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SUMMARY

This paper re-examines the work of Abadie & Imbens (2016) on propensity score matching for
average treatment effect estimation. We explore the asymptotic behaviour of these estimators when
the number of nearest neighbours, M, grows with the sample size. It is shown, while not surpris-
ing, but technically nontrivial, that the modified estimators can improve upon the original fixed
M -estimators in terms of efficiency. Additionally, we demonstrate the potential to attain the semi-
parametric efficiency lower bound when the propensity score admits some special structures, echoing
the insight of Hahn (1998).

Some key words: Diverging-M asymptotics; Le Cam’s discretization device; Le Cam’s third lemma; Semipara-
metric efficiency.

1. INTRODUCTION
1.1. Main result

Consider a quadruple {X, W, Y(0), Y (1)}, where W € {0, 1} denotes the treatment status, X € R¥
represents the pretreatment variables, and Y (0) and Y (1) signify the potential outcomes (Neyman,
1923; Rubin, 1974) under treatment and control. This paper’s primary focus is on inferring the aver-
age treatment effect, mathematically defined as © = E{Y(l) — Y(0)}, based on N independent
observations of {X, W, Y (W)}.

A significant focus of this paper centres on a nearest-neighbour matching estimator (Abadie &
Imbens, 2006, 2011, 2012, 2016; Lin et al., 2023); this estimator matches the subjects under study
with those in the opposite treatment group who possess similar propensity scores, with these scores
being estimated using the same dataset.

In detail, let p(x) = pr(W = 1 | X = Xx) be the propensity score that was introduced by
Rosenbaum & Rubin (1983). We assume that p(x) can be reliably quantified using a preset family
of functions {p(x;6), 8 € ® C RF}. The following theorem, presented informally here and to be
rigorously detailed in § 3, constitutes our central result.

THEOREM 1 (MAIN THEOREM, INFORMAL). Consider the estimator Ty (By), which relies on propen-
sity score—based nearest-neighbour matching using the estimated propensity scores p(X:; 0y). Here, Oy
denotes an asymptotically discrete (van der Vaart, 1998, Le Cam & Yang, 2000) maximum likeli-
hood estimator of truth 6*, computed from the same dataset. Then, under certain regularity conditions,
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the following results hold for ty(Oy) as the number of nearest neighbours, denoted M, approaches
infinity:
() NV {tyO@y) — T} is approximately asymptotically normal ( Theorem 2);
(1) the asymptotic variance of Ty (Oy) is strictly smaller than those of a fixed M, and it is possible to
attain the semiparametric efficiency lower bound for estimating T ( Hahn, 1998) (an implication

of Theorem 2);
(iii) there exists a consistent estimator of the asymptotic variance ( Theorem 3 ).

1.2. Related literature

Our findings are anchored in the seminal contributions of Abadie and Imbens, particularly their
pioneering work on propensity score nearest-neighbour matching with a fixed value of M as pre-
sented in Abadiec & Imbens (2016), among their other influential works (Abadie & Imbens, 2006,
2011, 2012). What sets this paper apart from Abadie & Imbens (2016) is our re-evaluation of the
conditions for M, which we force to grow to infinity as N — oo. In this context, our results also
align with the recent studies by Lin et al. (2023) and Lin & Han (2023b), who explored diverging-M
matching using the original values of the X;.

Methodologically, the estimator 7y (fy) is part of a broader family of propensity score-based
estimators for the average treatment effect. This family has been extensively explored in the liter-
ature, including influential works by Rosenbaum (1987), Robins et al. (1994), Rubin & Thomas
(1996), Heckman et al. (1997), Hahn (1998), Scharfstein et al. (1999), Hirano et al. (2003), Frélich
(2004, 2005), Huber et al. (2013), Chernozhukov et al. (2018), Su et al. (2023), among many others.
Comprehensive reviews can be found in Imbens (2004, 2015) and Stuart (2010).

Secondly, the estimator Ty (fy) falls within the category of substituting estimators, where a por-
tion of the parameters is initially estimated. A broader discussion of this class of estimators can be
found in Pierce (1982), Randles (1982), Pollard (1989), Andrews (1994), Newey & McFadden (1994),
Andreou & Werker (2012), along with various works on causal inference (Robins et al., 1992; Henmi
& Eguchi, 2004; Hitomi et al., 2008; Lok, 2022) and some interesting recent developments about
optimal transport-based statistical inference (Hallin et al., 2022, 2023).

