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SUMMARY

This paper re-examines the work of Abadie & Imbens (2016) on propensity score matching for

average treatment effect estimation. We explore the asymptotic behaviour of these estimators when

the number of nearest neighbours, M, grows with the sample size. It is shown, while not surpris-

ing, but technically nontrivial, that the modioed estimators can improve upon the original oxed

M-estimators in terms of efociency. Additionally, we demonstrate the potential to attain the semi-

parametric efociency lower bound when the propensity score admits some special structures, echoing

the insight of Hahn (1998).

Some key words: Diverging-M asymptotics; Le Cam’s discretization device; Le Cam’s third lemma; Semipara-

metric efociency.

1. Introduction

1.1. Main result

Consider a quadruple {X ,W ,Y(0),Y(1)}, whereW ∈ {0, 1} denotes the treatment status, X ∈ R
k

represents the pretreatment variables, and Y(0) and Y(1) signify the potential outcomes (Neyman,

1923; Rubin, 1974) under treatment and control. This paper’s primary focus is on inferring the aver-

age treatment effect, mathematically deoned as τ = E{Y(1) − Y(0)}, based on N independent

observations of {X ,W ,Y(W)}.
A signiocant focus of this paper centres on a nearest-neighbour matching estimator (Abadie &

Imbens, 2006, 2011, 2012, 2016; Lin et al., 2023); this estimator matches the subjects under study

with those in the opposite treatment group who possess similar propensity scores, with these scores

being estimated using the same dataset.

In detail, let p(x) = pr(W = 1 | X = x) be the propensity score that was introduced by

Rosenbaum & Rubin (1983). We assume that p(x) can be reliably quantioed using a preset family

of functions {p(x; θ), θ ∈ � ⊂ R
k}. The following theorem, presented informally here and to be

rigorously detailed in § 3, constitutes our central result.

THEOREM 1 (Main theorem, informal). Consider the estimator τ̂N(θ̄N), which relies on propen-

sity score–based nearest-neighbour matching using the estimated propensity scores p(Xi; θ̄N). Here, θ̄N
denotes an asymptotically discrete (van der Vaart, 1998; Le Cam & Yang, 2000) maximum likeli-

hood estimator of truth θ∗, computed from the same dataset. Then, under certain regularity conditions,
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the following results hold for τ̂N(θ̄N) as the number of nearest neighbours, denoted M, approaches

inonity:

(i) N1/2{τ̂N(θ̄N) − τ } is approximately asymptotically normal (Theorem 2);

(ii) the asymptotic variance of τ̂N(θ̄N) is strictly smaller than those of a oxed M, and it is possible to

attain the semiparametric efociency lower bound for estimating τ (Hahn, 1998) (an implication

of Theorem 2);

(iii) there exists a consistent estimator of the asymptotic variance (Theorem 3).

1.2. Related literature

Our ondings are anchored in the seminal contributions of Abadie and Imbens, particularly their

pioneering work on propensity score nearest-neighbour matching with a oxed value of M as pre-

sented in Abadie & Imbens (2016), among their other innuential works (Abadie & Imbens, 2006,

2011, 2012). What sets this paper apart from Abadie & Imbens (2016) is our re-evaluation of the

conditions for M, which we force to grow to inonity as N → ∞. In this context, our results also

align with the recent studies by Lin et al. (2023) and Lin & Han (2023b), who explored diverging-M

matching using the original values of the Xi.

Methodologically, the estimator τ̂N(θ̄N) is part of a broader family of propensity score-based

estimators for the average treatment effect. This family has been extensively explored in the liter-

ature, including innuential works by Rosenbaum (1987), Robins et al. (1994), Rubin & Thomas

(1996), Heckman et al. (1997), Hahn (1998), Scharfstein et al. (1999), Hirano et al. (2003), Frölich

(2004, 2005), Huber et al. (2013), Chernozhukov et al. (2018), Su et al. (2023), among many others.

Comprehensive reviews can be found in Imbens (2004, 2015) and Stuart (2010).

