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In their seminal work, Azadkia and Chatterjee (Ann. Statist. 49 (2021)
3070–3102) initiated graph-based methods for measuring variable depen-
dence strength. By appealing to nearest neighbor graphs based on the Eu-
clidean metric, they gave an elegant solution to a problem of Rényi (Acta
Math. Acad. Sci. Hung. 10 (1959) 441–451). This idea was later developed
in Deb, Ghosal and Sen (2020) (https://arxiv.org/abs/2010.01768) and the au-
thors there proved that, quite interestingly, Azadkia and Chatterjee’s correla-
tion coefficient can automatically adapt to the manifold structure of the data.
This paper furthers their study in terms of calculating the statistic’s limiting
variance under independence—showing that it only depends on the manifold
dimension—and extending this distribution-free property to a class of metrics
beyond the Euclidean.

1. Introduction. Consider X ∈ R
d and Y ∈ R to be two random variables defined over

the same probability space with fixed and continuous joint distribution function FX,Y and
marginal distributions FX and FY , respectively. Let (X1, Y1), . . . , (Xn, Yn) be n indepen-
dent copies of (X, Y ), Ri be the rank of Yi among {Y1, . . . , Yn} and N(i) index the nearest
neighbor (NN) of Xi among {X1, . . . ,Xn}, measured using the Euclidean metric. Built on
an earlier work of Chatterjee (2021), Azadkia and Chatterjee (2021) introduced the following
graph-based correlation coefficient:

ξn = ξn

({
(Xi , Yi)

}n
i=1

) := 6

n2 − 1

n∑
i=1

min{Ri,RN(i)} − 2n + 1

n − 1
.

This correlation coefficient was shown in Azadkia and Chatterjee ((2021), Theorem 2.2), to
converge strongly to a population dependence measure that was first introduced in Dette,
Siburg and Stoimenov (2013),

ξ = ξ(X, Y ) :=
∫

Var{E[1(Y ≥ t)|X]}dFY (t)∫
Var{1(Y ≥ t)}dFY (t)

.

Dette, Siburg and Stoimenov (2013)’s dependence measure satisfies some of the most desir-
able properties discussed in Rényi (1959) including, in particular, the following three:

(1) ξ ∈ [0,1];
(2) ξ = 0 if and only if X is independent of Y ;
(3) ξ = 1 if and only if Y is a measurable function of X almost surely.

Azadkia and Chatterjee thus outlined an elegant approach to measuring the dependence
strength between X and Y , resolving many long-standing issues that surround Rényi’s criteria
as were recently discussed by Professor Peter Bickel (Bickel (2022)).
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The authors of this paper are interested in ξn’s adaptivity to the manifold structure of
the data, a problem that has received much interest in the NN literature (Kpotufe (2011),
Kpotufe and Garg (2013), Levina and Bickel (2004)). To this end, our focus is on the limiting
null distribution of ξn, that is, its limiting distribution under independence between X and Y .
Such a result, if derived, would immediately give rise to a statistical test of the following null
hypothesis:

H0 : X (supported on a smooth manifold) is independent of Y.

Below is the main result of this paper.

THEOREM 1.1 (Central limit theorem of ξn for manifold data). Let Y ∈ R be independent
of X ∈ R

d and let FX,Y be fixed and continuous. Further assume that the following two
conditions hold:

(i) X ∈ M, where M is an m-dimensional C∞ manifold in R
d with m ≤ d;

(ii) the law of X is absolutely continuous with respect to Hm M, the restricted m-
dimensional Hausdorff measure in R

d on M.

We then have, as n → ∞,

√
nξn converges to N

(
0,

2

5
+ 2

5
qm + 4

5
om

)
in distribution,

where for any integer m ≥ 1,

qm :=
{

2 − I3/4

(
m + 1

2
,

1

2

)}−1
, Ix(a, b) :=

∫ x
0 ta−1(1 − t)b−1 dt∫ 1
0 ta−1(1 − t)b−1 dt

,

om :=
∫∫

�m;2
exp

[−λ
{
B

(
w1,‖w1‖) ∪ B

(
w2,‖w2‖)}]

d(w1,w2),

�m;2 := {
(w1,w2) ∈ (

R
m)2 : max

(‖w1‖,‖w2‖)
< ‖w1 − w2‖}

,

B(w1, r) represents the ball of radius r and center w1, ‖ · ‖ is the Euclidean norm, and λ(·)
is the Lebesgue measure.

REMARK 1.1. Notably speaking, the authors of Azadkia and Chatterjee (2021) intro-
duced two statistics: one aimed at measuring conditional correlation, and the other at mea-
suring marginal correlation. This was indicated in Azadkia and Chatterjee ((2021), before
Theorem 2.2). In this paper, we are specifically concerned with the latter statistic.

REMARK 1.2. In Theorem 1.1, we assume a constant global dimension of M. When the
data structure is more complex, the dimension may differ between different (connected or
not) components of M. In such cases, the value of ξn’s asymptotic variance can be derived
analogously as a mixture distribution of each part corresponding to one component of M.

The essence of Theorem 1.1 is the following result, which calculates the limiting null
variance of ξn.

THEOREM 1.2. Suppose that the conditions in Theorem 1.1 hold. We then have, as n

goes to ∞,

Var(
√

nξn) converges to
2

5
+ 2

5
qm + 4

5
om.
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TABLE 1
The first 10 values of qm and om

m 1 2 3 4 5 6 7 8 9 10

qm 0.67 0.62 0.59 0.57 0.56 0.55 0.54 0.53 0.53 0.52
om 0.49 0.63 0.71 0.76 0.79 0.84 0.86 0.90 0.98 1.00

As we will explain later in Section 1.2, the terms qm and om count the averaged numbers
of nearest neighbor pairs and triples, respectively. The first ten qm and om were shown in
Table 1 and some basic properties are listed below.

LEMMA 1.1. The following hold true:

(a) qm ∈ (1
2 , 2

3 ] is strictly decreasing as m increases;
(b) supm om < 2 and lim supm om ≤ 1.

1.1. Literature review. Theorem 1.1 builds a bridge between two statistical fields, the
study of graph-based correlation coefficients and the study of nearest neighbor methods and
their adaptivity to manifold data.

On one hand, since the pioneering work of Chatterjee (2021) and Azadkia and Chatterjee
(2021), the study of graph-based correlation coefficients has quickly attracted attention; a
literature is being built up rapidly and includes, among many others, Cao and Bickel (2020),
Shi, Drton and Han (2022), Gamboa et al. (2022), Deb, Ghosal and Sen (2020), Huang,
Deb and Sen (2022), Auddy, Deb and Nandy (2024), Shi, Drton and Han (2024), Lin and
Han (2023), Fuchs (2024), Azadkia, Taeb and Bühlmann (2021), Griessenberger, Junker and
Trutschnig (2022), Strothmann, Dette and Siburg (2024), Lin and Han (2022), Zhang (2023),
Bickel (2022) and Chatterjee and Vidyasagar (2022).

In the following we list three existing results that are most relevant to Theorem 1.1. Read-
ers of more interest are referred to Han (2021) and Lin and Han ((2022), Section 1.1) for a
slightly more complete review.

(1) Deb, Ghosal and Sen (2020) studied a general class of graph-based correlation coef-
ficients, to which ξn belongs. Their Corollary 5.1 examined the convergence rate for ξn to ξ ,
illustrating an interesting interplay between the intrinsic dimension of X and the smoothness
of some conditional expectation functions relating Y to X. They revealed, for the first time,
the adaptation of graph-based correlation coefficients to the manifold structure of X.

(2) Built on the work of Deb, Ghosal and Sen (2020), Shi, Drton and Han ((2024), Theo-
rem 3.1(ii)) established a central limit theorem (CLT) for ξn under (a) independence between
Y and X; (b) absolute continuity (with respect to the Lebesgue measure) of FX . Under these
conditions, they showed

√
nξn converges to N

(
0,

2

5
+ 2

5
qd + 4

5
od

)
in distribution.

(3) In a more recent preprint, Lin and Han ((2022), Theorem 1.1) established a CLT
for ξn while removing both independence and absolute continuity assumptions required in
Shi, Drton and Han (2024). In particular, they showed that as long as (a) FX,Y is fixed and
continuous and (b) Y is not almost surely a measurable function of X, it holds true that

(ξn − Eξn)/
√

Var(ξn) converges to N(0,1) in distribution.

Theorem 1.1 can thus be viewed as a descendent of the above three results:
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(1) compared to Deb, Ghosal and Sen (2020), it established a weak convergence instead
of a point estimation type result;

(2) compared to Shi, Drton and Han (2024), it removed the absolute continuity assump-
tion required therein;

(3) compared to Lin and Han ((2022), Theorem 1.1), Theorem 1.1 calculated the explicit
value of the asymptotic variance.

On the other hand, in practice many data are believed to be structured, that is, they are
embedded in a space that is of a much higher dimension than necessary (Amelunxen et al.
(2014), Levina and Bickel (2004)). Local methods, especially the NN-based ones, are long
believed to be suitable for analyzing such data, capable of automatically adapting to the
data structure (Clarkson (2006), Kpotufe (2011), Kpotufe (2017), Kpotufe and Garg (2013)).
We believe Theorem 1.1 also bears potential to contribute to this line of the research. In
particular:

(1) As we shall show in Section 1.2, an essence of Theorem 1.1 is to calculate the aver-
aged numbers of nearest neighbor pairs and triples; they are thus monitoring the stochastic
structure of an NN graph (NNG) when the data are distributed over a manifold.

(2) Theorem 1.1 is also, to our knowledge, the first weak convergence type results for
tracking the statistical behavior of a NN-based functional over a manifold-supported proba-
bility space.

From a technical standpoint, we utilized Lin and Han ((2022), Theorem 1.1) in our proof
to demonstrate the asymptotic normality of ξn. However, in our perspective, this step of es-
tablishing a central limit theorem is not the most crucial aspect of Theorem 1.1. The primary
focus is on the fact that the null variance limit of ξn can adapt automatically to the manifold
dimension of X. Proving this assertion required several novel calculations, which are pre-
sented in Lemmas 1.4 and 1.5 ahead. These lemmas represent genuinely new contributions.

1.2. Proof sketch. We first introduce some auxiliary results on the NNGs and the man-
ifold. Recall that [Xi]ni=1 comprise n independent copies of a random vector X ∈ R

d from
an unknown distribution function FX . Let Gn be the associated directed NNG with vertex set
{1, . . . , n} and edge set E(Gn); here an edge {i → j} ∈ E(Gn) means Xj is the NN of Xi .

We are interested in manifold data; more precisely, we are interested in such random vector
X that is supported on M, a smooth submanifold of Rd with manifold dimension m ≤ d . The
following concepts are from Lee (2013).

DEFINITION 1.1. Let M be an m-dimensional smooth manifold. A coordinate chart,
abbreviated as a chart, on M is a pair (U,ψ), where U is an open set of M and ψ : U → V

is a homeomorphism from U to an open subset V = ψ(U) ⊂ R
m.

DEFINITION 1.2. Given a smooth manifold M and a chart (U,ψ) of M, U is called a
coordinate neighborhood of each point w ∈ U .

Concerning any point x ∈ M, one can find a chart of M with coordinate neighborhood
U(= Ux) and corresponding homeomorphism ψ(= ψx).1 With this notion, we give an as-
sumption on the distribution of X that will be shown to be an alternative to Theorem 1.1(ii).
In the following, the law of X is denoted by μ and the restriction of μ to a set U is denoted
by μU .

1There are, of course, many such neighborhoods and homeomorphisms circling x; in the sequel we simply pick
one of them.
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ASSUMPTION 1.1 (Distribution assumption). The positive measure μ satisfies the fol-
lowing condition: for any point x ∈ M and any chart (U,ψ) such that U is a coordinate
neighborhood of x and ψ : U → V ⊂ R

m, the restricted pushforward measure ψ∗μU is ab-
solutely continuous with respect to the Lebesgue measure λ(·) on V .

Assumption 1.1 yields an alternate description of the data generating process and will
appear to be useful in the following proofs; the next lemma shows that it is equivalent to the
assumption of Theorem 1.1(ii).

LEMMA 1.2 (Alternative distribution assumption). As M satisfies the assumption of
Theorem 1.1(i), Assumption 1.1 is equivalent to the assumption of Theorem 1.1(ii).

We then move on to study the stochastic behavior of the NNG Gn as M satisfies Theo-
rem 1.1(ii) and X satisfies Assumption 1.1. Since in the expression of ξn, one of the rank
terms is indexed by its NNG, the asymptotic distribution of ξn has a connection with the
properties of the NNG. In the following we introduce a series of lemmas on this topic. To be-
gin with, Lemma 1.3 is a well-known result by Bickel and Breiman (1983) on the maximum
number of nearest neighbors.

LEMMA 1.3 (Maximum degree in nearest neighbor graphs). There is an upper bound
for the degree of any point in NNGs. More specifically, let x1, . . . ,xn be any collection of
n distinct points in R

d . Then there exists a constant Cd depending only on the dimension d

such that x1 is the nearest neighbor of at most Cd points from {x2, . . . ,xn}.

The next two lemmas draw the average numbers of some specific structures in an NNG.
They are extensions of conclusions in Devroye (1988) and Henze (1987). We first focus on
the number of loops between two vertices, which we call a nearest neighbor pair in Gn.

LEMMA 1.4 (Expected number of nearest-neighbor pairs). Consider Gn in R
d with M

and μ satisfying the assumption of Theorem 1.1(i) and Assumption 1.1, respectively. We then
have, as n → ∞,

E
(

1

n
#
{
(i, j) distinct : i → j, j → i ∈ E(Gn)

}) → Vm

Um

:= qm,

where Vm is the volume of the unit ball in R
m, and Um is the volume of the union of two unit

balls in R
m whose centers are a unit distance apart.

We then turn to another structure in E(Gn) that monitors those parent vertices that share
the same child vertex. We call them a nearest neighbor triple in Gn.

