, improving robot navigation.

Index Terms—In-Orchard Localization, LoRaWAN, Finger-
printing, Generative Diffusion Model

I. INTRODUCTION

Robots have become essential in precision agriculture for

tasks such as pruning, harvesting, and spraying [1], [2], [3],

[4]. These robots operate at the tree level, performing targeted

actions to optimize resource use. For instance, proactive health

assessments on individual trees enable timely interventions,

preventing disease spread [5]. In viticulture, precise nutrient

and pesticide delivery tailored to each vine reduces resource

consumption while enhancing crop quality [6].

While meter-level localization is readily achievable in ur-

ban environments [7], [8], achieving tree-level localization

in orchards remains challenging. Conventional approaches,

including wheel encoders [9], Simultaneous Localization and

Mapping (SLAM) [10], [11], and Global Positioning Sys-

tem/Inertial Navigation System (GPS/INS) [12], lack the preci-

sion to differentiate individual trees. Wheel encoders are prone

to slipping in muddy conditions [13], while camera-based

SLAM is affected by variable lighting, obstructions, high

power consumption, and uneven terrain [14]. Light Detection

and Ranging (LIDAR)-based SLAM provides high accuracy

but is prohibitively expensive (over $10,000) [15], [16], [17].

GPS/INS systems [12] offer a cost-effective and energy-

efficient solution by using GPS to correct inertial navigation

drift [12]. However, even advanced methods like Real-Time

Kinematic (RTK) GPS suffer from signal obstruction due

to tree canopies [12], [14]. Our experiments in a pistachio

orchard reveal an average GPS error of 7.9 m, and state-of-

the-art GPS/INS methods [12] result in a tracking error of 9.1
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m. Such errors make precise navigation infeasible, given that

the typical tree spacing is less than 4.9 m.

Long Range (LoRa) networks, known for their wide cov-

erage and low power consumption, have been deployed in

orchards for applications such as smart irrigation [18], [19]

and pest monitoring [20], [21]. This paper explores leveraging

existing LoRa infrastructure for in-orchard localization. A

robot’s position is determined based on the packets it transmits

to a LoRa gateway, and integrating LoRa-based localization

with inertial navigation enhances overall positioning accuracy.

Several algorithms have been proposed for LoRa local-

ization [22], [23], [24], but they are ineffective in orchards.

These methods rely on multiple gateways receiving the same

packet, whereas orchard deployments often use sparse gateway

placement to reduce costs, leaving many sensor nodes within

range of only a single gateway. Moreover, they assume a direct

propagation path between nodes and gateways. In orchards,

however, gateways are mounted on high poles for broader

coverage, while nodes are positioned under tree canopies for

environmental monitoring. As a result, a direct propagation

path between the transmitter and receiver is rare due to

obstructions from leaves and trunks, limiting the effectiveness

of existing LoRa-based localization approaches.

This paper presents OrchLoc, a LoRa-based localization

system for orchards that operates with a single gateway. We

introduce a novel LoRa signal fingerprint, the channel state

information (CSI), derived from the amplitude and phase

spectra of signals received across eight channels by a dual-

antenna gateway. Unlike Wi-Fi CSI fingerprinting methods,

which separately process amplitude [25] and phase [26], [27],

we design a location classifier with complex-valued Fully-

Connected (FC) layers to process CSI fingerprints holistically.

Experimental results demonstrate that our classifier improves

precision by 20.3% and 46.7% compared to amplitude-only

and phase-only approaches, respectively.

As a fingerprint-based localization system [28], OrchLoc

faces two key challenges: the labor-intensive fingerprint site

survey in large orchards and the aging of fingerprints. To ad-

dress these challenges, this paper introduces two observations

that enable efficient fingerprint database building and updating:

• (i) Media Homogeneity: Locations with sensor nodes de-

ployed for precision agriculture can periodically collect CSI

fingerprints to update their fingerprints over time. However,

updating fingerprints at locations without sensor nodes remains

a challenge. While CSI fingerprints vary across locations,

LoRa signals primarily propagate through three media: air,

foliage, and ground. Our experiments reveal that each medium

exhibits consistent intrinsic shadowing effects, which can be
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• (iii) For the location representer, the location ID is

converted into an FFZ vector y via FFZ modeling, which is

then processed by an FFZ encoder Γ into a link vector ζ.