Thirdly, the estimator £y (0y) is part of the graph-based statistics family, which aims to estimate a
functional of the probability measure using random graphs constructed from an empirical realization
of the underlying probability distribution. In this context, the fixed-M asymptotics, as explored by
Abadie and Imbens, relates interestingly to recent research on Sourav Chatterjee’s rank correlation
based on nearest-neighbour graphs with a fixed M (Azadkia & Chatterjee, 2021; Chatterjee, 2021);
in particular, they both exhibit asymptotic normality (Abadie & Imbens, 2006; Lin & Han, 2022) and
bootstrap inconsistency (Abadie & Imbens, 2008; Lin & Han, 2024). Both of them also benefit from
using a diverging M for enhancing efficiency (Lin et al., 2023; Lin & Han, 2023a).

Theoretical underpinnings of our study differ from previous works like Lin et al. (2023) and Lin
& Han (2023b). Our main theorem is essentially an adaptation of the existing analysis of Abadie
& Imbens (2016), while addressing the limit of M going to infinity throughout our proof. This
adaptation is facilitated by the relative simplicity of handling estimated propensity scores, which
are essentially random scalars. Like Abadie & Imbens (2016), we employ Le Cam’s third lemma and
Le Cam’s discretization technique, detailed in van der Vaart (1998, Ch. 5.7), for avoiding establishing
uniform convergence results. For a justification of the use of an asymptotically discrete estimator, see
Le Cam & Yang (2000, Ch. 6.3).

1.3. Notation and set-up

This paper closely follows the notation system of Abadie & Imbens (2016). Throughout, it is
assumed that there exists a known form of generalized linear specification for the propensity score
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p(x), written as
p(x) = F(x'0%) = p(x;6), (1)

where F is known a priori while 6* is unknown to us. Potential model misspecification of p(-), while
not elaborated upon in this context, can still produce consistent average treatment effect estimators
provided it results in a valid balancing score (Rosenbaum & Rubin, 1983; Abadie & Imbens, 2016).

Forany 6 € ©, we write pr, to represent the joint distribution of {X, W, Y (0), Y (1)}, with pr(W =
1 | X = x) now taking the value p(x;0) = F(x'0) while keeping the distribution of X and the
conditional distribution of { Y (0), Y (1)} | X, W unchanged. Let E, and var, respectively denote the
expectation and variance under pr,. In particular, the data-generating distribution is understood to
be pr = pry.. We similarly shorthand Ey« and vary+ as E and var. Let Y = Y(W).

Adopting Le Cam’s view on limits of experiments (Le Cam, 1972), we consider such 6 = 0y that
are allowed to change with the sample size. Accordingly, it is necessary to emphasize that, through-
out this paper, we implicitly consider a triangular array setting, where sampling from a sequence of
probability measures pr,  is allowed. In this paper, the interest is in the sequence

Oy = 60"+ h/N'?
with /1 a conformable vector of constants. Let
Zn,i = (Xn.is Wi.is Yn.0)

represent the observed data, with the subscript N often suppressed in the sequel.

Following Abadie & Imbens (2016), we write u(w,x) = E(Y | W = w, X = x) and ¢2(w, x) =
var(Y | W =w, X = x) to denote the conditional mean and variance of Y given W = wand X = x.
Additionally, let fi(w,p) = E{Y | W = w, p(X) = p} and 6%(w,p) = var{Y | W = w, p(X) = p}
represent the conditional mean and variance of Y given W = w and p(X) = p. Similarly, define
e(w,p) = Eg{Y | W =w, p(X;6) = p} and 692(w,p) =varg{Y | W =w, p(X;0) = p}.

The primary focus of the main text is on average treatment effect estimation. Discussions pertain-
ing to a parallel problem of estimating the average treatment effect on the treated, along with some
numeric results and all proofs, are relegated to the Supplementary Material.

2. PROPENSITY SCORE MATCHING

In order to describe Abadie and Imbens’s propensity score matching estimator, we first introduce
some statistics about the M-nearest-neighbour matching based on the values of a general propensity
score estimate p(X;; 60).

