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Identifying the state of the colloidal self-assembly process is critical to monitoring and controlling the system into
desired configurations. Recent application of convolutional neural networks with unsupervised clustering has shown
comparable performance to conventional approaches, in representing and classifying the states of a simulated 2D col-
loidal batch assembly system. Despite the early success, capturing the subtle differences among similar configurations
still presents a challenge. To address this issue, we leverage a Siamese Neural Network to improve the accuracy of
the state classification. Results from a Brownian dynamics-simulated electric field-mediated colloidal self-assembly
system, and a magnetic field-mediated colloidal self-assembly system demonstrate significant improvement from the
original convolutional neural network-based approach. We anticipate the proposed improvement to further pave the
way towards automated monitoring and control of colloidal self-assembly processes in real time and real space.

I. INTRODUCTION

Self-assembly of nano- and micron-sized particles into
macroscopic systems has potential applications in re-
newable energies, health care, advanced computing, and
biotechnology.!=> The property of the self-assembled materi-
als arises from both the property and the configuration of their
constituent particles.*® While manipulating particle move-
ment, thus the assembly configuration, is feasible with ex-
ternal forces, such as electric, magnetic, and acoustic fields,
assembling nano- and/or micron-sized particles into specific
configurations is still challenging. A first step towards this
task is to have accurate description of the assembly structure,
which is also commonly referred to as the state representation.

Conventional approaches for state representation of
colloidal  self-assembly include physics-based order
parameters,9‘13 such as Cg and ‘P6,14’15 which are math-
ematical equations based on the particle coordinates, and
metrics derived from mathematical and statistical techniques
such as Principal Component Analysis,'62° UMAP,>!-?* or
other dimensionality reduction techniques,?>~%° that normally
bear no physical meaning. Recent methods that combine
partial physical understanding with machine learning algo-
rithms to learn patterns, from data generated either from
simulations or experiments have shown promise and have
started to attract attentions in the field.3*3* Examples include
neighborhood graphs,>>37 spherical harmonics,¥# and
many other descriptors. These descriptors are normally
obtained from the spatial coordinates of the particle,*!*?
and are further processed with dimensionality reduction and
clustering techniques for a low dimensional representation
of the colloidal assembly state, with physically explainable
meanings.’%-33-3* While these approaches have shown success
in representing the colloidal self-assembly state, they require
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the identification of particle coordinates and relevant physical
descriptors, which is challenging in large systems or systems
with smaller particles and complex dynamics.

On the other hand, images provide information about the
configuration without knowing the specific location of every
constituent particle, and image-based structure analysis has
started to gain popularity. Recent examples include using im-
ages to estimate the density and size of assembled structures
for lithographed colloidal cones,*® and to predict the temper-
ature of isothermal heating processes on polymer colloidal
crystals.**

In Ref. 45, we introduced a Convolutional Neural Net-
work (CNN)-based framework that combines image analy-
sis with unsupervised clustering, to classify different col-
loidal self-assembly configurations, and showed on par perfor-
mances to the use of order parameters for a Brownian dynam-
ics simulated 2-dimensional electric field-mediated system.*
In that framework, images are first projected into a set of low-
dimensional features through a Convolutional Autoencoder
(CAE), then these low-dimensional features are clustered with
HDBSCAN? to group similar images to form a set of clus-
ters/states the system could assemble into. Within each clus-
ter, the image with the smallest average distance to all other
images is named as the centroid image, representing the typ-
ical configuration of that cluster. Each image is then labeled
according to its cluster label before being used to train a CNN
classifier, which would classify a newly obtained image into
one of the defined cluster/state.*>

While the CNN-based framework proposed in Ref. 45
showed success in distinguishing states that can be challeng-
ing to distinguish with order parameters, e.g. void defects vs.
ordered crystals, it still struggled to provide 1) a high-purity
clustering, where each cluster would only contain one type of
configurations, and 2) a non-redundant clustering, where no
multiple clusters would contain the same type of configura-
tions. While the redundant clusters could be easily resolved
with visual inspection after the clustering (assuming the total
number of the resulting clusters is manageable), improving the
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purity of each cluster is nontrivial, as it requires capturing the
subtle differences at the local features of the configuration. To
address this issue, here we introduce a modified CNN-based
framework which features the use of a Siamese Neural Net-
work (SiNN) to detect the subtleties of similar configurations
for improved purity in the resulting clusters.

