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Abstract

Motivation: Accurate modeling of protein—protein interaction interface is essential for high-quality protein complex structure prediction. Existing
approaches for estimating the quality of a predicted protein complex structural model utilize only the physicochemical properties or energetic
contributions of the interacting atoms, ignoring evolutionarily information or inter-atomic multimeric geometries, including interaction distance
and orientations.

Results: Here, we present PIQLE, a deep graph learning method for protein—protein interface quality estimation. PIQLE leverages multimeric in-
teraction geometries and evolutionarily information along with sequence- and structure-derived features to estimate the quality of individual inter-
actions between the interfacial residues using a multi-head graph attention network and then probabilistically combines the estimated quality for
scoring the overall interface. Experimental results show that PIQLE consistently outperforms existing state-of-the-art methods including
DProQA, TRScore, GNN-DOVE and DOVE on multiple independent test datasets across a wide range of evaluation metrics. Our ablation study
and comparison with the self-assessment module of AlphaFold-Multimer repurposed for protein complex scoring reveal that the performance
gains are connected to the effectiveness of the multi-head graph attention network in leveraging multimeric interaction geometries and evolu-
tionary information along with other sequence- and structure-derived features adopted in PIQLE.

Availability and implementation: An open-source software implementation of PIQLE is freely available at https://github.com/Bhattacharya-

Lab/PIQLE.
Contact: dbhattacharya@vt.edu

Supplementary information: Supplementary data are available at Bioinformatics Advances online.

1 Introduction

Protein—protein interactions are the actuators of numerous
biological processes (Peng et al., 2017). Despite the re-
markable progress in predicting single-chain protein struc-
tures with a very high degree of accuracy (Baek et al.,
2021; Jumper et al., 2021; Wallner, 2022), modeling the
structures of protein complexes remains challenging
(Bryant et al., 2022; Evans et al., 2022; Zahiri et al.,
2020). Traditional protein—protein docking approaches as
well as recent deep learning-based protein complex struc-
ture prediction methods typically generate a number of
candidate structural models and rank them based on esti-
mated confidence scores to select the top-ranked model
(Bryant et al., 2022; Christoffer et al., 2021; Lyskov and
Gray, 2008; Pierce et al., 2014). With the state-of-the-art
protein structure prediction methods approaching near-
experimental accuracy on single-chain predictions, accu-
rately modeling the protein—protein interaction interfaces is
the key to successfully predicting the structures of protein
complexes. As such, high-fidelity estimation of the model-
ing quality of protein—protein interaction interface from a
computationally predicted complex structure is critically

important for characterizing protein—protein interactions
(Cao and Shen, 2020; Vajda et al., 2013).

Encouraging progress has been made in protein complex scor-
ing and quality estimation. Physics-based approaches, such as
ZRANK (Pierce and Weng, 2007), demonstrate effective scoring
performance using the weighted sum of several energy terms in-
cluding van der Waals force, hydrogen bonding, electrostatics,
pair potentials and solvation. ZRANK2 (Pierce and Weng, 2008)
further improves the scoring performance by optimizing certain
energy terms used in ZRANK. In addition to physics-based
approaches, state-of-the-art methods apply machine learning for
the quality estimation of complex models. For example, TRScore
(Guo et al., 2022) estimates the quality of protein complex models
by learning from a voxelized 3D grid representation of the pro-
tein—protein interface using a deep convolutional RepVGG archi-
tecture. DOVE (Wang et al., 2020b) applies a 3D convolutional
neural network (3DCNN) with voxelized representation of pro-
tein complexes while incorporating atomic interaction types and
their energetic contributions. Additionally, it integrates
knowledge-based statistical potentials GOAP (Zhou and
Skolnick, 2011) and ITScore (Huang and Zou, 2008) to capture
atomic interaction energies, demonstrating competitive scoring
performance. Recently, representation learning with graph neural
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networks (GNNs) (Zhou et al., 2020) is gaining significant atten-
tion, leading to the development of several protein complex model
quality estimation methods. For example, GNN-DOVE (Wang
et al., 2021) uses a graph attention network (GAT) (Velickovi¢
et al., 2018) by embedding protein complex interfaces as graphs.
DProQA (Chen et al., 2023) uses a gated-graph transformer
model for complex quality estimation.