Pairs of CSI fingerprints and their corresponding location

IDs are fed into the CGM for training. To generate CSI

fingerprints, the trained CGM takes a location ID and Gaussian

noise matching the size of the CSI fingerprint as input.

A. CSI Representer

Raw CSI fingerprint inevitably contains measurement noise

from environmental factors such as fluctuating atmospheric

conditions and transient disturbances. Directly using noisy CSI

data can mislead the localization model, causing it to interpret

transient variations as meaningful features. Additionally, low-

dimensional CSI representations often suffer from overfit-

ting [49], where the model becomes overly specialized to

specific data patterns, degrading its generalization capability to

unseen CSI samples. To address these challenges, we adopt an

autoencoder-based transformation to derive high-dimensional

CSI representations that enhance robustness against noise and

improve feature expressiveness.

Our autoencoder consists of an encoder Φ and a decoder Ψ,

both composed of three complex-valued FC layers. The en-

coder progressively expand in dimension, while the decoder

symmetrically contracts, ultimately reconstructing the raw CSI

vector x̃0. To ensure non-linearity in feature extraction, a

ReLU activation function follows each FC layer. This trans-

formation serves two purposes:

Mapping low-dimensional CSI into a structured higher-

dimensional space enables the encoder to filter out high-

frequency noise while preserving essential localization fea-

tures. The complex-valued FC layers jointly process amplitude

and phase information, capturing richer spatial dependencies

that raw CSI representations fail to encode explicitly. This

approach is similar to kernel methods in Support Vector

Machines (SVMs) [50], where low-dimensional data points

are mapped into a higher-dimensional space for improved sep-

arability. Likewise, our autoencoder generates structured high-

dimensional CSI features, enhancing localization accuracy.

To train the complex-valued autoencoder, we minimize the

reconstruction error using the L2 loss function:

LL2
(x0, x̃0) = ∥x0 − x̃0∥22 (6)

where x0 represents the original CSI vector, and x̃0 denotes

the reconstructed CSI vector from the decoder. The L2 loss

function computes the squared Euclidean distance between

these two vectors, ensuring that the reconstructed CSI closely

approximates the original input data.

B. Location Representer

The location representer incorporates FFZ modeling and an

FFZ encoder to learn the location representation.

1) FFZ Modeling: The CSI vector is labeled with a location

ID ranging from 1 to M , typically represented as a one-hot

vector of length M , with a single bit set to 1 for the specific ID.

However, one-hot encoding has limitations, such as reduced

training efficiency and the lack of physical location context

Fig. 11. Illustration of the First Frozen Zone (FFZ) modeling.

to guide the LoDM in learning CSI-location relationships.

To address this, FFZ modeling is introduced. It transforms

a location ID into a 7-element FFZ vector y that encapsulates

physical factors influencing signal transmission.

The FFZ (Figure 11) represents a 3D ellipsoid region where

most of the signal’s energy is concentrated, with focal points

aligned to the 3D coordinates of the node and gateway.

In orchards, the FFZ consists of three media—air, foliage,

and ground—each contributing distinct shadowing effects on

the signal. To characterize the signal path, we calculate the

proportions of these three media within the FFZ.

To achieve this, a 3D representation of the orchard is

constructed using a Cartesian coordinate system, where the

x- and y-axes align along and across orchard rows, and the z-

axis points upward from the gateway’s position on the ground.

Uniform tree spacing determines tree positions on the x- and

y-axes, while trees are modeled as cylinders (trunks) and

ellipsoids (crowns), requiring only measurements of height and

canopy width. Since trees exhibit consistent growth patterns

within an orchard, modeling based on a single representative

tree enables an efficient 3D representation

Using the 3D coordinates of the FFZ’s focal points and

its mathematical formulation [31], the FFZ is mapped onto

the established coordinate system. Sampling points within the

FFZ are analyzed to determine their interactions with air, trees,

or ground. The proportion of each medium is calculated by

comparing the number of sampling points interacting with

each medium to the total points within the FFZ.

Furthermore, both distance and direction between the node

and gateway influence the received signal. To account for

these factors, the normalized distance and 3D direction are

incorporated, resulting in a 7-dimensional FFZ vector y.

NOTE: Since localization is performed independently within

each gateway’s coverage region, transformations between dif-

ferent gateways’ coordinate systems are unnecessary. The

FFZ vector is computed solely within each gateway’s lo-

cal coordinate system. This design parallels the Log-Normal

Shadowing model, where the RSSI depends on the relative

distance between the node and the gateway rather than absolute

global positions. By maintaining independent local coordinate

systems, the model remains scalable and robust, simplifying

localization while ensuring accurate location estimation within

each gateway’s coverage area.

