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Tracking technologies: advances driving new insights 
into monarch migration 
Delbert A Green II   

Understanding the rules of how monarch butterflies complete 
their annual North American migration will be clarified by 
studying them within a movement ecology framework. Insect 
movement ecology is growing at a rapid pace due to the 
development of novel monitoring systems that allow ever-smaller 
animals to be tracked at higher spatiotemporal resolution for 
longer periods of time. New innovations in tracking hardware and 
associated software, including miniaturization, energy autonomy, 
data management, and wireless communication, are reducing 
the size and increasing the capability of next-generation tracking 
technologies, bringing the goal of tracking monarchs over their 
entire migration closer within reach. These tools are beginning to 
be leveraged to provide insight into different aspects of monarch 
biology and ecology, and to contribute to a growing capacity to 
understand insect movement ecology more broadly and its 
impact on human life. 
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Introduction 
Many questions remain open about how monarch but
terflies make their annual North American migration, 
such as how they navigate to precise locations, what 
specific conditions trigger migratory phenotypes, or how 
they utilize certain landscape features along their trip. 
Bottom-up approaches have been used to identify 
monarchs’ general orienting strategy, the cues relevant 
for orientation, and the neurological basis of orienting 
(reviewed in [1]). Studying monarchs in their natural 
settings gives us critical insights into the environmental, 
climatic, and landscape variables that control migration 

dynamics and strategy. The goal of this brief review is to 
present an overview of the methods that have been used 
for investigating monarch movements, as well as to in
troduce new developments that promise to give us un
precedented access to different aspects of this iconic 
journey. 

Bottom-up approaches to understanding 
monarch migration 
Classical techniques for studying monarch migratory 
behavior, including disappearance bearing [2], flight 
mills (e.g. [3,4]), and the Mouritsen-Frost (MF) flight 
simulator [5], are being updated to uncover additional 
insights into migration and orientation mechanisms. 
Successful demonstration of a noninvasive tethering 
technique [6] and indoor operation [7] expands the uti
lity of the MF simulator, enabling longitudinal beha
vioral assessment and year-round testing. New 
approaches are augmenting the study of monarchs in 
controlled environments. Tracking monarchs in large 
arenas or pressure chambers [8–10] or in virtual reality 
environments [11] will facilitate new research on mon
arch flight kinematics and potentially uncover additional 
unique migratory behavioral traits. As well, these 
methods will prove useful for evaluating novel tracking 
technologies as they are increasingly applied to mon
archs. Neuroanatomical mapping of the monarch brain  
[12,13] has opened the door to electrophysiological re
cording from behaving monarchs in light-emitting diode 
(LED) arenas [14,15]. Methods to conduct wireless 
neural activity recordings in freely behaving insects are 
being developed [16–18]. Pairing these methods with 
new ways to dissect molecular and genetic function in 
monarchs [19] will reveal the neural, genetic, and en
vironmental basis of migration and navigation. 

Monitoring monarchs on local/regional 
landscapes 
While miniaturization of radio-based tracking devices has 
enabled their widespread use on different insect species 
for over thirty years (reviewed in [20]), they have only 
been applied to monarchs relatively recently (in 2012 by 
Martin Wikelski and Chip Taylor, National Geographic 
Resource Library). Very high frequency radio telemetry 
(RT) has proven promising for understanding monarch 
movements on local landscape scales. RT transmitters/ 
transponders use active radio transmission, forcing trade- 
offs between weight, power, and signal range (batteries 
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required to power units and increase signal range lead to 
increased tag weight). They tend to have moderate signal 
range (< 1 km), requiring tagged individuals to be fol
lowed with receiver antennae carried by hand, mounted 
on small planes (e.g. [21]), or even carried on unmanned 
aerial vehicles [22–24]. RT tags have been used to track 
monarch breeding season resource use [25], estimate local 
flight paths [26], and estimate host plant and nectar re
source perceptual range [27]. Fisher and Bradbury [28] 
implemented an automated radio telemetry system 
(ARTS), an array of stationary, directional antennas, to 
localize individual monarchs carrying LB-2X transmitters 
at relatively high temporal resolution (per min). 

