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Convergent extension of epithelial tissue is a key motif of animal morphogenesis. On a
coarse scale, cell motion resembles laminar fluid flow; yet in contrast to a fluid, epithelial
cells adhere to each other and maintain the tissue layer under actively generated internal
tension. To resolve this apparent paradox, we formulate a model in which tissue
flow in the tension-dominated regime occurs through adiabatic remodeling of force
balance in the network of adherens junctions. We propose that the slow dynamics
within the manifold of force-balanced configurations is driven by positive feedback on
myosin-generated cytoskeletal tension. Shifting force balance within a tension network
causes active cell rearrangements (T1 transitions) resulting in net tissue deformation
oriented by initial tension anisotropy. Strikingly, we find that the total extent of tissue
deformation depends on the initial cellular packing order. T1s degrade this order so
that tissue flow is self-limiting. We explain these findings by showing that coordination
of T1s depends on coherence in local tension configurations, quantified by a geometric
order parameter in tension space. Our model reproduces the salient tissue- and cell-
scale features of germ band elongation during Drosophila gastrulation, in particular
the slowdown of tissue flow after approximately twofold elongation concomitant with
a loss of order in tension configurations. This suggests local cell geometry contains
morphogenetic information and yields experimentally testable predictions. Defining
biologically controlled active tension dynamics on the manifold of force-balanced states
may provide a general approach to the description of morphogenetic flow.

force balance | active T1s | cell packing | Drosophila embryo | active solid

Shape changes of epithelia during animal development involve major cell rearrangements,
often manifested as a “convergent extension” of cell sheets (CE). On the coarse scale, CE
resembles the laminar shear flow of an incompressible fluid in the vicinity of a hyperbolic
fixed point (Fig. 14). Indeed, previous work has combined hydrodynamic equations for
the mesoscale cell velocity field with active stress fields to model morphogenetic tissue
flow (1-4). Yet in contrast to a fluid, epithelia are under internally generated tension—as
revealed by laser ablation (5)—and, like solids, maintain their shape against external
forces. Tissue flow is achieved through local cell intercalation (T1 neighbor exchange
processes; see Fig. 1B) driven by the concerted mechanical activity of individual cells. Cells
generate forces via actomyosin contractility in the cortical cytoskeleton at the adherens
junctions between cells (Fig. 1C). Moreover, the adherens junctions can remodel through
the turnover of their constituent molecules: Interfaces in the cell array can change
their length and tension independently. This behavior is fundamentally different from
(Hookean) springs, where tension and length are related by a constitutive relationship.
Instead, one can imagine cellular interfaces as “microscopic muscles” which are actuated
by the recruitment and release of myosin motors.

Vertex models generally describe epithelial tissue as a polygonal tiling of cells where the
vertex positions are the dynamical variables (6, 7). The forces that drive the vertex motion
are commonly derived from passive area and perimeter elasticity supplemented with
additional active tensions (8—10). However, the muscle metaphor for cellular interfaces
suggests that active tension is central to the mechanical network underlying an epithelial
tissue (Fig. 1D). This network rapidly equilibrates to a force balanced state (5, 11, 12),
stabilized by mechanical feedback loops (13, 14). In such an active tension network,
passive (bulk) elasticity plays a subdominant role. The need for stabilizing feedback loops
arises because active tensions are untethered from interface lengths. Indeed, on an abstract
level, these feedback loops are not unlike the regulatory mechanisms that control and
stabilize skeletal musculature (15).

Here, we propose that tissue flow can be understood in the terms of adiabatic
(quasi-static) remodeling of internal active force balance. Force balance in the cortical
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A model for tissue mechanics dominated by cortical tension. (A) Convergent extension (CE) of epithelial tissue by cell intercalations (T1 processes, B).

(C) A single cell from a columnar epithelium with the actomyosin cortex at the adherens junction belt generating tension T along cell-cell interfaces. Gray
sphere represents the nucleus. (D) In force balance, the tensile forces Tj; at each vertex must sum to zero, implying that they form a triangle. The angles in the
tension triangulation are complementary to the angles in the cell array, thus linking tension space to physical space. Force balance implies that the tensile force
vectors at each vertex form a triangle. (£) Schematic outline of our quasi-static tissue model with mechanics dominated by actively regulated cortical tensions
(see text for details). (F) lllustration of isogonal deformations of a reference geometry (purple) that is dual to the tension triangulation (red). (G) Implementation
of the model for a symmetric, regular cell array, characterized by one angle ¢, determined by the tensions Ty, Ty, and two lengths, ¢y and ¢4, parameterizing
the soft isogonal modes. The contour plot shows the cell shape energy E¢ in the incompressible limit where ¢ is determined uniquely by ¢ and ¢. Relaxation
of the subdominant cell shape energy Ec is constrained to the isogonal subspace (white line) determined by tension force balance. For the critical tension ratio
To/Th = V2 (corresponding to ¢¢ = z/2, black dashed line), the interface length minimizing Ec vanishes (red half-disk). See Movie S1 for an animated version.

tension network defines a manifold of cellular tiling geometries
on which tissue deformation unfolds. We propose that dynamics
in the force-balance manifold is driven by positive feedback
on the cortical tensions. This view is supported by analysis of
high-quality live imaging data (16) from Drosophila gastrulation
presented in the companion paper (17). Specifically, a geometric
active—passive decomposition as well as mutant analysis were
used to show that tissue flow is driven by internally generated
tension dynamics, rather than external forces. Tension inference
has provided evidence for the role of positive tension feedback
during active T1 events. Numerical simulations of cell quartets
show that such a feedback mechanism is sufficient to drive the
T1 process. However, the key question of coordination of T1s
across the tissue—required to drive coherent tissue flow—has
remained unanswered. To address this question, we develop a
model of tissue mechanics in the tension-dominated regime and
demonstrate via numerical simulations how positive feedback
drives CE. We show that order of the cell packing is necessary
for coordinating T1 processes, and hence efficient CE. T1s
destroy this order such that the extent of tissue flow is self-
limiting. Thereby, our model reproduces the experimentally
observed elongation of the germband where the arrest of flow
is concomitant with a transition from an ordered to a disordered

cell packing (17).