LEMMA 1.5. Consider Gn in R
d with M and μ satisfying the assumption of Theo-

rem 1.1(i) and Assumption 1.1, respectively. We then have, as n → ∞,

E
(

1

n
#
{
(i, j, k) distinct : i → k, j → k ∈ E(Gn)

}) → om.

Get back to the data (Xi , Yi), i = 1, . . . , n. Let the assumptions in Theorem 1.1 hold and
we construct Gn on the manifold data [Xi]ni=1. Recall that m denotes the manifold dimension
and qm, om are positive constants depending only on m. With the lemmas presented above, it
is then straightforward to derive the limiting variance following the proof of Shi, Drton and
Han ((2024), Theorem 3.1), outlined in Theorem 1.2.
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Last, when Y is independent of X, using Theorem 1.1 in Lin and Han (2022), we have

ξn√
Var(ξn)

d→ N(0,1).

Combining the above result with Theorem 1.2 then yields Theorem 1.1.

1.3. Extension to non-Euclidean metrics. This section extends the above results to met-
rics beyond the Euclidean. Let us consider a general kernel function K over some support
X ×X that induces a kernel metric (Schölkopf (2000)),

D(Xi ,Xj ) :=
√

K(Xi ,Xi) + K(Xj ,Xj )

2
− K(Xi ,Xj ).(1.1)

To make D(Xi ,Xj ) well defined, we require some characteristics properties of the kernel
function. Two specific types of such structures are introduced below.

1.3.1. Difference-based kernel metrics. First, consider the difference-based kernel met-
ric, that is,

K(x,y) = −f (x − y),

for some function f : X → R. The function f is regulated below so that the corresponding
K can indeed induce a metric.

ASSUMPTION 1.2. Assume f (0) = 0 and f (x) > 0 for all x �= 0. Further, assume that
f (x) is C2 in the neighborhood of 0, ∇2f (0) is positive definite, and for some ε0 > 0 and
any 0 < ε < ε0, there exists a δ > 0, f (x) > ε for any ‖x‖ > δ. In addition, we require f to
induce a nondegenerate metric, that is, the number of points in X ⊂ R

d with the same NN
can be upper bounded by some constant Cd,K that only depend on the dimension d and the
chosen kernel K .

The corresponding kernel metric can then be written as

D(x,y) =
√

−K(x,y) =
√

f (x − y).(1.2)

In particular, the first part of Assumption 1.2 requires the kernel function to be smooth and
characteristic, which is reasonable for kernels used for expressing correlation. The second
part (nondegeneracy condition) holds automatically for the Euclidean metric and in Bickel
and Breiman ((1983), Page 211), it is further shown that this condition holds for any norm
such that the unit sphere under the norm is compact. Assumption 1.2 holds true for any kernel
with sufficient smoothness to induce a norm with compact unit sphere in X . It also holds for
the (centered) Gaussian-type kernel (e.g., f (x) ∝ 1 − exp(α‖x‖2), α < 0), inverse multi-
quadratic (IMQ) kernel (e.g., f (x) ∝ γ β − (γ + ‖x‖2)β , γ > 0, β < 0) and their variants.

The next theorem gives the first generalization of Theorem 1.1 to such ξn = ξn,D whose
NNs are determined using the aforementioned metric D.

THEOREM 1.3. Suppose that the conditions in Theorem 1.1 and Assumption 1.2 hold,
and ξn = ξn,D is calculated with the NNs of Xi ’s decided using the metric D in (1.2). We then
have, as n → ∞,

Var(
√

nξn) converges to
2

5
+ 2

5
qm + 4

5
om,

and ξn/
√

Var(ξn)
d→ N(0,1).
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It is worth noticing that the above limiting variance of ξn is identical to that under the
Euclidean case, and the value does not depend on the choice of the kernel K . This observation
enables us to consider flexible kernels and an independence test built on such difference-based
kernels is direct.

REMARK 1.3. The distribution-free property appears because of the local isotropy prop-
erty, that is, the studied kernel metric can be locally well approximated by the Euclidean
metric (up to linear transformations), which is rotationally invariant. It offsets the anisotropy
brought by the data generating distribution as well as the manifold structure. On the con-
trary, the Assumption 1.2 generally does not hold for Lp norms; when a point moves over a
manifold, the shape of the intersection of its Lp neighborhood and the manifold can change
dramatically.

1.3.2. Geodesic distance and general kernel metrics. For a fixed kernel K , there could
exist a feature map ϕ :H → H such that K(x,y) = 〈ϕ(x), ϕ(y)〉H, where H is the reproduc-
ing kernel Hilbert space (RKHS) and 〈·, ·〉H is the inner product on it (Berlinet and Thomas-
Agnan (2004)).

It is direct to define a kernel metric in the feature space, that is, D(x,y) = ‖ϕ(x) −
ϕ(y)‖H, and the following proposition shows that it coincides with the definition in equa-
tion (1.1). The proof can be found in Schölkopf (2000).

PROPOSITION 1.1. Consider the real-valued kernel function K to be conditionally pos-
itive definite Schölkopf ((2000), Definition 2) such that K(x,x) = 0 for all x ∈X . Then there
exists a feature map ϕ satisfying

D(x,y) =
√

−K(x,y) = ∥∥ϕ(x) − ϕ(y)
∥∥
H,

where ‖ · ‖H is a semi-metric in the RKHS H. If we additionally assume K(x,y) < 0 for all
x �= y, then ‖ · ‖H is a metric.

In the Riemannian manifold context, the feature map has a close connection to the geodesic
distance. In particular, denote the geodesic distance between arbitrary x and y over the man-
ifold M as dg(x,y). The geodesic distance can be locally captured by a kernel, in the fol-
lowing sense: For any fixed x ∈M, there exists a coordinate chart (U,ψ) equipped with the
natural parameterization such that, if we choose ϕ := ψ−1, then for any y ∈ U ,

dg(x,y) = ∥∥ϕ(x) − ϕ(y)
∥∥,(1.3)

where ‖ · ‖ is the Euclidean distance. A more refined discussion on the relationship between
geodesic distance and the exponential map of a manifold can be found in Lee ((2013), Chap-
ter 13, Page 337).

With the relationship shown in (1.3), we are ready to adjust the kernel metric framework
to the analysis of the correlation coefficient under the geodesic distance. Before presenting
the result, we again make some regularity assumptions on the data generating structure.

ASSUMPTION 1.3. Suppose m ≥ 2. For any x ∈ M, the number of points whose NN
(measured using the geodesic metric) is x is bounded by some constant CM that only depends
on the manifold M.

Assumption 1.3 is nontrivial and, for unbounded manifolds, may no longer hold. However,
it is indeed true for most manifolds with a global smoothness property, for example, the linear
space R

m and the sphere S
m in R

d . Specifically, we have the following proposition in case
the manifold is compact.
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PROPOSITION 1.2. Assumption 1.3 holds if M is compact in the metric space (M, dg).

With the above assumptions, the next theorem then gives the generalization of Theorem 1.1
to the geodesic metric case.

THEOREM 1.4. Suppose that the conditions in Theorem 1.1 and Assumption 1.3 hold.
Furthermore, let ξn = ξn,D be calculated with the NNs of Xi ’s decided using the geodesic
distance dg induced by the Euclidean metric. We then have, as n → ∞,

Var(
√

nξn) converges to
2

5
+ 2

5
qm + 4

5
om,

and ξn/
√

Var(ξn)
d→ N(0,1).

Again, the limiting variance in this metric space is distribution-free and only depends on
the manifold dimension.

1.4. Some finite-sample studies. This section contains some finite-sample simulation re-
sults to examine the independence test powers, comparing the performance of ξn to that of
distance correlation (Székely, Rizzo and Bakirov (2007)). We examine the sizes and pow-
ers of the proposed tests when the data are supported on a manifold satisfying theorem as-
sumptions and with manifold dimension known to us.2 Power comparisons are carried out
with sample size n = 100. In each case, 5000 simulations are used to calculate the empirical
size/power. For simplicity, we only study those ξn’s calculated based on the Euclidean metric.

We first generate the raw data (Yi,Zi ), i = 1, . . . , n. Here (Y1,Z1), . . . , (Yn,Zn) constitute
a sample of points independently drawn from a certain distribution on R×R

m. The value of
m will change in simulations.

• Case 1 (Gaussian): (Y,Z) is Gaussian distributed with mean 0 and equi-correlation ρ be-
tween Y and each component of Z, that is, (Y,Z) ∼ N(0,
) with


 :=
(

1 ρ1�
m

ρ1m Im

)
,

where 1m := (1, . . . ,1︸ ︷︷ ︸
m

)� and Im represents the m-dimensional identity matrix.

In the following five cases, we set Z = (Z1, . . . ,Zm)�, where Zj ∼ Unif[−1,1] is inde-
pendent of each other, and consider an additive model:

Y = ρ

m∑
i=1

f (Zi) + Cε,

where ε ∼ N(0,1) is independent of Z. We fix C as a constant in each case to modify the
noise intensity.

• Case 2 (Linear): f (x) = x, C = 0.2;
• Case 3 (Quadratic): f (x) = x2, C = 0.1;
• Case 4 (Cosine): f (x) = cos(8πx), C = 0.1;
• Case 5 (W-shape): f (x) = |x + 0.5|I{x<0} + |x − 0.5|I{x≥0}, C = 0.025.

2In practice, if the manifold dimension is unknown, one could either estimate it or use permutation to obtain
the test threshold.
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Regarding each of the five cases, we then conduct the following two types of transforma-
tion to obtain the manifold data:

(1) Linear transformation: Z �→ RZ =: X, where R is a pre-selected 5m by m matrix.
For each dimension m, we randomly generate R from a standard Gaussian random matrix
(Rij )5m×m, where all its elements are independent, and for i = 1, . . . ,5m, j = 1, . . . ,m,
Rij ∼ N(0,1). The sample of transformed points lies on a m-dimensional linear subspace
in R

5m.
(2) Manifold transformation: Z �→ M(Z) =: X, which is a map from R

m to a pre-specific
m-dimensional smooth manifold in R

5m. In the following simulations, the mapping takes the
following specific forms:

M(Z) = (
M1(Z),M2(Z),M3(Z),M4(Z),M5(Z)

)�
,

where

M1(Z) := (Z1, . . . ,Zm) = Z,

M2(Z) := (
Z2

1, . . . ,Z2
m

)
,

M3(Z) := (
sin(8πZ1), . . . , sin(8πZm)

)
,

M4(Z) := (
cos(4πZ1), . . . , cos(4πZm)

)
,

M5(Z) := (
exp(Z1), . . . , exp(Zm)

)
.

We perform tests of independence with parameters m = 1,2,3,5,10 and ρ = 0,0.05,

0.10,0.15,0.20 for both ξn and distance correlation. Nominal level is set to be α = 0.05 for
all tests. In all the cases, ρ = 0 corresponds to the null hypothesis

H0 : Y and X are independent,

while the rest of the values of ρ yield powers in accordance with different degrees of de-
pendence. The thresholds of ξn and distance correlation are determined by Theorem 1.1 and
permutation, respectively. Table 2 and Table 3 illustrate test powers for Gaussian (Case 1)
with linear and manifold transformation, respectively. Tables 4–11 analogously illustrate test
powers for the additive model cases (Case 2–6) with two transformations in sequence.

Three observations are in line.

(i) All the tests considered have empirical sizes close to 0.05, indicating that they are all
size valid.

(ii) When the joint distribution of (Y,Z) is a multi-dimension normal distribution, the test
power increases as m or ρ increases. The distance correlation based tests exhibit higher power
compared to ξn-based, indicating that the distance correlation could potentially also adapt
to the manifold structure of X, an interesting phenomenon largely untouched in literature
before.

TABLE 2
Case 1, linear transformation

ξn based Distance correlation based

ρ = 0 ρ = 0.05 ρ = 0.10 ρ = 0.15 ρ = 0.20 ρ = 0 ρ = 0.05 ρ = 0.10 ρ = 0.15 ρ = 0.20

m = 1 0.050 0.051 0.048 0.053 0.054 0.053 0.066 0.144 0.271 0.455
m = 2 0.044 0.048 0.042 0.046 0.052 0.044 0.080 0.208 0.405 0.609
m = 3 0.050 0.049 0.055 0.056 0.079 0.052 0.074 0.229 0.454 0.766
m = 5 0.057 0.058 0.049 0.065 0.112 0.041 0.141 0.331 0.604 0.844
m = 10 0.066 0.060 0.057 0.099 0.215 0.043 0.106 0.420 0.842 0.995



AZADKIA–CHATTERJEE’S CORRELATION FOR MANIFOLDS 5181

TABLE 3
Case 1, manifold transformation

ξn based Distance correlation based

ρ = 0 ρ = 0.05 ρ = 0.10 ρ = 0.15 ρ = 0.20 ρ = 0 ρ = 0.05 ρ = 0.10 ρ = 0.15 ρ = 0.20

m = 1 0.058 0.051 0.051 0.050 0.059 0.041 0.051 0.114 0.269 0.336
m = 2 0.058 0.055 0.059 0.058 0.065 0.048 0.088 0.122 0.287 0.548
m = 3 0.075 0.068 0.065 0.071 0.079 0.060 0.056 0.106 0.448 0.652
m = 5 0.063 0.061 0.059 0.086 0.115 0.051 0.085 0.159 0.575 0.792
m = 10 0.065 0.061 0.068 0.082 0.155 0.064 0.115 0.248 0.735 0.956