2) FFZ Encoder: The FFZ vector y captures factors in-

fluencing the CSI vector, providing the LoDM with physical

location information to learn the CSI-location relationship.
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Fig. 12. Architecture of the Location-Aware Diffusion Model (LoDM).

However, due to uniform orchard layouts, the same FFZ

vectors are generated for identical location IDs across different

areas, limiting the LoDM’s ability to adapt to new areas. To

overcome this, the FFZ encoder Γ transforms the FFZ vector

y into the link vector ζ. Comprising multiple real-valued FC

layers with ReLU activation, it is co-trained with the LoDM.

By refining the FFZ encoder during LoDM fine-tuning, the

model adapts to local geometrical variations in new areas.

C. Location-Aware Diffusion Model

We develop the LoDM to generate CSI fingerprints across

various locations, inspired by the DDPM [29].
1) Overview: Figure 12 illustrates the architecture of our

LoDM, which consists of two Markov chains: forward and

reverse. In the forward chain, unlike DDPM, which introduces

noise to raw data, we apply noise to signal vectors z0 (high-

order representations of raw CSI vectors x0), generating a

sequence of noisy signal vectors zt. This is achieved by

incrementally adding Gaussian noise to z0 at each step t.
In the reverse chain, the key task is to accurately remove

noise from the noisy signal vector via the denoise module.

Considering location effects on the signal, the module takes

both the noisy signal vector zt and the link vector ζ as inputs

to estimate noise in z̃t at each time step t. Attention layers

are incorporated to fuse the signal and link vectors, enhancing

the noise estimation process. Subtracting this estimated noise

from z̃t produces z̃t−1, which serves as input for the next

denoising step at t− 1. This iterative process continues from

T to 1, ultimately recovering the initial signal vector z̃0.
Generating a signal vector requires a link vector ζ and

a random vector zT sampled from a Gaussian distribution,

followed by ancestral sampling through the reverse chain [36].
2) Denoise Module: Figure 13 illustrates the denoise mod-

ule, which features a deep neural network-based noise pre-

dictor. It integrates a complex-valued U-Net, an embedding

layer, and attention layers to estimate noise in the noisy signal

vector z̃t, given the time step t and link vector ζ. The module

then subtracts the estimated noise from z̃t, generating noisy

signal vector z̃t−1 for the next time step t− 1.
Complex-Valued U-Net Backbone: The U-Net backbone,

shown in Figure 13, consists of contracting and expansive

paths. The contracting path (right trapezoid) compresses the
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Fig. 13. Architecture of the denoise module with noise predictor.

signal vector to extract key features and identify global trends.

Conversely, the expansive path (left trapezoid) reconstructs the

data, capturing fine details and preserving spatial correlations.

This dual architecture enables the model to process the com-

plex dimensions of the signal vector effectively.

In detail, the contracting path includes downsampling layers

with 1D convolutions (increasing channel count), ReLU activa-

tions, residual layers (dotted lines), and a complex-valued FC

layer for dimensionality reduction. The expansive path consists

of upsampling layers with 1D convolutions (decreasing chan-

nel count), ReLU activations, residual layers, and a complex-

valued FC layer for dimensional expansion.

Embedding Layer: The time step t is transformed from

an integer into a vector using Sinusoidal Position Embed-

dings [51]. This embedding vector is then added to both the

input and intermediate layers of the predictor.

Attention Layer: The noise predictor integrates the link

vector ζ via a cross-attention layer [51], [52], [53], enabling

the model to focus on location-relevant features. This improves

the model’s ability to generate accurate signal vectors for

each location. The link vector ζ is incorporated into both

downsampling and upsampling layers of the U-Net backbone

through cross-attention mechanisms:

Attention(Q,K, V ) = softmax

(

QKT

√
d

)

· V (7)

where Q = WQ · πi (zt), K = WK · ζ, and V = WV · ζ
are computed using learnable projection matrices WQ, WK ,

and WV . Here, πi represents an intermediate layer of the U-

Net backbone. The scaling factor
√
d ensures training stability,

where d is the hidden feature size.

