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In their seminal work, Azadkia and Chatterjee (Ann. Statist. 49 (2021)
3070-3102) initiated graph-based methods for measuring variable depen-
dence strength. By appealing to nearest neighbor graphs based on the Eu-
clidean metric, they gave an elegant solution to a problem of Rényi (Acta
Math. Acad. Sci. Hung. 10 (1959) 441-451). This idea was later developed
in Deb, Ghosal and Sen (2020) (https://arxiv.org/abs/2010.01768) and the au-
thors there proved that, quite interestingly, Azadkia and Chatterjee’s correla-
tion coefficient can automatically adapt to the manifold structure of the data.
This paper furthers their study in terms of calculating the statistic’s limiting
variance under independence—showing that it only depends on the manifold
dimension—and extending this distribution-free property to a class of metrics
beyond the Euclidean.

1. Introduction. Consider X € R? and Y € R to be two random variables defined over
the same probability space with fixed and continuous joint distribution function Fy y and
marginal distributions Fy and Fy, respectively. Let (X1, Y1), ..., (X,, Y,) be n indepen-
dent copies of (X, Y), R; be the rank of ¥; among {Y1,...,Y,} and N (i) index the nearest
neighbor (NN) of X; among {X1, ..., X,}, measured using the Euclidean metric. Built on
an earlier work of Chatterjee (2021), Azadkia and Chatterjee (2021) introduced the following
graph-based correlation coefficient:

o 2n + 1
> min{R;, Ry} — T
i=1 n—=

=5 (X, YD) =

n2—1

This correlation coefficient was shown in Azadkia and Chatterjee ((2021), Theorem 2.2), to
converge strongly to a population dependence measure that was first introduced in Dette,
Siburg and Stoimenov (2013),

Var{E[1(Y >1)|X]}dFy (¢)
§=8(X.Y):= / -

[ Var{L(Y > 1)}dFy(t)

Dette, Siburg and Stoimenov (2013)’s dependence measure satisfies some of the most desir-
able properties discussed in Rényi (1959) including, in particular, the following three:

(1) £ <€[0,11;
(2) £ =0if and only if X is independent of Y;
(3) £ =1if and only if Y is a measurable function of X almost surely.

Azadkia and Chatterjee thus outlined an elegant approach to measuring the dependence
strength between X and Y, resolving many long-standing issues that surround Rényi’s criteria
as were recently discussed by Professor Peter Bickel (Bickel (2022)).
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The authors of this paper are interested in &,’s adaptivity to the manifold structure of
the data, a problem that has received much interest in the NN literature (Kpotufe (2011),
Kpotufe and Garg (2013), Levina and Bickel (2004)). To this end, our focus is on the limiting
null distribution of &,,, that is, its limiting distribution under independence between X and Y.
Such a result, if derived, would immediately give rise to a statistical test of the following null
hypothesis:

Hp: X (supported on a smooth manifold) is independent of Y.
Below is the main result of this paper.
THEOREM 1.1 (Central limit theorem of &, for manifold data). LetY € R be independent

of X e R? and let F x.y be fixed and continuous. Further assume that the following two
conditions hold:

(i) X € M, where M is an m-dimensional C*° manifold in RY withm < d,;
(ii) the law of X is absolutely continuous with respect to H™ L M, the restricted m-
dimensional Hausdorff measure in R? on M.

We then have, as n — 00,

2 2 4 e
/né, converges to N(O, 3 + gqm + §0m> in distribution,

where for any integer m > 1,
m+1 1\]! Y-l —nb-lds
qm = {2—13/4< 5 5)} , I (a,b):= o

Om = //Fm;zexp[—x{B(wl, lwil) U B(wa, [wa]))}]d(wy, w)),

Jo et —nb=1dr’

Tz :={(wy, wa) € (R™)* : max(|w ][, [|wall) < [[wi — wall},

B(w1, r) represents the ball of radius r and center w1, || - || is the Euclidean norm, and A(-)
is the Lebesgue measure.

REMARK 1.1. Notably speaking, the authors of Azadkia and Chatterjee (2021) intro-
duced two statistics: one aimed at measuring conditional correlation, and the other at mea-
suring marginal correlation. This was indicated in Azadkia and Chatterjee ((2021), before
Theorem 2.2). In this paper, we are specifically concerned with the latter statistic.

REMARK 1.2. In Theorem 1.1, we assume a constant global dimension of M. When the
data structure is more complex, the dimension may differ between different (connected or
not) components of M. In such cases, the value of £,’s asymptotic variance can be derived
analogously as a mixture distribution of each part corresponding to one component of M.

The essence of Theorem 1.1 is the following result, which calculates the limiting null
variance of &,.

THEOREM 1.2. Suppose that the conditions in Theorem 1.1 hold. We then have, as n
goes to 0,
2 4

2
Var(«/né&,) converges to 3 + gqm + §0m‘



5174 F. HAN AND Z. HUANG

TABLE 1
The first 10 values of q;n and oy

m 1 2 3 4 5 6 7 8 9 10
Am 0.67 0.62 0.59 0.57 0.56 0.55 0.54 0.53 0.53 0.52
Om 0.49 0.63 0.71 0.76 0.79 0.84 0.86 0.90 0.98 1.00

As we will explain later in Section 1.2, the terms ¢, and o0, count the averaged numbers
of nearest neighbor pairs and triples, respectively. The first ten g, and o,, were shown in
Table 1 and some basic properties are listed below.

LEMMA 1.1. The following hold true:

(@) qm € (%, %] is strictly decreasing as m increases;
(b) sup,, 0,, <2 and limsup,, 0, < 1.

1.1. Literature review. Theorem 1.1 builds a bridge between two statistical fields, the
study of graph-based correlation coefficients and the study of nearest neighbor methods and
their adaptivity to manifold data.

On one hand, since the pioneering work of Chatterjee (2021) and Azadkia and Chatterjee
(2021), the study of graph-based correlation coefficients has quickly attracted attention; a
literature is being built up rapidly and includes, among many others, Cao and Bickel (2020),
Shi, Drton and Han (2022), Gamboa et al. (2022), Deb, Ghosal and Sen (2020), Huang,
Deb and Sen (2022), Auddy, Deb and Nandy (2024), Shi, Drton and Han (2024), Lin and
Han (2023), Fuchs (2024), Azadkia, Taeb and Biihlmann (2021), Griessenberger, Junker and
Trutschnig (2022), Strothmann, Dette and Siburg (2024), Lin and Han (2022), Zhang (2023),
Bickel (2022) and Chatterjee and Vidyasagar (2022).

In the following we list three existing results that are most relevant to Theorem 1.1. Read-
ers of more interest are referred to Han (2021) and Lin and Han ((2022), Section 1.1) for a
slightly more complete review.

(1) Deb, Ghosal and Sen (2020) studied a general class of graph-based correlation coef-
ficients, to which &, belongs. Their Corollary 5.1 examined the convergence rate for &, to &,
illustrating an interesting interplay between the intrinsic dimension of X and the smoothness
of some conditional expectation functions relating ¥ to X. They revealed, for the first time,
the adaptation of graph-based correlation coefficients to the manifold structure of X.

(2) Built on the work of Deb, Ghosal and Sen (2020), Shi, Drton and Han ((2024), Theo-
rem 3.1(ii)) established a central limit theorem (CLT) for &, under (a) independence between
Y and X; (b) absolute continuity (with respect to the Lebesgue measure) of Fy. Under these
conditions, they showed

2 2 4 e
J/né&, converges to N (O, 3 + qu + §0d> in distribution.

(3) In a more recent preprint, Lin and Han ((2022), Theorem 1.1) established a CLT
for &, while removing both independence and absolute continuity assumptions required in
Shi, Drton and Han (2024). In particular, they showed that as long as (a) Fx y is fixed and
continuous and (b) Y is not almost surely a measurable function of X, it holds true that

(&, — E&,)/+/ Var(&,) converges to N (0, 1) in distribution.

Theorem 1.1 can thus be viewed as a descendent of the above three results:
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(1) compared to Deb, Ghosal and Sen (2020), it established a weak convergence instead
of a point estimation type result;

(2) compared to Shi, Drton and Han (2024), it removed the absolute continuity assump-
tion required therein;

(3) compared to Lin and Han ((2022), Theorem 1.1), Theorem 1.1 calculated the explicit
value of the asymptotic variance.

On the other hand, in practice many data are believed to be structured, that is, they are
embedded in a space that is of a much higher dimension than necessary (Amelunxen et al.
(2014), Levina and Bickel (2004)). Local methods, especially the NN-based ones, are long
believed to be suitable for analyzing such data, capable of automatically adapting to the
data structure (Clarkson (2006), Kpotufe (2011), Kpotufe (2017), Kpotufe and Garg (2013)).
We believe Theorem 1.1 also bears potential to contribute to this line of the research. In
particular:

(1) As we shall show in Section 1.2, an essence of Theorem 1.1 is to calculate the aver-
aged numbers of nearest neighbor pairs and triples; they are thus monitoring the stochastic
structure of an NN graph (NNG) when the data are distributed over a manifold.

(2) Theorem 1.1 is also, to our knowledge, the first weak convergence type results for
tracking the statistical behavior of a NN-based functional over a manifold-supported proba-
bility space.

From a technical standpoint, we utilized Lin and Han ((2022), Theorem 1.1) in our proof
to demonstrate the asymptotic normality of &,. However, in our perspective, this step of es-
tablishing a central limit theorem is not the most crucial aspect of Theorem 1.1. The primary
focus is on the fact that the null variance limit of §, can adapt automatically to the manifold
dimension of X. Proving this assertion required several novel calculations, which are pre-
sented in Lemmas 1.4 and 1.5 ahead. These lemmas represent genuinely new contributions.

1.2. Proof sketch. We first introduce some auxiliary results on the NNGs and the man-
ifold. Recall that [X;]”_, comprise n independent copies of a random vector X € R from
an unknown distribution function Fyx. Let G, be the associated directed NNG with vertex set
{1,...,n} and edge set £(G,); here an edge {i — j} € £(G,) means X ; is the NN of X;.

We are interested in manifold data; more precisely, we are interested in such random vector
X that is supported on M, a smooth submanifold of R? with manifold dimension m < d. The
following concepts are from Lee (2013).

DEFINITION 1.1. Let M be an m-dimensional smooth manifold. A coordinate chart,
abbreviated as a chart, on M is a pair (U, 1), where U is an open setof M and ¢ : U — V
is a homeomorphism from U to an open subset V = ¢ (U) C R™.

DEFINITION 1.2. Given a smooth manifold M and a chart (U, ¢) of M, U is called a
coordinate neighborhood of each point w € U.

Concerning any point x € M, one can find a chart of M with coordinate neighborhood
U (= Uy) and corresponding homeomorphism (= 1//,5).l With this notion, we give an as-
sumption on the distribution of X that will be shown to be an alternative to Theorem 1.1(ii).
In the following, the law of X is denoted by p and the restriction of p to a set U is denoted

by uy.

IThere are, of course, many such neighborhoods and homeomorphisms circling x; in the sequel we simply pick
one of them.
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ASSUMPTION 1.1 (Distribution assumption). The positive measure p satisfies the fol-
lowing condition: for any point x € M and any chart (U, ) such that U is a coordinate
neighborhood of x and ¢ : U — V C R™, the restricted pushforward measure i, uy is ab-
solutely continuous with respect to the Lebesgue measure A(-) on V.

Assumption 1.1 yields an alternate description of the data generating process and will
appear to be useful in the following proofs; the next lemma shows that it is equivalent to the
assumption of Theorem 1.1(ii).

LEMMA 1.2 (Alternative distribution assumption). As M satisfies the assumption of
Theorem 1.1(1), Assumption 1.1 is equivalent to the assumption of Theorem 1.1(ii).

We then move on to study the stochastic behavior of the NNG G, as M satisfies Theo-
rem 1.1(ii) and X satisfies Assumption 1.1. Since in the expression of &,, one of the rank
terms is indexed by its NNG, the asymptotic distribution of &, has a connection with the
properties of the NNG. In the following we introduce a series of lemmas on this topic. To be-
gin with, Lemma 1.3 is a well-known result by Bickel and Breiman (1983) on the maximum
number of nearest neighbors.

LEMMA 1.3 (Maximum degree in nearest neighbor graphs). There is an upper bound
for the degree of any point in NNGs. More specifically, let x1, ..., X, be any collection of
n distinct points in R?. Then there exists a constant €4 depending only on the dimension d
such that x 1 is the nearest neighbor of at most €4 points from {x3, ..., xp}.