TABLE 4
Case 2, linear transformation

ξn based Distance correlation based

ρ = 0 ρ = 0.05 ρ = 0.10 ρ = 0.15 ρ = 0.20 ρ = 0 ρ = 0.05 ρ = 0.10 ρ = 0.15 ρ = 0.20

m = 1 0.058 0.065 0.070 0.119 0.268 0.060 0.263 0.767 0.981 1.000
m = 2 0.052 0.054 0.091 0.275 0.603 0.048 0.368 0.952 0.999 1.000
m = 3 0.046 0.066 0.153 0.440 0.791 0.047 0.515 0.986 1.000 1.000
m = 5 0.061 0.065 0.270 0.664 0.913 0.049 0.661 0.997 1.000 1.000
m = 10 0.053 0.069 0.259 0.528 0.690 0.052 0.613 0.991 1.000 1.000

TABLE 5
Case 2, manifold transformation

ξn based Distance correlation based

ρ = 0 ρ = 0.05 ρ = 0.10 ρ = 0.15 ρ = 0.20 ρ = 0 ρ = 0.05 ρ = 0.10 ρ = 0.15 ρ = 0.20

m = 1 0.053 0.051 0.061 0.118 0.267 0.055 0.199 0.671 0.949 0.998
m = 2 0.059 0.054 0.086 0.206 0.447 0.046 0.310 0.841 0.995 1.000
m = 3 0.068 0.069 0.115 0.284 0.539 0.049 0.345 0.937 0.999 1.000
m = 5 0.077 0.073 0.138 0.317 0.529 0.047 0.477 0.978 1.000 1.000
m = 10 0.080 0.074 0.127 0.236 0.334 0.047 0.651 0.996 1.000 1.000

TABLE 6
Case 3, linear transformation

ξn based Distance correlation based

ρ = 0 ρ = 0.05 ρ = 0.10 ρ = 0.15 ρ = 0.20 ρ = 0 ρ = 0.05 ρ = 0.10 ρ = 0.15 ρ = 0.20

m = 1 0.045 0.053 0.071 0.134 0.278 0.050 0.072 0.240 0.586 0.914
m = 2 0.052 0.044 0.080 0.222 0.493 0.049 0.080 0.211 0.499 0.815
m = 3 0.056 0.048 0.073 0.189 0.402 0.051 0.078 0.196 0.461 0.648
m = 5 0.054 0.064 0.056 0.046 0.050 0.059 0.099 0.141 0.375 0.532
m = 10 0.059 0.254 0.476 0.573 0.620 0.042 0.056 0.161 0.327 0.441
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TABLE 7
Case 3, manifold transformation

ξn based Distance correlation based

ρ = 0 ρ = 0.05 ρ = 0.10 ρ = 0.15 ρ = 0.20 ρ = 0 ρ = 0.05 ρ = 0.10 ρ = 0.15 ρ = 0.20

m = 1 0.047 0.052 0.068 0.123 0.264 0.055 0.068 0.239 0.514 0.834
m = 2 0.063 0.058 0.056 0.082 0.141 0.047 0.099 0.247 0.554 0.886
m = 3 0.068 0.088 0.081 0.069 0.062 0.049 0.096 0.285 0.569 0.799
m = 5 0.070 0.130 0.184 0.204 0.190 0.040 0.162 0.221 0.647 0.819
m = 10 0.078 0.291 0.519 0.610 0.673 0.065 0.059 0.271 0.604 0.832

TABLE 8
Case 4, linear transformation

ξn based Distance correlation based

ρ = 0 ρ = 0.05 ρ = 0.10 ρ = 0.15 ρ = 0.20 ρ = 0 ρ = 0.05 ρ = 0.10 ρ = 0.15 ρ = 0.20

m = 1 0.047 0.080 0.436 0.892 0.994 0.050 0.049 0.062 0.052 0.070
m = 2 0.051 0.044 0.052 0.057 0.059 0.051 0.050 0.048 0.058 0.046
m = 3 0.055 0.056 0.054 0.051 0.055 0.051 0.044 0.055 0.044 0.043
m = 5 0.056 0.053 0.053 0.052 0.053 0.058 0.041 0.037 0.041 0.046
m = 10 0.058 0.054 0.059 0.057 0.055 0.044 0.037 0.081 0.046 0.056

TABLE 9
Case 4, manifold transformation

ξn based Distance correlation based

ρ = 0 ρ = 0.05 ρ = 0.10 ρ = 0.15 ρ = 0.20 ρ = 0 ρ = 0.05 ρ = 0.10 ρ = 0.15 ρ = 0.20

m = 1 0.051 0.073 0.381 0.864 0.994 0.044 0.077 0.170 0.329 0.580
m = 2 0.055 0.063 0.062 0.089 0.123 0.051 0.073 0.093 0.114 0.157
m = 3 0.081 0.141 0.166 0.171 0.168 0.055 0.056 0.083 0.073 0.093
m = 5 0.079 0.295 0.404 0.456 0.474 0.049 0.093 0.070 0.095 0.089
m = 10 0.085 0.462 0.581 0.621 0.629 0.042 0.082 0.055 0.073 0.067

TABLE 10
Case 5, linear transformation

ξn based Distance correlation based

ρ = 0 ρ = 0.05 ρ = 0.10 ρ = 0.15 ρ = 0.20 ρ = 0 ρ = 0.05 ρ = 0.10 ρ = 0.15 ρ = 0.20

m = 1 0.048 0.066 0.272 0.721 0.971 0.048 0.068 0.149 0.323 0.585
m = 2 0.047 0.061 0.334 0.778 0.955 0.051 0.046 0.082 0.106 0.096
m = 3 0.061 0.055 0.097 0.211 0.311 0.041 0.050 0.055 0.058 0.077
m = 5 0.052 0.091 0.107 0.111 0.106 0.066 0.069 0.080 0.067 0.064
m = 10 0.055 0.091 0.121 0.124 0.138 0.040 0.037 0.048 0.041 0.064



AZADKIA–CHATTERJEE’S CORRELATION FOR MANIFOLDS 5183

TABLE 11
Case 5, manifold transformation

ξn based Distance correlation based

ρ = 0 ρ = 0.05 ρ = 0.10 ρ = 0.15 ρ = 0.20 ρ = 0 ρ = 0.05 ρ = 0.10 ρ = 0.15 ρ = 0.20

m = 1 0.047 0.062 0.267 0.694 0.956 0.055 0.061 0.167 0.348 0.805
m = 2 0.063 0.056 0.093 0.158 0.252 0.047 0.060 0.114 0.183 0.303
m = 3 0.068 0.072 0.070 0.070 0.072 0.049 0.054 0.102 0.136 0.244
m = 5 0.070 0.090 0.110 0.112 0.110 0.040 0.101 0.150 0.130 0.209
m = 10 0.078 0.148 0.186 0.197 0.196 0.065 0.038 0.052 0.126 0.074

(iii) When the function f exhibits oscillatory properties, the test power increases as ρ

increases. However, when m increases, in most cases, the power of our proposed tests shows
a U-shape, that is, decreasing first and then increasing; yet the distance correlation based tests
shows monotonically decreasing power. Thus, for high-dimensional data, our proposed test
might be more powerful. When m = 1, our proposed test is also more powerful in some cases.

2. Proofs. Table 12 lists all the symbols used in the following proofs.

2.1. Proof of Theorem 1.2.

PROOF OF THEOREM 1.2. Recall that we write Gn for the random directed nearest neigh-
bor graph (NNG) corresponding to n sample points X1, . . . ,Xn and use E(Gn) to denote the

TABLE 12
Common symbols and notation

X Random vector in R
d indicating the distribution of samples

Xi ,Xj ,Xk . . . i.i.d. copies of X

Y Random vector in R

Yi,Yj ,Yk . . . i.i.d. copies of Y

M m-dimensional smooth manifold in the Euclidean space R
d

m Manifold dimension of M
d Dimension of ambient space
n Number of data points
λ Lebesgue measure
‖ · ‖ Euclidean norm
Hm m-dimensional Hausdorff measure
μ Probability measure of X

g(x) Density function of pushforward ψ∗μ at point x

Gn Directed nearest neighbor graph (NNG) constructed on n sample points X1, . . . ,Xn

E(Gn) Edge set of Gn

Ntotal Total number of nearest pairs in Gn

N(Xi ) Total number of nearest pairs in Gn

D(Xi ) Out-degree of Xi in Gn

Mtotal #{(i, j, k) distinct : j → i, k → i ∈ E(Gn)}
M(Xi ) #{(j, k) distinct : j → i, k → i ∈ E(Gn)}
π Tangent plane of a given point on M
Ud(x1,x2) Union of two balls whose centers are x1 and x2 and radius are both ‖x1 − x2‖ in R

d

Bk(x, r) k-dimensional ball with center x and radius r

Vm Volume of unit ball in R
m

Um Volume of Um(0, ρ), ‖ρ‖ = 1
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edge set of Gn. According to Lemmas 1.4 and 1.5,

lim
n→∞ E

(
1

n
#
{
(i, j) distinct : i → j, j → i ∈ E(Gn)

}) = qm,

lim
n→∞ E

(
1

n
#
{
(i, j, k) distinct : i → k, j → k ∈ E(Gn)

}) = om.

Pursuing the idea in Shi, Drton and Han (2024), we resort to Hájek representation for
calculating ξn’s asymptotic variance. In Lin and Han (2022), the intermediate statistic qξn is
defined as

qξn := 6n

n2 − 1

(
n∑

i=1

min
{
FY (Yi),FY (YN(i))

} − 1

n − 1

n∑
i,j=1
i �=j

min
{
FY (Yi),FY (Yj )

} +
n∑

i=1

g(Yi)

+ 1

n − 1

n∑
i,j=1
i �=j

E
[
min

{
FY (Yi),FY (Yj )

}|Xi ,Xj

] − E

[
n∑

i=1

g(Yi)|Xi

]
+

n∑
i=1

g0(Xi )

)
,

where specific to the case that Y is independent of X, we have

FY (t) := P(Y ≤ t),

GX(t) := P(Y ≥ t |X) = P(Y ≥ t) = 1 − FY (t),

g(t) := VarX
[
GX(t)

] = 0,

g0(x) :=
∫

E
[
GX(t)

]2 dFY |X=x(t) =
∫ (

1 − FY (t)
)2 dFY (t) = 1

3
.

Leveraging these expressions, qξn under independence then takes the form

qξn = 6n

n2 − 1

(
n∑

i=1

min
{
FY (Yi),FY (YN(i))

} − 1

n − 1

n∑
i,j=1
i �=j

min
{
FY (Yi),FY (Yj )

}) + C0,

where C0 is a fixed constant.
In Lin and Han (2022), it is proved that

lim
n→∞nVar[ξn − qξn] = 0.

Thus we have

lim sup
n→∞

∣∣∣∣Cov(ξn, ξn − qξn)

Var[ξn]
∣∣∣∣ ≤ lim sup

n→∞

(
Var[ξn − qξn]

Var[ξn]
) 1

2 ≤
(

lim supn→∞ Var[ξn − qξn]
lim supn→∞ Var[ξn]

) 1
2 = 0.

Then we have

(2.1) lim
n→∞

nVar[qξn]
nVar[ξn] = lim

n→∞
Var[ξn − (ξn − qξn)]

Var[ξn] = 1.

Since (2.1) holds, it suffices to calculating the variance of the intermediate statistic qξn, that
is, we only have to calculate

(2.2)

nVar[qξn] = 36n3

(n2 − 1)2 Var

[
n∑

i=1

min
{
FY (Yi),FY (YN(i))

}

− 1

n − 1

n∑
i,j=1
i �=j

min
{
FY (Yi),FY (Yj )

}]
.
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For the sake of presentation clearness, introduce

Aij := 6 min
{
FY (Yi),FY (Yj )

} − 2,

Vi := n− 1
2

( ∑
j :i→j

Aij − 1

n − 1

∑
j :j �=i

Aij

)
, and Sn :=

n∑
i=1

Vi.

Then we can reformulate (2.2) as

(2.3) nVar[qξn] =
(

n2

n2 − 1

)2
Var

[
n∑

i=1

Vi

]
=

(
n2

n2 − 1

)2
Var[Sn].

Since Y1, . . . , Yn are independent and identically distributed (i.i.d.), for every i ∈ {1, . . . , n},
FY (Yi)

i.i.d.∼ Unif[0,1]. Thus, the expectation about Aij can be derived as

EAij = 0, E(Aij )
2 = 2 := γ1, E(AijAik) = 4

5
:= γ2, and EVi = 0.

Get back to the calculation of Var[qξn]. According to (2.3), it remains to calculate

Var[Sn] = E

(
n∑

i=1

Vi

)2

=
n∑

i=1

EV 2
i + ∑

i �=j

EViVj .

For the first term, we have

n∑
i=1

EV 2
i = n−1

n∑
i=1

E
( ∑

j :i→j

Aij − 1

n − 1

∑
j :i �=j

Aij

)2

= n−1

(
n∑

i=1

E
(∑

i→j

Aij

)2
+

n∑
i=1

E
(

1

n − 1

∑
j :i �=j

Aij

)2

−
n∑

i=1

2E
(

1

n − 1

(∑
i→j

Aij

)( ∑
j :i �=j

Aij

)))

= γ1 +
(

1

n − 1
γ1 + n − 2

n − 1
γ2

)
−

(
2

n − 1
γ1 + 2(n − 2)

n − 1
γ2

)

=
(

1 − 1

n − 1

)
γ1 −

(
1 − 1

n − 1

)
γ2

→ γ1 − γ2.

For the second term, we have

∑
i �=j

EViVj = n−1
∑
i �=j

E
( ∑

k:i→k

Aik − 1

n − 1

∑
l:i �=l

Ail

)( ∑
m:j→m

Ajm − 1

n − 1

∑
p:j �=p

Ajp

)

= n−1
(∑

i �=j

E
( ∑

k:i→k

Aik

∑
m:j→m

Ajm

)
+ ∑

i �=j

E
(

1

(n − 1)2

∑
l:i �=l

Ail

∑
p:j �=p

Ajp

)

− ∑
i �=j

E
(

2

n − 1

∑
k:i→k

Aik

∑
p:j �=p

Ajp

))
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=
( ∑

i→j,j→i

γ1 + ∑
i→j,j→i

or i→j,j→k

or j→i,i→k

γ2

)

+
(

n

n − 1
γ1 + 3(n − 2)

n − 1
γ2

)
−

(
n + 1

n − 1
γ1 + 6(n − 2)

n − 1
γ2

)

= − 1

n − 1
γ1 − 3

(
1 − 1

n − 1

)
γ2 + γ1qm + γ2(om + 2 − 2qm) + o(1)

→ (γ1 − 2γ2)qm + γ2om − γ2.