Methods

A Minimal Model Based on Force Balance and Cell Geometry. Our model
is based on two assumptions: a) on morphogenetic timescales, the forces in
the epithelium are approximately balanced, and b) active cortical tensions
(generated by contractile actomyosin along the adherens junctions Fig. 1C)

https://doi.org/10.1073/pnas.2321928121

dominate over all other sources of stress. In particular, we assume that
adhesion forces between the epithelial layer and its substrate (the fluid yolk
and perivitelline fluid (18) for the Drosophila embryo) are negligible. Hence, all
forces mustbe balanced within the transcellular network of cellularjunctions. We
model the tissue in the framework of vertex models (see e.g. ref. 7) asa polygonal
tiling of the plane with tricellular vertices r;;, where each polygon represents a

cell i (Fig 1D). We write the elastic energy differential of this network as

=S "Tyde—pY ey dee(S), 1]
ij i i

dE((r ) 1Tj)

where £ is a small parameter that separates the dominant scale of active
tension and subdominant passive mechanical contributions from bulk and shear
elasticity of the cell interior. £ (S;) accounts for the passive elasticity of the cells
and will be specified below; ¢;; = |[r;|| and Tj; are the length of and tension
along the interface between adjacent cells i andj. Importantly, in contrast to the
standard vertex model where edge tension is defined by a constitutive relation
corresponding to a passive Hookean perimeter spring, we take cortical tensions
to be controlled independently of the interface lengths. The tension dynamics is
described in the next section. The second term in Eq. 1 accounts for the effective
in-plane pressure p of the cells that, by maintaining the total surface area (sum
over cell areas A;), ensures that the tissue as a whole does not collapse. In the
Drosophila embryo, the closed epithelial sheet encloses the yolk, which is under
pressure, balancing the cortical tensions. Other epithelia are kept under tension
via traction forces at the boundary (19). We assume that pressure differences
between cells are small and therefore absorb them into £ (S;). In experimental
data, this can be verified by inspecting the curvature of cell-cell interfaces: Due to
the Laplace law, significant pressure differences would manifest through curved
cell-cell interfaces which are not observed in the early Drosophila embryo prior
to the onset of cell divisions (12, 16, 17, 20).

As noted, we assume a separation of scales between the timescale on which
the elastic energy relaxes and the timescale on which the tissue deforms
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macroscopically. In terms of relaxational dynamics ydrry = we

_oF

ar,-jk'
consider a relaxation rateset by the coefficient of friction y—much faster than
all other timescales in the system. Quasi-static force balance implies

> o [2]
ik

Solving this equation to zeroth order in € yields a force-balance constraint at
each vertex: The tension vectors T,-j = T,-je,-j at each vertex must sum to zero
and hence form a triangle as illustrated in Fig. 1D. Since neighboring vertices
share the interface that connects them, the corresponding tension triangles
share an edge. Therefore, all tension triangles have to fit together: They form a
triangulation thatis dual to the cell tiling (13, 21, 22). This tension triangulation
is a geometric manifestation of global force balance in the tissue, where angles
at real-space vertices are complementary to the corresponding angles in the
tension triangle (Fig. 1D).

Importantly, the angles at vertices do not fully determine the geometry of the
celltessellation, i.e. the vertex positions rjj - one can change the interface lengths
¢;j while preserving all angles. The resulting isogonal soft modes™ account for
interface length changes under constant tension (13), which is possible thanks
to the turnover of cytoskeletal elements.

The isogonal modes can dilate and shear cells (Fig. 1F). They are soft modes of
the leading order elasticenergy and thus force us to take into account subleading
contributions to arrive at a complete model of tissue mechanics. Cells resist
shape distortions due to rigid cell-internal structures such as microtubules, the
nucleus (23, 24), and intermediate filaments (25). To account for this passive
cell elasticity, we propose an energy

Ec(S) = A[Tr(S — $0))2 + uTr[(S — So)?], [3]

in terms of the cell shape tensor

I, @r;
Si= Z /ka/k, [4]
keN; !

where A is the set neighbors of cell i. This shape energy effectively models the
cell interior as a homogeneous elastic material (26). (In S/ Appendix, section 5,
we compare this elastic energy with the often-used “area-perimeter” elastic
energy which we find produces qualitatively different behavior incompatible
with experimental observations.) The shape tensor is defined to be invariant
under subdivision of interfaces. The reference tensor Sy controls the target cell
shape and is given by Sqg = 3£ I for an isotropic hexagonal cell with side
length £¢. We relate cell and tissue elasticity by analyzing the energy spectrum
of isogonal modes for a fixed tension triangulation (S/ Appendix, section 4).
The isogonal modes with the lowest energy correspond to large-scale shears
and thus provide a linear relationship between the cell and tissue shear moduli
(S Appendix, Fig. $13).F

Forsufficiently smallvalues of the scale-separation parameter e, minimization
of the elastic energy Eq. 1 can be performed in two separate steps: First,
force balance of the dominant cortical tensions Tj; fixes the angles at vertices
thus setting geometric constraints. Second, the subleading term >, E¢(S;) is
minimized to fix the remaining isogonal soft modes. Importantly, in this limiting
case, the value of & is immaterial as long as it is small enough (S/ Appendix,
section 2). Fig. 1G and Movie S1 illustrate the minimization of the cell shape
energy under the angle constraints imposed by junctional force balance for the
minimal setting of a perfectly symmetric cell array. The geometry is characterized
by two interface lengths, £, £1, and single angle ¢. Incompressibility fixes £
as a function of £y and ¢. We can then plot the cell shape energy Ec- in a
two-dimensional ¢, £ energy landscape. Force balance of the tensions Ty, T

*A degree-of-freedom count shows there is one isogonal degree of freedom per cell (13).
Therefore, the isogonal modes can be parameterized by an “isogonal function” that takes
ascalar value in each cell. The isogonal displacement of a vertex is defined in terms of the
values of this isogonal function in the three adjacent cells (S/ Appendix, Eq. S8). Note that
isogonal modes are only soft if they don't deform the tissue boundary.

Tas explained in S/ Appendix, this analysis only applies for deformations in the bulk of the
cell array that leaving the boundary shape unchanged.
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constrains the angle ¢ = 2 arccos(Ty/2T;) and relaxation of £ takes place
in the isogonal subspace parameterized by £y (vertical white line in Fig. 1G),
thus fully determining the cell geometry (purple dot). Changing the tensions
To, T1 shifts the angle constraint and therefore forces the cell shape energy
to relax to a new cell geometry. By changing constraints, dynamics of the
tension configuration drives tissue flow. When the tensions reach the critical
ratio To/Ty = ~/2 such that ¢ = /2, the length of the vertical interface, £,
vanishes, causing a T1 transition as discussed in the companion paper (17).