The next two lemmas draw the average numbers of some specific structures in an NNG.
They are extensions of conclusions in Devroye (1988) and Henze (1987). We first focus on
the number of loops between two vertices, which we call a nearest neighbor pair in G,,.

LEMMA 1.4 (Expected number of nearest-neighbor pairs). Consider G, in R with M
and | satisfying the assumption of Theorem 1.1(i) and Assumption 1.1, respectively. We then
have, as n — o0,

1 V
E(—#{(i, j)distinct:i — j,j—ie€ 5(gn)}> — =2 =,
n Un
where Vy, is the volume of the unit ball in R™, and Uy, is the volume of the union of two unit
balls in R™ whose centers are a unit distance apart.

We then turn to another structure in £(G,) that monitors those parent vertices that share
the same child vertex. We call them a nearest neighbor triple in G,,.

LEMMA 1.5. Consider G, in R? with M and u satisfying the assumption of Theo-
rem 1.1(1) and Assumption 1.1, respectively. We then have, as n — oo,

1
E(—#{(i, j k) distinct:i -k, j > k € 5(%)}) — O
n

Get back to the data (X;, Y;), i =1, ..., n. Let the assumptions in Theorem 1.1 hold and
we construct G, on the manifold data [X;]?_,. Recall that m denotes the manifold dimension
and q,,, 0,, are positive constants depending only on m. With the lemmas presented above, it
is then straightforward to derive the limiting variance following the proof of Shi, Drton and
Han ((2024), Theorem 3.1), outlined in Theorem 1.2.



AZADKIA-CHATTERIJEE’S CORRELATION FOR MANIFOLDS 5177

Last, when Y is independent of X, using Theorem 1.1 in Lin and Han (2022), we have

&n
v/ Var(§,)

Combining the above result with Theorem 1.2 then yields Theorem 1.1.

4 N©,1).

1.3. Extension to non-Euclidean metrics. This section extends the above results to met-
rics beyond the Euclidean. Let us consider a general kernel function K over some support
X x X that induces a kernel metric (Scholkopf (2000)),

K(Xi, X)) +K(X;,X))
2

To make D(X;, X ;) well defined, we require some characteristics properties of the kernel
function. Two specific types of such structures are introduced below.

(1.1) D(Xl-,Xj)::\/ - K(Xi, X)).

1.3.1. Difference-based kernel metrics. First, consider the difference-based kernel met-
ric, that is,

Kx,y)=—f(x—1y),

for some function f : X — R. The function f is regulated below so that the corresponding
K can indeed induce a metric.

ASSUMPTION 1.2. Assume f(0) =0 and f(x) > O for all x £ 0. Further, assume that
f(x)is C? in the neighborhood of 0, v? f(0) is positive definite, and for some &9 > 0 and
any 0 < € < g9, there exists a § > 0, f(x) > ¢ for any ||x]| > §. In addition, we require f to
induce a nondegenerate metric, that is, the number of points in X C R? with the same NN
can be upper bounded by some constant C4 g that only depend on the dimension d and the
chosen kernel K.

The corresponding kernel metric can then be written as

(1.2) Dx,y)=\~K@.»=\f(x—y.

In particular, the first part of Assumption 1.2 requires the kernel function to be smooth and
characteristic, which is reasonable for kernels used for expressing correlation. The second
part (nondegeneracy condition) holds automatically for the Euclidean metric and in Bickel
and Breiman ((1983), Page 211), it is further shown that this condition holds for any norm
such that the unit sphere under the norm is compact. Assumption 1.2 holds true for any kernel
with sufficient smoothness to induce a norm with compact unit sphere in X. It also holds for
the (centered) Gaussian-type kernel (e.g., f(x) oc 1 — exp(a||x||2), o < 0), inverse multi-
quadratic (IMQ) kernel (e.g., f(x) xy? — (y + [|x*)?, y > 0, B < 0) and their variants.

The next theorem gives the first generalization of Theorem 1.1 to such §, =&, p whose
NN are determined using the aforementioned metric D.

THEOREM 1.3. Suppose that the conditions in Theorem 1.1 and Assumption 1.2 hold,
and &, = &, p is calculated with the NNs of X;’s decided using the metric D in (1.2). We then
have, as n — o0,

4

2 2
Var(y/né&,) converges to B + S + om

and &, //Var(&,) 5 N (0, 1).
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It is worth noticing that the above limiting variance of &, is identical to that under the
Euclidean case, and the value does not depend on the choice of the kernel K. This observation
enables us to consider flexible kernels and an independence test built on such difference-based
kernels is direct.

REMARK 1.3. The distribution-free property appears because of the local isotropy prop-
erty, that is, the studied kernel metric can be locally well approximated by the Euclidean
metric (up to linear transformations), which is rotationally invariant. It offsets the anisotropy
brought by the data generating distribution as well as the manifold structure. On the con-
trary, the Assumption 1.2 generally does not hold for L” norms; when a point moves over a
manifold, the shape of the intersection of its L? neighborhood and the manifold can change
dramatically.

1.3.2. Geodesic distance and general kernel metrics. For a fixed kernel K, there could
exist a feature map ¢ : H — H such that K (x, y) = (¢(x), ¢(¥))#, where H is the reproduc-
ing kernel Hilbert space (RKHS) and (-, -)# is the inner product on it (Berlinet and Thomas-
Agnan (2004)).

It is direct to define a kernel metric in the feature space, that is, D(x,y) = ||¢(x) —
@ (¥)|l%, and the following proposition shows that it coincides with the definition in equa-
tion (1.1). The proof can be found in Schélkopf (2000).

PROPOSITION 1.1. Consider the real-valued kernel function K to be conditionally pos-
itive definite Scholkopf ((2000), Definition 2) such that K (x,x) =0 for all x € X. Then there
exists a feature map ¢ satisfying

D(x,y)=/—K(@x,y) =|ex)— o]

where || - || is a semi-metric in the RKHS H. If we additionally assume K (x, y) < 0 for all
X #£ y, then || - ||y is a metric.

In the Riemannian manifold context, the feature map has a close connection to the geodesic
distance. In particular, denote the geodesic distance between arbitrary x and y over the man-
ifold M as d,(x, y). The geodesic distance can be locally captured by a kernel, in the fol-
lowing sense: For any fixed x € M, there exists a coordinate chart (U, ¥) equipped with the
natural parameterization such that, if we choose ¢ := ¥ !, then for any y € U,

(1.3) dy(x,y) = |p(x) — o(¥)

where | - || is the Euclidean distance. A more refined discussion on the relationship between
geodesic distance and the exponential map of a manifold can be found in Lee ((2013), Chap-
ter 13, Page 337).

With the relationship shown in (1.3), we are ready to adjust the kernel metric framework
to the analysis of the correlation coefficient under the geodesic distance. Before presenting
the result, we again make some regularity assumptions on the data generating structure.

’

ASSUMPTION 1.3. Suppose m > 2. For any x € M, the number of points whose NN
(measured using the geodesic metric) is x is bounded by some constant C 54 that only depends
on the manifold M.

Assumption 1.3 is nontrivial and, for unbounded manifolds, may no longer hold. However,
it is indeed true for most manifolds with a global smoothness property, for example, the linear
space R” and the sphere S” in R?. Specifically, we have the following proposition in case
the manifold is compact.
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PROPOSITION 1.2.  Assumption 1.3 holds if M is compact in the metric space (M, dy).

With the above assumptions, the next theorem then gives the generalization of Theorem 1.1
to the geodesic metric case.

THEOREM 1.4. Suppose that the conditions in Theorem 1.1 and Assumption 1.3 hold.
Furthermore, let &, = &, p be calculated with the NNs of X;’s decided using the geodesic
distance dg induced by the Euclidean metric. We then have, as n — o0,

2 2 4
Var(y/né&,) converges to 5 + S + om

and &, //Var&,) 5 N (0, 1).

Again, the limiting variance in this metric space is distribution-free and only depends on
the manifold dimension.

1.4. Some finite-sample studies. This section contains some finite-sample simulation re-
sults to examine the independence test powers, comparing the performance of &, to that of
distance correlation (Székely, Rizzo and Bakirov (2007)). We examine the sizes and pow-
ers of the proposed tests when the data are supported on a manifold satisfying theorem as-
sumptions and with manifold dimension known fo us.> Power comparisons are carried out
with sample size n = 100. In each case, 5000 simulations are used to calculate the empirical
size/power. For simplicity, we only study those &,’s calculated based on the Euclidean metric.

We first generate the raw data (Y;, Z;),i =1, ..., n. Here (Y1, Z1), ..., (Yy, Z,) constitute
a sample of points independently drawn from a certain distribution on R x R"”. The value of
m will change in simulations.

e Case 1 (Gaussian): (Y, Z) is Gaussian distributed with mean 0 and equi-correlation p be-
tween Y and each component of Z, that is, (Y, Z) ~ N (0, X) with

T
Y= ! Ly ,
ol Ly,

where 1,, := (1,...,1)T and I,, represents the m-dimensional identity matrix.
~——
m
In the following five cases, we set Z = (Zy, ..., Zn) ", where Z; ~ Unif[—1, 1] is inde-

pendent of each other, and consider an additive model:

m
Y=p) f(Zi)+Ce,
i=1
where € ~ N (0, 1) is independent of Z. We fix C as a constant in each case to modify the
noise intensity.

Case 2 (Linear): f(x) =x,C =0.2;

Case 3 (Quadratic): f(x) = x2,C=0.1;

Case 4 (Cosine): f(x) =cos(8mx), C =0.1;

Case 5 (W-shape): f(x) = |x + 0.5[1{x<0) + |x — 0.5[/(x>0), C =0.025.

’In practice, if the manifold dimension is unknown, one could either estimate it or use permutation to obtain
the test threshold.
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Regarding each of the five cases, we then conduct the following two types of transforma-
tion to obtain the manifold data:

(1) Linear transformation: Z — RZ =: X, where R is a pre-selected Sm by m matrix.
For each dimension m, we randomly generate R from a standard Gaussian random matrix
(Rij)smxm, where all its elements are independent, and for i =1,...,5m, j =1,...,m,
R;; ;« N (0, 1). The sample of transformed points lies on a m-dimensional linear subspace
in R>™,

(2) Manifold transformation: Z +— M (Z) =: X, which is a map from R™ to a pre-specific
m-dimensional smooth manifold in R>" . In the following simulations, the mapping takes the
following specific forms:

M(Z) = (M\(Z), Ma(Z), M3(Z), Ma(Z), M5(Z)) ",
where
M(Z)=(Z\,....,.Zy)=1Z,
My(Z):=(23,...,Z2),
M3(Z) := (sin(87 Zy), ..., sin(8w Zy,)),
My(Z) := (cos(4n Zy), ..., cos(4m Zy,)),

Ms(Z) := (exp(Z1), ...,exp(Zp)).

We perform tests of independence with parameters m = 1,2,3,5,10 and p = 0, 0.05,
0.10, 0.15, 0.20 for both &, and distance correlation. Nominal level is set to be o = 0.05 for
all tests. In all the cases, p = 0 corresponds to the null hypothesis

Hp: Y and X are independent,

while the rest of the values of p yield powers in accordance with different degrees of de-
pendence. The thresholds of &, and distance correlation are determined by Theorem 1.1 and
permutation, respectively. Table 2 and Table 3 illustrate test powers for Gaussian (Case 1)
with linear and manifold transformation, respectively. Tables 4—11 analogously illustrate test
powers for the additive model cases (Case 2—6) with two transformations in sequence.

Three observations are in line.

(1) All the tests considered have empirical sizes close to 0.05, indicating that they are all
size valid.

(i1)) When the joint distribution of (Y, Z) is a multi-dimension normal distribution, the test
power increases as m or p increases. The distance correlation based tests exhibit higher power
compared to &,-based, indicating that the distance correlation could potentially also adapt
to the manifold structure of X, an interesting phenomenon largely untouched in literature
before.