Despite the progress, these methods do not consider two
key factors that can significantly improve protein—protein in-
terface quality estimation performance. First, the geometry of
the interaction interface often carries key information about
the spatial organization of the interacting partners and there-
fore provides a rich representation of a complex structure
(Dai and Bailey-Kellogg, 2021; Ganea et al., 2022), but none
of the protein complex scoring methods incorporate multi-
meric interaction geometries, including the inter-atomic dis-
tance and orientations of the residues at the interaction
interface. Second, while knowledge-based methods, such as
InterEvScore (Andreani et al., 2013), incorporate evolution-
ary information for scoring heteromeric protein complexes,
the state-of-the-art machine learning-based approaches typi-
cally rely on the physicochemical properties or energetic con-
tributions of the interacting atoms without considering the
availability of evolutionarily information in the form of multi-
ple sequence alignments (MSAs). That is, they ignore the ef-
fect of MSAs during scoring.

Here, we present a protein—protein interface quality estima-
tion method called PIQLE by deep graph learning of multi-
meric interaction geometries. PIQLE formulates protein—
protein interface quality estimation as a graph learning task
by constructing a graph considering the residues at the inter-
action interface and estimates the interface quality by training
a multi-head GAT using sequence- and structure-derived node
features along with evolutionarily information and newly in-
troduced edge features in the form of inter-atomic interaction
distance and orientations capturing multimeric interaction ge-
ometries. Unlike the existing GNN-based methods operating
on voxelized representation of the protein—protein interface
to estimate the overall interface quality, PIQLE first estimates
the quality of the individual interactions between the interfa-
cial residues by edge-level error regression and then probabil-
istically combines the estimated quality of the interfacial
residues for scoring the overall interface. Large-scale bench-
marking on multiple widely used protein docking decoy sets
demonstrates that PIQLE consistently attains better perfor-
mance than existing complex model quality estimation meth-
ods in terms of various evaluation measures including hit rate,
success rate, reproducibility of model-native similarity scores
and distinguishability between acceptable and incorrect mod-
els. By conducting rigorous ablation study and comparison
with the self-assessment module of AlphaFold-Multimer
repurposed for protein complex scoring on an independent
dataset, we directly verify that the improved performance of
our method is connected to the effectiveness of the multi-head
GAT in leveraging multimeric interaction geometries and evo-
lutionary information along with the other sequence- and
structure-derived features. PIQLE is freely available at https://
github.com/Bhattacharya-Lab/PIQLE.

2 Materials and methods

Figure 1 illustrates our protein—protein interface quality esti-
mation framework consisting of a graph representation of the
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interaction interface, featurization including multimeric inter-
action geometries and quality estimation of the individual
interacting residues by edge-level error regression using multi-
head GAT followed by probabilistic combination for the esti-
mation of the overall interface quality.

2.1 Graph representation and featurization

We represent the protein—protein interface as a graph
G = (V,E), in which a node v € V represents an interface res-
idue and an edge e € E represents an interacting interface resi-
due pair. We consider an interface residue pair to be
interacting if their C; atoms (C, for glycine) are within 10 A
(Marze et al., 2018). With such a graph representation, we
use a total of 17 node features and 27 edge features describing
each interface residue and their interactions including se-
quence- and structure-based node features and multimeric in-
teraction geometric edge features. We describe them below.

2.1.1 Node features

Residue encoding: We cluster 20 naturally occurring amino
acids into 4 classes including polar, non-polar, positively
charged and negatively charged (Supplementary Table S1)
(Kumar et al., 2018; Tavafoghi and Cerruti, 2016; Zhu et al.,
2016). For a given residue belonging to one of these classes,
we perform one-hot encoding of the residue using five class
bins with the last bin reserved for the non-standard amino
acids belonging to none of the four preceding bins, leading to
five features for each node in the interfacial graph (i.e. a bi-
nary vector of five entries).

Relative residue positioning: To capture the relative posi-
tional information for each residue, we extract one feature for
each node in the interfacial graph corresponding to each of
the amino acid residues in a sequence as follows:

aa”

relPos(aa) = 7

where aa” is the position of the nth residue in the sequence
and L is the length of the sequence.

Secondary structure and solvent accessibility: We use DSSP
(Kabsch and Sander, 1983) program to calculate the second-
ary structure and solvent accessibility from the structure. We
transform eight-state secondary structures into three-state by
grouping them into helices, strands and coils for each of the
residues in the sequence (Supplementary Table S1).
Additionally, we discretize the real-valued solvent accessibility
into two states of buried and exposed using the solvent-
accessible surface area for the corresponding residue
(Supplementary Table S1). We then use the one-hot encoding
of three-state secondary structures and two-state solvent ac-
cessibility, resulting in five features.

Local backbone geometry: We calculate phi (¢) and psi ()
backbone torsion angles from the structure to capture the lo-
cal backbone geometry of each residue. We perform sinusoi-
dal and cosine transformations of the angles (Li et al., 2017),
leading to four features.