Let Jy,(i, 0) represent the index set of the M matches of unit i, measured based on the values of
p(X;;0), among the units whose W = 1 — W,. In other words, define

Iu(i,0) = {ji Wy=1-Ww, Z Llp(Xi;0) — p(Xi; )] < [p(Xi56) — p(X;;0)[} < M}
ki Wy=1-W;
with 1(-) representing the indicator function. Furthermore, introduce the set of natural numbers

KM’Q('): {1,,N}—> N

to be the number of matched times of unit i, i.e.,

Kuoly= > 1| > ﬂ{|p<)ac;9)—p()rj;9>|<|p(Xi;9>—p<Xj;9)|}<M}.

Jr Wi=1-W; ke Wy=W;
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The propensity score matching estimator of 7, based on the p(X;; 0) with a generic 6, is then defined
as

1< 1 1< Ky (i)
’N“’):N;(ZW"”{”‘M > Y,-}=N;<2Wi—1>{1+ i }Y

JeTMm (i.0)

To complete the estimation process, one needs an estimate of 6* to be substituted into Ty(-). In
light of (1) and following Abadie & Imbens (2016), we estimate 6* by maximizing the loglikelihood
function,

N
LO| Zy, ..., Zy) = Y _[W;log{F(X[0)} + (1 — W) log{l — F(X[0)}],

i=1

yielding the maximum likelihood estimator Oy. The final estimator of 7 is then defined to be fN(éN).

3. THEORY

We first outline the main assumptions needed to establish Theorem 1.

Assumption 1. Suppose that

(1) {Y(0), Y(1)}is independent of W conditional on X almost surely;
(1) p(X)issupported over [p,p] with0 < p < p < 1, and has a Lebesgue density that is continuous

over [E’ Pl
Assumption 2. Suppose that {Z;}Y | are N independent draws from pr = pr,..

Assumption 3. Suppose that

(i) 6* € int(®) with a compact ®, X has a bounded support and E[XX "] is nonsingular;
(i) F: R — (0, 1) is continuously differentiable with a strictly positive and continuous derivative
function f;
(1i1) there exists a component of X that is continuously distributed, has nonzero coefficient in 6*
and admits a continuous density function conditional on the rest of X;
(iv) there exist some constants ¢ > 0 and C; < oo such that, for all # with the Euclidean distance
|16 — 6| < eandw € {0, 1},

@) o (w, p1) — ig(w, p2)| < Calpr — p2| holds for any p; and p»;
(b) &7(w,p) are equicontinuous in p;
(c) E{Y*| W =w, p(X;6) = p} are uniformly bounded.

Assumption 4. For any R¥*> — R bounded and measurable function r(y, w, x) that is continuous
in x, and for any sequence 6y — 6%, it is assumed that E; ir(Y, W, X) | W,p(X; fy)} converges to
E{r(Y,W,X) | W,p(X)} almost surely under prg, -

Assumptions 1-4 are modified and reordered versions of Assumptions 1-5 of Abadie & Imbens
(2016). In particular, Assumption 1 is identical to Assumption 1 combined with Assumption 2(i) of
Abadie & Imbens (2016). Assumption 2 is Assumption 3 of Abadie & Imbens (2016); both allow for a
triangular array setting intrinsically. Assumption 3 is a modified version of Assumption 4 of Abadie
& Imbens (2016). Compared to Abadie & Imbens (2016), we additionally require a global Lipschitz
constant in Assumption 3(iv). Also, we require / to be continuous and &7 to be equicontinuous.
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Besides, we require the uniform boundedness of the conditional fourth moment of Y as in Abadie
& Imbens (2006), in order to prove the convergence of the variance estimator. Assumptions 2(ii) and
(iii) of Abadie & Imbens (2016) are the corollary of Assumption 3(iv). Lastly, Assumption 4 is exactly
Assumption 5 of Abadie & Imbens (2016).

Next, we formally introduce Le Cam’s discretization trick. For any positive constant d, following
Abadie & Imbens (2016) we transform 6y to an asymptotically discrete estimator, fy, by setting
Oy, = (d/N"*)[N'20y ;/d), with [-] outputting the input’s nearest integer.

The following is the main theorem of this paper.