In conclusion, we have

lim
n→∞nVar[qξn] = lim

n→∞ Var[Sn]

= lim
n→∞

n∑
i=1

EV 2
i + lim

n→∞
∑
i �=j

EViVj

= 2

5
+ 2

5
qm + 4

5
om.

This is the form of Shi, Drton and Han ((2024), Theorem 3.1(ii)) when Xi ’s are sampled
from an absolutely continuous distribution in R

m. �

2.2. Proof of Lemma 1.2.

PROOF OF LEMMA 1.2. Recall that Hm M represents the restricted m-dimensional
Hausdorff measure on M and λ represents the m-dimensional Lebesgue measure.

To obtain the global property, that is, μ is absolutely continuous with respect to Hm M,
it suffices to show the local property, that is, for any point x ∈ M and the corresponding co-
ordinate chart (U,ψ), μU is absolutely continuous with respect to Hm U . In the following
proof, we focus on a sufficiently small coordinate neighborhood U . Recall the definition of
absolutely continuity of μ with respect to some base measure, which states that any null set
with respect to the base measure is a μ-null set. With this definition, to prove Lemma 1.2, it
suffices to prove that any Hm-null set ψ−1E is equivalent to a λ-null set E.

We refer to Chapter 3 of Evans and Gariepy (2015) for the following lemma and its proof.
Assume a Lipschitz map f : Rm → R

n, where m ≤ n. Thus, f is differentiable λ-a.e. by
Rademacher’s theorem (Theorem 3.2 in Evans and Gariepy (2015)). At any point y ∈ R

m

of differentiability we denote by Jf (y) the Jacobian of f . Also, we denote by H0 the 0-
dimensinal Hausdorff measure, which is equivalent to counting measure.

LEMMA 2.1 (Area formula). We have y �→ Jf (y) is Lebesgue measurable. In addition,
for any Lebesgue measurable set A ⊂ R

m, the map z �→ f −1({z}) is Hm-measurable and the
following equality holds:∫

Rm
H0(

A ∩ f −1(z)
)

dHm(z) =
∫
A

Jf (y)dλ(y).

Back to the proof, since M is a C∞ manifold, the homeomorphisms ψ and ψ−1 are C∞
maps, thus locally Lipschitz continuous. Applying Lemma 2.1, for any E ⊂ V and ψ−1(E) ⊂
U which is Hm-measurable, we have

Hm(
ψ−1(E)

) =
∫
E

Jf (y)dλ(y).(2.4)
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Here for a smooth manifold, Jf (y) can be written specifically as Jf (y) = √
detg, where g

is the metric tensor of the Riemannian submanifold, that is, gij = ∂iψ
−1∂jψ

−1. Due to the
existence of ψ−1, the differentials of ψ and ψ−1 have maximum ranks everywhere locally,
which implies that for every y ∈ E, Jf (y) > 0. Using equation (2.4), one directly obtains

Hm(
ψ−1(E)

) = 0 if and only if λ(E) = 0,

which completes the proof. �

2.3. Proof of Lemma 1.4.

PROOF OF LEMMA 1.4. Recall that μ is the (induced) probability measure of X, that is,
μ(A) = P(X ∈ A). Let [Xi]ni=1 be a sample comprised of n independent copies of X. Let
N(Xi ) denote the number of NN pairs containing Xi and Ntotal denote the total number of
NN pairs (double edges) in NNG; in other words,

Ntotal := #
{
(i, j) distinct : i → j, j → i ∈ E(Gn)

}
,

N(Xi ) := #
{
j : i → j, j → i ∈ E(Gn)

}
.

Observe that

Ntotal =
n∑

i=1

N(Xi );

it thus suffices to calculate the value of E(N(Xi )). Using Lemma 1.3, there exists an upper
bound of the number of points, whose nearest neighbor is Xi . For any point xi , we use
constant Cd to denote this upper bound:

N(xi ) ≤ Cd .

To obtain the asymptotic expecatation of E(N(Xi)), it suffices to prove that for μ-a.e.
xi ∈ M,

lim
n→∞ E

(
N(xi )

) = Vm

Um

,

since the Lebesgue dominated convergence theorem can be used as

lim
n→∞ EN(Xi ) = lim

n→∞

∫
E

(
N(xi )

)
dμ(xi )

=
∫

lim
n→∞ E

(
N(xi )

)
dμ(xi ) = Vm

Um

.

We use Ud(x1,x2) to denote the union of two balls in R
d whose centers are x1 and x2

and radius are both ‖x1 − x2‖. Thus, x1 and x2 form a nearest neighbor pair if and only if
there are no other sample points in Ud(x1,x2).

We first consider the nearest neighbor of one fixed sample point Xi and write N(xi ) :=
N(Xi |Xi = xi ) for convenience. Applying the absolute continuity assumption to the specific
point xi ∈ M, we can write (recalling the notation of Assumption 1.1)

g = d(ψ∗μ)/dλ

for the density of the pushforward, that is, ψ∗μ(A) = ∫
A g dλ, for any μ-measurable set

A ∈ V .
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We assume that xi ∈ supp(μ) and g(ψ(xi )) > 0 throughout the manuscript. Observe that
for a fixed xi ,

E
(
N(xi )

) = ∑
i �=j

P
( ⋃

k �=i,j

{
Xk /∈ Ud(xi ,Xj )

})

= (n − 1)P
( ⋃

k �=i,j

{
Xk /∈ Ud(xi ,Xj )

})

= (n − 1)

∫
M

(
1 − μ

(
Ud(xi ,xj )

))n−2 dμ(xj ),

(2.5)

which is the expression used for the following calculation.

LEMMA 2.2. For μ-a.e. x ∈M and the corresponding chart ψ(= ψx), it holds true that

lim‖xj−x‖→0

μ(Ud(x,xj ))

g(ψ(x))‖xj − x‖mUm

= 1.

LEMMA 2.3. For μ-a.e. x ∈M and the corresponding chart ψ(= ψx), it holds true that

lim‖xj−x‖→0

μ(Bd(x, r))

g(ψ(x))rmVm

= 1.

Lemma 2.2 informs that when fixing xi ∈ M, for every ε > 0, it is almost sure that there
exists δ1 > 0 such that for every xj : ‖xj − xi‖ < δ1, we have

μ(Ud(xi ,xj ))

g(ψ(xi ))‖xj − xi‖mUm

∈ [1 − ε,1 + ε].(2.6)

Similarly, Lemma 2.3 informs that there exists δ2 > 0 such that for every r < δ2,

μ(Bd(xi , r))

g(ψ(xi ))rmVm

∈ [1 − ε,1 + ε].(2.7)

In the following part of this section, we take 0 < δ < min{δ1, δ2}, which implies that both
(2.6) and (2.7) hold for every xj such that ‖xj − xi‖ < δ.

Back to the expression (2.5) for E(N(xi )), we first consider the lower bound,

E
(
N(xi )

) ≥ (n − 1)

∫
‖xj−xi‖≤δ

(
1 − μ

(
Ud(xi ,xj ) ∩M

))n−2 dμ(xj )

≥ (n − 1)

∫
‖xj−xi‖≤δ

(
1 − (1 + ε)g

(
ψ(xi )

)‖xj − xi‖mUm

)n−2 dμ(xj ).

(2.8)

Next, we introduce a nonincreasing function

(2.9) φ1(r) := (
1 − (1 + ε)g

(
ψ(xi )

)
rmUm

)n−2
I{r≤δ},

where I{r≤δ} denotes the indicator function. Notice that φ1(0) = 1.
With this function, we can reformulate equation (2.8) as follows:

(2.8) = (n − 1)

∫
M

φ1
(‖xj − xi‖)

dμ(xj )

= (n − 1)E
(
φ1

(‖Xj − xi‖))
= (n − 1)

∫ 1

0
P
(
φ1

(‖Xj − xi‖)
> t

)
dt

= (n − 1)

∫ 1

0

(∫
‖xj−xi‖≤φ−1

1 (t)
dμ(xj )

)
dt.

(2.10)
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For handling (2.10), we select the range of t to make xj close enough to xi . Applying then
the approximation derived above in (2.7) yields

(2.10) ≥ (n − 1)

∫ 1

φ1(δ)

(∫
‖xj−xi‖≤φ−1

1 (t)
dμ(xj )

)
dt

= (n − 1)

∫ 1

φ1(δ)
μ

(
Bd(

xi , φ
−1
1 (t)

))
dt

≥ (n − 1)

∫ 1

φ1(δ)
(1 − ε)Vm

(
φ−1

1 (t)
)m

g
(
ψ1(xi )

)
dt.

(2.11)

The expression of φ−1
1 (t) can be solved from equation (2.9). Plugging it into (2.11) gives

(2.11) = (n − 1)

∫ 1

φ1(δ)

1 − ε

1 + ε

Vm

Um

(
1 − t

1
n−2

)
dt

≥ 1 − ε

1 + ε

Vm

Um

(
1 − (n − 1)φ1(δ)

)
.

(2.12)

Consider the limit of (2.12). First let n go to infinity. Since

lim
n→∞(n − 1)φ1(δ) ≤ lim

n→∞(n − 1)
(
1 − (1 + ε)g

(
ψ(xi )

)
δmUm

)n−2 = 0,

we have

lim
n→∞E

(
N(xi )

) ≥ 1 − ε

1 + ε

Vm

Um

holds for arbitrary ε > 0. Thus,

lim
n→∞E

(
N(xi )

) ≥ Vm

Um

.

Now we turn to the inequality in the other direction to find the upper bound. Using the fact
that

e−x ≥ 1 − x for any x ∈ [0,1],
we have

E
(
N(xi )

) ≤ (n − 1)

∫
M

exp
(−(n − 2)μ

(
Ud(xi ,xj ) ∩M

))
dμ(xj )

= (n − 1)

∫
‖xj−xi‖>δ

exp
(−(n − 2)μ

(
Ud(xi ,xj ) ∩M

))
dμ(xj )

+ (n − 1)

∫
‖xj−xi‖≤δ

exp
(−(n − 2)μ

(
Ud(xi ,xj ) ∩M

))
dμ(xj )

=: In,1 + In,2.

(2.13)

Here the domain of integration is partitioned into two sets. We use In,1 to denote the integral
on M ∩ {xj : ‖xj − xi‖ > δ} and In,2 to denote the integral on M ∩ {xj : ‖xj − xi‖ ≤ δ}.
We then process these two terms in (2.13) respectively. For term In,1, we have

In,1 = (n − 1)

∫
‖xj−xi‖>δ

exp
(−(n − 2)μ

(
Ud(xi ,xj ) ∩M

))
dμ(xj )

≤ (n − 1) sup
‖xj−xi‖≥δ

{
exp

(−(n − 2)μ
(
Ud(xi ,xj ) ∩M

))} ∫
‖xj−xi‖>δ

dμ(xj )

≤ (n − 1) exp
(
−(n − 2) inf‖xj−xi‖≥δ

{
μ

(
Ud(xi ,xj ) ∩M

)}) ∫
M

dμ(xj ).

(2.14)
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Since for ν > 0, Ud(xi ,xj ) ⊂ Ud(xi ,xj + ν(xj − xi )) and
∫
M dμ = 1,

(2.14) ≤ (n − 1) exp
(
−(n − 2) inf‖xj−xi‖=δ

μ
(
Ud(xi ,xj ) ∩M

))
:= (n − 1) exp

(−(n − 2)h(δ)
)
.

Here h(δ) is a positive function of δ. Thus for any ε, δ > 0, limn→∞ In,1 = 0.
For the second term, using the approximation (2.6), we have

In,2 = (n − 1)

∫
‖xj−xi‖≤δ

exp
(−(n − 2)μ

(
Ud(xi ,xj ) ∩M

))
dμ(xj )

≤ (n − 1)

∫
‖xj−xi‖≤δ

exp
(−(n − 2)(1 − ε)g

(
ψ(xi )

)‖xi − xj‖mUm

)
dμ(xj ).

(2.15)

Again, introduce a nonincreasing function

φ2(r) := exp
(−(n − 2)(1 − ε)2g

(
ψ(xi )

)
rmUm

)
I{r≤δ}

and reformulate the expression as before:

(2.15) = (n − 1)E
(
φ2

(‖Xj − xi‖))
= (n − 1)

∫ 1

0
P
(
φ2

(‖Xj − xi‖ > t
))

dt

= (n − 1)

∫ 1

0

(∫
‖xj−xi‖≤φ−1

2 (t)
dμ(xj )

)
dt

≤ (n − 1)

∫ φ2(δ)

0
dt + (n − 1)

∫ 1

φ2(δ)
μ

(
Bd(

xi , φ
−1
2 (t)

))
dt

≤ (n − 1)φ2(δ) + (n − 1)

∫ 1

φ2(δ)
(1 + ε)Vm

(
φ−1

2 (t)
)m dt.

(2.16)

The expression of φ−1
2 (t) can be solved from (2.16). Then the integral above can be specifi-

cally calculated as

(2.16) = (n − 1)φ2(δ) + n − 1

n − 2

1 + ε

1 − ε

Vm

Um

(
1 − φ2(δ) + φ2(δ) logφ2(δ)

)
.

For fixed ε > 0 and δ > 0, one can use the definition of φ2(r) and get

lim
n→∞nφ2(δ) = 0.

Then we have

lim
n→∞ E

(
N(xi )

) ≤ 1 + ε

1 − ε

Vm

Um

holds for arbitrary ε > 0. Thus,

lim
n→∞ E

(
N(xi )

) ≤ Vm

Um

.

