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Understanding the rules of how monarch butterflies complete
their annual North American migration will be clarified by
studying them within a movement ecology framework. Insect
movement ecology is growing at a rapid pace due to the
development of novel monitoring systems that allow ever-smaller
animals to be tracked at higher spatiotemporal resolution for
longer periods of time. New innovations in tracking hardware and
associated software, including miniaturization, energy autonomy,
data management, and wireless communication, are reducing
the size and increasing the capability of next-generation tracking
technologies, bringing the goal of tracking monarchs over their
entire migration closer within reach. These tools are beginning to
be leveraged to provide insight into different aspects of monarch
biology and ecology, and to contribute to a growing capacity to
understand insect movement ecology more broadly and its
impact on human life.
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Introduction

Many questions remain open about how monarch but-
terflies make their annual North American migration,
such as how they navigate to precise locations, what
specific conditions trigger migratory phenotypes, or how
they utilize certain landscape features along their trip.
Bottom-up approaches have been used to identify
monarchs’ general orienting strategy, the cues relevant
for orientation, and the neurological basis of orienting
(reviewed in [1]). Studying monarchs in their natural
settings gives us critical insights into the environmental,
climatic, and landscape variables that control migration
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dynamics and strategy. The goal of this brief review is to
present an overview of the methods that have been used
for investigating monarch movements, as well as to in-
troduce new developments that promise to give us un-
precedented access to different aspects of this iconic
journey.

Bottom-up approaches to understanding
monarch migration

Classical techniques for studying monarch migratory
behavior, including disappearance bearing [2], flight
mills (e.g. [3,4]), and the Mouritsen-Frost (MF) flight
simulator [5], are being updated to uncover additional
insights into migration and orientation mechanisms.
Successful demonstration of a noninvasive tethering
technique [6] and indoor operation [7] expands the uti-
lity of the MF simulator, enabling longitudinal beha-
vioral assessment and year-round testing. New
approaches are augmenting the study of monarchs in
controlled environments. Tracking monarchs in large
arenas or pressure chambers [8-10] or in virtual reality
environments [11] will facilitate new research on mon-
arch flight kinematics and potentially uncover additional
unique migratory behavioral traits. As well, these
methods will prove useful for evaluating novel tracking
technologies as they are increasingly applied to mon-
archs. Neuroanatomical mapping of the monarch brain
[12,13] has opened the door to electrophysiological re-
cording from behaving monarchs in light-emitting diode
(LED) arenas [14,15]. Methods to conduct wireless
neural activity recordings in freely behaving insects are
being developed [16-18]. Pairing these methods with
new ways to dissect molecular and genetic function in
monarchs [19] will reveal the neural, genetic, and en-
vironmental basis of migration and navigation.

Monitoring monarchs on local/regional
landscapes

While miniaturization of radio-based tracking devices has
enabled their widespread use on different insect species
for over thirty years (reviewed in [20]), they have only
been applied to monarchs relatively recently (in 2012 by
Martin Wikelski and Chip Taylor, National Geographic
Resource Library). Very high frequency radio telemetry
(RT) has proven promising for understanding monarch
movements on local landscape scales. RT transmitters/
transponders use active radio transmission, forcing trade-
offs between weight, power, and signal range (batteries
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Different tracking technologies and their potential use in understanding monarch behavior and migration across local (left), regional (middle), or

continental (right) scales.

required to power units and increase signal range lead to
increased tag weight). They tend to have moderate signal
range (<1 km), requiring tagged individuals to be fol-
lowed with receiver antennae carried by hand, mounted
on small planes (e.g. [21]), or even carried on unmanned
aerial vehicles [22-24]. RT tags have been used to track
monarch breeding season resource use [25], estimate local
flight paths [26], and estimate host plant and nectar re-
source perceptual range [27]. Fisher and Bradbury [28]
implemented an automated radio telemetry system
(ARTS), an array of stationary, directional antennas, to
localize individual monarchs carrying [LB-2X transmitters
at relatively high temporal resolution (per min).