TABLE 2
Case 1, linear transformation

&, based Distance correlation based
p=0 p=005 p=0.10 p=0.15 p=020 p=0 p=005 p=0.10 p=0.15 p=0.20

m=1 0.050 0.051 0.048 0.053 0.054 0.053 0.066 0.144 0.271 0.455
m=2 0044 0.048 0.042 0.046 0.052 0.044  0.080 0.208 0.405 0.609
m=3 0050 0.049 0.055 0.056 0.079 0.052 0.074 0.229 0.454 0.766
m=5 0.057 0.058 0.049 0.065 0.112  0.041 0.141 0.331 0.604 0.844
m=10 0.066 0.060 0.057 0.099 0215 0.043 0.106 0.420 0.842 0.995
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TABLE 3
Case 1, manifold transformation

&, based Distance correlation based
p=0 p=0.05 p=0.10 p=0.15 p=020 p=0 p=0.05 p=0.10 p=0.15 p=0.20

I I3 T3
I
—_— W N =

0.058  0.051 0.051 0.050 0.059 0.041 0.051 0.114 0.269 0.336
0.058  0.055 0.059 0.058 0.065 0.048  0.088 0.122 0.287 0.548
0.075  0.068 0.065 0.071 0.079  0.060 0.056 0.106 0.448 0.652
0.063  0.061 0.059 0.086 0.115 0.051  0.085 0.159 0.575 0.792
0.065  0.061 0.068 0.082 0.155 0.064 0.115 0.248 0.735 0.956

TABLE 4
Case 2, linear transformation

&, based Distance correlation based
p=0 p=005 p=0.10 p=0.15 p=020 p=0 p=005 p=0.10 p=0.15 p=0.20

Il
- W

I 3338

0.058  0.065 0.070 0.119 0.268  0.060  0.263 0.767 0.981 1.000
0.052  0.054 0.091 0.275 0.603  0.048  0.368 0.952 0.999 1.000
0.046  0.066 0.153 0.440 0.791  0.047 0.515 0.986 1.000 1.000
0.061  0.065 0.270 0.664 0913  0.049 0.661 0.997 1.000 1.000
0.053  0.069 0.259 0.528 0.690 0.052 0.613 0.991 1.000 1.000

TABLE 5
Case 2, manifold transformation

&, based Distance correlation based
p=0 p=0.05 p=0.10 p=0.15 p=020 p=0 p=0.05 p=0.10 p=0.15 p=0.20

I
= W N =

I 3I3SIS

0.053  0.051 0.061 0.118 0.267  0.055 0.199 0.671 0.949 0.998
0.059  0.054 0.086 0.206 0.447 0.046  0.310 0.841 0.995 1.000
0.068  0.069 0.115 0.284 0.539  0.049 0.345 0.937 0.999 1.000
0.077  0.073 0.138 0.317 0.529  0.047 0477 0.978 1.000 1.000
0.080  0.074 0.127 0.236 0.334  0.047 0.651 0.996 1.000 1.000

TABLE 6
Case 3, linear transformation

&, based Distance correlation based
p=0 p=005 p=010 p=0.15 p=020 p=0 p=005 p=0.10 p=0.15 p=0.20

I
— W

I 3338

0.045 0.053 0.071 0.134 0.278  0.050  0.072 0.240 0.586 0.914
0.052  0.044 0.080 0.222 0.493  0.049 0.080 0.211 0.499 0.815
0.056  0.048 0.073 0.189 0.402  0.051 0.078 0.196 0.461 0.648
0.054  0.064 0.056 0.046 0.050  0.059  0.099 0.141 0.375 0.532
0.059 0.254 0.476 0.573 0.620  0.042  0.056 0.161 0.327 0.441
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TABLE 7
Case 3, manifold transformation

&, based Distance correlation based
p=0 p=005 p=010 p=0.15 p=020 p=0 p=0.05 p=0.10 p=0.15 p=0.20

0.047  0.052 0.068 0.123 0264 0.055 0.068 0.239 0.514 0.834
0.063  0.058 0.056 0.082 0.141  0.047  0.099 0.247 0.554 0.886
0.068  0.088 0.081 0.069 0.062  0.049 0.096 0.285 0.569 0.799
0.070  0.130 0.184 0.204 0.190  0.040 0.162 0.221 0.647 0.819
0 0.078 0.291 0.519 0.610 0.673  0.065 0.059 0.271 0.604 0.832

I §3§8
I
— W =

TABLE 8
Case 4, linear transformation

&, based Distance correlation based
p=0 p=005 p=0.10 p=0.15 p=020 p=0 p=005 p=0.10 p=0.15 p=0.20

0.047  0.080 0.436 0.892 0994  0.050 0.049 0.062 0.052 0.070
0.051  0.044 0.052 0.057 0.059 0.051 0.050 0.048 0.058 0.046
0.055  0.056 0.054 0.051 0.055 0.051 0.044 0.055 0.044 0.043
0.056  0.053 0.053 0.052 0.053 0.058 0.041 0.037 0.041 0.046
0 0.058 0.054 0.059 0.057 0.055 0.044 0.037 0.081 0.046 0.056

33338
Il
—_ W N =

TABLE 9
Case 4, manifold transformation

1 base istance correlation base
&, based Di lation based
p=0 p=005 p=0.10 p=0.15 p=020 p=0 p=0.05 p=0.10 p=0.15 p=0.20

0.051  0.073 0.381 0.864 0994 0.044 0.077 0.170 0.329 0.580
0.055  0.063 0.062 0.089 0.123  0.051 0.073 0.093 0.114 0.157
0.141 0.166 0.171 0.168  0.055 0.056 0.083 0.073 0.093

0.079  0.295 0.404 0.456 0474  0.049 0.093 0.070 0.095 0.089
0 0.085 0.462 0.581 0.621 0.629  0.042  0.082 0.055 0.073 0.067

S 3$sss8
I

—- W =
e
(e}
x

TABLE 10
Case 5, linear transformation

&, based Distance correlation based
p=0 p=0.05 p=010 p=0.15 p=020 p=0 p=0.05 p=0.10 p=0.15 p=0.20

m=1 0.048 0.066 0.272 0.721 0971 0.048  0.068 0.149 0.323 0.585
m=2 0047 0.061 0.334 0.778 0955 0.051 0.046 0.082 0.106 0.096
m=3 0061 0.055 0.097 0.211 0311  0.041  0.050 0.055 0.058 0.077
m=5 0.052 0.091 0.107 0.111 0.106  0.066  0.069 0.080 0.067 0.064
m=10 0.055 0.091 0.121 0.124 0.138  0.040  0.037 0.048 0.041 0.064
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TABLE 11
Case 5, manifold transformation

&, based Distance correlation based
p=0 p=0.05 p=0.10 p=0.15 p=020 p=0 p=0.05 p=0.10 p=0.15 p=0.20

0.047  0.062 0.267 0.694 0.956  0.055 0.061 0.167 0.348 0.805
0.063  0.056 0.093 0.158 0.252  0.047  0.060 0.114 0.183 0.303
0.068  0.072 0.070 0.070 0.072  0.049 0.054 0.102 0.136 0.244
0.070  0.090 0.110 0.112 0.110  0.040 0.101 0.150 0.130 0.209
0 0.078 0.148 0.186 0.197 0.196  0.065 0.038 0.052 0.126 0.074

I I3 T3
I
—_— W N =

(iii)) When the function f exhibits oscillatory properties, the test power increases as p
increases. However, when m increases, in most cases, the power of our proposed tests shows
a U-shape, that is, decreasing first and then increasing; yet the distance correlation based tests
shows monotonically decreasing power. Thus, for high-dimensional data, our proposed test
might be more powerful. When m = 1, our proposed test is also more powerful in some cases.

2. Proofs. Table 12 lists all the symbols used in the following proofs.
2.1. Proof of Theorem 1.2.

PROOF OF THEOREM 1.2. Recall that we write G, for the random directed nearest neigh-
bor graph (NNG) corresponding to n sample points X, ..., X, and use £(G,) to denote the

TABLE 12
Common symbols and notation

X Random vector in RY indicating the distribution of samples
Xi, Xj, Xg... i.i.d. copies of X

Y Random vector in R

Yi,Yi, Yp... i.i.d. copies of Y

M m-dimensional smooth manifold in the Euclidean space RY
m Manifold dimension of M

d Dimension of ambient space

n Number of data points

A Lebesgue measure

- Euclidean norm

H™ m-dimensional Hausdorff measure

7 Probability measure of X

g(x) Density function of pushforward v, at point x

Gn Directed nearest neighbor graph (NNG) constructed on n sample points X, ..., X,
E(Gn) Edge set of G,

Niotal Total number of nearest pairs in G,

N(X;) Total number of nearest pairs in G,

D(X;) Out-degree of X; in G,

Miotal #{(i, j, k) distinct : j — i,k —> i € £(Gp)}

M(X;) #{(j, k) distinct : j — i,k — i € £(Gp)}

b4 Tangent plane of a given point on M

g (x1,x2) Union of two balls whose centers are x| and x, and radius are both [|x| — x3]| in R4
Bk (x,r) k-dimensional ball with center x and radius r

Vin Volume of unit ball in R

Un, Volume of U™ (0, p), llpll =1
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edge set of G,. According to Lemmas 1.4 and 1.5,
nlggoE(;#{(z, J)distinct:i — j,j—> i€ 5(%)}) =qm,

1
lim E(—#{(i, j k) distinct :i — k, j > k € S(gn)}> =0p.
n—oo n

Pursuing the idea in Shi, Drton and Han (2024), we resort to Héjek representation for
calculating &,’s asymptotic variance. In Lin and Han (2022), the intermediate statistic &, is
defined as

n

. 6 1
&, = " (Zmln Fy(Y;), FY(YN(l))}_n— Z min FY(Y) FY(Y) +Zg(Y)

I’l

i=1 i,j=1 i=1
i#]

1 n
+— > E[min{Fy (), Fr(Yp}IXi, X ] [Zg(Y)IX}Jngo(X >)
i,j=1

i=1 i=1

i#]
where specific to the case that Y is independent of X, we have
Fy (1) =P =<1),
Gx(t):=P¥ =1]X) =P =21)=1— Fy(n),
g(t) :=Varx[Gx(1)] =0,

1
go(x) = / E[Gx ()] dFyjx—x (1) = / (1 = Fr@) dFy (0 = 5.

Leveraging these expressions, §n under independence then takes the form

- 6n " 1
Sn= (Zmln Fy(Y:), Fy(Yna))} 1 Z min { Fy (Y;), Fy (Y; )}) + Co,
i=1 i,j=1
i#]j
where Cy is a fixed constant.
In Lin and Han (2022), it is proved that

11m n Var[&, Sn =0.

¥ o1
<lim sup<7va$§:[; ]5"] ) i

@2.1) fim YA g VardSs = G =801
w50 n Var[g,] oo Varlg,]

Thus we have

i Cov(&n, & — &)
| Varlg,]

=

IA

(hm sup,,_, oo Var[&, — gn])

limsup,,_, ., Var[&,]

Then we have

Since (2.1) holds, it suffices to calculating the variance of the intermediate statistic En, that
is, we only have to calculate

. 36n3 "
nval‘[én]:mzfnl)zvar[zmin{FY(Yi)’FY(YN(i))}
i=1
(2.2) L
- > min{Fy(Y,-),Fy(Yj)}]
i,j=1

i#]j
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For the sake of presentation clearness, introduce

Ajj:=6min{Fy(Y;), Fy(Y;)} —

n
Vi:i=n z(z Ajj— —IZA”> and Sn::ZV,-.

Ji—=j Jij# i=l1

Then we can reformulate (2.2) as

- 02 \2 n 02 \2
(2.3) n Var[§,] = <n2 — 1) Var ; Vi|l= (n2 — 1) Var[S,].
Since Yq, ..., Y, are independent and identically distributed (i.i.d.), for every i € {1, ..., n},
i ld

Fy(Y;) ~ Unif[0, 1]. Thus, the expectation about A;; can be derived as
2 4
EA;j =0, E(Aij)"=2:=n, E(AijAix) = 5= and EV; =0.

Get back to the calculation of Var[g,,]. According to (2.3), it remains to calculate

Var[$,] = (Zv) ZEV2+ZEVV

i#]

For the first term, we have

ZEW—nlzﬁ( > gy a)

jii—j Ji#]
(Bl B )
LGS (EZ ()

s+ (et ) - (R 2D

= (1 — ﬁ)yl - (1 - n%)”

- V1= 2.
For the second term, we have

> EV;V; —n‘ZE(Z Ak——ZAtl>< > Ajm—n— > Am)

i#j i#j k:ii—k L:i#l m:j—m pj#D

_1<ZE< > A Y AJm)‘i‘ZE( —E o An X A]p>

i#j ki—k m:j—m i#j Ll pij#p

_,-; ( 3 Aw Y Aj,,))

kii—k pJ#p

n—1
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(505 )

i—j,j—i i—j,j—i
ori—j,j—k
or j—>i,i—k

+< n +3(n—2)y2>_(n+1y +6(n—2)y2>

n—l1 n—1 n—l1 n—1

1 1
=—— N —3<1 e 1>y2+y1qm + y2(0m +2 —2qm) + o(1)

— (Y1 — 2V2)qm + Y20 — V2.
In conclusion, we have

lim n Var[€,] = lim Var[S,]
n—o0 n—oo

n
— T 2 i A
= lim ) BVZ+ lim ) EVIV
i=1 i£j
2 2 4
BRI

This is the form of Shi, Drton and Han ((2024), Theorem 3.1(ii)) when X;’s are sampled
from an absolutely continuous distribution in R”. [J

2.2. Proof of Lemma 1.2.

PROOF OF LEMMA 1.2. Recall that H" L. M represents the restricted m-dimensional
Hausdorff measure on M and A represents the m-dimensional Lebesgue measure.