THEOREM 2. Suppose that Assumptions 1-4 hold. Assume further that M = O(N") for somev < 1/2
and M — oo as N — oo. Then, the true distribution satisfies

_ | 1
lim lim P[N'?(0? — ") ) {in(Oy) — 1) < 2] = / exp — =x? ) dx,
oo /2T 2

d|0 N—oo

where

2
I = E[ S(X70) XXT}
pX;0){1 — p(X;0)}

is the Fisher information at 0,

czE([COV{X’“(l’X) | p(X)} n cov{X, (0, X) |p(X)}}/(XT9*)>
p(X) 1 —p(X)

signifies the cross term, and

_ _ 5* {1, p(X)} a*{0,p(X)}
2= E([a{l,p(X)} — @{0, p(X)} — t1>) + E “—p} E[—}
o ([afl, p(X)} — {0, p(X)} — 7]9) + [ () + ~ )

is the asymptotic variance of Ty (6*).

It is straightforward to check that the asymptotic variance of 7y(fy), of the form o — ¢TI, ¢, is
strictly smaller than those matching estimators with a fixed M; cf. Abadie & Imbens (2016, Propo-
sition 1 and Theorem 1). In addition, the asymptotic variance is no greater than that of 7y(6*), the
matching estimator using the oracle 6*, a well-known phenomenon. Furthermore, when

2w, p(x)} = u(w,x) and &> {w,p(x)} =o*(w,x) forw=0,1, (2)

the asymptotic variance of #y(fy) attains the following semiparametric efficiency lower bound for
estimating v (Hahn, 1998):

2(1, X) o2(0, X)
o2 = E[{u(l, X 0,X)— P+ E L} E{—}
[{ud, X) — pn0,X) — )]+ { (0 + e

Equation (2) would be satisfied if both p(w, x) and o>(w, x) are functions of p(x). Under Assump-
tion 3(ii), condition (2) is equivalent to assuming that u(w, x) and o(w, x) exhibit a single-index form
as functions of xT9* for each w; cf. Hahn (1998) and Angrist & Pischke (2009, Ch. 3.3.2).
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We next consider estimating the asymptotic variance. Inspired by Abadie & Imbens (2016), we can
estimate o> — ¢"Ip«c using 6> — ¢" Iy« ¢, where

1

. 1 i
azzﬁz[(zm—l){x«—ﬂ > Yf}—fzv(@ﬂ]

i=1 JeTMmidN)

1 HKM,@N(i>}2+zM_1{KM,@N<i>

~2
i 7 i ”0 {Wi,p(X},

DA TCX, (LX) [ p(X)Y LY, (0, X) | p(XD} ], rs
c=_z[{ u( A)Ip( )}Jr {XG, u( )lp( )}}j(X,-T@N)
N )20.630%) 1 — p(X:; 6y)
. 1 XT0y)?
and Ig*:— Af( ! N) ~ A/IA/,Ta
N = p(X;; 001 — p(X;; 63}
with 62{W;, p(X;)} and (AZ{X,-, uw(w, X;) | p(X)} defined in the same way as in Abadie & Imbens (2016):
52 p(X)) = — ZY12Y2
o i i)y = =7 = — s
r o-1 & |7 o & **
J€HGIN) keH .0N)
ClXo u(W, X)) | p(X)}

= L |r-1 X alfy-1 T o}

JEH L (0N) ke (i.0y) ke (i.0y)

and  C(X,, u(1 — W, X)) | p(Xp)}

zﬁ 3 {Xj_% 3 Xk}{Yj—% > Yk}.

JeTLON) ke T (i.0y) ke (i.0N)

Here, for a generic 6 € ®, H,,(i, 0) represents the set of M matches of unit i, based on the propensity
score matching with p(X;; 6), among the units whose W = W,. In other words,

Hu (i, 0) = {ji Wy=W, > Lp(X:0) — p(Xi:0)| < [p(Xi20) — p(X;;0)[} < M}-

k: Wi=W;

The variance estimator under examination is exactly that presented in Abadie & Imbens (2016)
in practical applications. However, the following theorem distinguishes itself by investigating distinct
asymptotic behaviours for parameter M, forcing it to diverge.

THEOREM 3. Suppose that Assumptions 1-4 hold. Assume further that there exists a constant v <
1/2 such that, as N — oo, M = O(N") for M — oo, Q = O(N") for Q — oo and L > 2 is a fixed
finite positive integer. Then, under pr, (62, ¢, Iy+) is a consistent estimator of (o2, ¢, Ip+).