New approaches are being developed that will expand
our ability to study monarchs on local or regional land-
scape scales (Figure 1). Proximity loggers/encounter
detection (e.g. Encounternet [32] or Broadly Applicable
Tracking System or BATS [30]) presents exciting op-
portunities for studying social networks and even phy-
siological state, which may further research on monarch
mate preference [29] or open new research on the role of
sociality in monarch migration, which is relatively little
explored. Proximity tags or 'mobile nodes’ have very
recently been sufficiently miniaturized for use on in-
sects, including monarchs (BluMorpho tag, Cellular
Tracking Technologies). As RT tags become smaller,
reverse global positioning system (GPS) methods (e.g.
Advanced Tracking and Localisation of Animals in real-
life Systems or ATLAS [31]) show promise for tracking
multiple individuals at high temporal resolution (~sec™")
on regional (10100 s km?) scales for long periods of time
(many months). Regional-scale tracking can be com-
bined with agent-based models to determine monarch

movement algorithms (as in [33]). These methods will
allow us to understand how local location-based deci-
sions are made (e.g. navigating between milkweed pat-
ches in spring and summer or choosing specific roosting
sites during fall migration) or how interindividual inter-
actions may shape monarch ecology.

Automated monitoring systems (AMSs) are increasingly
being used to study real-time dynamics of local ecological
communities (reviewed in [34]). A major benefit of AMSs
is that they do not require individual tagging, which not
only eliminates the miniaturization problem, but also
substantially increases the number of individuals that can
be analyzed at a reduced cost. AMSs use images, radar,
lidar, or acoustic signals to detect individual insects and
infer certain characteristics about them such as size, be-
havior, and so on [35,36]. Computer vision approaches are
especially attractive, as they have the potential to gather
information on species’ identities, abundance, behaviors,
and interactions [37]. The identification problem for these
methods, which often requires labor-intensive manual
annotation, is still quite challenging, limiting their re-
solution. Algorithms enabling active learning or even fully
automated video-object segmentation and tracking in
natural settings are currently being developed (reviewed
in [38]). AMSs are necessarily spatially restricted, how-
ever, and thus are most useful for monitoring specific
locations of predetermined interest.

Altogether, these methods will provide increasingly ac-
curate estimates of monarch movement ecology and
habitat use, such as perceptual range, step length, and
local directionality. These measurements are required to
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inform agent-based population simulation models that
will prove invaluable for conservation practice [39].

Monitoring monarchs at continental scale
"T'racking migration paths of individual monarch butterflies
has been of interest to monarch biologists for over half a
century [40]. Citizen scientist-aided sticker tagging efforts
have led to important, sometimes surprising [41], insights
into monarch paths (e.g. [42]) and dynamics. Taylor et al.
[43] combined over a decade of monarch tagging data with
environmental data to predict determinants of migratory
flight dynamics. Chemical identification methods have also
provided invaluable information on monarch biology and
migration patterns. Cardenolide fingerprinting uses thin-
layer chromatography to profile milkweed-derived carde-
nolides that are stored in adult bodies. These profiles can
be used to determine natal origins of monarchs (e.g. [44]),
or, because different milkweed species show different
phenologies across their range, to infer monarch movement
patterns across their life cycle (e.g. [45-47]). Correlations
between stable isotope (8D and 8'3Q) ratios in milkweed
and adult wings reveal the natal origin of monarchs [48].
"This method has been used to demonstrate broad panmixia
across the Mexican overwintering sites [49] and to track
multigenerational recolonization patterns [50]. The utility
of chemical methods is being extended to understand
monarch movement ecology, such as using isotopic tracing
to study nectaring patterns during migration [51] or com-
bining fingerprinting and stable isotope analysis with
genomic sequencing to infer possible alternative migration
routes [52]. While these tools provide unique ad-
vantages — these signatures are permanent, which enables
analysis of historical samples, and they allow for direct as-
sessment of ecological parameters, for example, feeding
behavior — they lack spatial and temporal resolution to
understand finer-scale continental movements. Methods
are being developed to address this gap, such as next-
generation radar, which aims to detect group-level monarch
abundance, orientation, and velocity [53], but at the cost of
individual-level information.

The two primary challenges for automated insect
tracking — tag miniaturization and accurate, efficient
global-scale positioning — present trade-offs that make a
comprehensive solution difficult to achieve (Figure 2).
High-resolution, precise positioning requires collecting and
transmitting large amounts of data. Data storage, processing,
and transmission require physical space and power, which
necessarily make tags larger. The smallest insect tags are
passive radio transponders, such as harmonic radar or radio
frequency ID (RFID) tags, which can reach as low as 5 mg
in weight (~1% the size of a typical 0.5-g migratory mon-
arch). These tags do not have data storage capacity, how-
ever, and must be in close proximity (~1 m for RFID and
~0.5 km for harmonic radar) of a local receiver in order to
determine location. Given that monarchs have a nearly
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Qualitative evaluation of methods to track individual monarch butterflies
at continental scale (based on four indicated axes: spatial scale, spatial
resolution, size, and temporal resolution). Distance along axes are
approximations by the author. The optimal tracker would occupy the
area (triangle) within the black border (i.e. maximal temporal resolution,
spatial resolution, and spatial scale, and minimized size).