To obtain the global property, that is, u is absolutely continuous with respect to H™ L M,
it suffices to show the local property, that is, for any point x € M and the corresponding co-
ordinate chart (U, ¥), uy is absolutely continuous with respect to H™ L U. In the following
proof, we focus on a sufficiently small coordinate neighborhood U. Recall the definition of
absolutely continuity of p with respect to some base measure, which states that any null set
with respect to the base measure is a p-null set. With this definition, to prove Lemma 1.2, it
suffices to prove that any 7" -null set 1 ~! E is equivalent to a A-null set E.

We refer to Chapter 3 of Evans and Gariepy (2015) for the following lemma and its proof.
Assume a Lipschitz map f : R™ — R”", where m < n. Thus, f is differentiable A-a.e. by
Rademacher’s theorem (Theorem 3.2 in Evans and Gariepy (2015)). At any point y € R™
of differentiability we denote by Jf(y) the Jacobian of f. Also, we denote by H° the 0-
dimensinal Hausdorff measure, which is equivalent to counting measure.

LEMMA 2.1 (Area formula). We have y +— Jf(y) is Lebesgue measurable. In addition,
for any Lebesgue measurable set A C R™, the map z — f~'({z}) is H™-measurable and the
following equality holds:

[ #@ns @@= [ 1rma.
Rm™ A

Back to the proof, since M is a C* manifold, the homeomorphisms v and v ~! are C*®
maps, thus locally Lipschitz continuous. Applying Lemma 2.1, forany E C V and ¢ ~1(E) C
U which is H™-measurable, we have

(2.4) H N E) = [ IF ) a0,
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Here for a smooth manifold, J f (y) can be written specifically as Jf(y) = 4/detg, where g
is the metric tensor of the Riemannian submanifold, that is, g;; = BTV jzﬁ_l. Due to the
existence of ¥ !, the differentials of ¥ and ¥ ~! have maximum ranks everywhere locally,
which implies that for every y € E, Jf(y) > 0. Using equation (2.4), one directly obtains

H™ (¢~ 1(E)) =0 ifandonlyif A(E)=0,

which completes the proof. [J
2.3. Proof of Lemma 1.4.

PROOF OF LEMMA 1.4. Recall that i is the (induced) probability measure of X, that is,
u(A) =P(X € A). Let [X;]7_, be a sample comprised of n independent copies of X. Let
N (X;) denote the number of NN pairs containing X; and N denote the total number of
NN pairs (double edges) in NNG; in other words,

Niotal :=#{ (0, j) distinct : i — j, j — i € E(Gn)},
NX):=#{j:i—j,j—>i€&@Gn}.

Observe that

n
Niotal = ZN(Xi);

i=l

it thus suffices to calculate the value of E(N (X;)). Using Lemma 1.3, there exists an upper
bound of the number of points, whose nearest neighbor is X;. For any point x;, we use
constant €4 to denote this upper bound:

N(x;) =¢&qg.

To obtain the asymptotic expecatation of E(N(X;)), it suffices to prove that for u-a.e.
X € M,

. Vin
Am E(N () = 7.

since the Lebesgue dominated convergence theorem can be used as

lim EN(X;) :ngrgO/E(N(xi))dM(xi)

:/nlgrgoE(N(xi))dM(xi) - l‘;—’“

We use U¢ (x1, x2) to denote the union of two balls in R? whose centers are x; and x»
and radius are both ||[x; — x>||. Thus, x| and x> form a nearest neighbor pair if and only if
there are no other sample points in U d (x1,x2).

We first consider the nearest neighbor of one fixed sample point X; and write N (x;) :=
N(X;|X; = x;) for convenience. Applying the absolute continuity assumption to the specific
point x; € M, we can write (recalling the notation of Assumption 1.1)

g =d(Wyp)/dA

for the density of the pushforward, that is, Y.u(A) = [ 4 &dA, for any p-measurable set
AeV.
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We assume that x; € supp(u) and g(i(x;)) > 0 throughout the manuscript. Observe that
for a fixed x;,

E(N(x)) = ZP( U {Xe ¢ U¢xi, XJ-)})

i#] Ck#Lj
(2.5) =(n— I)P( U {Xi ¢ U (xi, Xj)})
ki, j
= =) [ (1= (UG )" datx
which is the expression used for the following calculation.

LEMMA 2.2. For p-a.e. x € M and the corresponding chart (= Yy ), it holds true that

i wUx,x))
im =1.
lxj—x—0 g(¥(x)|lx; — x[|"Up,

LEMMA 2.3. For p-a.e. x € M and the corresponding chart yr (= Yry), it holds true that

w(B(x,r)
m — . = 1.
llxj—x[—0 g (V¥ (x))r™ Viy,

Lemma 2.2 informs that when fixing x; € M, for every € > 0, it is almost sure that there
exists §; > O such that for every x; : [|x; — x;|| < J1, we have

pU(x;, x;))
gW(xi)Ilx; —xi["Un
Similarly, Lemma 2.3 informs that there exists § > 0 such that for every r < §7,

B (x;,
2.7) PBIELD) e
g (x))r"Vy
In the following part of this section, we take 0 < § < min{é1, 62}, which implies that both
(2.6) and (2.7) hold for every x ; such that ||x; — x;|| < 4.
Back to the expression (2.5) for E(N (x;)), we first consider the lower bound,

(2.6) e[l —e€,1+4¢€].

E(N(x)) > (n—1) ”xl_x'||<6(1 — u(U%xi,x ) N M) du(xj)
(2.8) ST
>(n—1) (1= A +eg(W@N)lxj —xiI"Un)" > du(x)).

llxj—x;ll<d

Next, we introduce a nonincreasing function

2.9) $10r) = (1= (1 + (Y (x))r" Un)"*Iiy=s),
where I{<s) denotes the indicator function. Notice that ¢ (0) = 1.
With this function, we can reformulate equation (2.8) as follows:

2.8)=(n — 1)/M 1 (lx; — xill) dueCx )

=n—DE(@1(1X; — xill))

2.10 1
210 = =1 [ P@(IX; —xi1) > ) dr

=0n— 1)/01</”xj_x,.||<¢rl(t) du(Xﬂ) dr.
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For handling (2.10), we select the range of # to make x ; close enough to x;. Applying then
the approximation derived above in (2.7) yields

1
(2.10)> (n —1) (/ du(xj)) de
$18) \Jllxj—x; <7 (1)

1
(2.11) —n—1) (B (x;, 67 (1)) dt
$1(6)

1
>(n—1) f¢ RERIACRO IR

The expression of ¢, 1(#) can be solved from equation (2.9). Plugging it into (2.11) gives
I 1—€V,

1
QRIh=m-1) (1 —tn2)de
2.12) 1 , 18 1 +€ Uy
— € m
> T el (1—(n—De1(5)).

Consider the limit of (2.12). First let n go to infinity. Since

Jlim (n = D1 (8) < lim (n — (1= (1 + (Y (x;))8"Up)" > =0,

we have

1—€eV,
lim E(N(x;)) > —
o (NGxi)) = 1+€U,

holds for arbitrary € > 0. Thus,

V
lim E(N(x;)) > —.
n—o0 Un
Now we turn to the inequality in the other direction to find the upper bound. Using the fact
that

e *>1—x foranyx€]l0,1],

we have

E(N(x;) <(n—1) ]M exp(—(n — 2),u(Ud(x,-, x;))NM))du(x;)

=(n—1) exp(—(n — (U’ (xi, x ) N M)) dpu(x )

(2.13) llej—xill>8
+(n—1) exp(—(n — 2)u(U (xi, x ) N M)) dpu(x )
llxj—xil<5

= Iy + In,2-
Here the domain of integration is partitioned into two sets. We use I, 1 to denote the integral
on MN{x;:|lx; —x;|| >4} and I, > to denote the integral on M N {x; : [lx; — x;|| < }.
We then process these two terms in (2.13) respectively. For term 7,1, we have

Inji = —1) exp(—(n — 2D (U? (xi. x ) N M)) du(x)

lx;—x;l|>6

(2.14) <(mn-1) sup {exp(—(n-— 2)/L(Ud(xl~,xj) N M))}/ du(x;)

e j—xi >0 I —xill>8

<(n-— l)exp(—(n —2) inf {,u(Ud(xi,xj) N M)}) ./M du(x ).

lxj—x;l|=6
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Since for v > 0, Ud(xi,xj) C Ud(x,-,xj +v(xj—x;)and [, du=1,
(2.14) < (n — l)exp(—(n —2) inf (U4 x)) m\/t))

lx;—x;l|=6
= (n — 1) exp(—(n —2)h(3)).
Here h(8) is a positive function of §. Thus for any €, > 0, lim,_,  I,,1 = 0.
For the second term, using the approximation (2.6), we have

Lia=(@m—1) exp(—(n —2)u(U%(x;, x ;) 0 M) dp(x )

lx;—x;ll<é

=(m—-1 exp(—(n —2)(1 —e)g (¥ (x)llx; —x; 1" Upn) dia(x ).

[l j—x;||<é

(2.15)

Again, introduce a nonincreasing function
$2(r) :=exp(—(n = 2)(1 = )’ (¥ (x0))r" Un) I <s)
and reformulate the expression as before:
(2.15) = (n — DE(¢2(I1 X ; — x:1))

1
=(n— 1)/0 P(pr(I1Xj —xill > ¢t))dr

1
=(n—1 ‘
(2.16) (=1 /0 </xjx,-||§¢21(t) Al )) d

$2(3) 1
. . div -1
<(n 1)/0 dt + (n 1)/@(5)“(3 (xi,¢5 (1)) dr

1
< —=1¢20) + (- 1)/¢ (a)(l + ) V(e (1))" dr.
2

The expression of ¢, ! (t) can be solved from (2.16). Then the integral above can be specifi-
cally calculated as

n—114¢€V,
— (1 — (8 3)1 3)).
n—21—6Um( $2(8) + $2(8) log 2(3))
For fixed € > 0 and § > 0, one can use the definition of ¢ (r) and get

lim né»(8) =O0.
n—oo

2.16)=(n — 1)¢2(8) +

Then we have
14+€¢V,
1—€eU,

lim E(N(x;)) <

holds for arbitrary € > 0. Thus,

, v
Jim E(N(x))) < U_Z

Combining the upper and lower bounds yields

. Vin
M BV e) =5
Finally, we obtain the conclusion
EN, " E(N(X; V,
n—oo n }’l—)OOi:1 n Um

This completes the proof. [
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2.4. Proof of Lemma 1.5.

PROOF OF LEMMA 1.5. Analogously to the proof of Lemma 1.4, we only have to con-
sider one specific sample point X;. Let Q; denote the event that X; is the nearest neighbor
of X;, thatis, Q;:={j — i € £(G,)} forall j #i and put

Mol =#{(i, j, k) distinct : j — i,k — i € E(Gy)},
D(Xi)=)Y lg,=#{j:j—i€&@Gn),
J#i
M(X;) =#{(j, k) distinct: j — i,k — i € E(Gn)}.
Here M (X;) is the coefficient we are interested in. Observe that

n
Mtotal = ZM(Xi)v

i=1
M(X;)=D(X;))(D(X;) — 1),
so that we have

EM(X;) =ED(X;)(D(X;) — 1)
=E > P(Q;NQ0n

(j.k) distinct
okt
=(n -1 -2)P(Q; N Q).
We first consider a fixed sample point X; = x;. Using Lemma 1.3, we have
G = ED(X;|X; = x)(D(Xi|X; = x;) - 1)
=n—1DE-2PQ; N OrlX; =x;).

Then applying the Lebesgue dominated convergence theorem, we have

Jim (1= 1) =2P(Q; 1 Q) = fim, [ (1= 1)(n=2P(Q; N QuIXs =) dux:)

= fM Jim (n — 1) (n —2)P(Q; N Qx| X = xi) du(x;).
It thus remains to prove that
nli)rrolonzP(Qj N OklXi =x;) = lim (n — 1)(n —2)P(Q; N Okl X = xi) = o,

where x; is any point with positive density, which is held fixed in what follows.
We first introduce the notation to simplify the integral. For a fixed point x € M, let

o= {(xj,x) € (Rd)zimax{”xj — x|l llex —x[I} < llx; — xxll},
Si=B(xj,llx;—x|)NM, Sk == B(x, |lxx — x||) " M.