Combining the upper and lower bounds yields

lim
n→∞ E

(
N(xi )

) = Vm

Um

.

Finally, we obtain the conclusion

lim
n→∞

ENtotal

n
= lim

n→∞
n∑

i=1

E(N(Xi ))

n
= Vm

Um

= qm.

This completes the proof. �
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2.4. Proof of Lemma 1.5.

PROOF OF LEMMA 1.5. Analogously to the proof of Lemma 1.4, we only have to con-
sider one specific sample point Xi . Let Qj denote the event that Xi is the nearest neighbor
of Xj , that is, Qj := {j → i ∈ E(Gn)} for all j �= i and put

Mtotal = #
{
(i, j, k) distinct : j → i, k → i ∈ E(Gn)

}
,

D(Xi ) = ∑
j �=i

IQj
= #

{
j : j → i ∈ E(Gn)

}
,

M(Xi ) = #
{
(j, k) distinct : j → i, k → i ∈ E(Gn)

}
.

Here M(Xi ) is the coefficient we are interested in. Observe that

Mtotal =
n∑

i=1

M(Xi ),

M(Xi ) = D(Xi )
(
D(Xi ) − 1

)
,

so that we have

EM(Xi ) = ED(Xi )
(
D(Xi ) − 1

)
= E

∑
(j,k) distinct

j,k �=i

P(Qj ∩ Qk)

= (n − 1)(n − 2)P(Qj ∩ Qk).

We first consider a fixed sample point Xi = xi . Using Lemma 1.3, we have

C2
d ≥ ED(Xi |Xi = xi )

(
D(Xi |Xi = xi ) − 1

)
= (n − 1)(n − 2)P(Qj ∩ Qk|Xi = xi ).

Then applying the Lebesgue dominated convergence theorem, we have

lim
n→∞(n − 1)(n − 2)P(Qj ∩ Qk) = lim

n→∞

∫
M

(n − 1)(n − 2)P(Qj ∩ Qk|Xi = xi )dμ(xi )

=
∫
M

lim
n→∞(n − 1)(n − 2)P(Qj ∩ Qk|Xi = xi )dμ(xi ).

It thus remains to prove that

lim
n→∞n2P(Qj ∩ Qk|Xi = xi ) = lim

n→∞(n − 1)(n − 2)P(Qj ∩ Qk|Xi = xi ) = om,

where xi is any point with positive density, which is held fixed in what follows.
We first introduce the notation to simplify the integral. For a fixed point x ∈M, let

�x := {
(xj ,xk) ∈ (

R
d)2 : max

{‖xj − x‖,‖xk − x‖} ≤ ‖xj − xk‖}
,

Sj := B
(
xj ,‖xj − x‖) ∩M, Sk := B

(
xk,‖xk − x‖) ∩M.

Applying the above notation, we have that X = x is the nearest neighbor of Xj = xj if and
only if there are no other sample points in Sj . In the following part, we record xi as x for
notation simplicity. It then holds true that

n2P(Qj ∩ Qk|Xi = x) =
∫∫

�x

n2(
1 − μ(Sj ∪ Sk)

)n−2 dμ(xj )dμ(xk),
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where we use dμ(xj ) and dμ(xk) to denote the measure and the corresponding random
variables which the integral corresponds to. The next step is to split the region of integral that
�x = �1

x,δ ∪ �2
x,δ . Here

�1
x,δ := �x ∩ {

(x1,x2) ∈ (
R

d)2 : ‖x1 − x‖,‖x2 − x‖ ≤ δ
}
,

�2
x,δ := �x \ �1

x,δ,

where δ is a sufficiently small but a positive real number. Specifically, δ = min{δ1, δ2, δ3, δ4,

δ5}, in which δi’s are to be defined in the proof below. Taking this idea, we partition the
integral into two parts:

n2P(Qj ∩ Qk|Xi = x) =
∫∫

�1
x,δ

n2(
1 − μ(Sj ∪ Sk)

)n−2 dμ(xj )dμ(xk)

+
∫∫

�2
x,δ

n2(
1 − μ(Sj ∪ Sk)

)n−2 dμ(xj )dμ(xk)

=: Jn,1 + Jn,2.

We first prove that

lim
n→∞Jn,2 = 0.

LEMMA 2.4. For μ-a.e. x ∈ M and the corresponding chart ψ , it holds true that

lim‖xj−x‖→0

μ(Bd(xj ,‖x − xj‖)))
g(ψ(x))λ(Bm(xj ,‖x − xj‖)) = 1.

Lemma 2.4 shows that for any ε > 0, there exists δ1 > 0 such that for μ-a.e. x ∈ M and
for any xj such that ‖x − xj‖ ≤ δ1,

μ(Bd(xj ,‖x − xj‖)))
g(ψ(x))λ(Bm(xj ,‖x − xj‖)) ∈ [1 − ε,1 + ε].

By definition of �2
x,δ , for any (xj ,xk) ∈ �2

x,δ , there exists xl = xj or xk satisfying ‖xl −x‖ >

δ. Without loss of generality, we assume that xl = xj . For the point

y := x − δ

2

x − xj

‖x − xj‖ ,

we have ‖x − y‖ = δ/2. For every x∗ ∈ B(y,‖x − y‖) = B(y, δ
2),

∥∥x∗ − xj

∥∥ ≤ ∥∥x∗ − y
∥∥ + ‖y − xj‖ <

δ

2
+

(
‖x − xj‖ − δ

2

)
= ‖x − xj‖,

yielding

B

(
y,

δ

2

)
⊂ B(x, δ) ∩ B

(
xj ,‖xj − x‖)

.

This in turn implies

μ(Sj ∪ Sk) ≥ μ
(
B

(
xj ,‖xj − x‖) ∩M

)
≥ μ

(
B(y, δ/2) ∩M

)
≥ (1 − ε)g

(
ψ(x)

)
λ
(
Bm(0, δ/2)

)
= (1 − ε)g

(
ψ(x)

)
Vm

(
δ

2

)m

.
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Back to the integral Jn,2, we then have the upper bound

n2(
1 − μ(Sj ∪ Sk)

)n−2 ≤ n2
(

1 − (1 − ε)g
(
ψ(x)

)
Vm

(
δ

2

)m)n−2
,

which is a constant with respect to xj and xk and thus

0 ≤ lim
n→∞Jn,2 ≤ lim

n→∞n2
(

1 − (1 − ε)g
(
ψ(x)

)
Vm

(
δ

2

)m)n−2
= 0.

This finishes the proof of the first part.
We then prove that

lim
n→∞Jn,1 = om,

that is,

lim
n→∞

∫∫
�1

x,δ

n2(
1 − μ(Sj ∪ Sk)

)n−2 dμ(xj )dμ(xk) = om.

Here δ is a constant we will select later. Similar to the process in the proof of Lemma 1.4, we
will then derive the upper and lower bounds of Jn,1.

For the upper bound, first leveraging the fact that e−x ≥ 1 − x for all x ∈ (0,1), we have

Jn,1 ≤
∫∫

�1
x,δ

n2 exp
(−(n − 2)μ(Sj ∪ Sk)

)
dμ(xj )dμ(xk).(2.17)

We set zj = ψ(xj ), zk = ψ(xk) for simplicity and thus, xj = ψ−1(zj ), xk = ψ−1(zk).

LEMMA 2.5. For μ-a.e. x ∈ M and the corresponding chart ψ , we have

lim‖xj−x‖→0
‖xk−x‖→0

μ((Bd(xj ,‖xj − x‖) ∪ Bd(xk,‖xk − x‖)))
g(ψ(x))λ(Bm(zj ,‖zj − ψ(x)‖) ∪ Bm(zk,‖zk − ψ(x)‖)) = 1.

Lemma 2.5 implies that for μ-a.e x ∈ �x and any ε > 0, there exists δ3 > 0 such that for
any (xj ,xk) satisfying ‖xj − x‖ ≤ δ3, ‖xk − x‖ ≤ δ3, we have

μ((Bd(xj ,‖xj − x‖) ∪ Bd(xk,‖xk − x‖)))
g(ψ(x))λ(Bm(zj ,‖zj − ψ(x)‖) ∪ Bm(zk,‖zk − ψ(x)‖)) ∈ [1 − ε,1 + ε].

Plugging them into the righthand side of (2.17), we obtain∫∫
�1

x,δ

n2 exp
(−(n − 2)μ(Sj ∪ Sk)

)
dμ(xj )dμ(xk)

≤
∫∫

�1
x,δ

n2 exp
(−(n − 2)(1 − ε)g

(
ψ(x)

)
× λ

(
Bm(

zj ,
∥∥zj − ψ(x)

∥∥) ∪ Bm(
zk,

∥∥zk − ψ(x)
∥∥)))

dμ(xj )dμ(xk).

=
∫∫

ψ(�1
x,δ)

n2 exp
(−(n − 2)(1 − ε)g

(
ψ(x)

)
× λ

(
Bm(

zj ,
∥∥zj − ψ(x)

∥∥) ∪ Bm(
zk,

∥∥zk − ψ(x)
∥∥)))

× g(zj )g(zk)dλ(zj )dλ(zk).

(2.18)
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LEMMA 2.6. Assume all the conditions of the Lebesgue differential theorem hold, and
f , g are integrable functions with respect to Lebesgue measure λ. We then have

lim
U→x,U∈V

1

|U |
∫
U

fg dλ = f (x) lim
U→x,U∈V

1

|U |
∫
U

g dλ.

Using Lemma 2.6, for fixed ε > 0, there exists δ4 > 0 such that for every δ < δ4, we have

(2.18) ≤ (1 + ε)n2g
(
ψ(x)

)2
∫∫

ψ(�1
x,δ)

exp
(−(n − 2)(1 − ε)g

(
ψ(x)

)
× λ

(
Bm(

zj ,
∥∥zj − ψ(x)

∥∥) ∪ Bm(
zk,

∥∥zk − ψ(x)
∥∥)))

dλ(zj )dλ(zk).

(2.19)

LEMMA 2.7. For μ-a.e. x ∈ M and the corresponding chart ψ , it holds true that

lim
δ→0

λ(ψ(�1
x,δ))

λ(�m,δ)
= 1.

Considering Lemma 2.7 and the uniform property of Lebesgue measure, we can just do a
translation and make the origin point contained in the domain of integration so that

(2.19) ≤ (1 + ε)2n2g
(
ψ(x)

)2
∫∫

�m,δ

exp(−(n − 2)(1 − ε)g
(
ψ(x)

)
× λ

(
Bm(

zj ,‖zj‖) ∪ Bm(
zk,‖zk‖))

dλ(zj )dλ(zk),

where

�m,δ := �m ∩ {
(zj ,zk) ∈ (

R
m)2 : ‖zj‖,‖zk‖ ≤ δ

}
.

Denote Bm(zj ,‖zj‖) and Bm(zk,‖zk‖) to be m-dimensional balls in R
m. We then introduce

a translation

z∗
j := lmzj , z∗

k := lmzk.

We thus have

λ(Bm(
z∗
j ,

∥∥z∗
j

∥∥) ∪ (
Bm(

z∗
k,

∥∥z∗
k

∥∥)) = (lm)mλ(Bm(
zj ,‖zj‖) ∪ (

Bm(
zk,‖zk‖))

.

Set lm = ((n − 2)(1 − ε)g(ψ(x)))1/m and the corresponding Jacobi matrix satisfies |J | =
(n − 2)(1 − ε)g(ψ(x)). As n → ∞, lm → ∞ and n

n−2 → 1, and thus

lim
n→∞Jn,1 ≤ lim

n→∞
(1 + ε)n2

(1 − ε)2(n − 2)2

×
∫∫

�m,lmδ

exp(−λ
(
Bm(

z∗
j ,

∥∥z∗
j

∥∥) ∪ (
Bm(

z∗
k,

∥∥z∗
k

∥∥)))
dλ

(
z∗
j

)
dλ

(
z∗
k

)

= 1 + ε

(1 − ε)2

∫∫
�m

exp(−λ
(
Bm(

z∗
j ,

∥∥z∗
j

∥∥) ∪ (
Bm(

z∗
k,

∥∥z∗
k

∥∥)))
dλ

(
z∗
j

)
dλ

(
z∗
k

)
(2.20)

holds for arbitrary ε > 0. We thus obtain the upper bound.
For the lower bound, the proof is similar. Use the fact that, for any ε > 0, there exists σ > 0

such that for every x ∈ [0, σ ], e−x ≤ (1 + ε)(1 − x). We have there exists δ5 such that for any
δ < δ5,

Jn,1 ≥
∫∫

�1
x,δ

n2 exp
(−(n − 2)(1 + ε)μ(Sj ∪ Sk)

)
dμ(xj )dμ(xk).
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We then follow the same process as above: for a sufficiently small δ > 0,∫∫
�1

x,δ

n2 exp
(−(n − 2)(1 + ε)μ(Sj ∪ Sk)

)
dμ(xj )dμ(xk)

≥
∫∫

�1
x,δ

n2 exp
(−(n − 2)(1 + ε)2g

(
ψ(x)

)
× λ

(
Bm(

zj ,
∥∥zj − ψ(x)

∥∥) ∪ Bm(
zk,

∥∥zk − ψ(x)
∥∥)))

dμ(xj )dμ(xk)

≥ (1 − ε)n2g
(
ψ(x)

)2
∫∫

ψ(�1
x,δ)

exp
(−(n − 2)(1 + ε)2g

(
ψ(x)

)
× λ

(
Bm(

zj ,
∥∥zj − ψ(x)

∥∥) ∪ Bm(
zk,

∥∥zk − ψ(x)
∥∥)))

g(zj )g(zk)dλ(zj )dλ(zk)

≥ (1 − ε)2n2g
(
ψ(x)

)2
∫∫

�m,δ

exp(−(n − 2)(1 + ε)2g
(
ψ(x)

)
× λ

(
Bm(

zj ,‖zj‖) ∪ (
Bm(

zk,‖zk‖)))
dλ(zj )dλ(zk).