A SiNN is a model that maps images into a low-
dimensional representation, while preserving the similarities
between the local features of the images.*’ SiNN models
have gained popularity in applications such as the detection
of laser induced defects in optical elements,***8 the identifi-
cation of glass transition on liquid crystal systems* and many
others.*”>" The SiNN learns similarities from groups of three
images called triplets, which consist of an anchor, a positive
and a negative image. The anchor serves as a reference image,
the positive image is known to be similar to the anchor, and the
negative image is different from the anchor and the positive.
The SiNN is trained by minimizing the distance between the
anchor and the positive image, while maximizing the distance
between the anchor and negative image at the same time. In
this study, we introduce a SiNN as an intermediate step after
the unsupervised HDBSCAN clustering and before the train-
ing of the CNN model, as depicted in Fig. 1

Specifically, images from the unsupervised clusters will
form the triplets used to train the SiNN, to re-assign the mis-
labeled images to their correct clusters, for an improved clas-
sification. Validation on both a Brownian dynamics simula-
tion model and two sets of experimental images demonstrated,
that the updated classification framework with the SiNN sig-
nificantly improved the accuracy of the state classification, as
compared to the one without SiNN. We anticipate the pro-
posed framework to further benefit systems with more com-
plex dynamics and states.

II. DATA GENERATION AND PERFORMANCE
EVALUATION METRICS

The framework was developed with data from a Brownian
Dynamics (BD) simulation model, same as in Ref. 15 and
Ref. 45, which simulates the 2-dimensional (2D) assembly
dynamics of SiO; colloidal particles in a quadrupole electric
field-mediated batch container. A total of 13765 images were
generated from the simulation, with 90% of the total images
used as the training set to develop the neural network models,
and the remaining 10% used for validation. The performance
of the framework is also tested with two sets of experimen-
tal data. The experimental datasets were collected from the
same system as in Ref. 51, which features a combination of an
electric and a magnetic field. In this system, a sinusoidal AC
electric field is applied to the x-y plane, with an AC function
generator connected between the top and bottom electrodes
around the container. The magnetic field is generated through
four air-cored copper solenoid coils of 50 mm inner diameter,
51 mm length, and 400 turns with a current capacity of 3.5 A,
installed into a polyacrylic crossing board. Each coil is con-
nected to a DC or AC function generator, which is controlled
by a custom Python code with an output card. The magnetic

field strength was measured by a Gauss meter. To generate
the circularly rotating magnetic field, 80 Hz AC currents are
applied to four coils. The phase lag between neighbouring
coils is +90° so that both clockwise and counterclockwise ro-
tational magnetic fields can be generated. The detailed de-
scription of the system and dynamics can be found in Ref. 51.
In this system, thousands of superparamagnetic particles with
a diameter of 3um are exposed to a planar rotating magnetic
field, where the field is increased from 1 to 3 mT to permit as-
sembly from dispersed states to the conjugated configurations.
The first experimental dataset contains 2945 images, and the
second dataset contains 2291 images, collected from the same
system but under a different field strength. Fig. 2 gives the
typical configurations observed in these two systems.

To gauge the clustering performance, we introduce the con-
cept of purity to quantify the percentage of images that are
correctly clustered, which is defined as: Purity; = %, where
M is the total number of images in cluster i, and N < M, is
the number of images that are correctly classified to cluster
i. In our previous study,*> Purity; was calculated by compar-
ing the images within cluster i to the centroid image of cluster
i. While this definition provided a measure of purity within
each cluster, it has the potential to overlook intra-cluster mis-
classification. To avoid this, here we manually pre-labelled all
images in our dataset to one of the pre-identified representa-
tive configuration clusters as in Fig. 2. Such a pre-labeling re-
quires considerable human efforts, but it could provide a more
unbiased evaluation of the clustering performance. Note that
although nine different typical configurations are identified in
Fig. 2a, the unsupervised clustering might not yield exactly
nine clusters, and some of the configurations could be grouped
into one, depending on the resolution of the classification. For
example, Cluster 1 and 2 could be grouped together, Cluster 3
and 4 could be merged together, and Cluster 5, 6, and 7 could
also be grouped into a single cluster. Furthermore, the config-
urations given in Fig. 2a only show commonly encountered
configurations, and do not provide an exhaustive coverage
over all different configurations. For example, it is possible
that multiple-void defective states exist besides the single and
double-void defective states as shown in Fig. 2a. To deal with
scenarios where the unsupervised clustering yields a different
number of clusters, we compare the centroid images of the de-
fined clusters against the nine pre-defined clusters to re-assign
the appropriate labeling, based off the initial pre-labeling, and
the resulting re-assigned labels are used as the ground truth
labeling of each image, in calculating the ultimate purity of
each cluster. We demonstrate the details of this process with
the BD-simulated colloidal self-assembly state classification.