Applying the above notation, we have that X = x is the nearest neighbor of X ; = x; if and
only if there are no other sample points in §;. In the following part, we record x; as x for
notation simplicity. It then holds true that

nP(Q; N QulXs =)= [ n(1 = us; U S0)" due ) due.
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where we use du(x;) and du(xy) to denote the measure and the corresponding random
variables which the integral corresponds to. The next step is to split the region of integral that
Iy =T, ;UI3% . Here
2
Tpsi=Tx N {1, x2) € RY) ey — x|, lle2 — xI| < 8},
Iis=Tx\T;

where ¢ is a sufficiently small but a positive real number. Specifically, § = min{§y, 62, 63, 44,
35}, in which §;’s are to be defined in the proof below. Taking this idea, we partition the
integral into two parts:

n’P(Q; N QilXi —x)—f/ 2(1 = (S U S0)" 2 due(r ) duexa)

x,8°

+// 2(1 = w(S; U Sp)" 2 dplx ) dpe(xp)

= Jn1+ Jn,Z-
We first prove that
lim J,2=0.
n—oo

LEMMA 2.4.  For p-a.e. x € M and the corresponding chart v, it holds true that

lim w(Ba(xj, lx —x;[))) _
Ixj—xIl—-0 g (¥ (x)A(B"(xj, [lx — x;|))

Lemma 2.4 shows that for any € > 0, there exists 6; > 0 such that for u-a.e. x € M and
for any x ; such that ||x — x| <41,

w(Ba(xj, Ix —x;)))

1—e,1 .
U GAB Gy e —x; )y ST

By definition of 2 for any (x;,xy) € I'2 ., there exists x; = x j or x satisfying |[x; —x|| >

x,8° x,8°
8. Without loss of generahty, we assume that x; = x ;- For the point
d x—x;
yi=X—--—,
2 [l — x|

we have ||x — y|| = 8/2. For every x* € B(y, ||lx — y|) = B(y, %),

é 1)
e =il <l =yl ly =yl < 5 + (e —x0 = 5 ) = e = x50

yielding
8
B<y, 5) C B(x,8)NB(xj, |lx;—x||).
This in turn implies
w(S;USe) > u(B(xj, llx; —x[) " M)
> n(B(y,8/2) N M)
> (1 - €)g(¥ (x)A(B"(0.8/2))

=1 -e)g(y(x))Vn (g)m
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Back to the integral J, 5, we then have the upper bound

n?(1— u(S;USy)" %< n2<1 —(1- e)g(tﬂ(x))Vm(g>m>n_2,

which is a constant with respect to x ; and x and thus

. _ §\m\" 2
0= Jim 7= Jim r2(1- (- Os@)Va(3) ) =0

This finishes the proof of the first part.
We then prove that

lim J,.1=o0p,
n—oo
that is,

lim /f 2(1 — 1(S; U S0)" 2 due(x ) de(xg) = om.

n—oo

Here 6 is a constant we will select later. Similar to the process in the proof of Lemma 1.4, we
will then derive the upper and lower bounds of J, 1.
For the upper bound, first leveraging the fact that e™ > 1 — x for all x € (0, 1), we have

217) Jn = [, n¥exp(=n =208, U S0) diatx ) datxo).
x,8

We set z; = ¥ (x ), zx = ¥ (xy) for simplicity and thus, x; = w_l(zj), xr=v " Nzp).

LEMMA 2.5. For p-a.e. x € M and the corresponding chart {r, we have

. p((BY(xj. llxj — x ) U B! (e [lxi — x11))) _
lxj=xll-0 g (Y (XNA(B™ (2. l|zj = ¥ (X)) U B" @ llzic = ¥ ()1))

lx—x]—0

Lemma 2.5 implies that for p-a.e x € I'y and any € > 0, there exists §3 > 0 such that for
any (x j, xy) satisfying |lx; — x|l < &3, [lxx — x| < 83, we have

u((B(x), lIx; — xI) U B! (xg, llxx — x1)))
gW))A(B™(z), lIz; = ¥ (X)) U B™ (2, llzk — ¥ (x)ID)

Plugging them into the righthand side of (2.17), we obtain

ell—e,14+¢€].

J[[, 7 expl=n = 21205} U S0) datx ) daCen)

x,0

E/frl n*exp(—(n —2)(1 — e)g (¥ (x))

x,8

(2.18) X M(B"(zj. |z — ¥ @)|) UB™ (zk, |2k — ¥ (x)]))) due(x j) dpe(x).

_ffwl nZexp(—(n — 2)(1 — €)g(¥ (x))

X M(B"™(zj, [z = v ®)]) U B" 2k |z — v (0)])))

x g(z;7)8(zx) dA(z ;) dA(zk)-
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LEMMA 2.6. Assume all the conditions of the Lebesgue differential theorem hold, and
f, g are integrable functions with respect to Lebesgue measure . We then have

U—>erv|U|/fgdA f(x) U€V|U|/g

Using Lemma 2.6, for fixed € > 0, there exists §4 > 0 such that for every < 84, we have

1= +or’sye) [[ | el =20 - gy )
(2.19) Trs

X M(B"(z, ]z

— Y (x)||) U B" (zk, |z — ¥ (x)])))) dA(z ;) dA(zk).

LEMMA 2.7. For p-a.e. x € M and the corresponding chart \r, it holds true that

Ay (] 8)
m ———=
-0 A(I'm.s)

Considering Lemma 2.7 and the uniform property of Lebesgue measure, we can just do a
translation and make the origin point contained in the domain of integration so that

(2.19) < (1 + ) 2n2g (¥ (x)) f fr exp(—(n —2)(1 — g (¥ (x))
m,8

< 2(B" (2, 12;1l) U B™ (z. Iz 1)) dA(z ) dA(z),
where
Tos =T N{(z).26) € ®™) : Iz lz ]| <8}

Denote B™(z;, |Izl) and B™ (zk, ||zk||) to be m-dimensional balls in R™. We then introduce
a translation

z;=1Inzj, 2y =l Zk.

We thus have

A(B™ (zj-,

Z5[) U (B™ 2k |2k ])) = @)™ 2(B™ (2, 1z ) U (B™ (z& l1z&l))-

Set [, = ((n —2)(1 — e)g(w(x)))l/m and the corresponding Jacobi matrix satisfies |J| =
(n—=2)(1 —e)g(¥(x)). Asn — o0, I, — oo and ;=5 — 1, and thus

(14 e)n?
A Tt = I e o

(2.20) / / exp(—A(B" (27,

)V (B" (zf,
mlmB

1+ m >x< *
1_6)2// exp( )‘B ]’ ”) ( (k

holds for arbitrary € > 0. We thus obtain the upper bound.

For the lower bound, the proof is similar. Use the fact that, for any € > 0, there exists o > 0
such that for every x € [0, 0], e < (1 4+ €)(1 — x). We have there exists &5 such that for any
S < 85,

el)) dr(z5) da(zg)

el)) dr(z5) da(zg)

It > //Fl 5 n2exp(—(n — 2)(1 + )e(S; U Sp)) due(x ) dpexg).
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We then follow the same process as above: for a sufficiently small § > 0,

J[[, w2 expl=n =21+ ns; U S0) diatx ) dpeo

> /‘/1;;5 n? exp(—(n —2)(1+ e)zg(z//(x))
x M(B™(zj, |zj — v @)|) UB" (zk, ||zx — ¥ (x)]))) da(x j) dpe(x)

=(-ons) [ (= =20+ g ()

A(B™(z;. |z

—«/f<x>||) B" (zx, |zx — ¥ (0)]))) g (z )¢ (zx) dA(z) dA(zx)
> (1= Py )’ [ exp(- =21+ e (v )
m,s

x AMB™(zj, Izjll) U (B™ (zk, llzkl))) dA(z ) dA(zk).

Again use a translation

k%, *x
Zj =TmZj, Ly =Tmlk,

and thus the corresponding scaling result
U (B" (2, [zi*1)) = ()" A(B™ (2, Iz 1) U (B" (2 l1zkl))-

Setting rp, == ((n — 2)(1 4+ €)?>g (¥ (x)))!/™ and noting that the corresponding Jacobi matrix
satisfies |J| = (n —2)(1 + e)zg(l//(x)), we have

MB™(z7" ||z

o (1 —e)n?
"I 0+ et —2)2

X //I:m,,ma CXP(—A(B’” (z;k_*, Z; zz* ”))) d)\.(Zj*) dk(zz*).

Following the same procedure as we discussed before, as n goes to infinity, we then obtain
the same lower bound.
Matching the upper and lower bounds then yields

2.21)

) U (B™ (2",

lim EM(X;) = lim nZP(Qj NQOklXi=x)= lim 1,2 =o0p,.
n—0o0 n—oo n—oQ
Finally,
EMtotal . z EM(X;)

n%oozil = Om-

i=1 n

lim EZ
n—oo n nﬁoo

This completes the proof. [
2.5. Proof of Theorem 1.3.

PROOF OF THEOREM 1.3.  Our proof of Theorem 1.3 is similar to that of Theorem 1.1.

In detail, the proof of Theorem 1.1 reveals that the asymptotic variance is determined by
the limiting proportion of two graph structures shown in Lemmas 1.4 and 1.5. The proof of
Theorem 1.3 is based on the same idea. The following lemmas are in parallel to Lemmas 1.4
and 1.5.
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LEMMA 2.8 (Expected number of nearest-neighbor pairs under difference-based kernel
metric). Consider G, in R? to be the NNG induced by f(-), and M and w satisfying the
assumptions of Theorem 1.1(1) and Assumption 1.1, respectively. We then have, as n — 00,

1
E(—#{(i, J)distinct:i — j,j—> i€ 5(%)}) = qm-
n

LEMMA 2.9. Consider G, in R? to be the NNG induced by f(-,-), and M and 1 satis-
fying the assumptions of Theorem 1.1(1) and Assumption 1.1, respectively. We then have, as
n— oo,

1
E(—#{(i, j k) distinct:i —> k,j —> ke 5(%)}) — O
n

PROOF OF LEMMA 2.8. We first recall the notation used in the previous proofs. Let
N (X;) denote the number of NN pairs containing X; and Nioa denote the total number of
NN pairs (double edges) in NNG; in other words,

Niotal := #{ (i, j) distinct :i — j, j — i € E(Gy)},
N(X))=#]j1i— j.j—i€EGn).
Assumption 1.2 implies an upper bound on N (X;), that is,
N(X;) <Cqk <o00.

Since by the dominant convergence theorem, we have
Jim ENCX) = Jim [ B(VGeo) dpeten) = [ lim E(VGe) dueo),

it suffices to find the limit of E(N (x;)) given the sequence of graph G,. Denote U;é (x1,x2)
to be the union of two balls under metric D(-, -) induced by K (-, -) in R? whose centers are
x1 and x» and radius are both D(x1, x»). The same analysis as in equation (2.5) gives us that

(2.22) E(N(x;))=(n — 1) /M(l — u(UE @i x )" 2 du(x ).

To get a good approximation of ,u(U,‘é (x;,x;)), we consider the linearization version of
the kernel-based matric. Define H (x) := V2 f (x) for x in a neighborhood of 0. By Assump-
tion 1.2, H(0) is reversible, and we define ¥ = H(0)~!. The corresponding Mahalanobis dis-

tance is defined as ||x ||z := v x7 X ~lx. We then approximate the kernel-based metric based
on this Mahalanobis distance. Recall that A is denoted to be the m-dimensional Lebesgue
measure.

LEMMA 2.10. For p-a.e. x € M and the corresponding chart (= ¥y ), it holds true
that

lim pUg (x,x)))
I j=xlz—0 g (Y (X)) 1% j — XI5 U, x

=1,

where Uy, 5. x is the volumn (m-dimensional Lebesgue measure) of U [‘f (x, y) Ny with ||x —
ylls = 1, and 7y denoting the tangent space of M at x.

It can be explicitly shown that Uy x x = Un - (JT7/2 A (Projan))l/z; here we use
Proj,, (A) to denote the projection of the matrix A onto , that is, for a projection matrix
Py (projecting onto ), Proj, (A) := PnAPﬂT , and A; (A) to denote the ith largest eigenvalue
of A.
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LEMMA 2.11. For p-a.e. x € M and the corresponding chart (= V), it holds true
that

(B (x, 1))
1m
lxj—xls=0 g(Y(xX)Nr"Vy 5 x

=1,

where Vy, s x is defined to be the volumn (m-dimensional Lebesgue measure) of Bl(x,1)N
Ty, and Bd(x, r) is the ball under the Mahalanobis distance with center x and radius r.