continental-scale distribution, determining location via
these methods would require an impractical receiver net-
work. GPS, on the other hand, the most precise onboard
localization method, provides automatic position triangula-
tion via satellite-based data storage and wireless commu-
nication (e.g. International Cooperation for Animal
Research Using Space or ICARUS, https://www.icar-
us.mpg.de/en). GPS has unacceptably high-power demand,
however, making units too big to be implemented on in-
sects: the smallest commercially available GPS-based units
are still 1-5g (200-1000% monarch bodyweight). Ult-
mately, viable solutions for monarch migration trackers will
achieve small size through 1) efficient power consumption
and management and 2) efficient data collection, storage,
and processing (Table 1). Energy savings that allow min-
iaturization have been achieved through novel circuit de-
sign, such as low-power digital CMOS design in [54].
Monarch trackers will also require sufficient energy har-
vesting since an individual monarch’s migration will occur
over several weeks. This has been achieved using solar
energy harvesting (e.g. [55]), however, alternative sources
may also be explored, such as piezoelectric transducers to
generate energy from insect flight [56].

Geolocators, which use environmental conditions to es-
timate geographical locations, are useful positioning
systems because the associated data collection is rela-
tively low power since it does not require active data
transmission or wireless communication (unlike GPS).
As such, geolocators have been used for global-scale
positioning for over three decades and have become
increasingly common as they become smaller (reviewed
in [57]). Light-level geolocators, the most commonly
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Table 1

Comparison of sub-gram-scale tracking devices and systems.

Tracking system/transmitter Coverage Size (g) Tracking lifetime (d) Spatial resolution (km) Proximity logging References
mSAIL Global 0.062 "60+ 20-100 No 54, 58, 68
Lotek NanoPin (Motus) ~ 0.13 7-29 *RD (~10's) No 64

Global (land)
Automated Telemetry Systems T15 Regional/local 0.15 7 *RD No -
Holohil LB-2X (ARTS) Regional/local  0.27 12 *RD (0.01) No 25, 28
ATLAS Regional/local 1 10 0.005 No 31
BATS Regional/local 1 8 0.004 Yes 30
Encounternet Local 0.8 ~1 RD*(0.002) Yes 29

Specific transmitters are indicated in standard font and tracking systems (combination of transmitter and associated receiver network) are in-
dicated in italics. Only the smallest reported sizes of the specific devices/systems are given. Many of these devices are available in multiple sizes
and therefore have alternate specifications (e.g. increased tracking lifetime or increased receiver range). | note that one additional transmitter was
released during press of this article (Cellular Tracking Technologies BluMorpho tag) that is not included in this table. ~Unpublished data from
author and colleagues indicate continuous mSAIL operation for two months. *RD = receiver-dependent. These transmitters rely on a distributed
network of receiver stations for localizing individuals rather than automatically triangulating position. Therefore, spatial resolution of locations is
determined by the density of receiver stations and the signal reception range. A multitude of factors impact signal reception range, including
antenna type and orientation, geography, electromagnetic disturbance, and so on.

used type, suffer challenges with accurate localizing at
equinoxes, when day length is the same across the globe.
As well, light-level data tend to be noisy due to weather,
habitat, and behavior. New computational calibration
methods are being developed to aid data analysis [58],
including deep learning-based methods (e.g. [59,84]).
Multimodal geolocators overcome the limitations of light
data by combining different environmental sensing
capabilities, for example, merging light intensity with
sea surface temperature [60], air pressure [61], accel-
eration [62], or air temperature [59,84], to localize signals
more accurately. Newer solutions such as Pressure, Ac-
celerometer, Magnetometer (PAM) sensors simulta-
neously measure barometric pressure, acceleration, and
local magnetic fields (reviewed in [58]). Despite their
demonstrated promise in vertebrate systems, PAM log-
gers are still too large to be implemented on insects.
Geolocator data still must be transmitted back to the
researcher, however, requiring power-intensive wireless
communication or tag recapture. Increasing complexity
and volume of multidimensional datasets necessitates
new solutions for efficient data acquisition, storage, and
processing to keep units sufficiently small (reviewed in
[63]). Internet of Things approaches are being im-
plemented to overcome data-imposed challenges such as
restricted battery life, memory space, and remote
download capacity [64].

