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SUMMARY

While researchers commonly use the bootstrap to quantify the uncertainty of an estimator, it has

been noticed that the standard bootstrap, in general, does not work for Chatterjee9s rank correlation.

In this paper, we provide proof of this issue under an additional independence assumption, and

complement our theory with simulation evidence for general settings. Chatterjee9s rank correlation

thus falls into a category of statistics that are asymptotically normal, but bootstrap inconsistent.

Valid inferential methods in this case are Chatterjee9s original proposal for testing independence and

the analytic asymptotic variance estimator of Lin & Han (2022) for more general purposes.

Some key words: Bootstrap; Rank correlation; Tied data.

1. Introduction

Rank correlation is an essential tool for measuring the association between random variables.

Its development is closely linked to the history of statistics as a discipline and has involved many

notable ogures, including Spearman (1904, 1906), Kendall (1938, 1970), Hoeffding (1940, 1948,

1994), Hodges & Lehmann (1956), Chernoff & Savage (1958), Blum et al. (1961) and Sidak et al.

(1999). Unlike other correlation coefocients, a rank correlation relies solely on the rankings of the

original data,making it (i) exactly distribution-free when testing independence of continuous random

variables; (ii) invariant to marginal monotonic transformations and (iii) robust in the face of outliers

and heavy tailedness. Its usefulness is therefore self-explanatory.

Given the remarkable progressmade in this area over the past century, it is impressive that, recently,

Chatterjee (2021) devised a new rank correlation that is appealing from multiple perspectives. Speci-

ocally, consider an independent and identically distributed sample {Xi,Yi}i=1,…,n from a pair of

scalars, (X ,Y), with joint and marginal distribution functions FX ,Y and FX , FY , respectively. Let

Ri ≡

n
∑

j=1

1(Yj � Yi) and Li ≡

n
∑

j=1

1(Yj � Yi)

be the rank and reversed rank of Yi with 1(·) representing the indicator function, and let {[i], i =
1,…, n} be a rearrangement of {1,…, n} such that X[1] � · · · � X[n] with ties broken at random.
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Chatterjee (2021) introduced the statistic

ξn ≡ 1 −
n

2
∑n

i=1 Li(n− Li)

n−1
∑

i=1

|R[i+1] − R[i]|, (1)

which he showed to be a strongly consistent estimator of Dette–Siburg–Stoimenov9s dependence

measure (Dette et al., 2013),

ξ = ξ(X ,Y) ≡

∫

var[E{1(Y � y) | X}] dFY (y)
∫

var{1(Y � y)} dFY (y)
, (2)

as long as Y is not almost surely a constant.

Why is ξn in (1) appealing? Chatterjee (2021) outlined three reasons. First, it has a simple form.

Second, it has a normal limiting null distribution. Finally, it measures a dependence measure, ξ in

(2), that satisoes Rényi9s criteria (Rényi, 1959) and Bickel9s deonition of a measure of functional

dependence (Bickel, 2022): ξ is zero if and only if Y is independent of X and one if and only

if Y is a measurable function of X . Therefore, ξn is a rank correlation that can accurately quan-

tify both independence and functional dependence. This is something that all aforementioned rank

correlations, including Spearman9s ρ, Kendall9s τ , Hoeffding9s D, Blum–Kiefer–Rosenblatt9s r and

Bergsma–Dassios–Yanagimoto9s τ ∗ (Bergsma&Dassios, 2014; Yanagimoto, 1970) rank correlations,

fail to achieve.

Because of these appealing properties, Chatterjee9s rank correlation has gained signiocant interest

and a wave of research has emerged exploring its applications and extensions. Notable recent works

include Cao & Bickel (2020), Deb et al. (2020), Azadkia & Chatterjee (2021), Azadkia et al. (2022),

Bickel (2022), Gamboa et al. (2022), Griessenberger et al. (2022), Han & Huang (2022), Huang

et al. (2022), Lin & Han (2022, 2023), Shi et al. (2022, 2024), Ansari & Fuchs (2023), Chatterjee &

Vidyasagar (2023), Zhang (2023a,b), Auddy et al. (2024), Fuchs (2024), Strothmann et al. (2024) and

the 2022 thesis by A. Holma formUmeåUniversity. Additionally, brief surveys on recent progress of

Chatterjee9s and other rank correlation methods have been conducted by Han (2021) and Chatterjee

(2024).