Similarly, we have V,; 5 x = Vi, - (172 Ai (Projan))l/z.

With Lemmas 2.10 and 2.11, we can then first get the lower bound of the integral in
equation (2.22) following the same procedure as in inequalities (2.8), (2.10), and (2.12). For
arbitrary € > 0, there exists § > 0 such that

E(N()) = (n — 1) /M(l — (UG x ) )

>n—1) (1= +)g(W @)X —Xi|2Uns.x)" > du(x;)

lxj—xillz <6
1 1—¢ Vm,z

¢1.50) 1 +€ Un 3z x

>(n—1) (1 — 1) dr

. 1—€Vusx
l+e€ Un,z x;

(I —(n—1o1,5(5)),
where

$1.2(8) = (1 = (1 + gV &))" Un,s.x)" " Tir<)-
Let n go to infinity, by direct calculation we then have

1 — € Vm’E,xi

lim E(N(x;)) > .
H— 00 ( ( l)) T 14+eUpnxsy,
Since € is arbitrary, we then have

nlglgo E(N(xz)) = Vm,E,x[/Um,E,xi = Vm/Um-

To get the upper bound of the integral in equation (2.22), we can follow the same procedure
as in inequalities (2.13), (2.14), and (2.16). For arbitrary € > 0, we choose é > 0 such that

E(VG)) = (=) [ (1= (U i) duc )
<mn-1 /M exp(—(n — 2)/L(Ul‘é(x,-,xj) NM))du(x )

=mn—-1 exp(—(n —2)u(Ug (x;, x ;) D M) dp(x })

lxj—xillz>6

+n—1) exp(—(n — 2)u(UZ (x;, x ;) N M) dp(x j)

lxj—x;llz <6

<(n-— l)exp(—(n—2) inf {M(Ul‘é(x,-,xj)ﬂ/\/l)}) /M du(x )

lxj—xillz>6

1
+ (1= Do s @) + (0 — 1) /¢, 5 OV (B50)" dr,
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where
$2.5(r) == exp(—(n — 2)(1 — €)*g (¥ (x))r" Un. 5 x;) r<s)-
Direct calculation then yields

I+e€ Vm,E,xi
1 — € Um72’xl— '

lim E(N(x)) <

Since € is arbitrary, we then have
lim E(N(xl)) =< Vm,E,xi/Um,E,xi = Vin/Un.
n— oo

Combining the upper and lower bounds of E(N (x;)), we then have
Vm,E,x,- o Vm

—:qma

Um,E,xi Um

lim E(N(x;)) =
n—00
and consequently,
Jim ENGX) = [ Tim EN (e duten) = an.
Finally, we conclude that

EN E(N(X;
lim —total total Z ( ( )) I
n— 00 n—>oo

and thus complete the proof. [

PROOF OF LEMMA 2.9. The proof is similar to that of Lemma 1.5. Denote
Qj = {] —>1i€ S(Qn)}
for any j # i and put
Mol = #{(i, j, k) distinct: j — i,k — i € E(Gn)},
D(X) =) Ig,=#{j:j—>i€&@Gn)
J#i

M(X;) =#{(j, k) distinct: j - i,k — i € E(Gn)}.

Here M (X;) is the coefficient we are interested in. Observe that
n
Miotal = ZM(Xi)s
i=1
M(X;)=D(X;)(D(X;) — 1),

so that we have

EM(X,-):ED(XQ(D(X,-)—l)
=E ) PQ;N0x

(j,k) distinct
Jiok#i

=(n—-Dn-2PQ; N Q).
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We first consider a fixed sample point X; = x;. Using Assumption 1.2, we have
Cix =BD(Xi|X; =x;)(D(X;|X; =x;) — 1)
=(n—Dm-2)P(Q; N OklX; =x;).

Then applying the Lebesgue dominated convergence theorem, we have

Jim (1= 1) =2P(Q; 1 00 = lim [ (1= 1)1 = 2P(Q; N QulXs = 1) da(x)

n—oo

= [ Jim = 11 = 2P(Q; 1 Q41X = x0) da(x).
It remains to analyze the limit term
Jim (n — 1) (n —2)P(Q; N Okl Xi = xi).
We first introduce the notation to simplify the integral. For a fixed point x € M, let
2
Coxi={Cj, %0 € (RY)" :max{llx; — x5, lxx — xlIs} < llx; — xxlz},
Six:=B(xj, llx;j—xlz)NM, and S5 :=B(xg, [lxx —x[x) " M.
We then have
wR(Q; N QulXi =)= [[ w1 p(Sm U S 2" die ) dur)
We then perform a similar operation to split the region of integral so that I'y 5 = F}C’ 5.3 Y
Fi,a,z- Here
Cisx=TexnN{(x1,x2) € (R :flx1 — x|x, llx2 — x[ls < 8},

2 . 1
Fx,S,E T FX,E \Fx,ﬁ’

where ¢ is a sufficiently small but positive real number to be defined. Taking this idea, we
partition the integral into two parts:

n?P(Q; N Qi X; = x) = // 2(1 = 1(S;,5 U Sk )" dae ) dpax)

+ f (1= (S8 U Sm) "2 e ) duc).

Fx.S,E

Analogously to Lemma 2.4, we can directly prove a parallel version of it.

LEMMA 2.12. For p-a.e. x € M and the corresponding chart , it holds true that

i w(Ba(xj, llx —x;lx)))
Ixj—x 0 g(W @NA(BI(x, IIx —x;]5) Ne)

where 1y is the tangent space of M at x.

’

With Lemma 2.12, the same argument as in Lemma 1.5 gives us that

0= /f 2(1 = (S5 U Sk )" i ) dax)

< n2<1 (=g () Vs (%)m)”_z — 0.
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To bound the other term

[, r0= 8,5 U Ss)) ™ diate ) date),

Fx,B,E

we apply the following lemma (cf. Lemma 2.5).

LEMMA 2.13. For p-a.e. x € M and the corresponding chart \, we have

. p((BY(x ;. llxj — xlI2) U B (xg, [|xi — xII5))) _
Ij~xl3—0 g GNABI(z;, 1zj — ¥ (©)lIs) U Bk, llzk — ¥ ()l N 7o)

lxr—x]x—0

’

where z; =¥ (x ), 2k = V¥ (xk), and B? represents the ball under the Mahalanobis distance.

The same argument as in the derivation of inequality (2.20) shows

lglgo//F n2(1 = (85 U Sk5))' 2 dpaCe ) dpa )

Y

where

£) U (B(gf. |2k 5) N o)) dA(25) dA(z7).

2
Csx = {(wi, w2) € (x)” : max(||lwy — x|z, w2 —x[x) < lw; — w2z}

Here with a little abuse of notion, we use 7, to denote the tangent plane of M at x. Since
zjf and zj are supported on a m-diemnsional subspace of R?, we still use m in the index
of I'y;, 5 x. In the following, we write I';, » as a shorthand of I'y;, 5 9. Again we use the
derivation of inequality (2.21) to get the lower bound:

n—oo

tim [[ n(1 (Sim U Sem))' date ) diaCen)
x,8,%

(1-e)
= dtof

x//r exp(—k(Bd(zj*, 2| 5) U (BY (2,
m,x,x

Finally, since € > 0 is arbitrarily chosen, we conclude that

2" 5)) Ne) di(257) da (7).

lggoffr n2(1 = u(S).3 U Stp))" 2 dpu(x ) dpa(xi)

://Fm,z exp(—1(B%(z,, |z

where 7, is the tangent space of M at x. It can be regarded as the m-dimensional subspace
in R¢ which is tangent to M at x. Thus, we have

) U (B (z;,

2l 5) N 7)) di(z) di(zg),

Jim EMQX) = [ lim n?P(Q; 0 QulX: =) du(x)

-/ ewABe ) U (B

=:%/(m, K, Px).

2kl 2) M) dA(z;) dA(z) dpa(x)
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Now we go one step further to calcuate X (m, K, Px). Denote the eigendecomposition of
Pl %Py, as Pl P, = UAUT, where U is the orthogonal matrix and A is the diagonal
matrix with eigenvalues on the diagonal. Since X is a positive definite matrix, we have A;; >
Oforalli =1,...,m,and A;; =0 for i > m. Consider the change of variables in the integral
as

1 1
wi=AATIU 'z, w;=AATIU g,
where A =[], Aili/ 2™ is a normalized constant to force the Jacobian of the transformation
to be 1. It can be checked that w; and w; are supported on 7y, and also,

w;|) U (B (wy, Hwk”))):)‘(Bd(zj’ zjl5) U (B (2. |

where || - || is the Euclidean norm in R™. Plugging equation (2.23) into the expression of
X{(m, K, Px), we have

(223) A(B"(w;

Zk”z)m”x)v

X1(m, K, Px)

Y
- /M f'/rm;z exp(=A(B" (w;, [w;,) U (B" (wy,

=0I’I17

J” ) Bd zk’

Zills) N7x)) di(z;) di(z;) dx)

wi 1)) d(w ;) A (w) dpe(x)

so that

. EMtotal . 2 EM(Xi)
lim = lim — =0p.
n—>od n nﬁooizl n

This completes the proof. [

With Lemmas 2.8 and 2.9, we are now ready to prove Theorem 1.3. Plugging the limits of
EMota1/n and ENyoia1/ 7 to the expression of asymptotic variance, we obtain

4 2 4
Jlim_ Var(s/né&,) = + —Qm + = 0.

5 5
We then show the asymptotic normality of ﬁén by leveraging Theorem 4.1 in Deb,
Ghosal and Sen (2020). Since here we consider the directed nearest neighbor graph, the
out-degree of each node is 1. To check the asymptotic normality, we need to verify all the
assumptions in Theorem 4.1 in Deb, Ghosal and Sen (2020). To verify (A2) and (A3), adopt-
ing the notation in Deb, Ghosal and Sen (2020), we choose t, =r, ;=1 and g, :=Cy x + 1
for all n. Since the out-degree of the node indexed by i is d; = 1. Thus, (A2) and (A3) are
satisfied with these chosen parameters. Noticing that
lim max =0
n—o0 1<i<n (logn)Y

for any y > 0, we can just choose D := Cy ¢ + 2 > 0 to ensure rn_l(qn + t,) < D, which

makes sure that the additional conditions in Theorem 4.1 in Deb, Ghosal and Sen (2020) are
satisfied in our setting.

To wrap up, /n&, is asymptotically normal with mean 0 and variance 5 sqm + om

O
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2.6. Proof of Theorem 1.4.

PROOF OF THEOREM 1.4. The proof of Theorem 1.4 is similar to that of Theorem 1.3.
Therefore, we do not repeat the whole calculation process, but only present the major modi-
fications.

Since we study a smooth manifold M, the natural parameterization mapping ¥ is smooth
and is locally bijective. This argument makes sure the existence of its inverse mapping ¢ =
¥ ~1. Also, ¢ is a smooth function guaranteed by the definition of smooth manifold. Denote

S = (Vor () Vor (x)) 7,

where ¢, is the inverse mapping of natural parametrization mapping at the point x € M.
Here, by Tietze extension theorem (Dugundji (1951)), we can consider ¢, as a function on R4
without loss of generality, and the derivative operator is defined in this sense. Since the map-
ping is bijective, Ve, (x) is full-rank, so the inverse of the matrix is well defined.

With this locally defined matrix, we then introduce the Mahalanobis distance on the neigh-

borhood of x as
Iyls, =vy" =5y,

for arbitrary fixed point x € M. The proofs of Lemmas 2.10 and 2.11 can then be directly ap-
plied to the geodesic distance context. We state the geodesic distance version of Lemmas 2.10
and 2.11 below; their proofs are omitted.