Remark 1. Theorem 3 differs from that presented in Abadie & Imbens (2016) by incorporating
asymptotically diverging values for both M and Q. The introduction of a diverging M is a necessity,
as our analysis relies on M approaching infinity. The introduction of a diverging Q, on the other
hand, is convenient for managing the /s » term in the proof of Theorem 3. In fact, even for the study
of finite- M matching (Abadie & Imbens, 2016), one could still employ a diverging Q to consistently
estimate the variance.

SUPPLEMENTARY MATERIAL

The Supplementary Material contains further simulations and proofs of Theorems 2 and 3.

620z AINr €2 uo Jasn zoN uuy Ad 869£69//1.Z1L/v/L | L/101E/ABWOI/ W00 dNO™dlWapese)/:SdjY Wolj POPEojuMoq



Miscellanea 1427

REFERENCES

ABADIE, A. & IMBENS, G. W. (2006). Large sample properties of matching estimators for average treatment effects.
Econometrica 74, 235-67.

ABADIE, A. & IMBENS, G. W. (2008). On the failure of the bootstrap for matching estimators. Econometrica 76,
1537-57.

ABADIE, A. & IMBENS, G. W. (2011). Bias-corrected matching estimators for average treatment effects. J. Bus.
Econ. Statist. 29, 1-11.

ABADIE, A. & IMBENs, G. W. (2012). A martingale representation for matching estimators. J. Am. Statist. Assoc.
107, 833-43.

ABADIE, A. & IMBENS, G. W. (2016). Matching on the estimated propensity score. Econometrica 84, 781-807.

ANDREOU, E. & WERKER, B. J. (2012). An alternative asymptotic analysis of residual-based statistics. Rev. Econ.
Statist. 94, 88-99.

ANDREWS, D. W. (1994). Empirical process methods in econometrics. In Handbook of Econometrics, vol. 4, pp.
2247-94. Amsterdam: Elsevier.

ANGRIST, J. D. & PISCHKE, J.-S. (2009). Mostly Harmless Econometrics: An Empiricist’s Companion. Princeton,
NJ: Princeton University Press.

AZADKIA, M. & CHATTERIEE, S. (2021). A simple measure of conditional dependence. Ann. Statist. 49, 3070-102.

CHATTERIJEE, S. (2021). A new coefficient of correlation. J Am. Statist. Assoc. 116, 2009-22.

CHERNOZHUKOV, V., CHETVERIKOV, D., DEMIRER, M., DUFLO, E., HANSEN, C., NEWEY, W. & RoBINS, J. (2018).
Double/debiased machine learning for treatment and structural parameters. Economet. J. 21, C1-68.

FRrROLICH, M. (2004). Finite-sample properties of propensity-score matching and weighting estimators. Rev. Econ.
Statist. 86, 77-90.

FRrROLICH, M. (2005). Matching estimators and optimal bandwidth choice. Statist. Comp. 15, 197-215.

HanN, J. (1998). On the role of the propensity score in efficient semiparametric estimation of average treatment
effects. Econometrica 66, 315-31.

HALLIN, M., LA VECcHIA, D. & L1u, H. (2022). Center-outward R-estimation for semiparametric VARMA models.
J. Am. Statist. Assoc. 117, 925-38.

HALLIN, M., LA VEccHIA, D. & Liu, H. (2023). Rank-based testing for semiparametric VAR models: a measure
transportation approach. Bernoulli 29, 229-73.

HEeckMaN, J. J., IcHIMURA, H. & Topp, P. E. (1997). Matching as an econometric evaluation estimator: evidence
from evaluating a job training programme. Rev. Econ. Statist. 64, 605-54.

HenwMmr, M. & EGcucHi, S. (2004). A paradox concerning nuisance parameters and projected estimating functions.
Biometrika 91, 929-41.

HiraNo, K., IMBENS, G. W. & RIDDER, G. (2003). Efficient estimation of average treatment effects using the
estimated propensity score. Econometrica 71, 1161-89.

Hiromi, K., NisHIYAMA, Y. & Okul, R. (2008). A puzzling phenomenon in semiparametric estimation problems
with infinite-dimensional nuisance parameters. Economet. Theory 24, 1717-28.

HUBER, M., LECHNER, M. & WunscH, C. (2013). The performance of estimators based on the propensity score.
J. Economet. 175, 1-21.

IMBENS, G. W. (2004). Nonparametric estimation of average treatment effects under exogeneity: a review. Rev.
Econ. Statist. 86, 4-29.