Secondly, the estimator τ̂N(θ̄N) falls within the category of substituting estimators, where a por-

tion of the parameters is initially estimated. A broader discussion of this class of estimators can be

found in Pierce (1982), Randles (1982), Pollard (1989), Andrews (1994), Newey &McFadden (1994),

Andreou &Werker (2012), along with various works on causal inference (Robins et al., 1992; Henmi

& Eguchi, 2004; Hitomi et al., 2008; Lok, 2022) and some interesting recent developments about

optimal transport-based statistical inference (Hallin et al., 2022, 2023).

Thirdly, the estimator τ̂N(θ̄N) is part of the graph-based statistics family, which aims to estimate a

functional of the probability measure using random graphs constructed from an empirical realization

of the underlying probability distribution. In this context, the oxed-M asymptotics, as explored by

Abadie and Imbens, relates interestingly to recent research on Sourav Chatterjee’s rank correlation

based on nearest-neighbour graphs with a oxedM (Azadkia & Chatterjee, 2021; Chatterjee, 2021);

in particular, they both exhibit asymptotic normality (Abadie & Imbens, 2006; Lin &Han, 2022) and

bootstrap inconsistency (Abadie & Imbens, 2008; Lin & Han, 2024). Both of them also beneot from

using a divergingM for enhancing efociency (Lin et al., 2023; Lin & Han, 2023a).

Theoretical underpinnings of our study differ from previous works like Lin et al. (2023) and Lin

& Han (2023b). Our main theorem is essentially an adaptation of the existing analysis of Abadie

& Imbens (2016), while addressing the limit of M going to inonity throughout our proof. This

adaptation is facilitated by the relative simplicity of handling estimated propensity scores, which

are essentially random scalars. Like Abadie & Imbens (2016), we employ Le Cam’s third lemma and

Le Cam’s discretization technique, detailed in van der Vaart (1998, Ch. 5.7), for avoiding establishing

uniform convergence results. For a justiocation of the use of an asymptotically discrete estimator, see

Le Cam & Yang (2000, Ch. 6.3).

1.3. Notation and set-up

This paper closely follows the notation system of Abadie & Imbens (2016). Throughout, it is

assumed that there exists a known form of generalized linear speciocation for the propensity score
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p(x), written as

p(x) = F(xTθ∗) = p(x; θ∗), (1)

where F is known a priori while θ∗ is unknown to us. Potential model misspeciocation of p(·), while
not elaborated upon in this context, can still produce consistent average treatment effect estimators

provided it results in a valid balancing score (Rosenbaum & Rubin, 1983; Abadie & Imbens, 2016).

For any θ ∈ �, we write prθ to represent the joint distribution of {X ,W ,Y(0),Y(1)}, with pr(W =
1 | X = x) now taking the value p(x; θ) = F(xTθ) while keeping the distribution of X and the

conditional distribution of {Y(0),Y(1)} | X ,W unchanged. Let Eθ and varθ respectively denote the

expectation and variance under prθ . In particular, the data-generating distribution is understood to

be pr = prθ∗ . We similarly shorthand Eθ∗ and varθ∗ as E and var. Let Y = Y(W).

Adopting Le Cam’s view on limits of experiments (Le Cam, 1972), we consider such θ = θN that

are allowed to change with the sample size. Accordingly, it is necessary to emphasize that, through-

out this paper, we implicitly consider a triangular array setting, where sampling from a sequence of

probability measures prθN is allowed. In this paper, the interest is in the sequence

θN = θ∗ + h/N1/2

with h a conformable vector of constants. Let

ZN, i = (XN, i,WN, i,YN, i)

represent the observed data, with the subscript N often suppressed in the sequel.

Following Abadie & Imbens (2016), we write μ(w, x) = E(Y | W = w, X = x) and σ 2(w, x) =
var(Y | W = w, X = x) to denote the conditional mean and variance of Y givenW = w andX = x.