This paper aims to investigate the validity of the standard bootstrap (Efron, 1979, 1981) when

applied to oxed and continuous FX ,Y , with ξn taking the form (1) to handle ties in resampled data. We

prove, in the simple independence case with FX ,Y = FXFY , that the standard bootstrap results in an

inconsistent estimator of ξn9s asymptotic variance, and the bootstrap distribution fails to converge

to the limiting distribution of n1/2(ξn − ξ). Simulations further complement the theory, indicating

that the standard bootstrap will likely also fail in general settings with FX ,Y |= FXFY , even though

n1/2(ξn − ξ) still weakly converges to a normal distribution (Lin & Han, 2022). Chatterjee9s rank

correlation thus falls into a class of statistics that are root-n consistent, asymptotically normal, but

bootstrap inconsistent; this class includes Bickel and Freedman9s U-statistics (Bickel & Freedman,

1981, § 6), Hodges estimator (Beran, 1982, pp. 213–4) and Abadie and Imbens9s matching estimator

(Abadie & Imbens, 2008).

There are valid alternatives to using the standard bootstrap for inferring ξ from ξn.

Chatterjee (2021) derived the limiting null distribution of ξn for testing independence between X

and Y . Lin & Han (2022) proved conditions under which ξn is root-n consistent and asymptotically

normal, and proposed an analytic estimator of its asymptotic variance. This paper thus helps to

justify the value of these derivations by demonstrating the inconsistency of an otherwise attractive

alternative.
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2. Main results

2.1. Set-up

In this paper we consider the standard model of (X1,Y1),…, (Xn,Yn) to be n independent copies

of (X ,Y) drawn from a oxed and continuous FX ,Y of support in the two-dimensional real space. In

this case, with probability one, there is no tie in the observation, and hence ξn admits the simpler form

ξn ≡ 1 −
3

n2 − 1

n−1
∑

i=1

|R[i+1] − R[i]|.

To implement the standard bootstrap, consider ( �Xb, �Yb) = {(Xb,i,Yb,i)}
n
i=1 to be the bootstrap

sample, of size n and likely embracing ties, by sampling with replacement from ( �X , �Y) ≡ {(Xi,Yi)}
n
i=1.

Let ξ̃b be Chatterjee9s rank correlation calculated using the bootstrap sample ( �Xb, �Yb). More specio-

cally, write

{[i]b, i = 1,…, n}

to be a rearrangement of {1,…, n} such that Xb,[1]b
� · · · � Xb,[n]b

, with ties in {Xb,i}
n
i=1 broken in an

arbitrary way. Let

Rb,i ≡

n
∑

j=1

1(Yb,j � Yb,i) and Lb,i ≡

n
∑

j=1

1(Yb,j � Yb,i)

be the ranks and reversed ranks of the bootstrap sample. The bootstrapped rank correlation ξ̃b is

then deoned to be

ξ̃b ≡ 1 −
n

2
∑n

i=1 Lb,i(n− Lb,i)

n−1
∑

i=1

|Rb,[i+1]b
− Rb,[i]b

|,

namely, substituting (1) into the bootstrap sample.

In this paper, we investigate two commonly used versions of the bootstrap in empirical research.

The orst version involves centring the bootstrap sample at ξn, which is calculated using the original

sample. The second version involves centring the bootstrap sample at the mean of the bootstrap

distribution E(ξ̃b | �X , �Y). One can then estimate the asymptotic variance using either

nE{(ξ̃b − ξn)
2 | �X , �Y} or nvar(ξ̃b | �X , �Y),

assuming an inonite number of replications for the bootstrap. In addition, it is of interest to evaluate

the closeness of the bootstrap distributions of

n1/2(ξ̃b − ξn) | �X , �Y and n1/2{ξ̃b − E(ξ̃b | �X , �Y)} | �X , �Y

to that of n1/2(ξn − ξ).

2.2. Theory

Our theory section has to be focused on the simple independence case with FX ,Y = FXFY , only

under which we are able to provide the otherwise formidable calculation of the limits of nE{(ξ̃b−ξn)
2}

and nvar(ξ̃b | �X , �Y).

The following result of Chatterjee establishes the limiting distribution of ξn under independence.

PROPOSITION 1 (Chatterjee, 2021, Theorem 2.1). Assume that FX ,Y = FXFY is oxed and

continuous. Then n1/2ξn weakly converges to N(0, 2/5).
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We now present the main result of this paper.