Evolutionarily information: We compute the number of ef-
fective sequences (N.g) from the MSAs of the individual
monomer and concatenated MSA of the complex to account
for the depth of the MSAs, thereby considering the availabil-
ity of evolutionarily information. To generate MSAs from an
individual monomeric sequence, we run HHblits (Remmert
et al., 2011) for three iterations with an E-value inclusion
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Figure 1. lllustration of the PIQLE framework for protein—protein interface quality estimation. (a) The predicted protein complex structure with its two
interacting monomers colored in grey and blue. (b) Multimeric interaction geometries characterized by the inter-atomic distance and orientations of the
residues at the interaction interface. (e) Graph representation of the interaction interface and quality estimation of individual interacting residues by edge-
level error regression using multi-head GAT followed by a probabilistic combination

threshold of 107% for searching against the Uniclust30
(Mirdita et al., 2017) database with a query sequence cover-
age of 10% and maximum pairwise sequence identity of 90%
(Shuvo et al., 2020). We then calculate the normalized num-
ber of sequences as:

Nef
Neffnf(;rm _ ‘e ,
€ \““L

where N.g is the reciprocated sum of the number of sequences
in the MSA having a sequence identity >80% to the nth se-
quence and L is the length of the sequence (Li et al., 2019). We
calculate the normalized number of effective sequences N for
each partner in the complex, following the approach described
in Zhang et al. (2020). Additionally, we generate coupled MSA
considering both the interacting partner using GLINTER (Xie
and Xu, 2022), following the method described in
ComplexContact (Zeng et al., 2018) and compute N of the
coupled MSA. Therefore, each of the nodes in a graph has two
evolutionarily features including the N computed from the
MSA for each partner in the complex and the Ny calculated
from the coupled MSA. The two evolutionarily features are con-
sidered as node features in the interface graph.

2.1.2 Edge features

Multimeric interaction distance: To capture multimeric inter-
action geometry, we discretize the Euclidian distance between
the Cp atoms (C, for glycine) of the interacting interface

residue pairs into 17 bins ranging from 2 to 10 A having a bin
width of 0.5 A. The discretized interaction distance is repre-
sented by one-hot encoding, resulting in 17 edge features.

Multimeric interaction orientation: In addition to Cyz—Cy
distances, we also include the orientations of the interacting
interface residue pairs by extending the work of trRosetta
(Yang et al., 2020) for multimers. In particular, our multi-
meric interaction orientation is represented by three torsion
(Q, 115 and 1,1) and two planar angles (A», A»1), as shown in
Figure 1b. The Q torsion angle measures the rotation along
the virtual axis connecting the Cp atoms of the interacting in-
terface residue pairs, and 715, A1 (T21, Aa1) angles specify the
direction of the Cg atom of interface residue of the first (sec-
ond) interacting monomer in a reference frame centered on
the interface residue of the second (first) interacting monomer.
Unlike the symmetric torsion angle Q, t and A are asymmetric
and depend on the order of the monomeric interacting inter-
face residue pairs. Once again, we perform sinusoidal and co-
sine transformations of the angles, leading to 10 features.

2.2 Network architecture

Figure 1c¢ shows the architecture of our multi-head GAT for
protein—protein interface quality estimation. The network
consists of four multi-head graph attention layers (Velickovi¢
et al., 2018). All the intermediate layers have four attention
heads except for the output layer, which has one attention
head. We perform hyperparameter selection on an indepen-
dent validation set using grid search to determine the optimal
number of layers and heads (Supplementary Table S2). The
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input layer of the network takes the interfacial graph G con-
sisting of nodes V and edges E with the associated nodes and
edge features as G(V; € R”! x E; € R*"). We use an em-
pirically selected hidden dimension of 32 for the input layer
with a scaling factor of 0.5 for each succeeding layer.
Additionally, we perform a concatenation operation of all the
heads along the output dimension of 1. Therefore, the output
dimension of each intermediate layer depends on the number
of hidden dimensions, and thus the output dimension of the
multi-head attention layer / is as follows:

4
Xl = Hk:lhla

where k represents the number of heads and 4 is the hidden di-
mension at layer [. Of note, each multi-head attention layer per-
forms a series of operations before it feeds the output to the next
layer. First, we concatenate both the node and edge features and
perform a linear transformation to embed both the node (h!)
and edge (¢! ;) input features with the initialized weight W to d-
d1mens1onal hidden features assigned to each node (Dwivedi
et al., 2022; Velickovi¢ et al., 2018) as follows:

2= Wi,
where z represents the embedded features at layer / and W is
the learnable network parameters, normalized using the
Xavier weight initialization procedure at each layer to prevent
vanishing and exploding gradient problems (Glorot and
Bengio, 2010). We then compute an attention score a; be-
tween the neighboring nodes of each edge by performing self-
attention on the incident nodes as:

afy = o (W),

where 2! and 2! are the embeddings of the incident nodes of an
edge. Both eméeddmgs are concatenated, and a dot product is
computed with a learnable weight vector W (W € RP), where
D represents the input dimension. Meanwhile, the node fea-
tures of each node are updated with the combination of neigh-
boring node features and the attention score a;; as follows:

b= “< > afﬁf)
j

iEN(i)

2.3 Model training

For the assignment of the ground truth interface quality score
during training, we first calculate the observed Cyg—Cjp distance
between the interacting interface residue pairs in the predicted
complex structural model (d°*!) and the corresponding residue
pairs in the native structure (dgative). We then assign a normal-
ized ground truth interface quality score z; to the edge e; as

follows:

1 ifdpedd < 10A and dp*ive < 10 A
1 .
zj={ ——————5 otherwise,
dmodel gnative
ij
T\
where — dtvel is the observed edge-level error be-

tween the interacting interface residue pairs corresponding to
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the edge eij, and dj is a normalizing constant whose value is
set to 10 A to be consistent with the 10 A threshold used for
defining interacting residue pairs in the literature (Marze
etal.,2018).

During model training, we learn the interface quality score
z;j for each edge e;; through edge-level error regression by op-
timizing the mean squared error loss function with sum reduc-
tion using the Deep Graph Library (Wang et al., 2020a). We
use the Adam optimizer (Kingma and Ba, 2014) with a learn-
ing rate of 0.001 and a weight decay of 0.0005. The training
process consists of at most 500 epochs on an NVIDIA A40
GPU having an early stopping criterion with patience set to
40 to prevent overfitting.

2.4 Estimation of protein—protein interface quality

During the inference, we first estimate the interface quality
score for each of the interacting residue pairs in the interface
graph through edge-level error regression by computing the
dot product between the predicted embeddings of the corre-
sponding nodes as follows:

/ / /
h,'/:h,‘ X /’.",‘7

where /'; and /'; represent the node embeddings of nodes i
and j connected by the edge ¢; in the final layer of the multi-
head GAT. We then probabilistically combine the estimated
quality scores of the individual interfacial residue pairs for es-
timating the overall interface quality score Q as follows:

QZ

e,,Ee

where |¢| represents the number of interfacial residue pairs in
the model and /'; is the estimated interaction score for the
edge e;j. The overall interface quality score Q ranges between
0 and 1 with a higher score indicating better protein—protein
interface quality.

2.5 Datasets

To train the GAT of PIQLE, we use the docking benchmark
set of Dockground (Kundrotas et al., 2018) version 2 (hereaf-
ter called Dockground v2) containing 179 dimeric protein
complex targets having the length ranging from 92 to 894 res-
idues with 100 complex structural models for each target,
generated by docking the unbound structure of the receptor
to the ligand.

To benchmark our method, we use the docking benchmark
set of Dockground version 1 (hereafter called Dockground
v1), comprising 61 dimeric protein complex targets having
lengths ranging from 107 and 892 residues. We discard all
targets from the Dockground v1 test dataset overlapping with
our training set Dockground v2 using an average pairwise se-
quence identity cutoff of 20%, resulting in 23 dimer targets
with an average of 109 decoys per target. Additionally, we
use the Heterodimer-AF2 (hereafter called HAF2) (Chen
et al., 2023) dataset consisting of 13 targets having an average
of 105 decoys per target with the length ranging from 78 to
1248 residues generated using AlphaFold-Multimer (Evans
etal., 2022).

For ablation studies, we use the docking Benchmark ver-
sion 4.0 (Hwang et al., 2010) comprising 69 dimeric protein
complex targets having the length ranging from 23 to 822
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residues that are non-overlapping to the targets in the training
and benchmarking datasets (pairwise sequence identity cutoff
of 20%) with each target having 100 complex structural mod-
els generated by ZDOCK (Pierce et al., 2014). It is worth not-
ing that all the datasets used for training, benchmarking and
ablation studies are non-overlapping with an average pairwise
sequence identity of <20% between any pair of datasets
(Supplementary Table S3).