Additionally, let μ̄(w, p) = E{Y | W = w, p(X) = p} and σ̄ 2(w, p) = var{Y | W = w, p(X) = p}
represent the conditional mean and variance of Y given W = w and p(X) = p. Similarly, deone

μ̄θ (w, p) = Eθ {Y | W = w, p(X ; θ) = p} and σ̄ 2
θ (w, p) = varθ {Y | W = w, p(X ; θ) = p}.

The primary focus of the main text is on average treatment effect estimation. Discussions pertain-

ing to a parallel problem of estimating the average treatment effect on the treated, along with some

numeric results and all proofs, are relegated to the Supplementary Material.

2. Propensity score matching

In order to describe Abadie and Imbens’s propensity score matching estimator, we orst introduce

some statistics about theM-nearest-neighbour matching based on the values of a general propensity

score estimate p(Xi; θ).

Let JM(i, θ) represent the index set of theM matches of unit i, measured based on the values of

p(Xi; θ), among the units whoseW = 1 −Wi. In other words, deone

JM(i, θ) =
{

j : Wj = 1 −Wi,
∑

k : Wk=1−Wi

1{|p(Xi; θ) − p(Xk; θ)| � |p(Xi; θ) − p(Xj; θ)|} � M

}

with 1(·) representing the indicator function. Furthermore, introduce the set of natural numbers

KM, θ (·) : {1, . . . ,N} → N

to be the number of matched times of unit i, i.e.,

KM, θ (i) =
∑

j : Wj=1−Wi

1

[

∑

k : Wk=Wi

1{|p(Xk; θ) − p(Xj; θ)| � |p(Xi; θ) − p(Xj; θ)|} � M

]

.



1424 Yihui He AND Fang Han

The propensity score matching estimator of τ , based on the p(Xi; θ) with a generic θ , is then deoned

as

τ̂N(θ) = 1

N

N
∑

i=1

(2Wi − 1)

{

Yi −
1

M

∑

j∈JM (i,θ)

Yj

}

= 1

N

N
∑

i=1

(2Wi − 1)

{

1 + KM, θ (i)

M

}

Yi.

To complete the estimation process, one needs an estimate of θ∗ to be substituted into τ̂N(·). In
light of (1) and following Abadie & Imbens (2016), we estimate θ∗ by maximizing the loglikelihood

function,

L(θ | Z1,…,ZN) =
N

∑

i=1

[Wi log{F(XT
i θ)} + (1 −Wi) log{1 − F(XT

i θ)}],

yielding the maximum likelihood estimator θ̂N . The onal estimator of τ is then deoned to be τ̂N(θ̂N).

3. Theory

We orst outline the main assumptions needed to establish Theorem 1.

Assumption 1. Suppose that

(i) {Y(0),Y(1)} is independent of W conditional on X almost surely;

(ii) p(X) is supported over [p, p̄]with 0 < p < p̄ < 1, and has a Lebesgue density that is continuous

over [p, p̄].

Assumption 2. Suppose that {Zi}Ni=1 are N independent draws from pr = prθ∗ .

Assumption 3. Suppose that

(i) θ∗ ∈ int(�) with a compact �, X has a bounded support and E[XXT] is nonsingular;
(ii) F : R → (0, 1) is continuously differentiable with a strictly positive and continuous derivative

function f ;

(iii) there exists a component of X that is continuously distributed, has nonzero coefocient in θ∗

and admits a continuous density function conditional on the rest of X ;

(iv) there exist some constants ε > 0 and Cμ̄ < ∞ such that, for all θ with the Euclidean distance

‖θ − θ∗‖ � ε and w ∈ {0, 1},

(a) |μ̄θ (w, p1) − μ̄θ (w, p2)| � Cμ̄|p1 − p2| holds for any p1 and p2;
(b) σ̄ 2

θ (w, p) are equicontinuous in p;

(c) Eθ {Y 4 | W = w, p(X ; θ) = p} are uniformly bounded.