Ill. SEMI-SUPERVISED TRAINING OF SINN VIA
TRIPLET MINING

The SiNN model consists of three convolutional layers,
each with a ReLu activation and a 2x2 MaxPooling layer. We
used 32, 64 and 128 channels for each convolutional layer,
and a 3x3 kernel size for all of them. The embedding of the
model, based on which the clustering was performed, is the
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FIG. 1. The proposed modification includes a SiINN model (labeled in red) trained by minimizing the triplet loss function. The triplets used to
train the model are generated based on the clusters obtained from clustering the autoencoder features (blue path). The labels used to train the
CNN model are obtained from the relabeling process done with the SINN model.
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FIG. 2. Representative configurations from the dataset for pre-
labeling the images. (a) Nine states are identified for the BD-
simulated electric-field mediated assembly system. (b and c¢) Three
states are identified for the planar rotating magnetic field-mediated
assembly system.

output of a densely connected layer with 64 neurons and a
linear activation. The model parameters are updated by min-
imizing the triplet loss function defined in Eqn. 1, using the
Adam optimizer.

L(ZT,75,727) = max{d(ZF,Z]) —d(ZEF,Z,) +m,0} (1)

In the triplet loss function -#(Z",Z*,Z~) in Eqn. 1, im-
ages are embedded in vectors Z, where “+-” indicates the pos-
itive image, “+” indicates the anchor image, and “—” indi-
cates the negative image. d(Z>F,Z;}) is the difference between
the anchor and the positive image, and d(Z;",Z, ) is the differ-
ence between the anchor and the negative image, in triplet set
n, out of the N total sets of triplets. The loss is then calculated
as the maximum between 0, and the distances augmented by

a margin m = 3.0, which facilitates learning while preventing
overfitting.

To generate the N sets of triplets, we performed HDBSCAN
clustering, based on features extracted with an autoencoder,
as described in our previous work.*> The anchor image for
each triplet is the centroid image of each cluster, and the pos-
itive image is taken from the proximity of the centroid image,
whereas the negative image is taken from a different clus-
ter. For example, given a set of K clusters, and by taking L
sample images for the positive and negative images, we ob-
tain K(K — 1)L? triplets. To reduce the impact of rotational
changes in the images, we also included randomly rotated
positive images in the training sets. For the current work we
trained our model using the seven clusters obtained in our pre-
vious work® (i.e. K = 7) and selected 10 samples per cluster
(i.e. L= 10), to form a data set of 4200 triplets in total.

IV. RESULTS

A. Validation with the BD simulated 2D electric
field-mediated system.

We first investigated the performance of modified frame-
work with the BD simulations for an electric field-mediated
300 particle colloidal self-assembly. To perform HDBSCAN
clustering without the SiNN, we used the autoencoder ap-
proach from Ref. 45 to extract features from the configura-
tion. Fig. 3a shows the centroids of each cluster along with
the pre-labels that the centroid could be classified as, and the
histograms in Fig. 3b show the pre-label distribution of the
images in each cluster. These clusters were then processed
with the SiNN to generate the new sets of clusters, whose
centroids are shown in Fig. 3c, and the corresponding pre-
label distribution histogram is shown in Fig. 3d. Comparing
the histogram distribution, we observed evident improvement
in the purity for all clusters, noticing the reduced number of
bars in Fig. 3d as compared to Fig. 3b, which indicates the
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TABLE 1. Purity distribution for each cluster obtained with the au-
toencoder features/HDBSCAN and after SiNN relabeling