2.6 Evaluation metrics and competing methods

We assess the performance of our method using various eval-
uation metrics based on the DockQ scores (Basu and Wallner,
2016). DockQ score integrates various CAPRI measures in-
cluding Fyae, LRMS and iRMS to evaluate the quality of pro-
tein—protein docking models (Lensink and Wodak, 2013).
Fnat 1s defined by the fraction of native interfacial contacts in
the model. The root mean square deviations (RMS) for the li-
gand (LRMS) and interface (iRMS) between the model and
the target are calculated as follows:

.
e ()

where d; represents the scaling factors: dy for LRSM and
d; for iRMS. d; and d, are optimized to be 8.5 and 1.5 A, re-
spectively, based on the ability to separate models according
to CAPRI classifications in terms of F1 scores (Basu and
Wallner, 2016; Lensink and Wodak, 2013). Finally, the
DockQ score is calculated by combining the aforementioned
scoring terms as follows:

RMSscaled (RM87 dl) =

DockQ(Faa:, LRMS, iRMS, di,d>)
(Fnat + RMSscaled(LRMsv dl) + RMSscaled (IRMS» dZ))
3

DockQ scores range between 0 and 1 with a higher score indi-
cating better model quality. Using the DockQ scores as the
ground truth, we employ three evaluation criteria to measure
the protein—protein interface quality estimation performance:
(i) ability to reproduce the ground truth DockQ scores, (ii)
ability to rank complex structural models and (iii) ability to
distinguish acceptable from incorrect models. For the first cri-
terion, we use the Spearman correlation coefficient (p) be-
tween the estimated quality of the protein complexes and
their corresponding DockQ scores. Consequently, a higher
correlation indicates better reproducibility. For the second cri-
terion, we use the top-N success rate (herein: SR) and top-N
hit rate (herein: HR) (Guo et al., 2022). The top-N success
rate is calculated as the percentage of complex targets having
at least one acceptable model among top-N ranked models as
follows:

SR(N) = %) x 100%,

where S(N) is the number of complex targets having at least
one acceptable model among top-N ranked models and K is
the total number of targets, where the standard cutoff of
DockQ=0.23 is used to identify acceptable models (Bryant
et al.,2022). The top-N hit rate is calculated as the fraction of

acceptable models among top-ranked models relative to all
acceptable models in the entire dataset as follows:

HR(N) — % % 100%,

where H(N) is the total number of acceptable models among
top-N ranked models and M is the total number of acceptable
models in the dataset. Higher success and hit rate indicate bet-
ter ranking ability, especially for low values of N. We evaluate
the success and hit rate of top-ranked models for various val-
ues of N including top-1, top-3, top-10, top-15, top-20, top-
25 and top-30. We further evaluate the methods’ ranking per-
formance on the top-N ranked models after categorizing them
into acceptable-, medium- and high-quality complex models
based on their DockQ scores using standard CAPRI criteria.
For the third criterion, we perform receiver operating charac-
teristics (ROC) analysis using a DockQ score cutoff of 0.23 to
separate acceptable and incorrect models. Meanwhile, the
area under the ROC curve (AUC) quantifies the ability of a
method to distinguish between acceptable and incorrect mod-
els with a higher AUC indicating better distinguishing ability.

We compare the performance of PIQLE against a number
of existing protein complex quality estimation methods rang-
ing from physics-based approaches to machine learning-based
methods. As a representative physics-based method, we com-
pare PIQLE against ZRANK2 (Pierce and Weng, 2008),
which is an improved version of ZRANK (Pierce and Weng,
2007). For a fair comparison, we use a min.—max. normaliza-
tion strategy to scale ZRANK2 energy scores to the same
range as the predicted scores of other methods including
PIQLE as follows:

X - Xmax
ZRANK2 = X — Xod
where X is the raw ZRANK2 estimated energy scores and
Xmin and Xpmax represent the smallest and largest estimated
scores, respectively, considering all predicted complex struc-
tural models for a specific target.

We also compare the performance of PIQLE against vari-
ous machine learning-based approaches including 3DCNN-
based methods TRScore (Guo et al., 2022) and four variants
of DOVE (Wang et al., 2020b): DOVE-Atom20, DOVE-
Atom40, DOVE-GOAP and DOVE-Atom40+GOAP as well
as recent GNN-based methods GNN-DOVE (Wang et al.,
2021) and DProQA (Chen et al., 2023). We exclude the com-
parison to GNN-DOVE and TRScore on the Dockgorund v1
test dataset due to the overlap of the training datasets used in
GNN-DOVE and TRScore with the complex targets present
in the Dockground v1 dataset. Meanwhile, all methods are in-
cluded for performance comparison on the HAF2 test dataset.