THEOREM 1 (Bootstrap inconsistency). Assuming the same conditions as in Proposition 1, the

following two statements hold.

(i) Variance inconsistency: nE{(ξ̃b − ξn)
2 | �X , �Y} and nvar(ξ̃b | �X , �Y) do not converge to 2/5 in

probability.

(ii) Distribution inconsistency: there exists a sequence of measurable events [Ei]
∞
i=1, satisfying

lim inf
n→∞

pr{(X1,Y1,…,Xn,Yn) ∈ En} > 0,

such that the distributions of n1/2(ξ̃b − ξn) and n1/2{ξ̃b − E(ξ̃b | �X , �Y)} do not converge to

N(0, 2/5) conditional on (X1,Y1,…,Xn,Yn) ∈ En.

We are intrigued by Theorem 1 and believe that its signiocance is best appreciated in the context of

mathematical statistics history, where the bootstrap method9s validity has been a central topic, with

establishing/disproving its consistency being particularly imperative.

For an independent and identically distributed sample, bootstrap consistency is often linked to

the studied statistic9s root-n consistency and asymptotic normality. According to Shao & Tu (1995,

p. 128), the conventional wisdom seems to suggest that 8[u]sually the consistency of the bootstrap

distribution estimator requires some smoothness conditions that are almost the same as those required

for the asymptotic normality of the given statistic and certain moment conditions9. As a matter of

fact, this insight has been partly formalized by Mammen (1991, Theorem 1), who demonstrated,

elegantly, that bootstrap consistency is equivalent to asymptotic normality when applied to linear

functionals.

Indeed, the majority of theoretical results on bootstrap inconsistency are centred on statistics

that do not exhibit a regular pattern of being root-n consistent and asymptotically normal. In this

regard, Athreya (1987), Knight (1989) and Hall (1990) focused on the sample mean with a sample

drawn from heavy-tailed distributions, Beran & Srivastava (1985) on eigenvalues, Hall et al. (1993) on

ranked parameters, andAndrews (2000) andDrton&Williams (2011) on parameters at the boundary.

Furthermore, Abrevaya &Huang (2005), Kosorok (2008) and Sen et al. (2010) examined cubic-root-

consistent estimators, Bretagnolle (1983) and Arcones & Gine (1992) investigated degenerate U- and

V-statistics, and Dümbgen (1993) and Fang & Santos (2019) explored a general class of nonsmooth

plug-in estimators.

For statistics that exhibit root-n consistency and asymptotic normality, we categorize the cases

where bootstrap inconsistency arises into three groups: (i) those that fail due to a moment condition,

e.g., Bickel and Freedman9s U-statistics (Bickel & Freedman, 1981, § 6); (ii) those that fail at superefo-

ciency points, e.g., theHodges and Stein estimators (Beran, 1997; Samworth, 2003) and (iii) those that

do not belong to the previous two groups, including, notably, Abadie and Imbens9s nearest-neighbour

matching estimator of the average treatment effect (Abadie & Imbens, 2008).

Abadie and Imbens9s case is particularly relevant to our work on Chatterjee9s rank correlation,

as both can be perceived as a type of nearest-neighbour graph-based statistics with a oxed number

of nearest neighbours. To the best of our knowledge, however, no work has established a general

relationship between the inconsistency of the bootstrap and the irregularity of graph-based statistics;

this would be an interesting future question for mathematical statisticians.

In § B of the Supplementary Material we give a brief discussion of a weighted bootstrap

approach as an alternative to Efron9s standard bootstrap. Perhaps as expected, but technically more

straightforward to demonstrate, the weighted bootstrap approach also cannot deliver valid inference.

Finally, the issue of bootstrap inconsistency is not a universal problem affecting all rank correla-

tions or rank-based statistics. For example, the bootstrap consistency of Spearman9s ρ and Kendall9s

τ rank correlations can be easily established based on the works of Bickel & Freedman (1981) and

Arcones & Gine (1992). On the other hand, the bootstrap inconsistency of Hoeffding9s D, Blum–

Kiefer–Rosenblatt9s r and Bergsma–Dassios–Yanagimoto9s τ ∗ rank correlations under independence
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between X and Y is caused by the nonnormal convergence of the degenerate U-statistics, but not by

the ranking.