Positive Feedback and Adiabatic Dynamics. On the timescale of morpho-
genetic flow, tensions change due to the recruitment and release of molecular
motors, driving the remodeling of the force balance geometry encoded in the
tension triangulation. To complete the model, we need to specify the dynamics
that governs the tensions on this slow timescale.

Based on previous experiments (27) and models (10, 28), we propose
a positive feedback mechanism where tension leads to further recruitment
of myosin motors and thus further increase in tension. This self-amplifying
recruitment is limited by the competition for a limited pool of myosin within
each cell. To mimic this effect in a computationally simple way, we constrain
tension dynamics to conserve the perimeter of each tension triangle, i.e. the
sum of tensions at each vertex (ijk) (see SI Appendix, section 2 for different
local conservation laws). For an individual triangle with tensions T, Ty, T3, we
consider the dynamics

3
e =T 33T with «=0,23, ]
p=1

where n is an exponent that determines the nonlinearity of the feedback. Note
that each cell-cell interface is composed of two actomyosin cortices on its two
sides, and only one of the two is part of each local pool (see S/ Appendix, section 5
for details). This feedback mechanism has a "winner-takes-all" character, where
the longest edge in the tension triangle always outgrows the other two. In our
model framework, we can consider a variety of possible local tension dynamics.
Below we will also investigate a form of positive tension feedback that saturates,
and identify the qualitative features of local tension dynamics key to the tissue
dynamics.

Force balance requires that all tension triangles fit together to form a flat
triangulation (13). The triangulation is parameterized by a set of 2D tension
vertex positions t;, so that the tension on edge (if) is given by Ty = ||t; — 1.
In each iteration of the simulation, the tension vertices t; are determined by
fitting the balanced tensions Tj; to the intrinsic tensions Tij using a least squares

method. In addition, the intrinsic tensions T,»/- relax to the balanced tensions

Tij with a rate 7, - ﬂance <L 7 T (see S Appendix, section 5 for details. All

quantifications presented here refer to the flat tensions Tj.). This "balancing”
of the tension triangulation effectively accounts for small pressure differentials
and additional feedback mechanisms [such as the strain rate feedback (13, 14)]
which maintain the tension network in a state of force balance. In particular, this
ensures that cortical tensions do not lead to build-up of pressure differentials.

The above dynamics is autonomous in tension space until an edge in the
cell tessellation reaches length zero. At this point, a cell neighbor exchange (T1
transition) occurs, corresponding toan edgeflipinthetensiontriangulation. After
this topological modification, the tension dynamics continues autonomously
again until the next T1 event. To determine the active tension (i.e. myosin level)
on the new interface formed during the cell neighbor exchange, we assume
continuity of myosin concentration at vertices as described in the companion
paper (17) and in SI Appendix, section 5. The active tension is not sufficient
to balance the total tension on the new interface, such that passive elements
of the cortex (e.g., cross-linkers) are transiently loaded. The resulting passive
tension relaxes due to remodeling with timescale zp (S Appendiix, section 5)
(29). This relaxation causes the elongation of the new interface, transiently
counteracting positive tension feedback, and thereby prevents the new interface
from immediately recollapsing afteraT1.

https://doi.org/10.1073/pnas.2321928121
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This concludes the description of the computational model. A brief overview
over the parameters and their effects is given in SI Appendix, Table S1 and
Figs. S9 and S15 provides a flow chart of the simulation algorithm.

Results

Cell Packing Order Facilitates Self-Organized Convergent-
Extension Flow. In the companion paper (17), we have shown
that positive tension feedback can drive active T'1 transitions in
a regular lattice of cells with an initial anisotropy of tension. Any
real tissue will exhibit some degree of irregularity. Therefore,
investigating the effect of this disorder is key to understand CE
on the tissue scale. To this end, we perform simulations of freely
suspended irregular cell arrays. All parameters are set to the same
values as in the companion paper, where they were calibrated to
fit the tension and interface length dynamics of active T'1s during
Drosophila gastrulation (ST Appendix, Fig. S6).

We generated initial tension triangulations from random
hard disk packings at different packing fractions p (30). At
low packing fraction, the hard disk process generates highly
irregular triangulations (Fig. 2B) while at sufficienty high
packing fraction p 2 0.72, the disks adopt a crystalline packing
such that the fraction of cells with six neighbors ps =~ 1
(Fig. 2A). To introduce a specified initial tension anisotropy,
the triangulation is sheared with magnitude s (displacing vertices
by t; > diag(v/1 — 5, 1/4/1 + ) t,).

To quantify tension anisotropy, we define the tensor Q =
%22:1 Ty ® Ty for each triangle directly from the tension
geometry. Averaging its deviatoric part Q=0Q - %Tr Q over
the cell array, provides a measure of global tension anisotropy

11(+v/2Q)]] € [0, 1]. Starting with a slightly perturbed hexagonal
cell packing and a small initial tension anisotropy, the tissue patch
undergoes CE, elongating perpendicular to the initial orientation
of global tension anisotropy (Fig. 2A4).

The tissue flow is driven by self-organized cell rearrangements
(active T1 transitions) whose rate rapidly increases, reaching a
maximum, and then decreases to a lower, but nonzero, value
(Fig. 2F). Large-scale tissue deformation stalls after approxi-
mately twofold CE (as measured by the square root of the
aspect ratio 2 = width/height, Fig. 2C) while cells continue
rearranging. T1s at this stage are no longer coherently oriented
and therefore do not contribute to net tissue deformation
(Fig. 2F).

As cells rearrange, the tissue becomes increasingly disordered,
as indicated by the loss of global tension anisotropy and the
decreasing fraction of cells with six neighbors, ps (Fig. 2E).
The peak of tension anisotropy in the ordered initial condition
coincides with the onset of T1 transitions and the decay of pg (S/
Appendix, Fig. S9).

By contrast, initializing the simulation with a low level of
order in the initial cell packing, but identical tension anisotropy,
results in slower convergent-extension flow and arrest of flow at
a smaller amount of total tissue-scale deformation (Fig. 2 B and
C and Movie S2). Notably, tension anisotropy rapidly vanishes
without the transient increase observed in the simulation starting
with a more ordered cell packing (Fig. 2E). While the early
dynamics depends sensitively on the initial condition, we find
rapid convergence toward a common disordered steady state.