Despite these challenges, monarch-automated tracking
efforts are now underway. Knight et al. [65] made an
important advance by leveraging the Motus Wildlife
T'racking System [66] to passively track monarchs tagged
with the Lotek NTQB-1 VHF RT tags for up to hun-
dreds of kilometers. Motus has been used to attempt to
clarify the migratory capacity of captive-reared monarchs
[67,68]. Although a viable solution for investigating
local-scale dynamics, Motus transmitters are still likely
prohibitively large (~200 mg, 40% monarch bodyweight)

for efficiently studying the full migratory path. Although
the transmitter signal range can be relatively large
(15 km), a prohibitively expansive receiver station net-
work would be required to encompass monarchs’ entire
migratory range. Lee et al. [55] combine innovations in
energy autonomy, power management, data manage-
ment, and wireless communication to develop a 62-mg
(12% monarch bodyweight) RT multimodal geolocator
called ‘mSAIL’. mSAIL records and stores light and air
temperature onboard, and data are downloaded from
tagged individuals via a custom gateway at the over-
wintering sites. mSAIL has been tested on individual
monarchs at known locations for a short period of time,
but not yet across the entire migration. These technol-
ogies make important steps forward yet leave room for
improvement by continued efforts to miniaturize tags
and increase localization precision.

Toward a more complete understanding of
monarch migration and the impact of insect
movements

Given the rapid pace of tracking technology advance-
ment, we are moving closer to ever more detailed ac-
counts of monarchs’ daily lives, as well as to the first
tracks of individuals across their entire migration. This
new data will not only be of tremendous scientific value,
helping to uncover the rules of animal navigation and
collective migration, but also of special conservation in-
terest, revealing new rules for how monarchs use dif-
ferent landscapes for their migration. Moreover, tracking
methods can contribute to our understanding of how and
why monarchs choose specific overwintering sites, and
the environmental factors that impact site choice, which
could be of critical importance to local communities with
cultural and economic ties to these butterflies.

A next major challenge will be to integrate these data with
synergistic datasets, such as physiological recording (e.g.
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[70], reviewed in [71]) or more detailed descriptions of
behavior. For example, PAM sensors augment the re-
pertoire of behaviors that can be studied, from migratory
flight patterns [72] and group dynamics [61], to breeding
behavior [73], or social activities [74]. We should also
combine tracking developments with a uniquely rich re-
source available to monarch biologists: the deeply en-
thusiastic and committed community of students, learners,
and citizen scientists who are fascinated with this butterfly.
Citizen scientists can provide a valuable source of images,
videos, samples (e.g. [75]), and even testing ([59], proposed
by Parlin et al. [6]) across the monarch’s migratory range.
Additional efforts should be made to make data — and
insights derived from those data — more publicly acces-
sible and interpretable. The ICARUS Movebank project
(www.movebank.org), which facilitates easy and quick use
of ICARUS tracking data by wildlife managers, is a primary
example. Interdisciplinary and multiperspective collabora-
tions will be paramount for achieving this comprehensive
understanding of monarch migration.

To be sure, insect tracking technologies are being applied
far beyond the study of monarch migration. Automated
monitoring of pollinator communities will lead to increas-
ingly specific models of pollination interactions [76] and
assessments of threats to pollinator population health (e.g.
neonicotinoid impacts on bumblebee nest behaviors [77]).
Mosquito behaviors are subject to highly innovative local-
[78] and landscape-scale [36] tracking analyses to better
monitor and control pathogen spread. Integrating collective
and individual behaviors into models of insect gene drive
spread will be important for evaluating their potential
ecological impacts and long-term effectiveness as disease
and pest controls [79]. Miniaturized geolocators (e.g. milli-
meter-scale Small Animal Integrated Logger or mSAIL),
which have the dual ability to measure location as well as
microclimate condition experienced by individuals, may
enable more precise forecasting of insect distributions and
dispersal dynamics under changing climate scenarios or
anthropogenic pressures [80]. Indeed, because insect
movements have profound impacts on some of the most
pressing global challenges, such as sustainable food pro-
duction systems [81], human vector-borne disease spread
[82,83], and the biodiversity crisis [84], attention to and
investment in this field will continue to grow [78,80].
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