3) Summary: Our system differentiates location fingerprints

through a structured combination of spatial encoding and

deep learning mechanisms. The location representer extracts

the link vector ζ, which encodes spatial dependencies across

different locations. This vector is integrated at every sampling

layer in the U-Net, ensuring spatial consistency throughout

the generative process. This approach parallels conditional

diffusion models, where conditioning information guides gen-

eration while preserving essential spatial details.

Attention mechanisms within the U-Net emphasize the most

distinctive spatial features in CSI data. Since the CSI vector

spans multiple channels and antennas, the attention layers

selectively highlight spatial variations critical for location dif-

ferentiation. By learning to focus on these fine-grained spatial

patterns, CGM ensures that the generated CSI fingerprints

accurately correspond to their respective locations.
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D. Calibration

Our continuous turbo-training scheme updates the finger-

printing dataset regularly, ensuring that the localization clas-

sifier is retrained to maintain high accuracy over time. Turbo-

training efficiently adapts the CGM in dynamic environments

with small, incremental changes, eliminating the need for full

retraining. However, if the classifier’s accuracy drops signif-

icantly, it indicates that turbo-training alone is insufficient

to refresh the fingerprinting database. In such cases, more

extensive calibration is required.

A larger portion of location data—or even the entire

dataset—may need to be recollected and used to retrain

the CGM. This is particularly crucial in environments with

significant changes, such as the seasonal transition from a full-

leaf orchard to a no-leaf setting, where physical conditions

alter drastically. Such shifts can render previously collected

fingerprints obsolete, making turbo-training alone inadequate

for maintaining classifier accuracy.

To address this, we combine calibration with turbo-training.

Calibration enables the CGM to adapt to major environmental

changes by retraining on a broader dataset, while turbo-

training continuously manages smaller updates in stable condi-

tions. This joint strategy ensures that the localization classifier

remains accurate and reliable, even in environments subject to

substantial and unpredictable variations.

E. Generalizability to Other Environments

While our system has potential applications in various

environments, such as wild forests, its generalizability depends

on two key factors: an accurate 3D environment model for

location representation and the presence of media and spatial

homogeneity. These factors are essential for constructing and

updating the fingerprint database. However, this reliance on

spatial homogeneity also limits OrchLoc ’s applicability to

environments with highly irregular layouts, such as forests,

urban areas, or orchards with significant terrain variations.

Its effectiveness may degrade in scenarios where trees are

unevenly distributed, as the lack of uniform spacing disrupts

the consistency of fingerprinting patterns.

Additionally, since our method does not incorporate cross-

domain adaptation techniques, its direct deployment in or-

chards with different crop species, canopy densities, or plant-

ing patterns may require extensive recalibration. Forests, in

particular, introduce greater complexity due to irregular tree

placement, species variations, and differences in age and

shape, posing significant challenges [54]. This variability

complicates fingerprinting and increases labor intensity for

dataset collection and model adaptation.

Future research could explore lightweight adaptation of

OrchLoc to more complex environments, such as through

transfer learning-based methods [55], [56], [57], [58]. Potential

approaches include integrating domain adaptation techniques

to recalibrate CSI fingerprints across different environments,

employing meta-learning strategies for efficient adaptation,

or incorporating additional environmental sensing modali-

ties (e.g., LiDAR or hyperspectral imaging) to enhance ro-

bustness in highly heterogeneous landscapes.

VII. IMPLEMENTATION

Hardware: LoRa nodes are custom-built using the SX1276

Radio [59] on Arduino Uno boards [60]. The bladeRF 2.0 Soft-

ware Defined Radio (SDR) [61], connected to a Raspberry Pi

4, is used to receive LoRa samples, and is equipped with two

antennas spaced 14.0 cm apart—less than half the wavelength

of the LoRa signal. Although dual-antenna configurations are

not standard in commercial LoRa gateways, our setup explores

their feasibility for in-orchard localization [62], [63]. Collected

samples are processed on a local computer with an Intel(R)

Core(TM) i9-11900KF @ 3.50 GHz CPU, while training

is accelerated by an NVIDIA GeForce RTX 3080 Ti GPU,

though GPUs are not required for inference.

Training of Location Classifier: The input layer requires

data in the format X = {xr, xi} ∈ R
l×2, where the first and

second columns represent the real and imaginary parts of the

inputs, respectively. Thus, we flatten the (2, 8) CSI vector into

a 16-element column vector (l = 16) and compute the real and

imaginary components for each element. The output layer size

corresponds to the number of locations M .