IMBENS, G. W. (2015). Matching methods in practice: three examples. J. Hum. Resour. 50, 373—419.

LE Cawm, L. (1972). Limits of experiments. In Proc. 6th Berkeley Symp. Math. Statist. Prob., vol. 1, Ed. L. M.
Le Cam, J. Neyman and E. L. Scott, pp. 245-61. Berkeley, CA: University of California Press.

LE CaMm, L. & YANG, G. L. (2000). Asymptotics in Statistics: Some Basic Concepts, 2nd ed. New York: Springer.

LN, Z., DING, P. & HAN, F. (2023). Estimation based on nearest neighbor matching: from density ratio to average
treatment effect. Econometrica 91, 2187-217.

LIN, Z. & HaN, F. (2022). Limit theorems of Chatterjee’s rank correlation. arXiv: 2204.08031v3.

LiN, Z. & HaN, E. (2023a). On boosting the power of Chatterjee’s rank correlation. Biometrika 110, 283-99.

LiN, Z. & HaN, E. (2023b). On regression-adjusted imputation estimators of the average treatment effect. arXiv:
2212.05424v2.

LiN, Z. & HaN, F. (2024). On the failure of the bootstrap for Chatterjee’s rank correlation. Biometrika, doi:
10.1093/biomet/asae004.

Lok, J. J. (2022). How estimating nuisance parameters can reduce the variance (with consistent variance
estimation). arXiv: 2109.02690v3.

NEWEY, W. K. & MCcFADDEN, D. (1994). Large sample estimation and hypothesis testing. In Handbook of

Econometrics, vol. 4, pp. 2111-245. Amsterdam: Elsevier.

NEYMAN, J. (1923). Sur les applications de la théorie des probabilités aux experiences agricoles: essai des principes.
Roczniki Nauk Rolniczych 10, 1-51.

PIERCE, D. A. (1982). The asymptotic effect of substituting estimators for parameters in certain types of statistics.
Ann. Statist. 10, 475-8.

620z AINr €2 uo Jasn zoN uuy Ad 869£69//1.Z1L/v/L | L/101E/ABWOI/ W00 dNO™dlWapese)/:SdjY Wolj POPEojuMoq



1428 Yinuil HE AND FANG HAN

PoLLARD, D. (1989). Asymptotics via empirical processes. Statist. Sci. 4, 341-54.

RANDLES, R. H. (1982). On the asymptotic normality of statistics with estimated parameters. Ann. Statist. 10,
462-74.

RoBINs, J. M., MARK, S. D. & NEwEY, W. K. (1992). Estimating exposure effects by modelling the expectation of
exposure conditional on confounders. Biometrics 48, 479-95.

RoBINS, J. M., ROTNITZKY, A. & ZHAO, L. P. (1994). Estimation of regression coefficients when some regressors
are not always observed. J. Am. Statist. Assoc. 89, 846-66.

RosenBAUM, P. R. (1987). Model-based direct adjustment. J. Am. Statist. Assoc. 82, 387-94.

RosenNBAUM, P. R. & RUBIN, D. B. (1983). The central role of the propensity score in observational studies for
causal effects. Biometrika 70, 41-55.

RuBIN, D. B. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. J. Educ.
Psychol. 66, 688-701.

RuBIN, D. B. & THoMmas, N. (1996). Matching using estimated propensity scores: relating theory to practice.
Biometrics 52, 249-64.

SCHARFSTEIN, D. O., RoTNITZKY, A. & RoBins, J. M. (1999). Adjusting for nonignorable drop-out using
semiparametric nonresponse models. J. Am. Statist. Assoc. 94, 1096-120.

STUART, E. A. (2010). Matching methods for causal inference: a review and a look forward. Statist. Sci. 25, 1-21.

Su, F, Mou, W., DING, P. & WAINWRIGHT, M. (2023). When is the estimated propensity score better? High-
dimensional analysis and bias correction. arXiv: 2303.17102v1.

VAN DER VAART, A. W. (1998). Asymptotic Statistics. Cambridge: Cambridge University Press.

[Received on 25 December 2023. Editorial decision on 10 May 2024]

620z AINr €2 uo Jasn zoN uuy Ad 869£69//1.Z1L/v/L | L/101E/ABWOI/ W00 dNO™dlWapese)/:SdjY Wolj POPEojuMoq