2.3. Simulations

One might be tempted to speculate that the bootstrap inconsistency observed in Theorem 1 is

solely due to the degeneracy property of the null point of independence. While independence does

play a crucial role in the cases of Hoeffding9sD, Blum–Kiefer–Rosenblatt9s r and Bergsma–Dassios–

Yanagimoto9s τ ∗ rank correlations, they only become degenerate when X is independent of Y ; the

case of Chatterjee9s rank correlation appears to be different.

As tracking the limits of nE{(ξ̃b − ξn)
2} and nvar(ξ̃b | �X , �Y) under dependence between Y and

X is technically intimidating, this paper relies on simulations to illustrate this point. To this end, we

investigate

(i) (V-LH) the asymptotic variance estimator described by Lin & Han (2022, Theorem 1.2);

(ii) (V-B1) the bootstrap asymptotic variance estimator using nE{(ξ̃b − ξn)
2 | �X , �Y};

(iii) (V-B2) the bootstrap asymptotic variance estimator using nvar(ξ̃b | �X , �Y);

(iv) (D-LH) constructing the conodence interval using the idea described by Lin & Han (2022,

Remark 1.4);

(v) (D-HB1) constructing the conodence interval using the hybrid bootstrap (Shao & Tu, 1995,

§ 4.1.5) based on n1/2(ξ̃b − ξn) | �X , �Y ;

(vi) (D-HB2) constructing the conodence interval using the hybrid bootstrap based on n1/2{ξ̃b −
E(ξ̃b | �X , �Y)} | �X , �Y .

The simulation studies were conducted based on the Gaussian rotation model, where (X ,Y) are

bivariate Gaussian with mean 0 and the covariance matrix �, deoned as

� =

(

1 ρ

ρ 1

)

with ρ ∈ (−1, 1).

We investigate the performance of different methods for estimating ξn9s variance and inferring ξ

using various sample sizes n = 1000, 5000, 10 000 and population correlations ρ = 0, 0.3, 0.5, 0.7, 0.9.

For the bootstrap procedure, we adopt a bootstrap size of 5000 and simulate 5000 replications to

compute the square roots of the mean squared errors in estimating nvar(ξn) of limits 0.4, 0.46, 0.51,

0.47 and 0.24 as ρ changes from 0 to 0.9, as well as the empirical coverage probabilities with the

nominal level α = 0.05 or 0.1.

Table 1 presents the simulation results, demonstrating that, regardless of the strength of depen-

dence characterized by ρ, the bootstrap methods consistently produce erroneous variance estimators

and inaccurate conodence intervals. On the other hand, the method proposed by Lin & Han (2022)

performs well for large n.

3. Proof of Theorem 1

Before starting the proof, we orst introduce two lemmas.

LEMMA 1. Under the conditions of Proposition 1, we have

lim
n→∞

E(ξ̃b) =
1

e
.

LEMMA 2. Under the conditions of Proposition 1, we have

lim sup
n→∞

nE{var(ξ̃b | �X , �Y)} �
3

5
−

8

5

1

e2
≈ 0.3835 <

2

5
.
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Table 1. Variance estimation and empirical coverage probability

ρ n
Variance, RMSE Coverage, α = 0.05 Coverage, α = 0.1

V-LH V-B1 V-B2 D-LH D-HB1 D-HB2 D-LH D-HB1 D-HB2

0 1000 0.18 135.65 0.09 0.90 0.00 0.92 0.85 0.00 0.86

5000 0.08 676.92 0.09 0.94 0.00 0.91 0.89 0.00 0.85

10 000 0.06 1353.32 0.09 0.95 0.00 0.92 0.90 0.00 0.85

0.3 1000 0.18 122.19 0.16 0.90 0.00 0.89 0.85 0.00 0.82

5000 0.07 610.14 0.16 0.94 0.00 0.88 0.89 0.00 0.81

10 000 0.05 1220.34 0.16 0.95 0.00 0.89 0.90 0.00 0.82

0.5 1000 0.17 98.94 0.23 0.90 0.00 0.84 0.84 0.00 0.76

5000 0.07 495.33 0.24 0.95 0.00 0.85 0.89 0.00 0.77

10 000 0.05 990.39 0.24 0.95 0.00 0.85 0.90 0.00 0.77

0.7 1000 0.15 65.81 0.26 0.91 0.00 0.81 0.84 0.00 0.72

5000 0.06 329.11 0.27 0.95 0.00 0.81 0.89 0.00 0.73

10 000 0.04 657.98 0.26 0.95 0.00 0.82 0.91 0.00 0.74

0.9 1000 0.12 23.81 0.15 0.82 0.00 0.78 0.76 0.00 0.69

5000 0.04 119.01 0.14 0.93 0.00 0.78 0.88 0.00 0.69

10 000 0.03 238.42 0.15 0.94 0.00 0.77 0.89 0.00 0.68

The proofs of Lemma 1 and Lemma 2 are relegated to the Supplementary Material.