Training of CGM: The CSI representer shares the same

input format as the classifier. Its encoder generates the signal

vector z0 with dimensions (2, 128). The location representer,

using FFZ modeling, creates a 7-element FFZ vector y. The

FFZ encoder then outputs a link vector ζ of length 32. To

mitigate overfitting, a dropout layer with a probability of

0.1 is incorporated into both the CSI representer and the

FFZ encoder. The CSI representer is trained using the Adam

optimizer with a batch size of 256 and a learning rate of 0.001.

For the LoDM model, Gaussian noise with a mean of zero

and variance βt is introduced in the forward process. The

variance βt increases linearly from β1 = 10−4 to βT = 0.02,

where T represents the total number of time steps in the

diffusion process. We set T = 1000. The noise predictor is

trained to minimize the discrepancy between predicted and

actual noise. Training continues until a predefined convergence

criterion is met, either by reaching the maximum number of

epochs or achieving a loss below a specified threshold. In our

implementation, training runs for a maximum of 300 epochs

or until the loss falls below 0.01. The chosen hyperparameters

align with those recommended in [29].

For the noise predictor’s learning, which depends on signal

and link vector pairs, we employ the L2 loss:

LLoDM = EΦ(x0),y,t,ϵ∼N(0,1)

[

∥ϵ− ϵθ (zt, t,Γ (y))∥22
]

(8)

where zt is the noisy version of z0 = Φ(x0) at time step

t, with Γ(y) producing the link vector ζ. The time step t

is sampled uniformly from {1, . . . , T}, ϵ represents the true

noise added to zt, and ϵθ(zt, t,Γ(y)) is the predicted noise.

The noise predictor ϵθ and the FFZ encoder Γ are jointly

optimized through this loss function. This co-optimization

ensures that both components are trained simultaneously,

enabling the system to predict noise while effectively encoding

the environmental characteristics of the FFZ. By aligning their

training, the model improves its ability to handle noisy data

and capture unique signal propagation effects within the FFZ.
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mitigate potential accuracy degradation. In terms of power

consumption, at 0.4 W over 1.4 s, the energy consumption per

localization inference is 0.56 J. Thus, OrchLoc is a low-power,

sustainable solution well-suited for agricultural deployments.

Sensory LoRa Node: LoRa nodes deployed in orchards for

agricultural tasks transmit eight packets across eight channels.

Segmenting sensing data for transmission over individual

channels minimizes additional energy consumption. While this

increases the risk of packet collisions, it can be mitigated

through careful scheduling, leveraging the week-long high

accuracy of the location classifier, and employing MAC pro-

tocols or collision resolution techniques [39], [72], [73].

Gateway: The gateway is responsible for fine-tuning the

CGM, generating CSI data, and performing inference. We

evaluate memory requirements and execution time. As shown

in Table II, the location classifier has minimal memory us-

age (0.02 MB) and a running time of (31.4 ms).

Labor: OrchLoc requires only a one-time measurement

of orchard parameters for 3D modeling. This includes tree

parameters (height, trunk height, and canopy width), orchard

layout (row and column spacing), and the positions of sensors

and gateways, which are easily determined due to the uniform

deployment throughout the orchard.

IX. RELATED WORK

A. Agricultural Robot Navigation

GPS/INS integrates INS data with GPS data using a Kalman

filter-based algorithm for robot navigation [12], [74]. For

example, Neurl-KF [12] employs a neural network to estimate

a robot’s velocity and location from raw inertial data, refining

these estimates with GPS data through a Kalman filter to

enhance navigation accuracy. These algorithms rely heavily

on GPS precision to correct drift in INS sensors. However, in

orchard environments, GPS accuracy is significantly degraded

due to signal blockage from crop canopies, posing a major

challenge [12], [74]. Although RTK GPS improves localization

accuracy, its deployment requires substantial infrastructure,

including base stations throughout the orchard, making it

economically impractical for many agricultural operations. In

contrast, our system leverages the existing LoRa network

infrastructure in orchards to provide a reliable and cost-

effective positional reference for INS sensors.

B. Localization by LoRa Network

The limited bandwidth of LoRa, at only 125 kHz [75],

[76], poses challenges for directly applying conventional lo-

calization algorithms, which are typically designed for Wi-

Fi, Bluetooth, or cellular networks [77] due to their reliance

on higher bandwidths [78], [79]. For instance, cellular-based

localization often requires densely deployed base stations,

which is impractical in agricultural settings where cell tower

density is notably low, thus reducing accuracy. Moreover, data

transmission and service fees make such approaches cost-

prohibitive for agriculture.