New approaches are being developed that will expand 
our ability to study monarchs on local or regional land
scape scales (Figure 1). Proximity loggers/encounter 
detection (e.g. Encounternet [32] or Broadly Applicable 
Tracking System or BATS [30]) presents exciting op
portunities for studying social networks and even phy
siological state, which may further research on monarch 
mate preference [29] or open new research on the role of 
sociality in monarch migration, which is relatively little 
explored. Proximity tags or ’mobile nodes’ have very 
recently been sufficiently miniaturized for use on in
sects, including monarchs (BluMorpho tag, Cellular 
Tracking Technologies). As RT tags become smaller, 
reverse global positioning system (GPS) methods (e.g. 
Advanced Tracking and Localisation of Animals in real- 
life Systems or ATLAS [31]) show promise for tracking 
multiple individuals at high temporal resolution (∼sec−1) 
on regional (10–100 s km2) scales for long periods of time 
(many months). Regional-scale tracking can be com
bined with agent-based models to determine monarch 

movement algorithms (as in [33]). These methods will 
allow us to understand how local location-based deci
sions are made (e.g. navigating between milkweed pat
ches in spring and summer or choosing specific roosting 
sites during fall migration) or how interindividual inter
actions may shape monarch ecology. 

Automated monitoring systems (AMSs) are increasingly 
being used to study real-time dynamics of local ecological 
communities (reviewed in [34]). A major benefit of AMSs 
is that they do not require individual tagging, which not 
only eliminates the miniaturization problem, but also 
substantially increases the number of individuals that can 
be analyzed at a reduced cost. AMSs use images, radar, 
lidar, or acoustic signals to detect individual insects and 
infer certain characteristics about them such as size, be
havior, and so on [35,36]. Computer vision approaches are 
especially attractive, as they have the potential to gather 
information on species’ identities, abundance, behaviors, 
and interactions [37]. The identification problem for these 
methods, which often requires labor-intensive manual 
annotation, is still quite challenging, limiting their re
solution. Algorithms enabling active learning or even fully 
automated video-object segmentation and tracking in 
natural settings are currently being developed (reviewed 
in [38]). AMSs are necessarily spatially restricted, how
ever, and thus are most useful for monitoring specific 
locations of predetermined interest. 

Altogether, these methods will provide increasingly ac
curate estimates of monarch movement ecology and 
habitat use, such as perceptual range, step length, and 
local directionality. These measurements are required to 

Figure 1  
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Different tracking technologies and their potential use in understanding monarch behavior and migration across local (left), regional (middle), or 
continental (right) scales.   
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inform agent-based population simulation models that 
will prove invaluable for conservation practice [39]. 

Monitoring monarchs at continental scale 
Tracking migration paths of individual monarch butterflies 
has been of interest to monarch biologists for over half a 
century [40]. Citizen scientist-aided sticker tagging efforts 
have led to important, sometimes surprising [41], insights 
into monarch paths (e.g. [42]) and dynamics. Taylor et al.  
[43] combined over a decade of monarch tagging data with 
environmental data to predict determinants of migratory 
flight dynamics. Chemical identification methods have also 
provided invaluable information on monarch biology and 
migration patterns. Cardenolide fingerprinting uses thin- 
layer chromatography to profile milkweed-derived carde
nolides that are stored in adult bodies. These profiles can 
be used to determine natal origins of monarchs (e.g. [44]), 
or, because different milkweed species show different 
phenologies across their range, to infer monarch movement 
patterns across their life cycle (e.g. [45–47]). Correlations 
between stable isotope (δD and δ13C) ratios in milkweed 
and adult wings reveal the natal origin of monarchs [48]. 
This method has been used to demonstrate broad panmixia 
across the Mexican overwintering sites [49] and to track 
multigenerational recolonization patterns [50]. The utility 
of chemical methods is being extended to understand 
monarch movement ecology, such as using isotopic tracing 
to study nectaring patterns during migration [51] or com
bining fingerprinting and stable isotope analysis with 
genomic sequencing to infer possible alternative migration 
routes [52]. While these tools provide unique ad
vantages — these signatures are permanent, which enables 
analysis of historical samples, and they allow for direct as
sessment of ecological parameters, for example, feeding 
behavior — they lack spatial and temporal resolution to 
understand finer-scale continental movements. Methods 
are being developed to address this gap, such as next- 
generation radar, which aims to detect group-level monarch 
abundance, orientation, and velocity [53], but at the cost of 
individual-level information. 