SiNN
Cluster Size Hits Purity

Autoencoder
Cluster Size Hits Purity

0 537 534 99.4% 0 897 890 99.2%
1 82 28 34.1% 1 21 21 100.0%
2 168 35 20.8% 2 22 17 71.3%
3 8 25 29.4% 3 46 38 82.6%
4 166 126 75.9% 4 125 125 100.0%
5 119 40 33.6% 5 124 58 46.8%
6 220 120 54.5% 6 142 123 86.6%

Overall 1377 908 65.9% Overall 1377 1272 92.2%

elimination of misclassified images.

To quantify the purity, we first relabeled all the images as
the following. For the framework without SiNN, images with
a pre-label of 0, 1, or 2 are all relabeled as Cluster 0, to reflect
the fact that only one cluster from the unsupervised clustering
has a centroid that represents the fluid-like structure (Cluster O
in Fig. 3a). Images with a pre-label of 5, 6, and 7 are relabeled
as 1 if they are in Cluster 1, or 2 if in Cluster 2, or 5 if in
Cluster 5, as these three clusters are all for void-defect images,
etc. The same relabeling was then conducted for the SiNN-
based clusters, and with this re-processing, we then calculated
the purity for each cluster.

Table I compares the purity of all the clusters with and with-
out SiNN. With the SiNN further processing, we achieved an
overall purity (defined as the percentage of the correctly clas-
sified images over the total number of images in the entire
dataset) of 92.2%, showing a relative percentage improvement
of 40% (defined as (92.2%-65.9%)/65.9%) as compared to
that without SiNN. All clusters showed an improvement with
the SiNN, especially in Clusters 1, 2, 3, and 6, each with a
relative percentage improvement of 193%, 271%, 181% and
59%, illustrating the effectiveness of using SiNN to improve
the classification accuracy. Despite obvious improvement, we
also noticed a low purity in Cluster 5. Visual inspection of
images in this cluster reveals a mix of void-defect configura-
tions, perfect crystals and grain boundaries. To understand
this behavior, we projected the autoencoder features into a
two-dimensional space using t-SNE dimensionality reduction.
The projection, shown in SI Fig. 1, illustrates how areas near
the boundary regions between clusters overlap. These over-
lapping areas often coincide with transitions between states,
such as amorphous to polycrystalline, grain boundary to void
defective, or perfect crystal to void or grain defect, and still
presents a challenge for SiNN to distinguish.

After verifying the improvement in clustering, we then pro-
ceed to classifying new images. Same as in our previous
work,® a new incoming image is labeled with a CNN model
trained on the clusters. The output of the CNN is a set of un-
normalized scores, called logits, which are related to the like-
lihood of an image to represent a certain state. The incoming
image is labeled to the state with the highest logit value, as
defined in Eqn. 2, where S; is the state assigned to image i and
[f is the c-th logit for image i.

S; = argmax ([f) (2

The performance of the SiNN-modified CNN-framework
was evaluated with respect to two aspects. First, we investi-
gated the prediction accuracy of the SiNN against labels ob-
tained from the SiNN clustering (Fig. 4.a), to see how the
SiNN-based CNN model was trained. Second, we evaluate
the prediction accuracy of the SiNN against the ground truth
labeling of each image, i.e. the re-assigned labels (Fig. 4.b).

The confusion matrices in Fig. 4 show an excellent overall
prediction accuracy of 99.4%, using the SiNN labels, and an
overall prediction accuracy of 92.1%, using the re-assigned
True labels. Similar to what we observed in the purity analy-
sis, the model yielded high accuracy for clusters with a high
purity and lower accuracy for clusters with a lower purity,
such as Cluster 5. This phenomenon suggests the carryover
of the clustering inaccuracy to the prediction, and highlights
the necessity of having a high purity clustering in the frame-
work.