Current research on localizing LoRa nodes employs tech-

niques such as Time Difference of Arrival (TDoA) [23], [80],

Angle of Arrival (AoA) [81], or path loss models [82]. For

TABLE II
MEMORY OCCUPANCY (UNIT: MB) AND TIME CONSUMPTION (UNIT: MS).

CSI representer LoDM Classifier

Memory 0.15 17.1 0.02

Time 77.2± 14.8 843.3± 65.2 31.4± 9.1

example, Seirios [81] achieves a median localization error of

4.4 m across a 6,000 m2 area using AoA-based localization

with multiple dual-antenna gateways. However, these methods

typically require at least three gateways and depend on a direct

signal path between the node and gateway, conditions that

are often unavailable in orchard environments. In contrast, our

system introduces a fingerprinting-based localization approach

using a single gateway, overcoming the limitations of multi-

gateway setups and reliance on direct signal paths.

Existing LoRa fingerprinting-based localization approaches

typically use RSSI as a fingerprint [83], [84], [85], [86]. These

methods match RSSI measurements from multiple gateways

with a database to determine a LoRa node’s location. However,

they assume that a packet is received by multiple gateways,

which is infeasible in orchards. In contrast, OrchLoc enables

in-orchard fingerprinting-based localization by extracting CSI

fingerprints using a single dual-antenna gateway.

C. CSI-based Fingerprinting in Wi-Fi

CSI-based fingerprinting is a key technique for localization

with Wi-Fi [25], [26], [27]. These methods typically rely

on either amplitude or phase independently, neglecting the

combined information between them. OrchLoc incorporates

a complex-valued classifier to effectively capture the latent

relationships between the amplitude and phase of CSI data.

D. Crowdsourcing in Wi-Fi

Crowdsourcing has been applied to collect fingerprints

for Wi-Fi-based indoor localization [87], [88]. For instance,

Zee [87] leverages smartphones’ inertial sensors to map fin-

gerprints onto indoor layouts during routine user movement.

EZ [88] integrates crowd-sourced Wi-Fi measurements with

wireless propagation physics, employing a log-distance path

loss model and a genetic algorithm to determine access point

locations and propagation characteristics, enabling localization

through trilateration. However, crowdsourcing is impractical in

orchards, as it would require numerous robots to navigate the

area and precisely track trajectories via INS sensors, both of

which pose significant challenges in this environment.

E. Generative Models for Wireless Signals

Recent studies have explored generative models for wireless

signal modeling [89], [90], [91]. For instance, NeRF2 [89]

segments 3D spaces into voxels for signal strength estimation,

but this approach is impractical in large orchards due to the

massive number of voxels required. WiNeRT [90] computes

received signals based on environmental meshes, which are

unavailable in orchards. In contrast, this paper adapts diffusion

models to synthesize CSI data across different locations.
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F. Transfer Learning-Based Localization

Several studies have explored transfer learning for CSI-

based localization across multiple environments [55], [56],

[57]. For example, Foliadis et al. [55] introduce a multi-

environment meta-learning approach to adapt deep learning

models across environments, improving spatial adaptation but

not addressing temporal stability. Wang et al. [56] propose

DJMDAN, which aligns feature distributions to mitigate do-

main shifts. Li et al. [57] explore CNN-based transfer learning

for Wi-Fi localization, reusing feature extraction layers with

minimal retraining. Jiao et al. [58] propose a few-shot meta-

learning-based CSI fingerprinting method with task-weighted

loss. Although these transfer learning-based methods focus on

diverse environments, they do not address long-term localiza-

tion stability. Essentially, OrchLoc is not a transfer learning

model for different environments; instead, it operates within

similar tree layout areas in an orchard while maintaining

localization accuracy over time.

X. DISCUSSION AND FUTURE WORK

A. Why Diffusion Models

We choose diffusion models for their ability to itera-

tively refine noisy data into structured outputs, leveraging

an autoregressive process similar to large language mod-

els (LLMs). This iterative approach progressively captures

relationships between CSI fingerprints and location IDs. Ex-

isting diffusion model-based works have demonstrated their

high-fidelity data generation capabilities [29]. Compared to

alternative generative approaches such as Generative Ad-

versarial Networks (GANs) [92] and Variational Autoen-

coders (VAEs) [68], diffusion models offer several advantages.