The heatmap in Fig. 2D shows the dependence of CE on the
initial configuration as controlled by p and s. The total extent of

CE, quantified by the net change in aspect ratio /afnal/ initial
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Fig. 2.

Extent of tissue flow depends on initial cell-scale order and tension anisotropy. (A and B) Simulation snapshots of tissue patches with free boundaries
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starting from an (irregular) hexagonal cell array (A) and a disordered cell array (B) generated from a random Voronoi tessellation. A small initial tension
anisotropy orients convergent-extension flow. Snapshots show the Top half of the tension triangulation and the Bottom half of the corresponding cell array.
(C) CE [measured by the tissue aspect ratio a(t)] is slower and ceases at a smaller net deformation for a disordered initial condition (cyan line) compared to
the initially ordered case (purple line). Shaded bands indicate SD over N = 3 simulation runs with Ngq)s = 103 cells each. (D) The total aspect ratio change
afinal/a(0) increases as a function of cell packing order (hexagon fraction controlled by hard disk packing fraction p used to generate the Voronoi seed points;
see Bottom plot) and initial tension anisotropy (controlled by a shear s applied to the tension triangulation). The red star indicates the approximate state of the
Drosophila germ band at the onset of germ band extension (cf. S/ Appendix, Figs. S1B and S2), corresponding to a 1.85x elongation. (E) Decreasing hexagon
fraction (solid lines) and global tension anisotropy (dashed lines) indicate the decay of order in the cell arrays. Notably, in the initially ordered cell array, tension
anisotropy transiently increases due to positive tension feedback (solid purple line). At late times both simulations converge to zero global tension anisotropy
and identical coordination number statistics (/nset). (F) Plotting the rate of tissue CE against the T1 rate provides a measure for the efficiency of T1 transitions.
For the initially ordered tissue, the efficiency of T1s is starts out near the theoretical optimum (1? log 3 elongation for one T1 per cell as illustrated in the Inset
cartoon) but drops to zero as the tissue becomes disordered.
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Fig. 3. Triangle shape space characterizes the local tension motifs that
underlie cell rearrangements. (A) Local tension configurations, “cables” and
“bridges,” can be quantified in terms of the tension triangle shapes. (B) Shape
decomposition of a triangle into a sequence of three transformations acting
on an equilateral reference triangle. The angle y and the stretch factors sq >
determine the intrinsic shape of the triangle while the angle ¢ determines its
orientation in space. (C) Intrinsic shape space of triangles parameterized by
anisotropy (LTC magnitude) s the “LTC phase” y that distinguishes obtuse and
acute triangles. The gray line indicates the Delaunay condition for a pair of
identical triangles. Along this line, the circumcenters of the two triangles
coincide, corresponding to a fourfold vertex in the Voronoi tessellation.
(D) Circumcircle construction of the Voronoi edge length ¢, (purple) from
a pair of adjacent (tension) triangles (red). Circumcircles are indicated by
gray dashed lines. The actual physical length ¢ is the sum of the Voronoi
reference length €., and a contribution from isogonal strain A¢ig. In the
illustration, A¢jsq /€ is negative. (E) T1 threshold as a function of the isogonal
strain A¢jsq /£g. Positive isogonal strain shifts the threshold to higher tension
anisotropy.

increases as a function of the initial order and the magnitude
of tension anisotropy. The degradation of order through cell
rearrangements means that the system dynamically traverses the

phase space spanned by order pg and anisotropy ||(«/§(~2) || and
the remaining extension is predicted by the instantaneous value
of these two quantities (S/ Appendix Fig. S5).

We find that all simulations converge to a disordered state
where T1s are incoherent and tissue flow stalls. This naturally
explains key aspects of germ-band extension in the Drosophila
embryo, in particular the transition from the fast to the slow
phase of germ-band extension (17), concomitant with an increase
in cell-scale disorder, approaching a maximally disordered state
(17, 31) (see experimental data in S/ Appendix, Fig. S5).
The self-limiting character of CE driven by positive tension
feedback is robust across variations of the tension dynamics
model (S Appendix, Fig. S9, section 2, and Table S1) and
a similar phenomenon was observed in a recent model by

Sknepnek et al. (10).

Order in Local Tension Configurations. So far, we have focused
on the role of tension anisotropy and initial topological order in
the cell packing. In the Drosophila germ band, we additionally
observed a more subtle form of geometric order—a particular
pattern of alternating high and low tensions (17)—that arises dy-

PNAS 2024 Vol. 121 No. 40 e2321928121

namically before the onset of cell rearrangements. The elementary
motifs of a cell-scale tension pattern are the tension triangles at
individual vertices. Acute triangles correspond to tension cables
(adjacent high tension interfaces) while obtuse triangles—to
which we refer as a tension “bridges”—are the elementary motif
of an alternating pattern of high and low tensions (Fig. 34).

To quantify the relative abundance of these motifs and
compare our simulations to experimental data we define a local
tension configuration (LTC) order parameter that measures how
anisotropic and how acute vs. obtuse a given tension triangle
is. To construct this order parameter, the three tension vectors
Tg, & = 1,2, 3 that form the tension triangle are first ordered by
increasing length, i.e. 77 < 75 < T3, and then combined into a
2 x 2 matrix

T =

(o o) .

VAN \VBTS VBT

The normalization factor A ensures ||T||> = Tr[ZF7] = 1,
fixing the arbitrary overall tension scale. ¥ is not a symmetric
matrix and its indices belong to different spaces: The lower
index labels the barycentric component and the upper index
the Cartesian coordinate. We now carry out a singular value

decomposition (SVD, geometrically illustrated in Fig. 3B):*

T=R(w) - (‘/OH \2—2> -C- RT(‘!’)’ [7]

where R(a) is the rotation matrix with angle a, the singular
values are ordered s; > 5, > 0 by convention, and 51 + s, = 1
because we have normalized the tension vectors. The reflection
matrix C = diag(1, £1) accounts for the chirality of the tension
triangle (i.e. whether the edges go clockwise or counterclockwise
if sorted by length). The angle ¢ represents the orientation
of tension anisotropy in physical space. Indeed, the triangle
anisotropy tensor Q) defined above is given by Q = gz,
The intrinsic rotation angle y € [0, 7/6] controls whether the
subsequent shear diag (,/s1, \/52) makes the triangle obtuse or
acute. The intrinsic shape properties of the triangle are therefore
parameterized by the magnitude of anisotropy ¥ := (51 — 52) €
[0, 1] and the “LTC phase” ¢ = 6y € [0, #] mapping out a
two-dimensional shape space, which we refer to as LTC space
(Fig. 3C).

