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Abstract 

Interactions between proteins and nucleic acids are essential for understanding a wide range of cellular and 
evolutionary processes. Recent advancements in protein language models (pLMs), trained on vast protein 
sequence data, have revolutionized various predictive modeling tasks, offering unprecedented scalability 
and generalizability. Consequently, a number of computational methods have been developed in the recent 
past for protein–nucleic acid binding site prediction powered by pLMs. To this end, we recently developed 
the EquiPNAS method that integrates pLM embeddings with E(3) equivariant deep graph neural networks 
for enhancing accuracy and robustness in predicting protein–DNA and protein–RNA binding sites, thereby 
reducing the dependency on evolutionary information. Here we present an overview of the recent protein– 
nucleic acid binding site prediction methods, emphasizing the recent advances in harnessing the potential of 
pLMs, and provide a detailed description of the EquiPNAS methodology as well as the necessary materials 
and procedures for the computational prediction of protein–DNA and protein–RNA binding sites. 

Key words Protein–DNA binding site prediction, Protein–RNA binding site prediction, Language 
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1 Introduction 

Proteins interact with nucleic acids, including DNA and RNA, to 
perform critical cellular functions such as regulating gene expres-
sion, facilitating DNA replication, and mediating cellular signaling 
pathways. The precise identification of these interaction or binding 
sites where proteins interact with nucleic acids is fundamental to 
understanding these biological processes [1–5]. This understand-
ing has significant implications not only for basic biological research 
but also for practical applications in drug design and therapeutic 
interventions. While traditional laboratory methods for identifying 
these binding sites are effective [6, 7], they are often time-
consuming, expensive, and technically challenging, prompting

Dukka B. KC (ed.), Large Language Models (LLMs) in Protein Bioinformatics, Methods in Molecular Biology, vol. 2941, 
https://doi.org/10.1007/978-1-0716-4623-6_9, 
© The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature 2025 

139



researchers to explore computational approaches for predicting 
these sites based on available data. Computational methods for 
predicting protein–nucleic acid binding sites can be categorized 
into two main types: sequence-based methods [8–15] and 
structure-aware methods [8, 16–20]. Sequence-based methods 
rely solely on the amino acid sequences of proteins to make predic-
tions about binding affinities and interaction sites. On the other 
hand, structure-aware methods utilize 3D structural information 
derived from experiments or computational predictions, resulting 
in more precise binding site predictions. However, these 
approaches frequently depend on limited experimental data from 
structural databases such as the Protein Data Bank (PDB) [21], 
which may not provide comprehensive coverage for all protein– 
nucleic acid interactions. The introduction of AlphaFold2 [22] and 
AlphaFold3 [23] significantly expands this landscape by providing 
highly accurate structural models for a wide range of proteins and 
their interactions, including with nucleic acids. Additionally, the 
AlphaFold Database [24] offers a comprehensive repository of 
these predicted structures, allowing researchers to access valuable 
data that was previously inaccessible. These advancements alleviate 
the limitations associated with reliance on PDB and enhance the 
predictive capabilities of protein structure modeling [25] and bind-
ing site identification.
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Currently, large language models (LLMs) have emerged as 
transformative tools in the field of artificial intelligence [26–30], 
possessing the capability to comprehend and generate human lan-
guage through the analysis of extensive textual datasets. Their 
applications extend across numerous domains, encompassing natu-
ral language processing tasks such as sentiment analysis, language 
translation, and content generation [31–33], thereby reshaping 
industries ranging from healthcare [34–39] to finance [40– 
44]. Notably, in the area of protein–nucleic acid binding site pre-
dictions, LLMs demonstrate significant advancements by lever-
aging their understanding of biological sequences and molecular 
interactions. The advent of protein language models (pLMs) [45– 
50], which are analogous to natural language processing models 
but specifically trained on extensive datasets of protein sequences, 
has opened new avenues for predicting protein characteristics and 
functions. While the application of pLMs in predicting protein– 
nucleic acid binding sites is still in its formative stages, their poten-
tial for enhancing prediction accuracy is considerable 
[48, 50]. Research initiatives such as EquiPPIS [51] lay critical 
groundwork for advancements in predicting protein–RNA binding 
positions. 