Assumption 4. For any Rk+2 → R bounded and measurable function r(y,w, x) that is continuous

in x, and for any sequence θ̃N → θ∗, it is assumed that Eθ̃N
{r(Y ,W ,X) | W , p(X ; θ̃N)} converges to

E{r(Y ,W ,X) | W , p(X)} almost surely under prθ̃N .

Assumptions 1–4 are modioed and reordered versions of Assumptions 1–5 of Abadie & Imbens

(2016). In particular, Assumption 1 is identical to Assumption 1 combined with Assumption 2(i) of

Abadie & Imbens (2016). Assumption 2 is Assumption 3 of Abadie & Imbens (2016); both allow for a

triangular array setting intrinsically. Assumption 3 is a modioed version of Assumption 4 of Abadie

& Imbens (2016). Compared to Abadie & Imbens (2016), we additionally require a global Lipschitz

constant in Assumption 3(iv). Also, we require f to be continuous and σ̄ 2
θ to be equicontinuous.
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Besides, we require the uniform boundedness of the conditional fourth moment of Y as in Abadie

& Imbens (2006), in order to prove the convergence of the variance estimator. Assumptions 2(ii) and

(iii) of Abadie & Imbens (2016) are the corollary of Assumption 3(iv). Lastly, Assumption 4 is exactly

Assumption 5 of Abadie & Imbens (2016).

Next, we formally introduce Le Cam’s discretization trick. For any positive constant d, following

Abadie & Imbens (2016), we transform θ̂N to an asymptotically discrete estimator, θ̄N , by setting

θ̄N, j = (d/N1/2)[N1/2θ̂N, j/d], with [·] outputting the input’s nearest integer.
The following is the main theorem of this paper.

THEOREM 2. Suppose that Assumptions 1–4 hold. Assume further thatM = O(Nv) for some v < 1/2

and M → ∞ as N → ∞. Then, the true distribution satisoes

lim
d↓0

lim
N→∞

P[N1/2(σ 2 − cTI−1
θ∗ c)

−1/2{τ̂N(θ̄N) − τ } � z] =
∫ z

−∞

1√
2π

exp

(

− 1

2
x2

)

dx,

where

Iθ = E

[

f (XTθ)2

p(X ; θ){1 − p(X ; θ)}XX
T

]

is the Fisher information at θ ,

c = E

([

cov{X ,μ(1,X) | p(X)}
p(X)

+ cov{X ,μ(0,X) | p(X)}
1 − p(X)

]

f (XTθ∗)

)

signioes the cross term, and

σ 2 = E([μ̄{1, p(X)} − μ̄{0, p(X)} − τ ]2) + E

[

σ̄ 2{1, p(X)}
p(X)

]

+ E

[

σ̄ 2{0, p(X)}
1 − p(X)

]

is the asymptotic variance of τ̂N(θ∗).

It is straightforward to check that the asymptotic variance of τ̂N(θ̄N), of the form σ 2 − cTI−1
θ∗ c, is

strictly smaller than those matching estimators with a oxed M; cf. Abadie & Imbens (2016, Propo-

sition 1 and Theorem 1). In addition, the asymptotic variance is no greater than that of τ̂N(θ∗), the

matching estimator using the oracle θ∗, a well-known phenomenon. Furthermore, when

μ̄{w, p(x)} = μ(w, x) and σ̄ 2{w, p(x)} = σ 2(w, x) for w = 0, 1, (2)

the asymptotic variance of τ̂N(θ̄N) attains the following semiparametric efociency lower bound for

estimating τ (Hahn, 1998):

σ 2,eff = E[{μ(1,X) − μ(0,X) − τ }2] + E

{

σ 2(1,X)

p(X)

}

+ E

{

σ 2(0,X)

1 − p(X)

}

.