The SVD Eq. 7 links two spaces with different symmetries, the
hexatic symmetry of the tension triangulation with the nematic
symmetry of deviatoric stress in physical space. Thus, ¥ represents
a hexanematic. In to contrast the hexanematic cross-correlation
defined in ref. 33, ¥ is purely local and does not depend on
the magnitude of hexatic order. Moreover, the nematic order
represents the orientation of deviatoric stress, not cell elongation
as in refs. 33 and 34. This distinction is important because cell
elongation is controlled by the isogonal modes and can therefore
decouple from stress anisotropy.

A Generalized Delaunay Condition Defines the Locus of T1
Events in LTC Space. The tight coupling between tension space
and physical space allows us to define a condition for the
occurrence of T'1 transitions in LTC space. This T1 threshold will
allow us to quantify how tension dynamics causes active T1s by
driving the local tension configurations toward the T1 threshold.

¥A similar decomposition was used in ref. 32 to quantify tissue strain rates from a cell-
centroid-based triangulation. However, the information contained in the “LTC phase” y
was not utilized there.

https://doi.org/10.1073/pnas.2321928121
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It also puts a constraint on the local tension configurations that
we expect to observe.

Let us for a moment neglect the isogonal modes. From the
tension triangulation we construct the corresponding Voronoi
tessellation whose vertices are the circumcircle centers of the
triangles as illustrated in Fig. 3D. The edges of the Voronoi
tessellation are orthogonal to those of the triangulation, which
implies that it obeys the force balance constraints, and can be
used as a reference for the family of cell arrays compatible
with the tension triangulation. The length of a Voronoi edge
corresponding to a pair of adjacent triangles is given by

Lot = (cot B + cot ), [8]

V36T
2
where 7 is the length of the shared triangle edge interface and £
fixes the length scale such that £,.f = 7 for equilateral tension
triangles. £, changes sign at f + ' = x, which gives the
“Delaunay condition” g + p’ < x. In the absence of isogonal
strain, a cell neighbor exchange (corresponding to an edge flip
in the triangulation) must occur upon crossing this threshold.
In Fig. 3C, the gray line indicates this threshold for a pair of
identical triangles (i.e. § = ' = 7/2). Notably, the threshold
is at a much smaller anisotropy magnitude s for tension cables
(small @) than for bridges (large y), implying that tension cables

are less efficient at driving intercalations than tension bridges.

How does the Delaunay condition generalize in the presence
of isogonal strain? The length of the central interface, £, can be
decomposed as

€= Llref + Aliso, [9]

where the isogonal contribution Afjs, accounts for isogonal
modes while the (Voronoi) reference length is given by Eq. 8.
Note that Alj, is not an edge-autonomous quantity but depends
on the isogonal mode (parameterized by the isogonal function) in
the four cells surrounding the interface. In practice, Al;g, can be
estimated from the average isogonal strain tensor in a local tissue
patch (17). Now an interface collapses if the physical length
reaches zero: £ + Alis, = 0. This generalizes the Delaunay
condition. Fig. 3F shows the shifted T1 threshold as a function of
the isogonal strain Afs,/€o (see SI Appendix for a mathematical
expression).

Winner-Takes-All Feedback Drives Coherent T1s through For-
mation of Tension Bridges. The LTC order parameter and the
T1 threshold in hand, we can quantify the dynamics of tensions
in the simulations (Fig. 44) and experiments (see companion
paper ref. 17 and SI Appendix, Fig. S2). Because isogonal strain
shifts the T1 threshold (cf. Fig. 3E), it will have a significant
effect on the LTC order parameter distribution. We imposed in
our simulations the isogonal strain observed in the Drosophila
germ band (17), where invagination of the adjacent mesoderm
tissue causes isogonal strain along the axis of tension anisotropy
(81 Appendix, section 2).

LTC histograms show an increase in anisotropy and a transient
bias toward tension bridges, before convergence to a steady state
biased toward tension cables as the tissue becomes disordered
(Fig. 44). Time traces of the median anisotropy s and (weighted)
median LTC phase W show qualitative agreement with the
experimental data from the Drosophila germ band (17) (Fig. 4B).
Quantitative agreement can be achieved by adding constant
offsets (dashed lies in Fig. 4B), which may be a consequence
of noise in the experimental data (see SI Appendix, Fig. S9 for

simulations incorporating Langevin noise).
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Fig. 4. Dynamics of LTC order in simulations and the Drosophila germ
band. (A) Heat maps showing the distribution of local tension configurations
in a simulation with imposed isogonal strain matching the experimental
observations. Data aggregated from N = 6 simulation runs of ~103 cells each.
(B) Driven by winner-takes-all feedback, the magnitude of tension anisotropy
magnitude $ (Top) and the tension bridge fraction (measured by the LTC
phase y; Bottom) increase. As the tissue becomes disordered due to cell
rearrangements, the bridge fraction starts decreasing at ca. 10 min. Solid
lines show the median of the LTC distributions where the phase  is weighted
with the magnitude 3. The width of bands showing the SE is comparable to
the line width. Shifting the median from simulations by a constant offset
(dashed orange lines) yields a quantitative match to the experimental data.
(C) Shape dynamics of a single tension triangle driven by winner-takes-all
feedback rapidly drives the tensions toward the T1 threshold with a slight
bias toward tension bridges.

To understand the LT'C dynamics, consider the shape dynam-
ics of a single, isolated tension triangle governed by winner-takes-
all feedback, Eq. 5. Starting from a configuration with nearly
equal tensions, the highest tension grows at the expense of the
other two, driving the triangle toward an increasingly anisotropic
and obtuse shape, as illustrated in Fig. 4C. This LTC flow drives
the tension configurations toward the T'1 threshold and thereby
causes the cell rearrangements. The single-triangle simulation
successfully predicts early dynamics of the LTC distribution
until the onset of cell rearrangements (Fig. 4B). The single-
triangle picture also highlights the impact of isogonal strain;
in simulations without imposed isogonal stretching, the T1-
threshold is positioned so that bridges are rapidly eliminated by
T1s (gray line in Fig. 4C), and no transient bride bias is observed.
We predict that this will occur in twist or snail mutant embryos
where mesoderm invagination is abolished.