Again use a translation

z∗∗
j := rmzj , z∗∗

k := rmzk,

and thus the corresponding scaling result

λ(Bm(
z∗∗
j ,

∥∥z∗∗
j

∥∥) ∪ (
Bm(

z∗∗
k ,

∥∥z∗∗
k

∥∥)) = (rm)mλ(Bm(
zj ,‖zj‖) ∪ (

Bm(
zk,‖zk‖))

.

Setting rm := ((n − 2)(1 + ε)2g(ψ(x)))1/m and noting that the corresponding Jacobi matrix
satisfies |J | = (n − 2)(1 + ε)2g(ψ(x)), we have

Jn,1 ≥ (1 − ε)n2

(1 + ε)4(n − 2)2

×
∫∫

�m,lmδ

exp(−λ
(
Bm(

z∗∗
j ,

∥∥z∗∗
j

∥∥) ∪ (
Bm(

z∗∗
k ,

∥∥z∗∗
k

∥∥)))
dλ

(
z∗∗
j

)
dλ

(
z∗∗
k

)
.

(2.21)

Following the same procedure as we discussed before, as n goes to infinity, we then obtain
the same lower bound.

Matching the upper and lower bounds then yields

lim
n→∞ EM(Xi) = lim

n→∞n2P(Qj ∩ Qk|Xi = x) = lim
n→∞ In,2 = om.

Finally,

lim
n→∞

EMtotal

n
= lim

n→∞ E
n∑

i=1

M(Xi )

n
= lim

n→∞
n∑

i=1

EM(Xi )

n
= om.

This completes the proof. �

2.5. Proof of Theorem 1.3.

PROOF OF THEOREM 1.3. Our proof of Theorem 1.3 is similar to that of Theorem 1.1.
In detail, the proof of Theorem 1.1 reveals that the asymptotic variance is determined by

the limiting proportion of two graph structures shown in Lemmas 1.4 and 1.5. The proof of
Theorem 1.3 is based on the same idea. The following lemmas are in parallel to Lemmas 1.4
and 1.5.
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LEMMA 2.8 (Expected number of nearest-neighbor pairs under difference-based kernel
metric). Consider Gn in R

d to be the NNG induced by f (·), and M and μ satisfying the
assumptions of Theorem 1.1(i) and Assumption 1.1, respectively. We then have, as n → ∞,

E
(

1

n
#
{
(i, j) distinct : i → j, j → i ∈ E(Gn)

}) → qm.

LEMMA 2.9. Consider Gn in R
d to be the NNG induced by f (·, ·), and M and μ satis-

fying the assumptions of Theorem 1.1(i) and Assumption 1.1, respectively. We then have, as
n → ∞,

E
(

1

n
#
{
(i, j, k) distinct : i → k, j → k ∈ E(Gn)

}) → om.

PROOF OF LEMMA 2.8. We first recall the notation used in the previous proofs. Let
N(Xi ) denote the number of NN pairs containing Xi and Ntotal denote the total number of
NN pairs (double edges) in NNG; in other words,

Ntotal := #
{
(i, j) distinct : i → j, j → i ∈ E(Gn)

}
,

N(Xi ) := #
{
j : i → j, j → i ∈ E(Gn)

}
.

Assumption 1.2 implies an upper bound on N(Xi ), that is,

N(Xi ) ≤ Cd,K < ∞.

Since by the dominant convergence theorem, we have

lim
n→∞ EN(Xi ) = lim

n→∞

∫
E

(
N(xi )

)
dμ(xi ) =

∫
lim

n→∞ E
(
N(xi )

)
dμ(xi ),

it suffices to find the limit of E(N(xi )) given the sequence of graph Gn. Denote Ud
K(x1,x2)

to be the union of two balls under metric D(·, ·) induced by K(·, ·) in R
d whose centers are

x1 and x2 and radius are both D(x1,x2). The same analysis as in equation (2.5) gives us that

E
(
N(xi )

) =(n − 1)

∫
M

(
1 − μ

(
Ud

K(xi ,xj )
))n−2 dμ(xj ).(2.22)

To get a good approximation of μ(Ud
K(xi ,xj )), we consider the linearization version of

the kernel-based matric. Define H(x) := ∇2f (x) for x in a neighborhood of 0. By Assump-
tion 1.2, H(0) is reversible, and we define 
 = H(0)−1. The corresponding Mahalanobis dis-
tance is defined as ‖x‖
 := √

xT 
−1x. We then approximate the kernel-based metric based
on this Mahalanobis distance. Recall that λ is denoted to be the m-dimensional Lebesgue
measure.

LEMMA 2.10. For μ-a.e. x ∈ M and the corresponding chart ψ(= ψx), it holds true
that

lim‖xj−x‖
→0

μ(Ud
K(x,xj ))

g(ψ(x))‖xj − x‖m

Um,
,x

= 1,

where Um,
,x is the volumn (m-dimensional Lebesgue measure) of Ud
K(x,y)∩πx with ‖x −

y‖
 = 1, and πx denoting the tangent space of M at x.

It can be explicitly shown that Um,
,x = Um · (
∏m

i=1 λi(Projπx

))1/2; here we use

Projπ(A) to denote the projection of the matrix A onto π , that is, for a projection matrix
Pπ (projecting onto π ), Projπ(A) := PπAP T

π , and λi(A) to denote the ith largest eigenvalue
of A.
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LEMMA 2.11. For μ-a.e. x ∈ M and the corresponding chart ψ(= ψx), it holds true
that

lim‖xj−x‖
→0

μ(Bd(x, r))

g(ψ(x))rmVm,
,x
= 1,

where Vm,
,x is defined to be the volumn (m-dimensional Lebesgue measure) of Bd(x,1) ∩
πx , and Bd(x, r) is the ball under the Mahalanobis distance with center x and radius r .

Similarly, we have Vm,
,x = Vm · (∏m
i=1 λi(Projπx


))1/2.
With Lemmas 2.10 and 2.11, we can then first get the lower bound of the integral in

equation (2.22) following the same procedure as in inequalities (2.8), (2.10), and (2.12). For
arbitrary ε > 0, there exists δ > 0 such that

E
(
N(xi )

) = (n − 1)

∫
M

(
1 − μ

(
Ud

K(xi ,xj )
))n−2 dμ(xj )

≥ (n − 1)

∫
‖xj−xi‖
≤δ

(
1 − (1 + ε)g

(
ψ(xi)

)‖xj − xi‖m

Um,
,xi

)n−2 dμ(xj )

≥ (n − 1)

∫ 1

φ1,
(δ)

1 − ε

1 + ε

Vm,


Um,
,xi

(
1 − t

1
n−2

)
dt

≥ 1 − ε

1 + ε

Vm,
,xi

Um,
,xi

(
1 − (n − 1)φ1,
(δ)

)
,

where

φ1,
(δ) := (
1 − (1 + ε)g

(
ψ(xi )

)
rmUm,
,xi

)n−2
I{r≤δ}.

Let n go to infinity, by direct calculation we then have

lim
n→∞E

(
N(xi )

) ≥ 1 − ε

1 + ε

Vm,
,xi

Um,
,xi

.

Since ε is arbitrary, we then have

lim
n→∞E

(
N(xi )

) ≥ Vm,
,xi
/Um,
,xi

= Vm/Um.

To get the upper bound of the integral in equation (2.22), we can follow the same procedure
as in inequalities (2.13), (2.14), and (2.16). For arbitrary ε > 0, we choose δ > 0 such that

E
(
N(xi )

) = (n − 1)

∫
M

(
1 − μ

(
Ud

K(xi ,xj )
))n−2 dμ(xj )

≤ (n − 1)

∫
M

exp
(−(n − 2)μ

(
Ud

K(xi ,xj ) ∩M
))

dμ(xj )

= (n − 1)

∫
‖xj−xi‖
>δ

exp
(−(n − 2)μ

(
Ud

K(xi ,xj ) ∩M
))

dμ(xj )

+ (n − 1)

∫
‖xj−xi‖
≤δ

exp
(−(n − 2)μ

(
Ud

k (xi ,xj ) ∩M
))

dμ(xj )

≤ (n − 1) exp
(
−(n − 2) inf‖xj−xi‖
≥δ

{
μ

(
Ud

K(xi ,xj ) ∩M
)}) ∫

M
dμ(xj )

+ (n − 1)φ2,
(δ) + (n − 1)

∫ 1

φ2,
(δ)
(1 + ε)Vm,
,xi

(
φ−1

2,
(t)
)m dt,
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where

φ2,
(r) := exp
(−(n − 2)(1 − ε)2g

(
ψ(xi )

)
rmUm,
,xi

)
I{r≤δ}.

Direct calculation then yields

lim
n→∞E

(
N(xi )

) ≤ 1 + ε

1 − ε

Vm,
,xi

Um,
,xi

.

Since ε is arbitrary, we then have

lim
n→∞E

(
N(xi )

) ≤ Vm,
,xi
/Um,
,xi

= Vm/Um.

Combining the upper and lower bounds of E(N(xi )), we then have

lim
n→∞E

(
N(xi )

) = Vm,
,xi

Um,
,xi

= Vm

Um

= qm,

and consequently,

lim
n→∞ EN(Xi ) =

∫
M

lim
n→∞ EN(xi )dμ(xi ) = qm.

Finally, we conclude that

lim
n→∞

ENtotal

n
= lim

n→∞
n∑

i=1

E(N(Xi ))

n
= qm

and thus complete the proof. �

PROOF OF LEMMA 2.9. The proof is similar to that of Lemma 1.5. Denote

Qj := {
j → i ∈ E(Gn)

}
for any j �= i and put

Mtotal = #
{
(i, j, k) distinct : j → i, k → i ∈ E(Gn)

}
,

D(Xi ) = ∑
j �=i

IQj
= #

{
j : j → i ∈ E(Gn)

}
,

M(Xi ) = #
{
(j, k) distinct : j → i, k → i ∈ E(Gn)

}
.

Here M(Xi ) is the coefficient we are interested in. Observe that

Mtotal =
n∑

i=1

M(Xi),

M(Xi ) = D(Xi )
(
D(Xi ) − 1

)
,

so that we have

EM(Xi ) = ED(Xi )
(
D(Xi ) − 1

)
= E

∑
(j,k) distinct

j,k �=i

P(Qj ∩ Qk)

= (n − 1)(n − 2)P(Qj ∩ Qk).
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We first consider a fixed sample point Xi = xi . Using Assumption 1.2, we have

C2
d,K ≥ ED(Xi |Xi = xi )

(
D(Xi |Xi = xi ) − 1

)
= (n − 1)(n − 2)P(Qj ∩ Qk|Xi = xi ).

Then applying the Lebesgue dominated convergence theorem, we have

lim
n→∞(n − 1)(n − 2)P(Qj ∩ Qk) = lim

n→∞

∫
M

(n − 1)(n − 2)P(Qj ∩ Qk|Xi = xi )dμ(xi )

=
∫
M

lim
n→∞(n − 1)(n − 2)P(Qj ∩ Qk|Xi = xi )dμ(xi ).

It remains to analyze the limit term

lim
n→∞(n − 1)(n − 2)P(Qj ∩ Qk|Xi = xi).

We first introduce the notation to simplify the integral. For a fixed point x ∈ M, let

�x,
 := {
(xj ,xk) ∈ (

R
d)2 : max

{‖xj − x‖
,‖xk − x‖


} ≤ ‖xj − xk‖


}
,

Sj,
 := B
(
xj ,‖xj − x‖


) ∩M, and Sk,
 := B
(
xk,‖xk − x‖


) ∩M.

We then have

n2P(Qj ∩ Qk|Xi = x) =
∫∫

�x

n2(
1 − μ(Sj,
 ∪ Sk,,
)

)n−2 dμ(xj )dμ(xk).

We then perform a similar operation to split the region of integral so that �x,
 = �1
x,δ,
 ∪

�2
x,δ,
 . Here

�1
x,δ,
 := �x,
 ∩ {

(x1,x2) ∈ (
R

d)2 : ‖x1 − x‖
,‖x2 − x‖
 ≤ δ
}
,

�2
x,δ,
 := �x,
 \ �1

x,δ,

where δ is a sufficiently small but positive real number to be defined. Taking this idea, we
partition the integral into two parts:

n2P(Qj ∩ Qk|Xi = x) =
∫∫

�1
x,δ,


n2(
1 − μ(Sj,
 ∪ Sk,
)

)n−2 dμ(xj )dμ(xk)

+
∫∫

�2
x,δ,


n2(
1 − μ(Sj,
 ∪ Sk,
)

)n−2 dμ(xj )dμ(xk).

Analogously to Lemma 2.4, we can directly prove a parallel version of it.

LEMMA 2.12. For μ-a.e. x ∈ M and the corresponding chart ψ , it holds true that

lim‖xj−x‖
→0

μ(Bd(xj ,‖x − xj‖
)))

g(ψ(x))λ(Bd(xj ,‖x − xj‖
) ∩ πx)
= 1,

where πx is the tangent space of M at x.

With Lemma 2.12, the same argument as in Lemma 1.5 gives us that

0 ≤
∫∫

�2
x,δ,


n2(
1 − μ(Sj,
 ∪ Sk,
)

)n−2 dμ(xj )dμ(xk)

≤ n2
(

1 − (1 − ε)g
(
ψ(x)

)
Vm,


(
δ

2

)m)n−2
→ 0.
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To bound the other term∫∫
�1

x,δ,


n2(
1 − μ(Sj,
 ∪ Sk,
)

)n−2 dμ(xj )dμ(xk),

we apply the following lemma (cf. Lemma 2.5).