3 Results
3.1 Reproducing ground truth DockQ scores

Figure 2 shows the Spearman correlation coefficients (p) be-
tween the estimated qualities of the protein—protein interfaces
and their corresponding ground truth DockQ scores for
PIQLE and the other competing methods. PIQLE consistently
outperforms all other competing methods in both
Dockground vl and HAF2 datasets. On Dockground v1,
PIQLE attains the highest Spearman correlation of 0.519,
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(b)
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Figure 2. Reproducibility of ground truth DockQ scores for PIQLE (in gray) and the competing methods (blue), sorted in decreasing order of Spearman
correlations coefficient (p) between the estimated qualities of the protein—protein interfaces and their corresponding DockQ scores on (a) Dockground v1

and (b) HAF2 datasets

which is much better than the second-best 3DCNN-based
method DOVE-Atom20 (0.305), the recent graph transformer
network (GTN)-based method DProQA (0.111) and physics-
based scoring function ZRANK2 (0.159). The same trend
continues for the HAF2 dataset, in which PIQLE attains the
highest Spearman correlation of 0.429, which is significantly
better than the other competing methods. The 3DCNN-based
method DOVE remains the second-best method with its vari-
ant DOVE-Atom+GOAP attaining a Spearman correlation of
0.382. The recent GNN-based methods DProQA and GNN-
DOVE, however, fail to generalize on the HAF2 dataset
attaining negative Spearman correlations of —0.015 and
—0.331, respectively. In summary, our method PIQLE exhib-
its an improved ability to reproduce ground truth DockQ
scores with high fidelity.

3.2 Ranking complex structural models

Figure 3a and b shows the complex model ranking perfor-
mance of PIQLE and the other competing methods in terms of
the success rate (SR) metric, which evaluates the ability of a
method to select at least one acceptable model within top-N
ranked models. As shown in Figure 3a, PIQLE consistently
achieves the highest SR among all methods for almost all top-
N rankings in the Dockground v1 dataset. The noticeably
higher SR of PIQLE at low values of N, such as top-1
(~44%) and top-5 (~74%), is particularly noteworthy. In the
HAF2 dataset (Fig. 3b), PIQLE attains a higher top-1 SR of
~77% compared to the other methods, whereas some of the
other methods, such as ZRANK2 and DOVE-ATOM?20,
achieve comparable or higher SR values, particularly for high
values of N. Overall, PIQLE frequently attains higher success
rates, particularly when N is low.

Figure 3¢ and d shows the ranking ability of PIQLE and the
other competing methods in terms of the hit rate (HR) metric,
which evaluates the performance of a method based on the to-
tal number of acceptable models among top-ranked models
relative to all acceptable models in the entire dataset. As
shown in Figure 3¢, PIQLE significantly outperforms all other
competing methods by achieving the highest HR on
Dockground v1 dataset, for all values of N. For example,
PIQLE improves the top-10 HR by more than 30% over the
second-best method DProQA (37.079 versus 28.125). PIQLE
also consistently attains better HR performance on the HAF2
dataset as shown in Figure 3d. It is interesting to note the

somewhat low HR performance of all methods including ours
on the HAF2 dataset. While all methods, particularly the ma-
chine learning-based approaches achieve higher SR on the
HAF?2 dataset, they appear to be less effective at selecting a
large proportion of acceptable models from a smaller number
of top-ranked models measured by HR, suggesting a need for
further improvement. Nevertheless, our new method PIQLE
strikes an ideal balance to deliver top performance in terms of
both success rate and hit rate across different datasets, indi-
cating its all-round ability in ranking complex structural
models.

We further benchmark the ranking performance of PIQLE,
and other competing methods on the same test datasets based
on the standard CAPRI criteria of acceptable-, medium- and
high-quality complex models in terms of DockQ scores
(Supplementary Figs S1-S3). Overall, PIQLE delivers a well-
rounded ranking performance considering both success and
hit rates metrics across various values of N for acceptable-,
medium- and high-quality complex models.

3.3 Distinguishing acceptable from incorrect models

In addition to reproducing the ground truth DockQ scores
with high fidelity and accurately ranking complex structural
models, the ability to distinguish acceptable from non-
acceptable prediction is critically important. Figure 4 shows
the AUC attained by PIQLE and the competing methods on
the test datasets. PIQLE consistently outperforms all other
competing methods by achieving the best AUC on both the
Dockground v1 and HAF2 datasets. For the Dockground v1
dataset, AUC attained by PIQLE is 0.711, which is closely
followed by the second-best performing method DOVE-
Atom40+GOAP with an AUC of 0.710. On the HAF2 data-
set, PIQLE attains an AUC of 0.743, which is significantly
higher than all competing methods including the second-best
method DOVE-Atom40+GOAP having an AUC of 0.648. In
summary, PIQLE exhibits an improved ability to distinguish
between acceptable and non-acceptable prediction.