Proposition 1, on the other hand, shows that n1/2ξn converges in distribution to N(0, 2/5).

Proof of Theorem 1(i). For any ε > 0, since n1/2ξn is bounded in probability by the above central

limit theorem, one can ond C1 = C1(ε) > 0 such that pr(|n1/2ξn| > C1) < ε for all sufociently

large n.

For any constant C2 > 0,

E(ξ̃b) = E{E(ξ̃b | �X , �Y)}

= E[E(ξ̃b | �X , �Y)1{E(ξ̃b | �X , �Y) > C2}] + E[E(ξ̃b | �X , �Y)1{E(ξ̃b | �X , �Y) � C2}]

� E[E(ξ̃b | �X , �Y)1{E(ξ̃b | �X , �Y) > C2}] + C2.

By Lemma 1 and the fact that E(ξ̃b | �X , �Y) is universally bounded for all �X , �Y , we can take C2 < e−1

and then, for all sufociently large n, pr{E(ξ̃b | �X , �Y) > C2} � 2ε for some ε > 0. Then, for all

sufociently large n, with probability at least ε, nE{(ξ̃b − ξn)
2 | �X , �Y} � n(C2

2 − 2C2C1/n
1/2). This

implies that nE{(ξ̃b − ξn)
2 | �X , �Y} does not converge in probability to any constant.

If, on the other hand, nvar(ξ̃b | �X , �Y) converges to 2/5 in probability then, by the Portmanteau

lemma (van der Vaart, 1998, Lemma 2.2(iv)),

lim inf
n→∞

nE{var(ξ̃b | �X , �Y)} � 2/5,

which contradicts Lemma 2. Therefore, nvar(ξ̃b | �X , �Y) does not converge to 2/5 in probability. �

Proof of Theorem 1(ii). We adopt the argument of Abadie & Imbens (2008). For all sufociently

large n, we can establish in a similar way as above that, with probability at least ε,

n1/2(ξ̃b − ξn) � n1/2(C2 − C1/n
1/2).

This shows that n1/2(ξ̃b − ξn) cannot converge in distribution to N(0, 2/5).

If n1/2{ξ̃b − E(ξ̃b | �X , �Y)} converges in distribution to N(0, 2/5) then

lim inf
n→∞

nvar(ξ̃b | �X , �Y) � 2/5
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by the Portmanteau lemma (van der Vaart, 1998, Lemma 2.2(iv)). If the convergence in distribution

holds for almost all sequences X1,X2,… and Y1,Y2,…, then

lim inf
n→∞

nE{var(ξ̃b | �X , �Y)} � 2/5,

which contradicts Lemma 2. �

Acknowledgement

The authors would like to thank Sourav Chatterjee for conorming the failure of the bootstrap

for his rank correlation and for generously sharing his insights. The authors also thank Peter Bickel

for discussing the relation between bootstrap inconsistency and adaptive estimators, Mathias Drton

for sharing his work (Drton & Williams, 2011) that led the authors to Beran (1997) and Samworth

(2003), and Andres Santos for explaining his ondings in Fang & Santos (2019). The authors also

beneotted from discussions with Lihua Lei, Bodhisattva Sen and Jon Wellner.

This work was partly motivated by discussions with Mona Azadkia, David Childers, Peng Ding,

Andreas Hagemann andMauricio Olivares. In particular, Peng posed a question regarding the prac-

tical relevance of the results presented in Lin & Han (2022) and noted that bootstrap is commonly

used in practice. This paper serves as a response to Peng9s inquiry.

Supplementary material

The Supplementary Material contains proofs of our results.

REFERENCES

Abadie, A. & Imbens, G. W. (2008). On the failure of the bootstrap for matching estimators. Econometrica 76,
1537–57.