The two primary challenges for automated insect 
tracking — tag miniaturization and accurate, efficient 
global-scale positioning — present trade-offs that make a 
comprehensive solution difficult to achieve (Figure 2). 
High-resolution, precise positioning requires collecting and 
transmitting large amounts of data. Data storage, processing, 
and transmission require physical space and power, which 
necessarily make tags larger. The smallest insect tags are 
passive radio transponders, such as harmonic radar or radio 
frequency ID (RFID) tags, which can reach as low as 5 mg 
in weight (∼1% the size of a typical 0.5-g migratory mon
arch). These tags do not have data storage capacity, how
ever, and must be in close proximity (∼1 m for RFID and 
∼0.5 km for harmonic radar) of a local receiver in order to 
determine location. Given that monarchs have a nearly 

continental-scale distribution, determining location via 
these methods would require an impractical receiver net
work. GPS, on the other hand, the most precise onboard 
localization method, provides automatic position triangula
tion via satellite-based data storage and wireless commu
nication (e.g. International Cooperation for Animal 
Research Using Space or ICARUS, https://www.icar
us.mpg.de/en). GPS has unacceptably high-power demand, 
however, making units too big to be implemented on in
sects: the smallest commercially available GPS-based units 
are still 1–5 g (200–1000% monarch bodyweight). Ulti
mately, viable solutions for monarch migration trackers will 
achieve small size through 1) efficient power consumption 
and management and 2) efficient data collection, storage, 
and processing (Table 1). Energy savings that allow min
iaturization have been achieved through novel circuit de
sign, such as low-power digital CMOS design in [54]. 
Monarch trackers will also require sufficient energy har
vesting since an individual monarch’s migration will occur 
over several weeks. This has been achieved using solar 
energy harvesting (e.g. [55]), however, alternative sources 
may also be explored, such as piezoelectric transducers to 
generate energy from insect flight [56]. 

Geolocators, which use environmental conditions to es
timate geographical locations, are useful positioning 
systems because the associated data collection is rela
tively low power since it does not require active data 
transmission or wireless communication (unlike GPS). 
As such, geolocators have been used for global-scale 
positioning for over three decades and have become 
increasingly common as they become smaller (reviewed 
in [57]). Light-level geolocators, the most commonly 

Figure 2  
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Qualitative evaluation of methods to track individual monarch butterflies 
at continental scale (based on four indicated axes: spatial scale, spatial 
resolution, size, and temporal resolution). Distance along axes are 
approximations by the author. The optimal tracker would occupy the 
area (triangle) within the black border (i.e. maximal temporal resolution, 
spatial resolution, and spatial scale, and minimized size).   
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used type, suffer challenges with accurate localizing at 
equinoxes, when day length is the same across the globe. 
As well, light-level data tend to be noisy due to weather, 
habitat, and behavior. New computational calibration 
methods are being developed to aid data analysis [58], 
including deep learning-based methods (e.g. [59,84]). 
Multimodal geolocators overcome the limitations of light 
data by combining different environmental sensing 
capabilities, for example, merging light intensity with 
sea surface temperature [60], air pressure [61], accel
eration [62], or air temperature [59,84], to localize signals 
more accurately. Newer solutions such as Pressure, Ac
celerometer, Magnetometer (PAM) sensors simulta
neously measure barometric pressure, acceleration, and 
local magnetic fields (reviewed in [58]). Despite their 
demonstrated promise in vertebrate systems, PAM log
gers are still too large to be implemented on insects. 
Geolocator data still must be transmitted back to the 
researcher, however, requiring power-intensive wireless 
communication or tag recapture. Increasing complexity 
and volume of multidimensional datasets necessitates 
new solutions for efficient data acquisition, storage, and 
processing to keep units sufficiently small (reviewed in  
[63]). Internet of Things approaches are being im
plemented to overcome data-imposed challenges such as 
restricted battery life, memory space, and remote 
download capacity [64]. 

Despite these challenges, monarch-automated tracking 
efforts are now underway. Knight et al. [65] made an 
important advance by leveraging the Motus Wildlife 
Tracking System [66] to passively track monarchs tagged 
with the Lotek NTQB-1 VHF RT tags for up to hun
dreds of kilometers. Motus has been used to attempt to 
clarify the migratory capacity of captive-reared monarchs  
[67,68]. Although a viable solution for investigating 
local-scale dynamics, Motus transmitters are still likely 
prohibitively large (∼200 mg, 40% monarch bodyweight) 

for efficiently studying the full migratory path. Although 
the transmitter signal range can be relatively large 
(15 km), a prohibitively expansive receiver station net
work would be required to encompass monarchs’ entire 
migratory range. Lee et al. [55] combine innovations in 
energy autonomy, power management, data manage
ment, and wireless communication to develop a 62-mg 
(12% monarch bodyweight) RT multimodal geolocator 
called ‘mSAIL’. mSAIL records and stores light and air 
temperature onboard, and data are downloaded from 
tagged individuals via a custom gateway at the over
wintering sites. mSAIL has been tested on individual 
monarchs at known locations for a short period of time, 
but not yet across the entire migration. These technol
ogies make important steps forward yet leave room for 
improvement by continued efforts to miniaturize tags 
and increase localization precision. 