• First, they provide stability and training efficiency by

avoiding the challenges of mode collapse and instability in-

herent in GANs. Since diffusion models do not rely on an

adversarial setup, they follow a simpler denoising trajectory.

• Second, they offer superior expressiveness and data fi-

delity. Unlike VAEs, which often produce blurry outputs

due to a trade-off between reconstruction quality and latent

space regularization, diffusion models preserve fine-grained

structural details of the original data.

• Third, their autoregressive nature simplifies data genera-

tion by decomposing it into multiple steps, unlike GANs and

VAEs, which generate data in a single step.

• Finally, the denoising mechanism of diffusion models

enhances robustness to random noise, making them more

resilient to environmental variations than GANs and VAEs.

B. Connection with Transfer Learning-Based Localization

Existing transfer learning-based localization methods focus

on spatial adaptation across multiple environments [55], [56],

[57], [58]. OrchLoc differs in two key aspects.

• Unlike transfer learning-based methods that adapt models

across environments, OrchLoc operates within a single orchard

environment with a structured tree layout to maintain spatial

homogeneity. Essentially, OrchLoc is not designed to function

across environments. Future research could explore adapting

OrchLoc to complex environments using transfer learning.

• Second, existing transfer learning-based approaches do

not address long-term temporal variations in the fingerprint

database, known as the aging problem. In contrast, our work

integrates a generative diffusion model and a turbo-training

scheme to stabilize fingerprints over time.

C. Why Not Complex Gaussian Noise in LoDM

We choose real-valued Gaussian noise instead of complex

Gaussian noise in our LoDM framework to avoid fundamen-

tal challenges that could compromise model effectiveness.

Real-valued Gaussian noise ensures a well-structured forward

process, enabling direct reparameterization and stable noise

estimation, whereas complex Gaussian noise complicates the

reverse denoising process, potentially leading to instability.

Additionally, complex Gaussian noise requires modeling both

real and imaginary covariance terms, significantly increasing

computational overhead and breaking key assumptions neces-

sary for efficient sampling. Furthermore, our neural network

already captures essential relationships between amplitude and

phase in CSI data, eliminating the need for an explicit complex

Gaussian formulation. While complex Gaussian noise could

offer potential benefits, we plan to explore its theoretical and

practical implications in future work.

XI. CONCLUSION

We present OrchLoc, a fingerprinting-based in-orchard lo-

calization system that achieves tree-level accuracy using a

single LoRa gateway. OrchLoc leverages CSI-based finger-

prints and incorporates a complex-valued FC block as the

classifier for precise location estimation. To efficiently build

and maintain the CSI fingerprint database across the orchard,

we design a turbo-training scheme powered by the CGM, sig-

nificantly reducing labor costs. Extensive experiments validate

the effectiveness and robustness of OrchLoc.

This work does not raise any ethical concerns. Code is avail-

able at https://github.com/kangyang73/orchloc mobisys24.
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[74] N. Chebrolu, P. Lottes, T. Läbe, and C. Stachniss, “Robot localization
based on aerial images for precision agriculture tasks in crop fields,” in
IEEE ICRA, 2019.

[75] N. Hou, X. Xia, Y. Wang, and Y. Zheng, “One shot for all: Quick and
accurate data aggregation for LPWANs,” IEEE/ACM Transactions on

Networking, 2024.

[76] Y. Yang, Y. Chen, K. Yang, S. Yang, and W. Du, “Demo Abstract:
Comprehensive Wireless Soil Component Sensing via VNIR and LoRa,”
in Proceedings of the 23rd ACM Conference on Embedded Networked

Sensor Systems, 2025, pp. 722–723.

[77] Y. Zhang, A. Y. Ding, J. Ott, M. Yuan, J. Zeng, K. Zhang, and W. Rao,
“Transfer Learning-Based Outdoor Position Recovery With Cellular
Data,” IEEE Transactions on Mobile Computing, vol. 20, no. 5, pp.
2094–2110, 2020.

[78] J. Xiong, K. Sundaresan, and K. Jamieson, “Tonetrack: Leveraging
frequency-agile radios for time-based indoor wireless localization,” in
ACM MobiCom, 2015.

[79] A. Eid, J. Zhu, L. Xu, J. G. Hester, and M. M. Tentzeris, “Holography-
based target localization and health monitoring technique using UHF
tags array,” IEEE Internet of Things Journal, vol. 8, no. 19, pp. 14 719–
14 730, 2021.