LEMMA 2.14 (Expected number of nearest-neighbor pairs under goedesic distance).
Consider G, in RY to be the NNG induced by the geodesic distance dg(-, -), and M and
W satisfying the assumptions of Theorem 1.1(1), respectively. We then have, as n — o0,

1
E(—#{(i, J) distinct:i — j,j—i¢€ 5(gn)}) = Um-
n

LEMMA 2.15.  Consider G, in R? to be the NNG induced by metric f(-,-), and M and p
satisfying the assumptions of Theorem 1.1(i), respectively. We then have, as n — oo,

1
E<—#{(i, J, k) distinct:i >k, j —> k € 5(9;1)}) — Om.
n

With Lemmas 2.14 and 2.15, we get the asymptotic variance of the geodesic distance
NNG estimator, and the CLT is a direct consequence of Deb, Ghosal and Sen ((2020), Theo-
rem4.1). O

3. Proofs of the rest results.
3.1. Proof of Lemma 1.1(a).

PROOF OF LEMMA 1.1(a). Recall the expression for qy,:

m+1 1\]! el —nb-ldr
qm ‘= {2—[3/4( ,—)} , Ix(a,b) = fOl .
2 2 Jo ta=1(1 —p)b-1dr

To prove the monotone of g, as the dimension m increases, it suffices to show that I (a, b)
decreases as argument a increases when x € [0, 1] and a, b > 0. For some € > 0, we directly
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compare the values of I, (a, b) and I, (a + €, b). We have

Jrea=ta —nb=ldr
fo 141 A —)b~1ds’
Sheatee( —nb=tar
Jo t (1 —nb=1dr

(Ic(a,b)) ' =1+

(Iq(a+eb) ' =1+
Observe that

1 1
/ta_lté(l—t)b_ldt>x6/ a1 = b,
X

X

X X
/ e =P ar <x€/ 7 = b,
0 0

which implies that (/,(a, b)) < U (a+e€ b)) L Equivalently, I, (a + €, b) < I (a, b) for
every € > 0.
With monotony, we have q,, € (4o, q1], Where oo := limy,—, 0 g5, - Here, q; = 2/3, and
for g0, notice that for some sufficient small § > 0,
Joe = nbtdr _ Jorta— Hb=1dr - x4
Sl (1 —nb=tdr T [0l —nb-ldr T (1 —x = 28)(x + 8)e1sb 1

Thus, lim,_, _, I (a, b) =0, and hence g, = 1/2.
In conclusion, q,, € (1/2,2/3] is strictly decreasing as m increases. L[]

3.2. Proof of Lemma 1.1(b).
PROOF OF LEMMA 1.1(b). Recall the expression for o0,,:

Om 1= //rm;z exp[—A{B (w1, [lwi]) U B(wa, |wall)}]d(w;, w),

T2 i= {(w1, wa) € (R™)? : max(J|lw ||, [wall) < [[wi — wal}.

Considering the symmetry of w; and w> is the integral, we have
on=2 [ expl[=2[B(wr, w011 U B(wa, w2l ]dCw, w),
m;2

2
where T, .5 := T N {(wr, w2) € (R™)”: lwy || > lwz | }.

We first prove that for any positive integer m, 0, < 2. The expression for 0, means that

o < 2//;* exp[—A{B(wl, ||w1||)}]dw2dw1
m;2

=2 » exp[—A{B(wi, [[wil)}]Villwi ™ dw;

o
= 2/ exp(—Viut™) Vi t™ - (metm_1 dr)
0
0
_ / exp(—Vyut™) d(V212m) =2,
0

in which we apply polar coordinates transformation and denote # = ||w1|| in the transforma-
tion.
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Then we consider the limit behavior and prove that limsup,, 0,, < 1. The definition of

I'» ., shows that, for (wy, w2) € F;;z’ we have wi ¢ B(wa, |wz|) and ||wz|| < ||w1]|. Thus,

for fixed w1, the Lebesgue measure of B(w1, ||w]) N B(w>, ||w2]|) can be bounded by the
restrictions above, that is,

MB(wr, lwill) N B(wa, lwall)} < A{B(wi, [lwill) N B(O, [wil)}

_ (2_ i))\{B(wl, lwi))).

qm

We denote €,, =2 — 2/q,,. According to Lemma 1.1(a), it is known that lim,,_, 5 €, = 0.
Applying the estimation, we have the bound

MB(wi, [lwill) U B(wa, [wa)}
=MB(wi, |will)} +A{B (w2, [w2ll)} — A{B (w1, [wi]l) N B(w2, [wal])}
> (1 =€) VinllwilI™ + Vin w2 ]™.

We then get back to the expression for o,,:

on <2 [[[ expl=(1 = en)Vallwi[” = Villwal"]d(w1, w2)
m;2
=2 [ (expl=Vinllwa " dwa) exp[ (1 = ) Vw1 "] dwy
m;2

<2 (/ exp[—lelwzllm]dWZ> exp[—(1 — &) Vi w1 "] dw,
R NJwy:[[wall <[lwy ||

=2 (1= Vmll™)exp[—(1 =€) Vi lwy "] dw
Rm

1 1
(l—em 2\/1_6111)
The calculation follows from the polar coordinates transformation as used before. In conclu-
sion, we have limsup,, 0,, < 1. Combining this with o,, < 2, we obtain sup,, 0,, <2. U
3.3. Proof of Lemma 2.2.

PROOF OF LEMMA 2.2. We consider approximating ,u(Ud (x;,x;)) as

d _ dey. . — ;
Pl ) =W o) = [ ),

Using the Lebesgue differentiation theorem (LDT), there exists some &1 > O such that for
pn-a.e. x; and every x ; satisfying ||x; — x;|| < 61, we have

nUxi, x ) [ € e]
3.1 l——, 14 =-].
G S UL xpnMy) L3 T3

For every a > 0, we first define

Uy (x,y):=B"(x,allx —yll) UB"(y, allx — yl).

Taking a specific form of ¥, for example, orthogonal projection onto the tangent plane 7, we
have for every y > 0 and x ; satisfying |lx; — x;|| < 82, we have

(3.2) U, (¥ (x0), ¥ (x ) C Y (U Gei, x ) N M) C U (¥ (x0), ¥ (x ).
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In fact, considering the properties of orthogonal projection, we have for every x €
Ud(x;,x ;)N M,
v Ge) — (x| < llx —xill < llxi — ;]I
LEMMA 3.1. (i) For any x € M and any a > 0, there exists § > 0 such that for every
x; € M satisfying || x; — x|| < 8, we have that the angle between the vector x; — x and its
projection onto 7, which is the tangent plane of M at point x, is less than «.
(if) Furthermore, there exists 8* > 0 such that for every x;, x j € M satisfying max{||x; —

x|, lx; — x|} < &%, we have that the angle between the vector x; — x j and its projection
onto the tangent plane 1 is less than «.

Applying Lemma 3.1, we can select a sufficiently small §, such that
i =%l < A+ p)¥re) —vx)].
This reveals that for every
x € B(x;, lx; —xj[) "M,
it holds true that
Y (x) € B(Y(xi), L+ ) |[v(xi) — ¥ (x)]).

The above process can be repeated for the pair (x, x ;) similarly. Putting them together, we
get the second “C” of equation (3.2):

Y (Ui, x ) N M) C UL, (W (), ¥ (x)).
For the first “C”, the proof is similar. In detail, for every
z€B(y (), L =y|va) —y@&p[)nv,

we can select a sufficiently small 6, such that

lv~'(2) —xi] < (1 + g)”z - Y| < (1 - %)Illﬂ(xi) =y < llxi —x;l,
which implies that

YU, (). ¥ (x ) C U xi x ) N M.

Applying the mapping ¥ to both sides and repeating the process for x and x ;, we obtain the
first “C” of equation (3.2):

U, (), ¥ (x))) C ¥ (U4 (xi, xj) N M),
With equation (3.2) and noticing that
Iy e — v &I _

lxj—xill—>0 flx; —xl

(3.3) 1,

one can directly obtain that

L AUl xpOMY) L AU x) OM))
llxj—xi]|—0 AMU™(xi,x})) lxj=xill=0 AU™ (¥ (x;), ¥(x;))) '

(3.4)

Combining (3.1) and (3.4) completes the proof of Lemma 2.2. [J
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3.4. Proofs of Lemma 2.3,2.4,2.5, and 2.7.

PROOFS OF LEMMA 2.3, 2.4, AND 2.5. All these lemmas share a similar proof to
Lemma 2.2 that we have proved above. Details are hence omitted. [l

PROOF OF LEMMA 2.7. We consider the pushforward I and Lebesgue measure A
instead of u and the pushforward i, in this lemma. Hence, we just set g = 1 and its proof
can be regarded as a special case of the proof sketch of Lemma 2.4. [

3.5. Proof of Lemma 2.10. 'We consider approximating u(U d(x,x j)) as
d d
w(U%(x,x) =teu(Yv (U (x,x;) N M :/ di(x ;).
(Uk D) =van(¥ Uk J ) 1/f(U;é(x,xj)m\/l)g j
Using the Lebesgue differentiation theorem (LDT), there exists some § > O such that for
p-a.e. x and every x ; satisfying |[x; — x|| <&, we have
w(Ue(x,x)) . [1_ € 1+g]
g DAY (Ug (x,x ) N M) 3703

Since H (0) is assumed to be positive definite, we can choose constants 0 < ¢ < C < oo such
that

(3.5)

¢ < Amin(H(0)) < Amax(H(0)) < C
for the eigenvalues of H (0). Thus, the Mahalanobis distance

lxlls = 1%l ggy)-1 =/xT (H(0))x

is equivalent to the Euclidean distance ||x||. With the same argument, Lemma 3.1 holds for
the Mahalanobis distance || - || as well. As in the proof of Lemma 2.2, Lemma 3.1 directly
yields that, for any fixed y > 0, we can choose a sufficiently small § > 0 such that

U, (@), ¥(x))) CY (UG x,) NM) C U, ¢ (@), ¥ (x)),
where
Uik (x, y) := B (x, allx — yllx) U B (v, allx — yllx) N7x
and m, denotes the tangent plane of M at point x. Letting y — 0, we have
L MY WURGLx)OM)Y)
lr=xjlls—=0 AU (Y (x:), ¥ (x)))
The same argument as in the derivation of (3.3) gives us
fO&) —y&x))
le—xjlz—0  f(x —x;)

Also, the smoothness of f gives us that V £(0) = 0 and V2 (0) = X', and the Taylor
expansion of f around 0 gives us

(3.6)

1.

(3.7)

. fx—x;) _
lx=x;lls—0 X — X ||x
Combining (3.6), (3.7), and (3.8), we obtain

MY UR G x) OM))
lx—xjlls—0 [lx — xj||§Um,K,x

(3.8)

L,

which completes the proof of Lemma 2.10.
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3.6. Proofs of Lemmas 2.11, 2.12 and 2.13.

PROOFS OF LEMMAS 2.11, 2.12 AND 2.13. The proofs are nearly identical to that of
Lemma 2.10. We thus omit the details. [J

3.7. Proof of Lemma 3.1.

PROOF OF LEMMA 3.1. We denote by 7 the tangent plane of M at point x and 7+
the orthogonal complement of 7 in R?. Moreover, we denote by Py, Qy the orthogonal
projection operators on 77 and 71, respectively. The orthogonal decomposition of a vector z
with respect to 7 can then be shown as z = Py (z) + Qv (2).

Define 6(z) as the angle between z and its projection onto the tangent plane 7. When
z =0, we define 6(z) = 0. Using the notation above, one has

Qv (x; —x)
| Py (x; —x)|’

We now consider 6(x; — x) as a function of x;. Since M is a smooth manifold, Qv (x; — x)
and Py (x; — x) are both continuous functions. With the definition of the tangent plane 7, we
know that 8(x; — x) is continuous at point x; = x. Thus 6(x; — x) is a continuous function
on M. We can select a fixed 6; > 0 so that 6(x; — x) is uniformly continuous on M N
Bd(x, 81). Since O(x — x) = 0, there exists 0 < § < §; such that for any x; € M and ||x; —
x| <8, we have 6 (x; — x) < «, which is the first claim.

For the second claim, we just have to modify 6(z) as follows: we define 0(x;, x ;) to be
the angle between the vector x; — x; and its projection onto the tangent plane 7 so that

Qv (x; —x )l
| Py(x; —x Il

tan(0(x; —x)) = X; #X.

tan(0(x;, xj)) = Xi #Xj.

Additionally, define 6(x;,x ;) =0 when x; = x ;. We select 8] to make sure that 6(x;, x ;)
exists. The second claim can then be obtained similarly by following the proof above. [

3.8. Proof of Lemma 2.6.

PROOF OF LEMMA 2.6. It is a simple corollary to the Lebesgue differential theorem,
which can be derived by applying the LDT to f and g respectively:

1 1 1
lim — dr = lim — | di= lim — [ gdx.
UxUev U] /Ufg fxs@x)  lim /U fe, i /Ug

This completes the proof. [J
3.9. Proof of Proposition 1.2.
PROOF OF PROPOSITION 1.2. We first show that for any fixed point x € M, the number
of points whose NN is x is finite. Consider all the geodesic cones
{Calaer CM
with x as their common peak, which satisfies that, for any a € I, x’, x” € C,, we have
dg(x" — x") < max{d,(x" — x),dy(x" — x)}.