B. Validation with orthogonal electric and magnetic
fields-mediated paramagnetic colloidal self-assembly

As the approach presented in this work analyzes static im-
ages of the assembly to identify the system state, differences
in the underlying dynamics of the system would therefore not
hinder the application of the framework to a new (where the
assembly dynamics are governed by different mechanisms)
but related system (where the assembled configurations do
not differ dramatically). To deal with the new configurations
arise in the electric-magnetic combined field-mediated assem-
bly process, we adopt transfer learning to adapt our model for
this new system. Transfer learning is a machine learning tech-
nique where a model developed for a particular task is reused
as the starting point for a model on a different task. Essen-
tially, it involves taking knowledge learned from one problem
to apply to a different but related problem.’>->* Here we lever-
aged this capability of transfer learning to use the Neural Net-
works trained over the electric field-mediated system as the
starting point for the electric-magnetic field-combined exper-
imental system described in II. Both datasets were obtained
from the same experimental setup, differing only in the num-
ber of particles in the system and the field strength. Similar
to the BD-simulated images, to enable evaluation of the per-
formance, we conducted visual inspection of these datasets to
obtain pre-labels for each image. With this, we then identified
three representative configurations for each dataset (Fig. 2b
and c), showing the evolution of the system from the amor-
phous state (Cluster 0) to the defective states (Cluster 2).

Considering the limited amount of experimental images, we
split each dataset to 30%-70% for the training and validation
purpose, and applied transfer learning to facilitate the model
development. Specifically, we first used transfer learning to
train an autoencoder with the experimental images, based on
the one trained for the BD-simulated system. We then used



Siamese Neural Network Improves the Performance of a Convolutional Neural Network in Colloidal Self-Assembly State Classification 5

Pre-label: [5. 6, 7|

a) Pre-label: [0, 1, 2] Pre-label: |5, 6, 7|

Cluster § centroid Cluster | centroid Cluster 2 centroid

Pre-label: [8]

Cluster 3 centroid

Pre-label: [8] Pre-label: |5, 6, 7]

Pre-label: [3, 4. 5]

Cluster 6 centroid

Cluster 4 centroid Cluster 5 centroid

10

b) BN AE cluster 0 B AE cluster 1 BN AE cluster 2 BN AE cluster 3 BN AE cluster 4 BB AE cluster 5 B AE cluster 6
. 08 E 1t
E,
s 0.6
g o4
“ 02
ol . — o
t) Pre-label: [, 1, 2] Pre-label: |5, 7] Pre-label: [5, 7] Pre-label: [8] Pre-label: [§] Pre-label: |5, 6, T] Pre-label: [3, 4, 5]
Cluster 01 centroid Cluster 1 centroid Cluster 2 centroid Cluster 3 centroid Cluster 4 centroid Cluster 5 centroid Cluster 6 centroid
d) 1o
B SiNN cluster 0 I SiNN cluster 1 B SiNN cluster 2 B SiNN cluster 3 B SiNN cluster 4 B SiNN cluster 5 I SiNN cluster 6
E: H 3
E,
g 06
=
T os
=
02
0.0
012345678 012345678 012345678 012345678 012345678 012345678 012345678
€)
Pre-label 8

FIG. 3. Ground truth label distribution for clusters with and without SiNN relabeling. (a) Centroid images for the clusters obtained from
HDBSCAN clustering without SiNN relabeling. (b) Histogram distribution of the pre-labels of clusters obtained with HDBSCAN clustering.
(c) Centroid images for the clusters obtained with SiNN relabeling. (d) Histogram distribution of the pre-labels of clusters obtained with SINN
relabeling. (e) Typical configurations for each of the nine pre-identified clusters.

features extracted from the autoencoder to perform clustering
with HDBSCAN, and obtained six (Fig. 5a) and four (Fig.
5.b) clusters for the two datasets, respectively. With these
clusters, a SINN was then trained to further improve the purity.
Note that, as the differences in the assembly from the original
and the new systems signify, for example, particle shape and
types of defects, more images from the new system would be
needed to retrain the model with transfer learning for a satis-
factory performance.