Abrevaya, J.&Huang, J. (2005). On the bootstrap of themaximum score estimator.Econometrica 73, 1175–204.
Andrews, D. W. (2000). Inconsistency of the bootstrap when a parameter is on the boundary of the parameter

space. Econometrica 68, 399–405.
Ansari, J. & Fuchs, S. (2023). A simple extension of Azadkia and Chatterjee9s rank correlation to a vector of

endogenous variables. arXiv: 2212.01621v2.
Arcones, M. A. & Gine, E. (1992). On the bootstrap of U and V statistics. Ann. Statist. 20, 655–74.
Athreya, K. (1987). Bootstrap of the mean in the inonite variance case. Ann. Statist. 15, 724–31.
Auddy, A., Deb, N. & Nandy, S. (2024). Exact detection thresholds for Chatterjee9s correlation. Bernoulli 30,

1640–68.
Azadkia, M.& Chatterjee, S. (2021). A simple measure of conditional dependence.Ann. Statist. 49, 3070–102.
Azadkia, M., Taeb, A. & Bühlmann, P. (2022). A fast non-parametric approach for local causal structure

learning. arXiv: 2111.14969v2.
Beran, R. (1982). Estimated sampling distributions: the bootstrap and competitors. Ann. Statist. 10, 212–25.
Beran, R. (1997). Diagnosing bootstrap success. Ann. Inst. Statist. Math. 49, 1–24.
Beran, R. & Srivastava, M. S. (1985). Bootstrap tests and conodence regions for functions of a covariance

matrix. Ann. Statist. 13, 95–115.
Bergsma, W. & Dassios, A. (2014). A consistent test of independence based on a sign covariance related to

Kendall9s tau. Bernoulli 20, 1006–28.
Bickel, P. J. (2022). Measures of independence and functional dependence. arXiv: 2206.13663v1.
Bickel, P. J. & Freedman, D. A. (1981). Some asymptotic theory for the bootstrap. Ann. Statist. 9, 1196–217.
Blum, J. R., Kiefer, J. & Rosenblatt, M. (1961). Distribution free tests of independence based on the sample

distribution function. Ann. Math. Statist. 32, 485–98.
Bretagnolle, J. (1983). Lois limites du bootstrap de certaines fonctionnelles. Ann. Inst. H. Poincaré Prob.

Statist. 19, 281–96.
Cao, S. & Bickel, P. J. (2020). Correlations with tailored extremal properties. arXiv: 2008.10177v2.
Chatterjee, S. (2021). A new coefocient of correlation. J. Am. Statist. Assoc. 116, 2009–22.
Chatterjee, S. (2024). A survey of some recent developments in measures of association. In Probability and

Stochastic Processes: A Volume in Honour of Rajeeva L. Karandikar, Ed. S. Athreya, A. G. Bhatt and B. V.
Rao. New York: Springer.

Chatterjee, S. & Vidyasagar, M. (2023). Estimating large causal polytrees from small samples. arXiv:
2209.07028v2.



1070 Zhexiao Lin AND Fang Han

Chernoff, H. & Savage, I. R. (1958). Asymptotic normality and efociency of certain nonparametric test
statistics. Ann. Math. Statist. 29, 972–94.

Deb, N., Ghosal, P. & Sen, B. (2020). Measuring association on topological spaces using kernels and geometric
graphs. arXiv: 2010.01768v2.

Dette, H., Siburg, K. F. & Stoimenov, P. A. (2013). A copula-based non-parametric measure of regression
dependence. Scand. J. Statist. 40, 21–41.

Drton, M. & Williams, B. (2011). Quantifying the failure of bootstrap likelihood ratio tests. Biometrika 98,
919–34.

Dümbgen, L. (1993). On nondifferentiable functions and the bootstrap. Prob. Theory Rel. Fields 95, 125–40.
Efron, B. (1979). Bootstrap methods: another look at the jackknife. Ann. Statist. 7, 1–26.
Efron, B. (1981). Nonparametric standard errors and conodence intervals. Can. J. Statist. 9, 139–58.
Fang, Z. & Santos, A. (2019). Inference on directionally differentiable functions. Rev. Econ. Studies 86,

377–412.
Fuchs, S. (2024). Quantifying directed dependence via dimension reduction. J. Mult. Anal. 210, 105266.
Gamboa, F., Gremaud, P., Klein, T. & Lagnoux, A. (2022). Global sensitivity analysis: a new generation of

mighty estimators based on rank statistics. Bernoulli 28, 2345–74.
Griessenberger, F., Junker, R. R. & Trutschnig, W. (2022). On a multivariate copula-based dependence

measure and its estimation. Electron. J. Statist. 16, 2206–51.
Hall, P. (1990). Asymptotic properties of the bootstrap for heavy-tailed distributions. Ann. Prob. 18, 1342–60.
Hall, P., Härdle, W. & Simar, L. (1993). On the inconsistency of bootstrap distribution estimators. Comp.