Toward a more complete understanding of 
monarch migration and the impact of insect 
movements 
Given the rapid pace of tracking technology advance
ment, we are moving closer to ever more detailed ac
counts of monarchs’ daily lives, as well as to the first 
tracks of individuals across their entire migration. This 
new data will not only be of tremendous scientific value, 
helping to uncover the rules of animal navigation and 
collective migration, but also of special conservation in
terest, revealing new rules for how monarchs use dif
ferent landscapes for their migration. Moreover, tracking 
methods can contribute to our understanding of how and 
why monarchs choose specific overwintering sites, and 
the environmental factors that impact site choice, which 
could be of critical importance to local communities with 
cultural and economic ties to these butterflies. 

A next major challenge will be to integrate these data with 
synergistic datasets, such as physiological recording (e.g.  

Table 1 

Comparison of sub-gram-scale tracking devices and systems.         

Tracking system/transmitter Coverage Size (g) Tracking lifetime (d) Spatial resolution (km) Proximity logging References  

mSAIL Global 0.062 ⌃60+ 20–100 No 54, 58, 68 
Lotek NanoPin (Motus) ∼ 

Global (land) 
0.13 7–29 *RD (∼10 s) No 64 

Automated Telemetry Systems T15 Regional/local 0.15 7 *RD No - 
Holohil LB-2X (ARTS) Regional/local 0.27 12 *RD (0.01) No 25, 28 
ATLAS Regional/local 1 10 0.005 No 31 
BATS Regional/local 1 8 0.004 Yes 30 
Encounternet Local 0.8 ∼1 RD*(0.002) Yes 29 

Specific transmitters are indicated in standard font and tracking systems (combination of transmitter and associated receiver network) are in
dicated in italics. Only the smallest reported sizes of the specific devices/systems are given. Many of these devices are available in multiple sizes 
and therefore have alternate specifications (e.g. increased tracking lifetime or increased receiver range). I note that one additional transmitter was 
released during press of this article (Cellular Tracking Technologies BluMorpho tag) that is not included in this table. ⌃Unpublished data from 
author and colleagues indicate continuous mSAIL operation for two months. *RD = receiver-dependent. These transmitters rely on a distributed 
network of receiver stations for localizing individuals rather than automatically triangulating position. Therefore, spatial resolution of locations is 
determined by the density of receiver stations and the signal reception range. A multitude of factors impact signal reception range, including 
antenna type and orientation, geography, electromagnetic disturbance, and so on.  
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[70], reviewed in [71]) or more detailed descriptions of 
behavior. For example, PAM sensors augment the re
pertoire of behaviors that can be studied, from migratory 
flight patterns [72] and group dynamics [61], to breeding 
behavior [73], or social activities [74]. We should also 
combine tracking developments with a uniquely rich re
source available to monarch biologists: the deeply en
thusiastic and committed community of students, learners, 
and citizen scientists who are fascinated with this butterfly. 
Citizen scientists can provide a valuable source of images, 
videos, samples (e.g. [75]), and even testing ([59], proposed 
by Parlin et al. [6]) across the monarch’s migratory range. 
Additional efforts should be made to make data — and 
insights derived from those data — more publicly acces
sible and interpretable. The ICARUS Movebank project 
(www.movebank.org), which facilitates easy and quick use 
of ICARUS tracking data by wildlife managers, is a primary 
example. Interdisciplinary and multiperspective collabora
tions will be paramount for achieving this comprehensive 
understanding of monarch migration. 

To be sure, insect tracking technologies are being applied 
far beyond the study of monarch migration. Automated 
monitoring of pollinator communities will lead to increas
ingly specific models of pollination interactions [76] and 
assessments of threats to pollinator population health (e.g. 
neonicotinoid impacts on bumblebee nest behaviors [77]). 
Mosquito behaviors are subject to highly innovative local-  
[78] and landscape-scale [36] tracking analyses to better 
monitor and control pathogen spread. Integrating collective 
and individual behaviors into models of insect gene drive 
spread will be important for evaluating their potential 
ecological impacts and long-term effectiveness as disease 
and pest controls [79]. Miniaturized geolocators (e.g. milli
meter-scale Small Animal Integrated Logger or mSAIL), 
which have the dual ability to measure location as well as 
microclimate condition experienced by individuals, may 
enable more precise forecasting of insect distributions and 
dispersal dynamics under changing climate scenarios or 
anthropogenic pressures [80]. Indeed, because insect 
movements have profound impacts on some of the most 
pressing global challenges, such as sustainable food pro
duction systems [81], human vector-borne disease spread  
[82,83], and the biodiversity crisis [84], attention to and 
investment in this field will continue to grow [78,80]. 
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