While positive tension feedback explains the emergence of
tension bridges at the local (single-triangle) level, it is not enough
to produce an alternating pattern of tensions across cells. For
such a pattern, tension bridges must fit together coherently, i.e.
their tension anisotropy is aligned across cells. This requires that
the coordination number of a majority of cells is 6, i.e. that most
cells are hexagons. This explains why some degree of hexagonal
packing order is required to drive coherent T'1s that underlie rapid
CE. Notably, however, long-range hexatic order is not necessary,
as the local positive feedback on tensions is able to promote the
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Fig. 5. Saturating tension feedback causes tension cable formation and,
hence, fails to drive CE. (A) The flow in local tension configuration space
induced by saturating positive feedback is inefficient at driving T1s. (B) Sat-
urating feedback generates only little CE. The initial configuration is shown
semitransparent in the background. Cell color indicates coordination number
(cf. Fig. 2A). (C) The late-time LTC distribution shows a strong cable bias
and differs significantly from the random Delaunay distribution emerging
in simulations with winner-takes-all feedback (cf. Fig. 4D). (D) Saturating
feedback (teal), compared to winner-takes-all feedback (purple), yields very
little aspect ratio change and a significantly reduced T1 rate.

local alignment of hexatic and nematic order in tension space, as
manifest in the LTC phase dynamics.

In Fig. 2, we have seen that as cells rearrange, the cell array
becomes disordered with the coordination number statistics
approaching a random Voronoi tessellation. This suggests that
the corresponding tension triangulations resemble random De-
launay triangulations. To generate a family of such random
triangulations, we use the same hard disk sampling method
as above, controlled by the packing fraction p. We find that
the triangle shape (LTC) statistics of a random Delaunay
triangulation with p & 0.2 reproduces the late time statistics
observed in simulations and in the Drosophila germ (SI Appendix,
Fig. S3). Notably, the late-time distribution exhibits a slight bias
toward tension cables. The loss of tension bridges causes active
T1s to become incompatible between adjacent cells, contributing
to a slowdown of tissue extension found in tissue scale simulations
and in the germ band (17).

Taken together, we find that the time course of LTC
distribution agrees between the model and the experimental data.
Next, we show how changing aspects of the model affects the
LTC distribution, highlighting that the LTC parameter can be
used to distinguish different tension dynamics based on statistical
signatures of cell-scale observations.

Saturating Tension Feedback Causes Tension Cable Formation
and Reduced Convergent Extension. The “winner-takes-all” lo-
cal tension feedback mechanism, Eq. 5, considered so far is
efficient at driving T'1s because it causes the formation of tension
bridges as illustrated in Fig. 4C. In contrast, when positive feed-
back rapidly saturates, adjacent high tension interfaces no longer
compete, leading to the formation of tension cables (Fig. 54

PNAS 2024 Vol. 121 No. 40 e2321928121

and see SI Appendix, section S2 for details). The trajectories in
LTC space obtained from single-triangle simulations show that
saturating feedback is less efficient at driving the local tension
configuration toward the T1 threshold. Indeed, tissue scale
simulations with such feedback produce very little CE (see Fig. 5
Band D and Movie S3). The rate of T1 transitions is significantly
reduced (Fig. 5D), and in contrast to “winner-takes-all” feedback,
a significant fraction of T1 transitions (approximately 20%) are
reversible, i.e. the newly formed edge rapidly recollapses (S7
Appendix, section S2). Indeed, the T1 rate is transiently quite
high but there is very little CE, suggesting that T'1s along cables
are inefficient at driving tissue deformation. Saturating tension
feedback might therefore explain the reversible T1s observed
in certain Drosophila mutants (35). As predicted from single-
triangle shape-space flow (Fig. 54) the LTC distribution develops
a significant bias toward tension cables as shown in Fig. 5C. Such
persistent tension cables are observed in Drosophila abl mutants,
suggesting that knockout of 26/ might impair positive tension
feedback (Discussion).

The above findings show that the LTC order parameters
capture important structural features on the cellular scale that
strongly affect the dynamics and efficiency of T1ls processes.
Flow in LTC parameter space obtained from single-triangle
simulations serves as a simple tool to predict the cell scale behavior
(efficiency of active T1s, emergence of tension cables vs. bridges)
for a given tension-feedback law.

Tension-Triangulation Model Reproduces Drosophila Axis Elon-
gation in a Simplified Geometry. The epithelium of the early
Drosophila embryo forms a closed, approximately ellipsoidal
surface. Therefore, deformation of one tissue region has to be
compensated by an opposite deformation elsewhere. Specifically,
the dorsal amnioserosa is passively stretched along the dorso-
ventral (DV) axis and compressed along the anterior—posterior
(AP) axis to compensate the convergent extension of the germ
band. To investigate this interplay of active and passive tissue
deformations, we mimic the cylindrical geometry of the embryo’s
trunk (Fig. 64) by a rectangular tissue patch with “slip walls” at
the Top and Bottom boundary (Fig. 6B). Along the slip walls
cell centroids are restricted to move along the wall, thus fixing
the DV extent (i.e. “circumference”) of the tissue. To account
for the different mechanical properties of the lateral ectoderm
and the dorsal tissue, we divide the tissue into active and passive
regions (2, 17). In the former, cortical tensions are governed by
positive feedback in the active region while tension homeostasis
is imposed in the latter. Further, passive cells (subscript p) are
taken to be soft y, = 0.2p4,, 4, = 0.24, compared to active
cells (36). In addition, we allow interface angles in the passive
region to slightly deviate from those imposed by the tension
triangulation, reflecting the fact that the overall scale of cortical
tensions is lower in the passive tissue (2). We initialize the
simulation with a slightly perturbed hexagonal packing of cells
and the experimentally observed tension anisotropy aligned along
the DV axis (17).