As we obtained more clusters than the pre-identified clus-
ters in Fig. 2, to quantify the purity, we conducted relabel-
ing of all the images, same as for the BD-simulated system.
Specifically, inspection at the centroid of each cluster in ex-
perimental dataset 1 suggests Cluster 0,1,2,4, and 5 could ef-
fectively be treated as one cluster. Therefore, we relabeled
images with a pre-label of 0 to Cluster 3, and images with
a pre-label of 1 or 2 to 0 or 1 or 2, or 4 or 5, depends on
which of the five clusters they locate. For the experimental
data set 2, we relabeled images with a pre-label of 0 to Clus-
ter 3, images with a pre-label of 1 to Cluster 2, and images
with a pre-label of 2 to either O or 1 depending on which clus-
ter they locate. The purity statistics in Table II demonstrated a
marginal improvement with the SiNN over that without SiNN,
as the purity with HDBSCAN clustering is already approach-

ing 100% for all clusters. This high accuracy for the HDB-
SCAN clusters may be due to the simpler dynamics observed
in the samples collected here, as compared to that from the
BD-simulated system.

To develop the CNN model for new image classification,
we again used transfer learning where we only modified
the output layer of the CNN model developed for the BD-
simulated system, as the number of clusters for each data set
differs. The CNN was then retrained by reducing the cross-
entropy loss between the SiNN labels and the logits predicted
from the CNN model, with the training experimental dataset.
The confusion matrices in Fig. 5 show an excellent prediction
accuracy on the two experimental data sets, with 100% for
experimental data set 1 and 99.4% for experimental data set
2. Admittedly, the relatively simple configurations in the data
sets would have contributed to this near-perfect accuracy, such
a high prediction accuracy still demonstrates the reliability of
the framework presented here.

V. CONCLUSION AND DISCUSSION

In this study, we demonstrated the efficacy of a modi-
fied image-based state classification method for colloidal self-
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FIG. 4. Classification of validation data set using the CNN model.
a) Confusion matrix showing how the labels assigned by the CNN
(predicted labels) compared with the labels assigned by the SiNN
(actual labels). b) Confusion matrix showing how the labels assigned
by the CNN correlate with the labels from the ground truth labeling
(true labels).

TABLE II. Purity distribution for each cluster obtained with and
without SiNN relabeling.

Experimental Data Set 1

Autoencoder SiNN
Cluster Size Hits Purity Cluster Size Hits Purity
0 75 75 100.00% 0 311 311 100.00%
1 92 86 93.48% 1 1108 1108 100.00%
2 60 60 100.00% 2 127 127 100.00%
3 62 62 100.00% 3 94 94 100.00%
4 1668 1642 98.44% 4 173 173 100.00%
5 90 90 100.00% 5 248 248 100.00%

Overall 2061 2029 98.45% Overall 2061 2061 100.00%

Experimental Data Set 2

Autoencoder SiNN
Cluster Size Hits Purity Cluster Size Hits
0 207 207 100.00% 0 417 417 100.00%

1 990 990 100.00% 1 945 945 100.00%
2 343 332 96.79% 2 172 171 99.42%
3 63 63 100.00% 3 69 69 100.00%
Overall 1603 1592 99.31% Overall 1603 1602 99.94%

Purity

assembly systems. Specifically, the framework consists of un-
supervised clustering with HDBSCAN for initial clustering,
using the image pixels as the input, and a Siamese Neural
Network to further improve the purity of each cluster. A con-
volutional neural network is then trained with the processed
clusters to perform new image/state classification. Implemen-
tation of this approach on the Brownian dynamics simulated
electric field-mediated system and the experimental datasets
from a magnetic field-mediated assembly system, reveal that
the SiNN can capture subtle differences missed by the HDB-
SCAN, thus improving the accuracy of the state classifica-
tion. Modifying the framework developed for the Brownian
dynamics simulation with transfer learning for applications
on the experimental datasets, demonstrated the applicability
of the approach to similar yet different systems, as well as its

adaptability with amiable efforts.

Despite the improved performance, we still noticed persis-
tent misclassifications with the SiNN, indicating the need for
a better set of features. While we anticipate including more
images to retrain the models could lead to better accuracy, in-
specting the logits from the CNN model suggested that using
multiple logits instead of the biggest logit value might be an
alternative for better classification. Fig. 6 shows two misclas-
sified configurations and the associated logit distribution from
the SiNN for the BD-simulated system, i.e. results presented
in Fig. 3c and d. Both configurations in Fig. 6 should be
predicted as Cluster 6 (polycrystalline) in Fig. 3c, which has
the second highest logit value in the distribution (circled in
red). However, the use of the biggest logit value (circled in
green) has misclassified them into an amorphous state (Clus-
ter 0) and a double void defect state (Cluster 5), respectively.
These observations suggest that single logit value might not be
sufficient to make an accurate classification whereas including
more logit values might provide a more informed classifica-
tion.