LEMMA 2.13. For μ-a.e. x ∈ M and the corresponding chart ψ , we have

lim‖xj−x‖
→0
‖xk−x‖
→0

μ((Bd(xj ,‖xj − x‖
) ∪ Bd(xk,‖xk − x‖
)))

g(ψ(x))λ(Bd(zj ,‖zj − ψ(x)‖
) ∪ Bd(zk,‖zk − ψ(x)‖
) ∩ πx)
= 1,

where zj = ψ(xj ), zk = ψ(xk), and Bd represents the ball under the Mahalanobis distance.

The same argument as in the derivation of inequality (2.20) shows

lim
n→∞

∫∫
�1

x,δ,


n2(
1 − μ(Sj,
 ∪ Sk,
)

)n−2 dμ(xj )dμ(xk)

≤ 1 + ε

(1 − ε)2

∫∫
�m,
,x

exp(−λ
(
Bd(

z∗
j ,

∥∥z∗
j

∥∥



) ∪ (
Bd(

z∗
k,

∥∥z∗
k

∥∥



) ∩ πx
))

dλ
(
z∗
j

)
dλ

(
z∗
k

)
,

where

�m,
,x := {
(w1,w2) ∈ (πx)2 : max

(‖w1 − x‖
,‖w2 − x‖


)
< ‖w1 − w2‖


}
.

Here with a little abuse of notion, we use πx to denote the tangent plane of M at x. Since
z∗
j and z∗

k are supported on a m-diemnsional subspace of R
d , we still use m in the index

of �m,
,x . In the following, we write �m,
 as a shorthand of �m,
,0. Again we use the
derivation of inequality (2.21) to get the lower bound:

lim
n→∞

∫∫
�1

x,δ,


n2(
1 − μ(Sj,
 ∪ Sk,
)

)n−2 dμ(xj )dμ(xk)

≥ (1 − ε)

(1 + ε)4

×
∫∫

�m,
,x

exp(−λ
(
Bd(

z∗∗
j ,

∥∥z∗∗
j

∥∥



) ∪ (
Bd(

z∗∗
k ,

∥∥z∗∗
k

∥∥



)) ∩ πx
)

dλ
(
z∗∗
j

)
dλ

(
z∗∗
k

)
.

Finally, since ε > 0 is arbitrarily chosen, we conclude that

lim
n→∞

∫∫
�1

x,δ,


n2(
1 − μ(Sj,
 ∪ Sk,
)

)n−2 dμ(xj )dμ(xk)

=
∫∫

�m,


exp(−λ
(
Bd(

zj ,
∥∥zj

∥∥



) ∪ (
Bd(

zk,
∥∥zk

∥∥



) ∩ πx
))

dλ
(
zj

)
dλ

(
zk

)
,

where πx is the tangent space of M at x. It can be regarded as the m-dimensional subspace
in R

d which is tangent to M at x. Thus, we have

lim
n→∞ EM(Xi ) =

∫
M

lim
n→∞n2P(Qj ∩ Qk|Xi = x)dμ(x)

=
∫
M

∫∫
�m,


exp(−λ
(
Bd(

zj ,
∥∥zj

∥∥



) ∪ (
Bd(

zk,
∥∥zk

∥∥



) ∩ πx
))

dλ
(
zj

)
dλ

(
zk

)
dμ(x)

=: 
′
1(m,K,PX).
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Now we go one step further to calcuate 
′
1(m,K,PX). Denote the eigendecomposition of

P T
πx


Pπx as P T
πx


Pπx = U�UT , where U is the orthogonal matrix and � is the diagonal
matrix with eigenvalues on the diagonal. Since 
 is a positive definite matrix, we have �ii >

0 for all i = 1, . . . ,m, and �ii = 0 for i > m. Consider the change of variables in the integral
as

wi = λ�− 1
2 U−1zi , wj = λ�− 1

2 U−1zj ,

where λ = ∏m
i=1 �

1/2m
ii is a normalized constant to force the Jacobian of the transformation

to be 1. It can be checked that wi and wj are supported on πx , and also,

(2.23) λ
(
Bm(

wj ,
∥∥wj

∥∥) ∪ (
Bm(

wk,
∥∥wk

∥∥))) = λ(Bd(
zj ,

∥∥zj

∥∥



) ∪ (
Bd(

zk,
∥∥zk

∥∥



) ∩ πx
)
,

where ‖ · ‖ is the Euclidean norm in R
m. Plugging equation (2.23) into the expression of


′
1(m,K,PX), we have


′
1(m,K,PX)

=
∫
M

∫∫
�m,


exp(−λ
(
Bd(

zj ,
∥∥zj

∥∥



) ∪ (
Bd(

zk,
∥∥zk

∥∥



) ∩ πx
))

dλ
(
zj

)
dλ

(
zk

)
dμ(x)

=
∫
M

∫∫
�m;2

exp
(−λ

(
Bm(

wj ,
∥∥wj

∥∥
2

) ∪ (
Bm(

wk,
∥∥wk

∥∥
2

))))
dλ

(
wj

)
dλ

(
wk

)
dμ(x)

= om,

so that

lim
n→∞

EMtotal

n
= lim

n→∞
n∑

i=1

EM(Xi )

n
= om.

This completes the proof. �

With Lemmas 2.8 and 2.9, we are now ready to prove Theorem 1.3. Plugging the limits of
EMtotal/n and ENtotal/n to the expression of asymptotic variance, we obtain

lim
n→∞ Var(

√
nξn) = 4

5
+ 2

5
qm + 4

5
om.

We then show the asymptotic normality of
√

nξn by leveraging Theorem 4.1 in Deb,
Ghosal and Sen (2020). Since here we consider the directed nearest neighbor graph, the
out-degree of each node is 1. To check the asymptotic normality, we need to verify all the
assumptions in Theorem 4.1 in Deb, Ghosal and Sen (2020). To verify (A2) and (A3), adopt-
ing the notation in Deb, Ghosal and Sen (2020), we choose tn = rn := 1 and qn := Cd,K + 1
for all n. Since the out-degree of the node indexed by i is di = 1. Thus, (A2) and (A3) are
satisfied with these chosen parameters. Noticing that

lim
n→∞ max

1≤i≤n

di

(logn)γ
= 0,

for any γ > 0, we can just choose D := Cd,K + 2 > 0 to ensure r−1
n (qn + tn) ≤ D, which

makes sure that the additional conditions in Theorem 4.1 in Deb, Ghosal and Sen (2020) are
satisfied in our setting.

To wrap up,
√

nξn is asymptotically normal with mean 0 and variance 4
5 + 2

5qm + 4
5om.

�
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2.6. Proof of Theorem 1.4.

PROOF OF THEOREM 1.4. The proof of Theorem 1.4 is similar to that of Theorem 1.3.
Therefore, we do not repeat the whole calculation process, but only present the major modi-
fications.

Since we study a smooth manifold M, the natural parameterization mapping ψ is smooth
and is locally bijective. This argument makes sure the existence of its inverse mapping ϕ =
ψ−1. Also, ϕ is a smooth function guaranteed by the definition of smooth manifold. Denote


x = ((∇ϕx(x)
)T ∇ϕx(x)

)−1
,

where ϕx is the inverse mapping of natural parametrization mapping at the point x ∈ M.
Here, by Tietze extension theorem (Dugundji (1951)), we can consider ϕx as a function on R

d

without loss of generality, and the derivative operator is defined in this sense. Since the map-
ping is bijective, ∇ϕx(x) is full-rank, so the inverse of the matrix is well defined.

With this locally defined matrix, we then introduce the Mahalanobis distance on the neigh-
borhood of x as

‖y‖
x =
√

yT 
−1
x y,

for arbitrary fixed point x ∈ M. The proofs of Lemmas 2.10 and 2.11 can then be directly ap-
plied to the geodesic distance context. We state the geodesic distance version of Lemmas 2.10
and 2.11 below; their proofs are omitted.

LEMMA 2.14 (Expected number of nearest-neighbor pairs under goedesic distance).
Consider Gn in R

d to be the NNG induced by the geodesic distance dg(·, ·), and M and
μ satisfying the assumptions of Theorem 1.1(i), respectively. We then have, as n → ∞,

E
(

1

n
#
{
(i, j) distinct : i → j, j → i ∈ E(Gn)

}) → qm.

LEMMA 2.15. Consider Gn in R
d to be the NNG induced by metric f (·, ·), and M and μ

satisfying the assumptions of Theorem 1.1(i), respectively. We then have, as n → ∞,

E
(

1

n
#
{
(i, j, k) distinct : i → k, j → k ∈ E(Gn)

}) → om.

With Lemmas 2.14 and 2.15, we get the asymptotic variance of the geodesic distance
NNG estimator, and the CLT is a direct consequence of Deb, Ghosal and Sen ((2020), Theo-
rem 4.1). �

3. Proofs of the rest results.

3.1. Proof of Lemma 1.1(a).

PROOF OF LEMMA 1.1(a). Recall the expression for qm:

qm :=
{

2 − I3/4

(
m + 1

2
,

1

2

)}−1
, Ix(a, b) :=

∫ x
0 ta−1(1 − t)b−1 dt∫ 1
0 ta−1(1 − t)b−1 dt

.

To prove the monotone of qm as the dimension m increases, it suffices to show that Ix(a, b)

decreases as argument a increases when x ∈ [0,1] and a, b > 0. For some ε > 0, we directly
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compare the values of Ix(a, b) and Ix(a + ε, b). We have

(
Ix(a, b)

)−1 = 1 +
∫ 1
x ta−1(1 − t)b−1 dt∫ x
0 ta−1(1 − t)b−1 dt

,

(
Ix(a + ε, b)

)−1 = 1 +
∫ 1
x ta−1tε(1 − t)b−1 dt∫ x
0 ta−1tε(1 − t)b−1 dt

.

Observe that ∫ 1

x
ta−1tε(1 − t)b−1 dt > xε

∫ 1

x
ta−1(1 − t)b−1 dt,

∫ x

0
ta−1tε(1 − t)b−1 dt < xε

∫ x

0
ta−1(1 − t)b−1 dt,

which implies that (Ix(a, b))−1 < (Ix(a + ε, b))−1. Equivalently, Ix(a + ε, b) < Ix(a, b) for
every ε > 0.

With monotony, we have qm ∈ (q∞,q1], where q∞ := limm→∞ qm. Here, q1 = 2/3, and
for q∞, notice that for some sufficient small δ > 0,∫ x

0 ta−1(1 − t)b−1 dt∫ 1
x ta−1(1 − t)b−1 dt

≤
∫ x

0 ta−1(1 − t)b−1 dt∫ 1−δ
x+δ ta−1(1 − t)b−1 dt

≤ xa

(1 − x − 2δ)(x + δ)a−1δb−1 .

Thus, lima→→ Ix(a, b) = 0, and hence q∞ = 1/2.
In conclusion, qm ∈ (1/2,2/3] is strictly decreasing as m increases. �

3.2. Proof of Lemma 1.1(b).

PROOF OF LEMMA 1.1(b). Recall the expression for om:

om :=
∫∫

�m;2
exp

[−λ
{
B

(
w1,‖w1‖) ∪ B

(
w2,‖w2‖)}]

d(w1,w2),

�m;2 := {
(w1,w2) ∈ (

R
m)2 : max

(‖w1‖,‖w2‖)
< ‖w1 − w2‖}

.

Considering the symmetry of w1 and w2 is the integral, we have

om = 2
∫∫

�∗
m;2

exp
[−λ

{
B

(
w1,‖w1‖) ∪ B

(
w2,‖w2‖)}]

d(w1,w2),

where �∗
m;2 := �m;2 ∩ {

(w1,w2) ∈ (
R

m)2 : ‖w1‖ > ‖w2‖}
.

We first prove that for any positive integer m, om < 2. The expression for om means that

om < 2
∫∫

�∗
m;2

exp
[−λ

{
B

(
w1,‖w1‖)}]

dw2 dw1

= 2
∫
Rm

exp
[−λ

{
B

(
w1,‖w1‖)}]

Vm‖w1‖m dw1

= 2
∫ ∞

0
exp

(−Vmtm
)
Vmtm · (

mVmtm−1 dt
)

=
∫ ∞

0
exp

(−Vmtm
)

d
(
V 2

mt2m) = 2,

in which we apply polar coordinates transformation and denote t = ‖w1‖ in the transforma-
tion.
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Then we consider the limit behavior and prove that lim supm om ≤ 1. The definition of
�∗

m;2 shows that, for (w1,w2) ∈ �∗
m;2, we have w1 /∈ B(w2,‖w2‖) and ‖w2‖ < ‖w1‖. Thus,

for fixed w1, the Lebesgue measure of B(w1,‖w1‖) ∩ B(w2,‖w2‖) can be bounded by the
restrictions above, that is,

λ
{
B

(
w1,‖w1‖) ∩ B

(
w2,‖w2‖)}

< λ
{
B

(
w1,‖w1‖) ∩ B

(
0,‖w1‖)}

=
(

2 − 2

qm

)
λ
{
B

(
w1,‖w1‖)}

.

We denote εm = 2 − 2/qm. According to Lemma 1.1(a), it is known that limm→∞ εm = 0.
Applying the estimation, we have the bound

λ
{
B

(
w1,‖w1‖) ∪ B

(
w2,‖w2‖)}

= λ
{
B

(
w1,‖w1‖)} + λ

{
B

(
w2,‖w2‖)} − λ

{
B

(
w1,‖w1‖) ∩ B

(
w2,‖w2‖)}

> (1 − εm)Vm‖w1‖m + Vm‖w2‖m.

We then get back to the expression for om:

om < 2
∫∫

�∗
m;2

exp
[−(1 − εm)Vm‖w1‖m − Vm‖w2‖m]

d(w1,w2)

= 2
∫∫

�∗
m;2

(
exp

[−Vm‖w2‖m]
dw2

)
exp

[−(1 − εm)Vm‖w1‖m]
dw1

< 2
∫
Rm

(∫
w2:‖w2‖<‖w1‖

exp
[−Vm‖w2‖m]

dw2

)
exp

[−(1 − εm)Vm‖w1‖m]
dw1

= 2
∫
Rm

(
1 − e−Vm‖w1‖m)

exp
[−(1 − εm)Vm‖w1‖m]

dw1

= 2
(

1

1 − εm

− 1

2
√

1 − εm

)
→ 1.