Equation (2) would be satisoed if both μ(w, x) and σ 2(w, x) are functions of p(x). Under Assump-

tion 3(ii), condition (2) is equivalent to assuming thatμ(w, x) and σ 2(w, x) exhibit a single-index form

as functions of xTθ∗ for each w; cf. Hahn (1998) and Angrist & Pischke (2009, Ch. 3.3.2).
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We next consider estimating the asymptotic variance. Inspired by Abadie & Imbens (2016), we can

estimate σ 2 − cTIθ∗c using σ̂ 2 − ĉTÎθ∗ ĉ, where

σ̂ 2 = 1

N

N
∑

i=1

[

(2Wi − 1)

{

Yi −
1

M

∑

j∈JM (i,θ̂N )

Yj

}

− τ̂N(θ̂N)

]2

+ 1

N

N
∑

i=1

[{

KM, θ̂N
(i)

M

}2

+ 2M − 1

M

{

KM, θ̂N
(i)

M

}]

σ̃ 2{Wi, p(Xi)},

ĉ = 1

N

N
∑

i=1

[

Ĉ{Xi,μ(1,Xi) | p(Xi)}
p(Xi; θ̂N)

+ Ĉ{Xi,μ(0,Xi) | p(Xi)}
1 − p(Xi; θ̂N)

]

f (XT
i θ̂N)

and Îθ∗ = 1

N

N
∑

i=1

f (XT
i θ̂N)2

p(Xi; θ̂N){1 − p(Xi; θ̂N)}
XiX

T
i ,

with σ̃ 2{Wi, p(Xi)} and Ĉ{Xi,μ(w,Xi) | p(Xi)} deoned in the same way as in Abadie & Imbens (2016):

σ̃ 2{Wi, p(Xi)} = 1

Q− 1

∑

j∈HQ(i,θ̂N )

{

Yj −
1

Q

∑

k∈HQ(i,θ̂N )

Yk

}2

,

Ĉ{Xi,μ(Wi,Xi) | p(Xi)}

= 1

L− 1

∑

j∈HL(i,θ̂N )

{

Xj −
1

L

∑

k∈HL(i,θ̂N )

Xk

}{

Yj −
1

L

∑

k∈HL(i,θ̂N )

Yk

}

,

and Ĉ{Xi,μ(1 −Wi,Xi) | p(Xi)}

= 1

L− 1

∑

j∈JL(i,θ̂N )

{

Xj −
1

L

∑

k∈JL(i,θ̂N )

Xk

}{

Yj −
1

L

∑

k∈JL(i,θ̂N )

Yk

}

.

Here, for a generic θ ∈ �,HM(i, θ) represents the set of M matches of unit i, based on the propensity

score matching with p(Xi; θ), among the units whoseW = Wi. In other words,

HM(i, θ) =
{

j : Wj = Wi,
∑

k : Wk=Wi

1{|p(Xi; θ) − p(Xk; θ)| � |p(Xi; θ) − p(Xj; θ)|} � M

}

.

The variance estimator under examination is exactly that presented in Abadie & Imbens (2016)

in practical applications. However, the following theorem distinguishes itself by investigating distinct

asymptotic behaviours for parameterM, forcing it to diverge.

THEOREM 3. Suppose that Assumptions 1–4 hold. Assume further that there exists a constant v <

1/2 such that, as N → ∞, M = O(Nv) for M → ∞, Q = O(Nv) for Q → ∞ and L � 2 is a oxed

onite positive integer. Then, under pr, (σ̂ 2, ĉ, Îθ∗) is a consistent estimator of (σ 2, c, Iθ∗).

Remark 1. Theorem 3 differs from that presented in Abadie & Imbens (2016) by incorporating

asymptotically diverging values for bothM and Q. The introduction of a divergingM is a necessity,

as our analysis relies on M approaching inonity. The introduction of a diverging Q, on the other

hand, is convenient for managing the I6, 2 term in the proof of Theorem 3. In fact, even for the study

of onite-M matching (Abadie & Imbens, 2016), one could still employ a diverging Q to consistently

estimate the variance.

Supplementary material

The Supplementary Material contains further simulations and proofs of Theorems 2 and 3.
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