Redundant clusters are another issue persistently observed
in the current and previous CNN-based framework.*> While
it is possible to reduce the number of redundant clusters by
manipulating the hyperparameters of the HDBSCAN, it could
also jeopardize the classification accuracy at the same time.
Inspecting the centroid image of each cluster and manually
merge clusters with similar centroids provides an alternative,
however challenge arises when inspector-to-inspector bias is
nonnegligible, and the total number of clusters is huge that
visual inspection becomes time-consuming.

While we expect variations over the particle properties,
such as particle shape and polydispersity etc., as well as in-
creased complexity in the system dynamics, such as the com-
bined use of multiple fields, to not limit the applicability of our
approach, as it analyzes images to perform state classification.
Theoretically, as long as the training set for the machine learn-
ing models (especially for the training of the Siamese Neural
Network) includes a sufficiently large amount of images that
cover the most important and commonly encountered configu-
rations in the system, the performance of the approach should
be preserved. However, increased complexity in the system
dynamics and variations in particle properties could poten-
tially lead to more complicated configurations, which would
require more training images and efforts to ensure the accu-
racy of the state classification. Furthermore, training machine
learning models over a large set of images could also pose a
computational challenge in terms of computing speed, stor-
age, and cost. Transfer learning could be a potential solution,
as demonstrated in this work. However, further validation is
needed with more complex systems, and efforts towards im-
proving the computation efficiency would also tremendously
benefit the application of the approach to advanced systems.
We also note that in the simulated electric field-mediated as-
sembly system, we observed issues with handling the similar
type of configurations but with different rotations. For ex-
ample, the framework failed to correctly classify some of the
same configuration but rotated to dramatically different angles
(therefore, the none-perfect purities in the clusters). While we
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FIG. 5. Classification of validation data set using the CNN model, for both experimental data sets 1 and 2, demonstrating a high prediction
accuracy. The configuration images show the centroid configurations of each of the identified cluster.
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FIG. 6. Logit value distribution of two misclassified configurations

from the BD-simulated colloidal self-assembly system, suggesting a

potentially better feature than the single biggest logit for the classifi-

cation.

expect a targeted training of the machine learning models with
the rotated images to improve the performance, to account for
all different rotations, we could again face a dramatic increase
in the number of images, thus a computational challenge. Fur-
ther investigations on how to handle such rotational variations
would be important to improve the performance of the pro-
posed approach. Lastly, as our approach relies on images for
the classification, the quality of images could significantly af-
fect the performance. While we expect images with decent
quality to be attainable with current microscopy technology,
we do anticipate images with compromised quality from a
real system. For these scenarios, we would expect image pro-
cessing to benefit the performance. For example, uneven il-
lumination could be handled with histogram equalization and

homomorphic filtering,>>-¢ and the optical aberrations could

be addressed with wavelet transforms and deconvolution.>’-8
Furthermore, machine learning techniques have also shown
success with improving image quality, such as the use of a
denoising autoencoder for noise filtration.>® Given the modu-
larity of our framework, addition of an image processing step
can be conveniently achieved, however, validation with real
process images would further benefit the development of the
proposed approach with enhanced confidence.

Using unsupervised learning to perform many-body self-
assembly state classification is in its infancy, and faces many
challenges including methods of validation, feature selection,
and accuracy improvement. However, we anticipate the po-
tential benefits of having data-driven order parameter-free
state classification approaches, such as automation of the state
classification, transferability to different systems etc., to at-
tract future efforts in this direction.

VI. SUPPLEMENTARY MATERIAL

In the Supplementary Material, we provide a two-
dimensional t-SNE projection of the image features used for
the clustering, demonstrating the overlapping phenomenon at
the boundary of different states, which could have constructed
a challenge in the classification.
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