The calculation follows from the polar coordinates transformation as used before. In conclu-
sion, we have lim supm om ≤ 1. Combining this with om < 2, we obtain supm om < 2. �

3.3. Proof of Lemma 2.2.

PROOF OF LEMMA 2.2. We consider approximating μ(Ud(xi ,xj )) as

μ
(
Ud(xi ,xj )

) =ψ∗μ
(
ψ

(
Ud(xi ,xj ) ∩M

)) =
∫
ψ(Ud(xi ,xj )∩M)

g dλ(xj ).

Using the Lebesgue differentiation theorem (LDT), there exists some δ1 > 0 such that for
μ-a.e. xi and every xj satisfying ‖xj − xi‖ < δ1, we have

μ(Ud(xi ,xj ))

g(ψ(xi ))λ(ψ(Ud(xi ,xj ) ∩M))
∈

[
1 − ε

3
,1 + ε

3

]
.(3.1)

For every α > 0, we first define

Um
α (x,y) := Bm(

x, α‖x − y‖) ∪ Bm(
y, α‖x − y‖)

.

Taking a specific form of ψ , for example, orthogonal projection onto the tangent plane π , we
have for every γ > 0 and xj satisfying ‖xj − xi‖ < δ2, we have

Um
1−γ

(
ψ(xi ),ψ(xj )

) ⊂ ψ
(
Ud(xi ,xj ) ∩M

) ⊂ Um
1−γ

(
ψ(xi ),ψ(xj )

)
.(3.2)



AZADKIA–CHATTERJEE’S CORRELATION FOR MANIFOLDS 5205

In fact, considering the properties of orthogonal projection, we have for every x ∈
Ud(xi ,xj ) ∩M, ∥∥ψ(x) − ψ(xi )

∥∥ ≤ ‖x − xi‖ ≤ ‖xi − xj‖.

LEMMA 3.1. (i) For any x ∈ M and any α > 0, there exists δ > 0 such that for every
xi ∈ M satisfying ‖xi − x‖ < δ, we have that the angle between the vector xi − x and its
projection onto π , which is the tangent plane of M at point x, is less than α.

(ii) Furthermore, there exists δ∗ > 0 such that for every xi ,xj ∈M satisfying max{‖xi −
x‖,‖xj − x‖} < δ∗, we have that the angle between the vector xi − xj and its projection
onto the tangent plane π is less than α.

Applying Lemma 3.1, we can select a sufficiently small δ2 such that

‖xi − xj‖ ≤ (1 + γ )
∥∥ψ(xi ) − ψ(xj )

∥∥.
This reveals that for every

x ∈ B
(
xi ,‖xi − xj‖) ∩M,

it holds true that

ψ(x) ∈ B
(
ψ(xi), (1 + γ )

∥∥ψ(xi ) − ψ(xj )
∥∥)

.

The above process can be repeated for the pair (x,xj ) similarly. Putting them together, we
get the second “⊂” of equation (3.2):

ψ
(
Ud(xi ,xj ) ∩M

) ⊂ Um
1+γ

(
ψ(xi ),ψ(xj )

)
.

For the first “⊂”, the proof is similar. In detail, for every

z ∈ B
(
ψ(xi ), (1 − γ )

∥∥ψ(xi ) − ψ(xj )
∥∥) ∩ V,

we can select a sufficiently small δ2 such that

∥∥ψ−1(z) − xi

∥∥ ≤
(

1 + γ

2

)∥∥z − ψ(xi )
∥∥ ≤

(
1 − γ

2

)∥∥ψ(xi ) − ψ(xj )
∥∥ ≤ ‖xi − xj‖,

which implies that

ψ−1(
Um

1−γ

(
ψ(xi ),ψ(xj )

)) ⊂ Ud(xi ,xj ) ∩M.

Applying the mapping ψ to both sides and repeating the process for x and xj , we obtain the
first “⊂” of equation (3.2):

Um
1−γ

(
ψ(xi ),ψ(xj )

) ⊂ ψ
(
Ud(xi ,xj ) ∩M

)
.

With equation (3.2) and noticing that

lim‖xj−xi‖→0

‖ψ(xi ) − ψ(xj )‖
‖xi − xj‖ = 1,(3.3)

one can directly obtain that

lim‖xj−xi‖→0

λ(ψ(Ud(xi ,xj ) ∩M))

λ(Um(xi ,xj ))
= lim‖xj−xi‖→0

λ(ψ(Ud(xi ,xj ) ∩M))

λ(Um(ψ(xi ),ψ(xj )))
= 1.(3.4)

Combining (3.1) and (3.4) completes the proof of Lemma 2.2. �
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3.4. Proofs of Lemma 2.3, 2.4, 2.5, and 2.7.

PROOFS OF LEMMA 2.3, 2.4, AND 2.5. All these lemmas share a similar proof to
Lemma 2.2 that we have proved above. Details are hence omitted. �

PROOF OF LEMMA 2.7. We consider the pushforward ψ−1∗ λ and Lebesgue measure λ

instead of μ and the pushforward ψ∗μ in this lemma. Hence, we just set g ≡ 1 and its proof
can be regarded as a special case of the proof sketch of Lemma 2.4. �

3.5. Proof of Lemma 2.10. We consider approximating μ(Ud(x,xj )) as

μ
(
Ud

K(x,xj )
) =ψ∗μ

(
ψ

(
Ud

K(x,xj ) ∩M
)) =

∫
ψ(Ud

K(x,xj )∩M)
g dλ(xj ).

Using the Lebesgue differentiation theorem (LDT), there exists some δ > 0 such that for
μ-a.e. x and every xj satisfying ‖xj − x‖ < δ, we have

μ(Ud
K(x,xj ))

g(ψ(x))λ(ψ(Ud
K(x,xj ) ∩M))

∈
[
1 − ε

3
,1 + ε

3

]
.(3.5)

Since H(0) is assumed to be positive definite, we can choose constants 0 < c < C < ∞ such
that

c < λmin
(
H(0)

)
< λmax

(
H(0)

)
< C

for the eigenvalues of H(0). Thus, the Mahalanobis distance

‖x‖
 = ‖x‖H(0)−1 =
√

xT
(
H(0)

)
x

is equivalent to the Euclidean distance ‖x‖. With the same argument, Lemma 3.1 holds for
the Mahalanobis distance ‖ · ‖
 as well. As in the proof of Lemma 2.2, Lemma 3.1 directly
yields that, for any fixed γ > 0, we can choose a sufficiently small δ > 0 such that

Um
1−γ,K

(
ψ(x),ψ(xj )

) ⊂ ψ
(
Ud

K(x,xj ) ∩M
) ⊂ Um

1+γ,K

(
ψ(x),ψ(xj )

)
,

where

Um
α,K(x,y) := Bd(

x, α‖x − y‖


) ∪ Bd(
y, α‖x − y‖


) ∩ πx

and πx denotes the tangent plane of M at point x. Letting γ → 0, we have

lim‖x−xj‖
→0

λ(ψ(Ud
K(xi ,xj ) ∩M))

λ(Um
1,K(ψ(xi ),ψ(xj )))

= 1.(3.6)

The same argument as in the derivation of (3.3) gives us

lim‖x−xj‖
→0

f (ψ(x) − ψ(xj ))

f (x − xj )
= 1.(3.7)

Also, the smoothness of f gives us that ∇f (0) = 0 and ∇2f (0) = 
−1, and the Taylor
expansion of f around 0 gives us

lim‖x−xj‖
→0

f (x − xj )

‖x − xj‖


= 1.(3.8)

Combining (3.6), (3.7), and (3.8), we obtain

lim‖x−xj‖
→0

λ(ψ(Ud
K(xi ,xj ) ∩M))

‖x − xj‖m

Um,K,x

= 1,

which completes the proof of Lemma 2.10.
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3.6. Proofs of Lemmas 2.11, 2.12 and 2.13.

PROOFS OF LEMMAS 2.11, 2.12 AND 2.13. The proofs are nearly identical to that of
Lemma 2.10. We thus omit the details. �

3.7. Proof of Lemma 3.1.

PROOF OF LEMMA 3.1. We denote by π the tangent plane of M at point x and π⊥
the orthogonal complement of π in R

d . Moreover, we denote by PV , QV the orthogonal
projection operators on π and π⊥, respectively. The orthogonal decomposition of a vector z
with respect to π can then be shown as z = PV (z) + QV (z).

Define θ(z) as the angle between z and its projection onto the tangent plane π . When
z = 0, we define θ(z) = 0. Using the notation above, one has

tan
(
θ(xi − x)

) = ‖QV (xi − x)‖
‖PV (xi − x)‖ , xi �= x.

We now consider θ(xi − x) as a function of xi . Since M is a smooth manifold, QV (xi − x)

and PV (xi −x) are both continuous functions. With the definition of the tangent plane π , we
know that θ(xi − x) is continuous at point xi = x. Thus θ(xi − x) is a continuous function
on M. We can select a fixed δ1 > 0 so that θ(xi − x) is uniformly continuous on M ∩
Bd(x, δ1). Since θ(x − x) = 0, there exists 0 < δ < δ1 such that for any xi ∈ M and ‖xi −
x‖ < δ, we have θ(xi − x) < α, which is the first claim.

For the second claim, we just have to modify θ(z) as follows: we define θ(xi ,xj ) to be
the angle between the vector xi − xj and its projection onto the tangent plane π so that

tan
(
θ(xi ,xj )

) = ‖QV (xi − xj )‖
‖PV (xi − xj )‖ , xi �= xj .

Additionally, define θ(xi ,xj ) = 0 when xi = xj . We select δ∗
1 to make sure that θ(xi ,xj )

exists. The second claim can then be obtained similarly by following the proof above. �

3.8. Proof of Lemma 2.6.

PROOF OF LEMMA 2.6. It is a simple corollary to the Lebesgue differential theorem,
which can be derived by applying the LDT to f and g respectively:

lim
U→x,U∈V

1

|U |
∫
U

fg dλ = f (x)g(x) lim
U→x,U∈V

1

|U |
∫
U

dλ = f (x) lim
U→x,U∈V

1

|U |
∫
U

g dλ.

This completes the proof. �

3.9. Proof of Proposition 1.2.

PROOF OF PROPOSITION 1.2. We first show that for any fixed point x ∈ M, the number
of points whose NN is x is finite. Consider all the geodesic cones

{Cα}α∈I ⊂M
with x as their common peak, which satisfies that, for any α ∈ I , x′,x′′ ∈ Cα , we have

dg

(
x′ − x′′) < max

{
dg

(
x′ − x

)
, dg

(
x′′ − x

)}
.

We can directly check that Cα \ {x} is an open set for any α ∈ I , and
⋃

α∈I Cα =M. In fact,
for any x′ �= x, x′ ∈M, we can find a small enough ε > 0 such that

ε < dg

(
x,x′)/3.
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Thus, B(x′, ε) ⊂ Cα for some α ∈ I . Here B(x ′, ε) denotes the geodesic ball with center x′
and radius ε. Since M is compact and {Cα ∪ B(x, δ)}α∈I is an open cover of M for any
δ > 0, we can find a finite subcover of M, denoting as {Cα ∪ B(x, δ)}α∈I1 , where I1 is a
finite index set, that is,

M ⊂ ⋃
α∈I1

{
Cα ∪ B(x, δ)

}
.(3.9)

Then, we choose δ small enough so that we can find a local smooth exponential map ψ

satisfying

ψ−1 : B(x, δ) →R
m, ψ(0) = x,

and ∥∥ψ−1(
x′)∥∥ = dg

(
x,x′),

(1 − η)
∥∥ψ−1(

x′) − ψ−1(
x′′)∥∥ ≤ dg

(
x′,x′′)

≤ (1 + η)
∥∥ψ−1(

x′) − ψ−1(
x′′)∥∥ for any x′,x′′ �= x,

which holds true for the natural exponential map in Riemannian geometry with a sufficiently
small δ > 0. By the construction in Bickel and Breiman (1983), we can find a finite set of
cones in R

m with 0 as their common peak satisfying

(1 + ε)
∥∥y′ − y′′∥∥ < (1 − ε)max

{∥∥y′∥∥,∥∥y′′∥∥}
for any y′,y′′ �= 0

in the same cone. Consider the map of these cones under exponential map ψ . Each image of
the cone is a subset of a geodesic cone in M with x as its common peak. Therefore, we can
find a finite set of geodesic cones indexed by I2 such that

B(x, δ) ⊂ ⋃
α∈I2

Cα.(3.10)

Combining (3.9) and (3.10), we have M ⊂ ⋃
α∈I1∪I2

Cα . For any two points whose NN are
both x, it is straightforward to get that they cannot be in the same geodesic cone, which
implies that the number of points whose NN is x is finite.

Then we consider the set

TK := {x ∈M : the maximum number of points whose NN is x equals K}.
For any x ∈ TK , we can find a realization of K points whose NN is x, denoting this set as
{x1, . . . ,xK}. Denote δi = minj �=i dg(xi ,xj ). By definition of NN, we have

δi − dg(xi ,x) > 0 for any i = 1, . . . ,K.

Denote

δ∗ = min
i=1,...,K

δi − dg(xi ,x) > 0.

It can be checked by triangle inequality that for any x′ ∈ B(x, δ∗), we have x′ ∈ TK . Thus, TK

is an open set in M. For any x ∈ M, since the number of points whose NN is x is finite, there
must be x ∈ TK for some K ∈ N

∗. Therefore, M = ⋃∞
K=1 TK . Again, since M is compact,

there exists a finite index set I3 such that M = ⋃
K∈I3

TK . Now we set

CM = max
K∈I3

K < ∞,

which implies that M = ⋃CM
K=1 TK . Thus, for any x ∈ M, the number of points whose NN is

x is at most CM. �
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