3.4 Case study

Figure 5 shows some representative examples of protein—pro-
tein interface quality estimation by PIQLE for selected targets
from Dockground v1 and HAF2 datasets with varying
degrees of predictive modeling accuracy. For a reasonably
well predicted complex structural model for Dockground v1
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Figure 3. Ranking complex structural models for PIQLE and the competing methods in terms of success rate on (a) Dockground v1 dataset, (b) HAF2
dataset and hit rate on (¢) Dockground v1 dataset, (d) HAF2 dataset based on top-1, top-5, top-10, top-15, top-20, top-25 and top-30 models. A cutoff of

DockQ =0.23 is used to identify acceptable models

target 1rOr having a DockQ score of 0.732 (Fig. 5a), PIQLE
estimates an interfacial quality score of 0.625. Apart from a
few false positive interacting residue pairs, most of the inter-
face regions in this predicted complex structural model are
correct with an F1 score of 0.674 considering the previously
defined C4—Cj distance threshold of 10 A (Marze et al., 2018)
for identifying the true interacting residue pairs. For a moder-
ate quality predicted complex structural model for HAF2 tar-
get 7nkz having a DockQ score of 0.478 and several false
positive interacting residue pairs with an F1 score of 0.333
(Fig. 5b), PIQLE estimates a moderate interfacial quality score
of 0.398. Additionally, Figure Sc and d shows two low-
quality predicted complex structural models for Dockground
v1 target 1ppf and HAF2 target 7Ixt having a DockQ score of
0.102 and 0.127, respectively, with noticeably wrong

interfaces. For these models, PIQLE estimates much lower in-
terfacial quality scores of 0.143 and 0.130, respectively.

3.5 Ablation study

To examine the relative importance of the features adopted in
PIQLE, we conduct feature ablation experiments by gradually
isolating the contribution of individual feature or groups of
features during model training and evaluating the accuracy on
the independent ZDOCK validation dataset. Figure 6a shows
the Spearman correlation coefficients (p) between the esti-
mated qualities of the protein—protein interfaces and their cor-
responding ground truth DockQ scores when various features
are isolated from the full-fledged version of PIQLE. The
results demonstrate that all features contribute to the overall
performance achieved by PIQLE. For example, we notice an
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Figure 5. Case study on protein—protein interface quality estimation by PIQLE using predicted complex structural models for (a) Dockground v1 target
1r0r, (b) HAF2 target 7nkz, (¢) Dockground v1 target 1ppf and (d) HAF2 target 7Ixt. For each target, the interacting protein chains are colored in blue (chain
1) and purple (chain 2) with the interface regions highlighted in darker shades of blue and purple. The experimental structures for each target are shown

side-by-side with the observed interface regions annotated

accuracy decline when we isolate the sequence-based features
one by one including amino acid residue encoding (no residue
encoding) and relative residue positioning (no relative residue
positioning).  Importantly,  discarding  evolutionarily
information noticeably declines the overall performance (no
evolutionarily information), indicating the effectiveness of
MSA-derived evolutionarily information. Not surprisingly,
we notice a dramatic performance drop when both the
residue-based features and the evolutionary information are
isolated (no residue+evolutionarily information). Similarly,

we also notice a performance drop when the feature based on
local backbone geometry is discarded (no local backbone ge-
ometry). Additionally, we notice a consistent accuracy decline
when we discard the newly introduced edge features based on
multimeric interaction distance (no multimeric interaction dis-
tance), multimeric orientation (no multimeric interaction ori-
entation) and their combination (no multimeric interaction
geometry). That is, the improved performance of our method
is connected to the effective integration of multimeric interac-
tion geometries.
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Figure 6. Ablation study on the independent ZDOCK validation dataset in terms of Spearman correlations coefficient (p) between the estimated qualities
of the protein—protein interfaces and their corresponding DockQ scores by (a) gradually isolating individual feature or groups of features during model
training, (b) training two baseline GNN models employing GCN and GTN architectures and (c) the performance comparison between GAT employed in
PIQLE and the ipTM scores predicted by the self-assessment module of AlphaFold-Multimer repurposed for protein complex scoring