Statist. Data Anal. 16, 11–8.
Han, F. (2021). On extensions of rank correlation coefocients to multivariate spaces. Bernoulli News 28, 7–11.
Han, F. & Huang, Z. (2022). Azadkia-Chatterjee9s correlation coefocient adapts to manifold data. arXiv:

2209.11156v1.
Hodges, Jr., J. L.& Lehmann, E. L. (1956). The efociency of some nonparametric competitors of the t-test.Ann.

Math. Statist. 27, 324–35.
Hoeffding, W. (1940). Maszstabinvariante Korrelationstheorie. Schr. Math. Inst. u. Inst. Angew. Math. Univ.

Berlin 5, 181–233.
Hoeffding, W. (1948). A non-parametric test of independence. Ann. Math. Statist. 19, 546–57.
Hoeffding, W. (1994). Scale-invariant correlation theory. In The Collected Works of Wassily Hoeffding, Ed.

N. I. Fisher and P. K. Sen, pp. 57–107. New York: Springer.
Huang, Z., Deb, N. & Sen, B. (2022). Kernel partial correlation coefocient—a measure of conditional depen-

dence. J. Mach. Learn. Res. 23, 9699–756.
Kendall, M. G. (1938). A new measure of rank correlation. Biometrika 30, 81–93.
Kendall, M. G. (1970). Rank Correlation Methods, 4th ed. London: Grifon.
Knight, K. (1989). On the bootstrap of the sample mean in the inonite variance case. Ann. Statist. 15, 1168–75.
Kosorok, M. R. (2008). Bootstrapping the Grenander estimator. In Beyond Parametrics in Interdisciplinary

Research: Festschrift in Honor of Professor Pranab K. Sen, Ed. N. Balakrishnan, E. A. Peña and M. J.
Silvapulle, pp. 282–92. Hayward, CA: Institute of Mathematical Statistics .

Lin, Z. & Han, F. (2022). Limit theorems of Chatterjee9s rank correlation. arXiv: 2204.08031v3.
Lin, Z. & Han, F. (2023). On boosting the power of Chatterjee9s rank correlation. Biometrika 110, 283–99.
Mammen, E. (1991).When Does Bootstrap Work?: Asymptotic Results and Simulations. New York: Springer.
Rényi, A. (1959). On measures of dependence. Acta Math. Acad. Sci. Hungar. 10, 441–51.
Samworth, R. (2003). A note on methods of restoring consistency to the bootstrap. Biometrika 90, 985–90.
Sen, B., Banerjee, M. & Woodroofe, M. (2010). Inconsistency of bootstrap: the Grenander estimator. Ann.

Statist. 38, 1953–77.
Shao, J. & Tu, D. (1995). The Jackknife and Bootstrap. New York: Springer.
Shi, H., Drton, M. & Han, F. (2022). On the power of Chatterjee9s rank correlation. Biometrika 109, 317–33.
Shi, H., Drton, M. & Han, F. (2024). On Azadkia-Chatterjee9s conditional dependence coefocient. Bernoulli 30,

851–77.
Sidak, Z., Sen, P. K. & Hajek, J. (1999). Theory of Rank Tests, 2nd ed. New York: Academic Press.
Spearman, C. (1904). The proof andmeasurement of association between two things.Am. J. Psychol. 15, 72–101.
Spearman, C. (1906). 8Footrule9 for measuring correlation. Br. J. Psychol. 2, 89–108.
Strothmann, C., Dette, H. & Siburg, K. F. (2024). Rearranged dependence measures. Bernoulli 30, 1055–78.
van der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge: Cambridge University Press.
Yanagimoto, T. (1970). On measures of association and a related problem. Ann. Inst. Statist. Math. 22, 57–63.
Zhang, Q. (2023a). On relationships between Chatterjee9s and Spearman9s correlation coefocients. arXiv:

2302.10131v1.
Zhang, Q. (2023b). On the asymptotic null distribution of the symmetrized Chatterjee9s correlation coefocient.

Statist. Prob. Lett. 194, 109759.

[Received on 5 April 2023. Editorial decision on 10 January 2024]