We can directly check that C, \ {x} is an open set for any « € I, and |, c; Co = M. In fact,
for any x” # x, x’ € M, we can find a small enough € > 0 such that

€ <dg(x,x')/3.
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Thus, B(x’, €) C C, for some o € I. Here B(x’, €) denotes the geodesic ball with center x’
and radius €. Since M is compact and {C, U B(x, §)}yes is an open cover of M for any
8 > 0, we can find a finite subcover of M, denoting as {Cy U B(x, §)}qcr,, Where I is a
finite index set, that is,

(3.9) Mc | {CaUB(x,8)}.

ael

Then, we choose § small enough so that we can find a local smooth exponential map ¥
satisfying

Yy B(x,85) > R", y(0)=rx,
and
[~ ()| = dg (x, x),
A=y~ (&) =y ()] <dg(x', x")
<A+n[y~' @) -y (") forany x, x" #x,

which holds true for the natural exponential map in Riemannian geometry with a sufficiently
small § > 0. By the construction in Bickel and Breiman (1983), we can find a finite set of
cones in R™ with 0 as their common peak satisfying

A+e|y —y"| < —eymax{|y’|,|y”||} foranyy’,y” #0

in the same cone. Consider the map of these cones under exponential map . Each image of
the cone is a subset of a geodesic cone in M with x as its common peak. Therefore, we can
find a finite set of geodesic cones indexed by /> such that

(3.10) B(x,8) C | Ca.

ael

Combining (3.9) and (3.10), we have M C Uyej,ur, Co- For any two points whose NN are
both x, it is straightforward to get that they cannot be in the same geodesic cone, which
implies that the number of points whose NN is x is finite.

Then we consider the set

Tk := {x € M : the maximum number of points whose NN is x equals K}.

For any x € Tk, we can find a realization of K points whose NN is x, denoting this set as
{x1,...,xg}. Denote §; = min ; do(x;, x ;). By definition of NN, we have

8 —dg(xi,x)>0 foranyi=1,..., K.
Denote

§* = izrlr}.iEK(Si —dg(x;,x)>0.
It can be checked by triangle inequality that for any x” € B(x, §*), we have x’ € Tx. Thus, Tx
is an open set in M. For any x € M, since the number of points whose NN is x is finite, there
must be x € Tx for some K € N*. Therefore, M = |J%_, Tk. Again, since M is compact,
there exists a finite index set /3 such that M = Jg 15 Tk - Now we set

Cyv=max K < o0
Kely ’

which implies that M = U%‘:AI Tk . Thus, for any x € M, the number of points whose NN is
x isat most Cpq. [



AZADKIA-CHATTERIJEE’S CORRELATION FOR MANIFOLDS 5209

REFERENCES

AMELUNXEN, D., LoTz, M., McCoy, M. B. and TROPP, J. A. (2014). Living on the edge: Phase transitions
in convex programs with random data. Inf. Inference 3 224-294. MR3311453 https://doi.org/10.1093/imaiai/
iau005

AUDDY, A., DEB, N. and NANDY, S. (2024). Exact detection thresholds for Chatterjee’s correlation. Bernoulli
30 1640-1668.

AZADKIA, M. and CHATTERIEE, S. (2021). A simple measure of conditional dependence. Ann. Statist. 49 3070—
3102. MR4352523 https://doi.org/10.1214/21-20s2073

AZADKIA, M., TAEB, A. and BUHLMANN, P. (2021). A fast non-parametric approach for causal structure learn-
ing in polytrees. Available at arXiv:2111.14969.

BERLINET, A. and THOMAS-AGNAN, C. (2004). Reproducing Kernel Hilbert Spaces in Probability and Statis-
tics. Kluwer Academic, Boston, MA. MR2239907 https://doi.org/10.1007/978-1-4419-9096-9

BICKEL, P. J. (2022). Measures of independence and functional dependence. Available at arXiv:2206.13663.

BICKEL, P. J. and BREIMAN, L. (1983). Sums of functions of nearest neighbor distances, moment bounds, limit
theorems and a goodness of fit test. Ann. Probab. 11 185-214. MR0682809

Cao, S. and BICKEL, P. J. (2020). Correlations with tailored extremal properties. Available at
arXiv:2008.10177v2.

CHATTERIJEE, S. (2021). A new coefficient of correlation. J. Amer. Statist. Assoc. 116 2009-2022. MR4353729
https://doi.org/10.1080/01621459.2020.1758115

CHATTERIEE, S. and VIDYASAGAR, M. (2022). Estimating large causal polytree skeletons from small samples.
Available at arXiv:2209.07028.

CLARKSON, K. L. (2006). Nearest-neighbor searching and metric space dimensions. In Nearest-Neighbor Meth-
ods for Learning and Vision: Theory and Practice. 15-59.

DEB, N., GHOSAL, P. and SEN, B. (2020). Measuring association on topological spaces using kernels and geo-
metric graphs. Available at arXiv:2010.01768v2.

DETTE, H., SIBURG, K. F. and STOIMENOV, P. A. (2013). A copula-based non-parametric measure of regression
dependence. Scand. J. Stat. 40 21-41. MR3024030 https://doi.org/10.1111/j.1467-9469.2011.00767.x

DEVROYE, L. (1988). The expected size of some graphs in computational geometry. Comput. Math. Appl. 15
53-64. MR0937563 https://doi.org/10.1016/0898-1221(88)90071-5

DUGUNDII, J. (1951). An extension of Tietze’s theorem. Pacific J. Math. 1 353-367. MR0044116

EvANS, L. C. and GARIEPY, R. F. (2015). Measure Theory and Fine Properties of Functions, Revised ed. Text-
books in Mathematics. CRC Press, Boca Raton, FL. MR3409135

FucHs, S. (2024). Quantitying directed dependence via dimension reduction. J. Multivar. Anal. 201 105266.

GAMBOA, F., GREMAUD, P., KLEIN, T. and LAGNOUX, A. (2022). Global sensitivity analysis: A novel gener-
ation of mighty estimators based on rank statistics. Bernoulli 28 2345-2374. MR4474546 https://doi.org/10.
3150/21-bej1421

GRIESSENBERGER, F., JUNKER, R. R. and TRUTSCHNIG, W. (2022). On a multivariate copula-based de-
pendence measure and its estimation. Electron. J. Stat. 16 2206-2251. MR4401220 https://doi.org/10.1214/
22-¢js2005

HAN, F. (2021). On extensions of rank correlation coefficients to multivariate spaces. Bernoulli News 28 7-11.

HENZE, N. (1987). On the fraction of random points with specified nearest-neighbour interrelations and degree
of attraction. Adv. in Appl. Probab. 19 873-895. MR0914597 https://doi.org/10.2307/1427106

HUANG, Z., DEB, N. and SEN, B. (2022). Kernel partial correlation coefficient—a measure of conditional de-
pendence. J. Mach. Learn. Res. 23 1-58.

KPOTUFE, S. (2011). k-nn regression adapts to local intrinsic dimension. In Advances in Neural Information
Processing Systems 24.

KPOTUFE, S. (2017). Lipschitz density-ratios, structured data, and data-driven tuning. In International Confer-
ence on Artificial Intelligence and Statistics.

KPOTUFE, S. and GARG, V. (2013). Adaptivity to local smoothness and dimension in kernel regression. In
Advances in Neural Information Processing Systems 26.

LEE, J. M. (2013). Introduction to Smooth Manifolds, 2nd ed. Graduate Texts in Mathematics 218. Springer, New
York. MR2954043

LEVINA, E. and BICKEL, P. (2004). Maximum likelihood estimation of intrinsic dimension. In Advances in
Neural Information Processing Systems 17.

LIN, Z. and HAN, F. (2022). Limit theorems of Chatterjee’s rank correlation. Available at arXiv:2204.08031.

LIN, Z. and HAN, F. (2023). On boosting the power of Chatterjee’s rank correlation. Biometrika 110 283-299.
MR4589063 https://doi.org/10.1093/biomet/asac048

RENYI, A. (1959). On measures of dependence. Acta Math. Acad. Sci. Hung. 10 441-451. MR0115203
https://doi.org/10.1007/BF02024507


https://mathscinet.ams.org/mathscinet-getitem?mr=3311453
https://doi.org/10.1093/imaiai/iau005
https://mathscinet.ams.org/mathscinet-getitem?mr=4352523
https://doi.org/10.1214/21-aos2073
http://arxiv.org/abs/2111.14969
https://mathscinet.ams.org/mathscinet-getitem?mr=2239907
https://doi.org/10.1007/978-1-4419-9096-9
http://arxiv.org/abs/2206.13663
https://mathscinet.ams.org/mathscinet-getitem?mr=0682809
http://arxiv.org/abs/2008.10177v2
https://mathscinet.ams.org/mathscinet-getitem?mr=4353729
https://doi.org/10.1080/01621459.2020.1758115
http://arxiv.org/abs/2209.07028
http://arxiv.org/abs/2010.01768v2
https://mathscinet.ams.org/mathscinet-getitem?mr=3024030
https://doi.org/10.1111/j.1467-9469.2011.00767.x
https://mathscinet.ams.org/mathscinet-getitem?mr=0937563
https://doi.org/10.1016/0898-1221(88)90071-5
https://mathscinet.ams.org/mathscinet-getitem?mr=0044116
https://mathscinet.ams.org/mathscinet-getitem?mr=3409135
https://mathscinet.ams.org/mathscinet-getitem?mr=4474546
https://doi.org/10.3150/21-bej1421
https://mathscinet.ams.org/mathscinet-getitem?mr=4401220
https://doi.org/10.1214/22-ejs2005
https://mathscinet.ams.org/mathscinet-getitem?mr=0914597
https://doi.org/10.2307/1427106
https://mathscinet.ams.org/mathscinet-getitem?mr=2954043
http://arxiv.org/abs/2204.08031
https://mathscinet.ams.org/mathscinet-getitem?mr=4589063
https://doi.org/10.1093/biomet/asac048
https://mathscinet.ams.org/mathscinet-getitem?mr=0115203
https://doi.org/10.1007/BF02024507
https://doi.org/10.1093/imaiai/iau005
https://doi.org/10.3150/21-bej1421
https://doi.org/10.1214/22-ejs2005

5210 F. HAN AND Z. HUANG

SCHOLKOPF, B. (2000). The kernel trick for distances. In Advances in Neural Information Processing Systems
13.

SHI, H., DRTON, M. and HAN, F. (2022). On the power of Chatterjee’s rank correlation. Biometrika 109 317—
333. MR4430960 https://doi.org/10.1093/biomet/asab028

SHI, H., DRTON, M. and HAN, F. (2024). On Azadkia—Chatterjee’s conditional dependence coefficient. Bernoulli
30 851-877. MR4699537 https://doi.org/10.3150/22-bej1529

STROTHMANN, C., DETTE, H. and SIBURG, K. F. (2024). Rearranged dependence measures. Bernoulli 30 1055—
1078. MR4699545 https://doi.org/10.3150/23-bej1624

SZEKELY, G. J., R1zzo, M. L. and BAKIROV, N. K. (2007). Measuring and testing dependence by correlation
of distances. Ann. Statist. 35 2769-2794. MR2382665 https://doi.org/10.1214/009053607000000505

ZHANG, Q. (2023). On the asymptotic null distribution of the symmetrized Chatterjee’s correlation coefficient.
Statist. Probab. Lett. 194 Paper No. 109759, 7. MR4525660 https://doi.org/10.1016/.spl.2022.109759


https://mathscinet.ams.org/mathscinet-getitem?mr=4430960
https://doi.org/10.1093/biomet/asab028
https://mathscinet.ams.org/mathscinet-getitem?mr=4699537
https://doi.org/10.3150/22-bej1529
https://mathscinet.ams.org/mathscinet-getitem?mr=4699545
https://doi.org/10.3150/23-bej1624
https://mathscinet.ams.org/mathscinet-getitem?mr=2382665
https://doi.org/10.1214/009053607000000505
https://mathscinet.ams.org/mathscinet-getitem?mr=4525660
https://doi.org/10.1016/j.spl.2022.109759

	Introduction
	Literature review
	Proof sketch
	Extension to non-Euclidean metrics
	Difference-based kernel metrics
	Geodesic distance and general kernel metrics

	Some ﬁnite-sample studies

	Proofs
	Proof of Theorem 1.2
	Proof of Lemma 1.2
	Proof of Lemma 1.4
	Proof of Lemma 1.5
	Proof of Theorem 1.3
	Proof of Theorem 1.4

	Proofs of the rest results
	Proof of Lemma 1.1(a)
	Proof of Lemma 1.1(b)
	Proof of Lemma 2.2
	Proofs of Lemma 2.3, 2.4, 2.5, and 2.7
	Proof of Lemma 2.10
	Proofs of Lemmas 2.11, 2.12 and 2.13
	Proof of Lemma 3.1
	Proof of Lemma 2.6
	Proof of Proposition 1.2

	References