Starting from this initial condition, the simulation reproduces
salient features of the tissue-scale dynamics in the embryo
(see Fig. 6C and Movie S4). In the active region (“lateral
ectoderm,” LE) active cell rearrangements drive tissue extension
along the AP axis and contraction along the DV axis. The
passive region (“amnioserosa,” AS) is stretched along the DV axis,
accommodating the fixed circumference of the embryo. Notably,
this stretching leads to T1s in the passive region as is visible from

the highlighted cells in Fig. 6C. On the tissue level, the coupling
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Fig. 6. Combining active and passive tissue regions. (A and B) The ellipsoidal geometry of the Drosophila embryo (A) is mimicked by a simplified simulation
geometry corresponding to an unrolled cylinder (B), whose azimuthal axis corresponds to the dorso-ventral (vertical) axis of the embryo. The different behavior
of the dorsal amnioserosa (AS) and the lateral ectoderm (LE) tissue is represented by the passive and active regions in the simulation domain respectively.
(C) Positive feedback in the active region amplifies an initial DV anisotropy of tension and thus drives extension along the AP axis. Since the embryo’s
circumference is fixed (implemented via a slip wall at the dorsal boundary), the passive region is stretched along the DV axis. Only half of the simulation domain
is shown, corresponding to one lateral side of the Left-Right symmetric embryo. Three-by-three patches of cells are highlighted to show cell rearrangements
(cf. Movie S4). (D) Trajectories of cell centroids showing the tissue scale flow, resembling the characteristic flow of Drosophila germ-band extension (2).

of active and passive regions gives rise to the tissue flow pattern
characteristic of Drosophila germ-band elongation (2) as shown
in Fig. 6D.

Tissue Extension by Active T1s Requires Large-Scale Mechanical
Patterning and Cell Shape Elasticity. The total tissue extension
found in the simulations that combine active and passive tissue
regions is smaller than the extension of active tissue patches
with free boundaries (compare Figs. 6D and 2C). This suggests
that the passive tissue resists deformation. In the following, we
further investigate the role of the spatial modulation of the
cells’ mechanical properties along the DV axis. Fig. 7B shows
a simulation without DV modulation where all cells are active.
Positive tension feedback drives active Tls everywhere, as is
manifest in the deformation of the tension triangulation (Fig. 7 B,

Right). However, because of the slip-wall boundary conditions,
the tissue cannot contract along the DV axis so that T1s do not
result in tissue convergent extension (Movie S5; quantification
in Fig. 7C). Instead, cell rearrangements are compensated by
isogonal deformations resulting in elongated cell shapes (as
quantified in Fig. 7D). We predict that this scenario will be
realized in 70/l[RM9] mutant embryos where all cells around
the embryo’s circumference adopt a ventro-lateral fate (31), as
illustrated in the cartoon in Fig. 7A4. The stretching of cells
leads to a buildup of elastic energy (S Appendix, Fig. S10D).
In Toll[RM9] mutant embryos, some of this elastic energy is
released by the formation of folds (buckling) (31) which our 2D
simulations cannot capture.

Interestingly, the length dynamics of collapsing and emerging
interfaces is not significantly affected by the lack of tissue-scale

C 151

A No DV modulation of activity ("Toll[RM9]")

— T

=D~ D> | =™
a(0)

E No rigidity of active cells (i, = 0)

Active T1s deform
tension triangulation DTN DD DDE

active passive

B Active T1s deform
= R tension triangulation 1
S &5 10 20 Little tissue
® K Time [min] 15 min extension
@ D | Cell elongation (15 min) F s
- o"wt" o WT
. o | @"Toll[RMI] 14

> No tissue = —~
© extension 8 [ ps =0 £
= o o =
© >

2 ol 12
= |5} = N
[0) ] [T —
O T

a=0

-1 -0.5

0 min

o " sat/2 1 2 4 8
Active cell stiffness, wa/u,

0 0.5 1

8of 10 https://doi.org/10.1073/pnas.2321928121
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Fig. 7. Tissue flow requires cell rigidity and large-scale genetic patterning. (A) Cartoon of an embryo without dorso-ventral mechanical patterning, such as
a Toll[RM9] mutant where cells all around the circumference adopt a lateral ectoderm (LE) fate. (B) Simulation of a tissue patch without a passive region.
While active T1s deform the tension triangulation (Top), the cell array (Bottom) is blocked from elongating by the fixed DV “circumference” (implemented via
slip walls). Instead, cell rearrangements are compensated by isogonal cell elongation (quantified in D). (C) CE (measured by the aspect ratio a(t) of the active
region) is strongly suppressed in absence of DV modulation of activity (“Toll[RM9]") and when active cells have vanishing shear modulus (uqg = 0; see E and F).
(D) Histograms of cell shape elongation measured by relative difference, (Spy py —Sap,ap)/(Spv,pv + Sap,ap). Of the AP-AP and DV-DV components of the shape
tensor S. In the WT case (cf. Fig. 6), cells remain nearly isotropic while they become significantly oriented along the DV axis when DV modulation of activity or
rigidity of active cells is abolished. (E) When the active cells have no shear rigidity (ug = 0), cell rearrangements are compensated by isogonal cell elongation
(see D) without incurring an elastic energy build-up. Thus, almost no tissue-scale CE takes place. (F) Net amount of CE as a function of the shear modulus of
active cells shows that active cells need to be stiffer than the surrounding passive tissue for active T1s to drive efficient CE.
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mechanical patterning (S/ Appendix, Fig. S10B), even though
there is no tissue extension. This behavior has been observed in
experiments and was interpreted as evidence for additional active
mechanisms that drive interface elongation, e.g. such as medial
myosin pulses (8). However, interface extension in our model is
a purely passive process, resulting from the temporal asymmetry
of the intercalation process (i.e. the low level of active tension
on the new interface), we conclude that no such mechanisms are
necessary (see SI Appendix, Fig. S10 for further details).

The resistance of cells against shape deformations controls
the isogonal modes and therefore is an important parameter
controlling the interplay of active and passive tissue deformations.
Fig. 7F shows a simulation where the shear modulus p, of
active cells is set to zero. Active T1s can therefore be fully
compensated by cell elongation through isogonal deformations
without incurring an elastic energy cost. As a result, there is
no net tissue deformation (Movie S5). In other words, cell-
shape rigidity is required to maintain rotund cell shapes (i.e.
resist isogonal shear deformations) and thus translate active T1s
into net tissue deformation. The tissue deformation by isogonal
modes is determined by a balance of external forces and internal
resistance of cells to the shape changes. Here, the external forces
acting on the active tissue result from the passive tissue’s resistance
to deformation, which is in turn set by shear modulus pup.
The ratio of the shear moduli in the active vs. the passive
region, fiy/Hp, determines how much the active region deforms
(Fig. 7G). Only when the cells in the active tissue are more rigid
than those in the passive region (#,/pp > 1), is it energetically
favorable to isogonally deform the passive region rather than the
active region. This predicts that germ-band extension (GBE) can
be impaired by stiffening the dorsal tissue (amnioserosa), e.g. in
dpp mutants.