To further investigate the contribution of the multi-head
GAT model used in PIQLE, we train two baseline GNN-
based models for protein—protein interface quality estimation:
graph convolutional network (GCN) (Kipf and Welling,
2017) and GTN (Yun et al., 2019). All baseline networks are
trained on the same training dataset using the same set of in-
put features as the full-fledged version of PIQLE. Following
the same approach as used for PIQLE’s GAT, we perform
hyperparameter selection for GCN and GTN on the same in-
dependent validation set by varying the number of layers and
heads for GTN and the number of layers for GCN
(Supplementary Table S2). Figure 6b shows the performance
of PIQLE compared to the baseline networks on the indepen-
dent ZDOCK validation dataset in terms of the Spearman
correlation coefficients (p) between the estimated qualities of
the protein—protein interfaces and their corresponding ground
truth DockQ scores. The multi-head GAT architecture of
PIQLE significantly outperforms the other baseline networks,
demonstrating its effectiveness for protein—protein interface
quality estimation task.

We further compare the performance of PIQLE with the in-
terface predicted TM scores (ipTM) predicted by the self-
assessment module of AlphaFold-Multimer (Evans et al., 2022)
repurposed for protein complex scoring (Roney and
Ovchinnikov, 2022). It is important to note that ipTM is a self-
assessment score generated by AlphaFold-Multimer for estimat-
ing the accuracy of their own predicted complex structural
models in terms of the quality of the multimeric interaction
interface. As such, the ipTM scores predicted by AlphaFold-

Multimer are not equivalent to the interface quality scores esti-
mated from an independent protein complex scoring method,
such as PIQLE. Nonetheless, the comparison may offer some
interesting insights. We utilize an extended version of the
AF2Rank method (Roney and Ovchinnikov, 2022) repurposed
for protein complex scoring based on the self-assessment mod-
ule of AlphaFold-Multimer, freely available as a Google Colab
Notebook at https://colab.research.google.com/github/sokryp
ton/ColabDesign/blob/main/af/examples/AF2Rank.ipynb as of
February 26, 2023, for generating the ipTM scores. Figure 6¢
shows the performance in terms of Spearman correlation coeffi-
cient (p) on the ZDOCK set for the estimated interface quality
scores by PIQLE and the ipTM scores predicted by the self-
assessment module of AlphaFold-Multimer repurposed for pro-
tein complex scoring. PIQLE convincingly outperforms (p =
0.367) the repurposed self-assessment complex scoring of
AlphaFold-Multimer (p = 0.349), even though the feature ab-
lated variants of PIQLE (Fig. 6a) as well as the baseline GNNs
GTN and GCN (Fig. 6b) fall short. The results further demon-
strate the contribution of both the network architecture and
features used in PIQLE for improved protein—protein interface
quality estimation performance beyond what is attainable by
the self-assessment module of AlphaFold-Multimer repurposed
for protein complex scoring.

4 Conclusion

This work introduces PIQLE, a new method for protein—pro-
tein interface quality estimation by deep graph learning of
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multimeric interaction geometries. PIQLE exploits multi-head
GAT architecture leveraging multimeric interaction geome-
tries and evolutionarily information along with sequence- and
structure-derived features to estimate the quality of the indi-
vidual interactions between the interfacial residues and then
probabilistically combines the estimated quality of the interfa-
cial residues for scoring the overall interface. We demonstrate
that PIQLE attains state-of-the-art protein—protein interface
quality estimation performance by conducting large-scale
benchmarking on multiple widely used protein docking decoy
sets. Our ablation study and comparison with the self-
assessment module of AlphaFold-Multimer repurposed for
protein complex scoring on an independent validation set
confirm the contribution of various features adopted in
PIQLE and the effectiveness of the multi-head GAT
architecture.

Our study leads to a number of future directions to con-
sider: of particular interest is the possibility of broadening the
applicability of our method for higher order oligomers and
large protein assemblies. Further, a promising direction for fu-
ture work is to consider the diversity of predictive modeling
ensemble and conformational states of the interacting mono-
mers for interface quality estimation for interacting proteins
having multi-state conformational dynamics. Finally, integrat-
ing complementary features, such as residue-level self-assess-
ment confidence estimates for the interacting protein chains
and sequence-based disorder prediction coupled with a richer
deep graph representation learning framework may further
boost protein—protein interface quality estimation perfor-
mance. We expect our method to be extended to other biomo-
lecular interface characterization, including estimating the
quality of predicted protein interaction with other molecules,
such as DNA, RNA and small ligands.
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ground.compbio.ku.edu/downloads/unbound/decoy/decoys1.0.
zip. The Heterodimer-AlphaFold2 test set is available at https:/
zenodo.org/record/6569837/files/DproQ_benchmark.tgz.  The
ZDOCK docking benchmark version 4.0 validation set is avail-
able at http://zlab.umassmed.edu/benchmark/.
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