[80] Semtech, “Locating End Devices with Semtech’s LoRa Cloud Geolo-
cation Service,” https://lora-developers.semtech.com/documentation/
tech-papers-and-guides/locating-end-devices-with-lora-cloud/, 2021,
[Online].

[81] J. Liu, J. Gao, S. Jha, and W. Hu, “Seirios: leveraging multiple channels
for LoRaWAN indoor and outdoor localization,” in ACM MobiCom,
2021.

[82] Y. Lin, W. Dong, Y. Gao, and T. Gu, “Sateloc: A virtual fingerprinting
approach to outdoor LoRa localization using satellite images,” ACM

Transactions on Sensor Networks, vol. 17, no. 4, pp. 1–28, 2021.

[83] J. Purohit, X. Wang, S. Mao, X. Sun, and C. Yang, “Fingerprinting-
based indoor and outdoor localization with LoRa and deep learning,” in
IEEE GLOBECOM, 2020.

[84] R. Tian, H. Ye, and L. Sheng, “Indoor Localization Based on the LoRa
Technology,” in MLICOM, 2021.

[85] H. Zhu, K.-F. Tsang, Y. Liu, Y. Wei, H. Wang, C. K. Wu, and H. R. Chi,
“Extreme RSS based indoor localization for LoRaWAN with boundary
autocorrelation,” IEEE Transactions on Industrial Informatics, vol. 17,
no. 7, pp. 4458–4468, 2020.

[86] M. Aernouts, R. Berkvens, K. Van Vlaenderen, and M. Weyn, “Sigfox
and LoRaWAN datasets for fingerprint localization in large urban and
rural areas,” Data, vol. 3, no. 2, p. 13, 2018.

[87] A. Rai, K. K. Chintalapudi, V. N. Padmanabhan, and R. Sen, “Zee:
Zero-effort crowdsourcing for indoor localization,” in ACM MobiCom,
2012.

[88] K. Chintalapudi, A. Padmanabha Iyer, and V. N. Padmanabhan, “Indoor
localization without the pain,” in ACM MobiCom, 2010.

[89] X. Zhao, Z. An, Q. Pan, and L. Yang, “NeRF2: Neural Radio-Frequency
Radiance Fields,” in ACM MobiCom, 2023.

[90] T. Orekondy, P. Kumar, S. Kadambi, H. Ye, J. Soriaga, and A. Behboodi,
“WiNeRT: Towards Neural Ray Tracing for Wireless Channel Modelling
and Differentiable Simulations,” in ICLR, 2023.

[91] G. Chi, Z. Yang, C. Wu, J. Xu, Y. Gao, Y. Liu, and T. X. Han, “RF-
Diffusion: Radio Signal Generation via Time-Frequency Diffusion,” in
Proceedings of the 30th Annual International Conference on Mobile

Computing and Networking, 2024, pp. 77–92.
[92] D. Saxena and J. Cao, “Generative adversarial networks (GANs) chal-

lenges, solutions, and future directions,” ACM Computing Surveys,
vol. 54, no. 3, pp. 1–42, 2021.

Kang Yang received his B.E. degree in automation
engineering from the School of Electrical and Con-
trol Engineering, Xi’an University of Science and
Technology, Xi’an, China, in 2016, and the M.E.
degree in control engineering from School of Elec-
tronic and Information, Xi’an Jiaotong University,
Xi’an, China, in 2019. He is currently pursuing a
Ph.D. degree at the University of California, Merced.
His research interests include mobile computing and
wireless networking systems.

Yuning Chen received his B.E. degree in software
engineering from the School of Software, Tsinghua
University, Beijing, China, in 2021. He is currently
pursuing a Ph.D. degree at the University of Cali-
fornia, Merced. His research interests include net-
worked systems and wireless sensor networks.

Wan Du is an Assistant Professor at the University
of California, Merced. He was a Research Fellow at
Nanyang Technological University, Singapore 2012-
2017. He received the B.E. and M.S. degrees in Elec-
trical Engineering from Beihang University, China,
in 2005 and 2008, respectively, and a Ph.D. degree
in Electronics from the University of Lyon (Ecole
Centrale de Lyon), France, in 2011. His research
interests include Internet of Things, distributed net-
working systems, and mobile computing.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2025.3587206

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif Merced. Downloaded on July 22,2025 at 17:26:55 UTC from IEEE Xplore.  Restrictions apply. 