Discussion

Our model provides a theory of active elasticity based on the
geometric relation (duality) between tension space and real space
afforded by the force balance condition. Stabilizing feedback
mechanisms that maintain adiabatic force balance are implicit in
our model as we constrain the tension dynamics to the space
of force-balanced configurations (flat tension triangulations).
Dynamics in tension space is driven by local positive feedback.
This feedback amplifies a weak initial tension anisotropy and
thus drives cell shape dynamics that result in cell rearrangements
(T1 processes). Notably, while active T1s are initiated by positive
tension feedback, we find that their resolution is through passive
relaxation of tension and does not require additional active
ingredients as previously suggested (8). Force balance provides
the nonlocal coupling that allows for coordination of forces and
cellular behaviors across the tissue. On the tissue scale, self-
organized active T'ls are oriented by global tension anisotropy
and thus act coherently to drive convergent-extension flow. As
T1s drastically remodel tension geometry, they gradually degrade
the orientational cue provided by initial tension anisotropy.
(Note that this degradation of order happens locally through T1
transitions; its relation to long-wavelength instabilities of active
nematics in which there are no explicit topological transitions
is an interesting avenue for future research.) Thus, the locally
self-organized tissue flow is generically self-limiting. It arrests
after a finite extent of CE that depends on the initial degree of
order in the cellular packing and the magnitude of initial tension
anisotropy. This central finding suggests that cell geometry is a
repository of morphogenetic information that may encode the
final tissue shape.

PNAS 2024 Vol. 121 No. 40 e2321928121

Importantly, we show that T1s are controlled by local con-
figuration of tensions as quantified by the LTC order parameter
that links the locally hexatic space of the tension triangulation
(representing force balance) with the nematic nature of deviatoric
stress and strain in physical space. In contrast to previous work on
“hexanematic” order in tissues (33, 34), LTC order is defined in
tension space, not in physical space, and does not require (quasi-)
long-range hexatic order. Moreover, the emergence of this order
is not driven by a free energy but by active feedback acting on
tensions as discussed further below.

Mechanically self-organized tissue dynamics provides an ele-
gant explanation for the arrest of Drosophila GBE after about
two-fold elongation (31), while predicting its dependence on the
initial tension anisotropy (2, 14). In the companion paper (17),
we used tension inference and LTC analysis to reexamine live
imaging data on Drosophila GBE (16) showing that it is driven
predominantly by the internally generated forces in the lateral
ectoderm of the embryo. Quantitative analysis of imaging data
confirms that Drosophila ectoderm starts ordered and becomes
disordered as T'1s proceed during CE.

Notably, while our model does not require cell-scale genetic
instructions to generate local tension anisotropy(31, 37), genetic
patterning on the scale of the embryo is essential for coordination
and stability of global flow. In the early Drosophila embryo,
this is manifested in the dorso-ventral patterning system that
specifies the tissues with different mechanical properties and
modulates mechanical feedback loops (14). We expect that
the initial tension anisotropy, reported in ref. 17, is set up by
anisotropic static “hoop” tension resulting from turgor pressure
inside the embryo, and further reinforced by the dynamic effects
of ventral furrow formation (14). An important challenge for
future work is to identify the (molecular) mechanisms of both
positive and negative feedback circuits, the latter stabilizing
the force-balanced configuration on short timescales while the
former, driving controlled remodeling on long timescales.

Our model predicts that disrupting the hexagonal packing of
nuclei prior to cellularization will cause slower GBE. Interesting
candidates to test this prediction are “nuclear fallout” mutants
where some nuclei leave the blastoderm surface and thus
introduce defects in the cellular packing (38). Another option
might be the transient and partial disruption of microtubule
organization with small molecule inhibitors (39). We expect that
these experiments can be used to challenge and subsequently
refine the model.

Comparing the LTC time courses between experiments and
simulations, we find an excellent agreement, suggesting that
positive feedback-driven local tension dynamics can explain cell-
scale behavior during GBE. The dynamics in tension configu-
ration space depends on the character of the positive tension
feedback. Winner-takes-all feedback efficiently drives the local
tension configuration toward the T1-threshold via the formation
of tension bridges. By contrast, when feedback saturates at too
low relative tension, it causes formation of tension cables, which
had previously been suggested as a driver for CE. However, our
simulations and analysis of local tension configurations show that
tension cables are inefficient at driving CE, as adjacent interfaces
“compete” to contract. Indeed, arrest of CE due to the formation
of tension cables is also observed in recent computational studies
(10, 40). When tension cables contract, they lead to formation of
“rosettes” where five or more cells meet in a single vertex (41, 42).
In a Drosophila mutant for abl, contraction of tension cables is
impaired resulting in a reduction of rosette formation (43). By
contrast, T'1s appear unaffected in these mutants, suggesting that
isolated high-tension junctions contract normally. Our model
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offers a possible explanation of this puzzling finding: Deletion of
abl might cause the positive tension feedback to saturate earlier
thus leading to the formation of persistent tension cables. Taken
together, the findings discussed above show that tension bridges
are key to drive efficient convergent-extension flow. The LTC
order parameter introduced here facilitates statistical analysis
across many cells and allows one to distinguish different regimes
of local tension dynamics.

Because force balance geometry does not uniquely define the
shape of cells—on account of isogonal degrees of freedom—the
latter play an important role in defining tissue dynamics. Isogonal
soft modes account for tissue deformation under constant
cortical tensions and are controlled by noncortical mechanical
stresses, arising e.g. from passive cell elasticity due to cell-internal
structures [e.g. nucleus (23, 24), microtubules, and intermediate
filaments (25)]. We find that internal rigidity is essential to
transduce cell intercalations into tissue-scale deformation against
resistance from adjacent tissues. In the absence of cell resistance
against deformation, intercalations are compensated by cell shape
changes. However, if cell-internal elasticity becomes stronger
than cortical tensions, it can resist changes in vertex angles
and impede Tls and tissue flow (S Appendix, Fig. S11).
Such a scenario may occur in certain genetic mutants, like the
“kugelkern” (kuk) mutant of Drosophila, where the nucleus is

stiffer (44).
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