Although numerous methods have been developed for 
protein–nucleic acid binding site prediction, EquiPNAS [52]  i  s
one of the first methods to leverage pLM embeddings for the 
effective prediction of both DNA and RNA binding protein



residues, consistently surpassing state-of-the-art techniques across 
an array of widely utilized benchmarking datasets for protein–DNA 
and protein–RNA binding site prediction tasks. This innovative 
approach employs a specific type of graph neural network known 
as E(3) Equivariant Graph Neural Network (EGNN) [53], which 
excels at processing the intricate three-dimensional (3D) nature of 
protein structures. By being sensitive to positional, rotational, and 
orientational transformations, this model maintains robustness and 
accuracy, even when utilizing protein structures predicted by 
AlphaFold2 [22] as opposed to those resolved through experimen-
tal methods (see Notes 1 and 2). 
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2 Method 

2.1 Overview of 
Existing Protein– 
Nucleic Acid Binding 
Site Prediction 
Methods 

Protein–nucleic acid binding site prediction is a well-studied prob-
lem with numerous methods available in the literature utilizing a 
combination of network architectures and features as listed in 
Table 1. Currently, the available protein–nucleic acid binding site 
prediction methods can be broadly divided into sequence-based 
and structure-based approaches. Sequence-based methods, such 
as NCBRPred [9], DNAPred [10], and RNABindRPlus [12], 
leverage the abundance of protein sequence data to predict nucleic

Table 1 
A selection of state-of-the-art, deep learning–based frameworks for protein–nucleic acid binding site 
prediction, arranged in descending order by year of publication 

Name Year Architecture pLM_Method Protein–DNA/RNA 

EquiPNAS (Roche et al.) 2024 EGNN ESM2 Both 

CLAPE (Liu et al.) 2024 CNN ProtBert Protein–DNA 

ULDNA (Zhu et al.) 2024 LSTM-attention ESM2, ProtTrans Protein–DNA 

EGPDI (Zheng et al.) 2024 EGNN+GCN-II ESM2, ProtTrans Protein–DNA 

ESM-NBR (Zeng et al.) 2023 BiLSTM + MLP ESM2 Both 

GLMsite (Song et al.) 2023 GVP-GNN ProtTrans Both 

GraphSite (Yuan et al.) 2022 Graph transformer – Protein–DNA 

bindEmbed21DL (Littmann et al.) 2021 CNN ProtT5 Both 

GraphBind (Xia et al.) 2021 GNN – Both 

NCBRPred (Zhang et al.) 2021 BiGRU – Both 

NucleicNet (Lam et al.) 2019 ResNet – Protein–RNA 

aaRNA (Li et al.) 2014 DenseNet – Protein–RNA 

RNABindRPlus (Walia et al.) 2014 SVM – Protein–RNA



acid binding sites. These methods often utilize machine learning 
techniques, such as hidden Markov models and bidirectional Gated 
Recurrent Units (BiGRUs), to capture patterns from sequence 
data. Although these methods are widely applicable, their reliance 
solely on sequence information limits their predictive accuracy, as 
they miss critical spatial details of protein–nucleic acid interactions. 
Structure-based methods, including COACH-D [16], NucBind 
[8], and GraphBind [19], incorporate three-dimensional structural 
information, which enhances prediction accuracy. By utilizing 
structural templates or advanced computational models like graph 
neural networks, structure-based methods can better capture the 
intricate spatial patterns essential for identifying binding sites.
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In recent years, hybrid methods have emerged, combining 
both sequence-based and structure-based approaches to improve 
prediction outcomes. For instance, DNABind [54] and NABind 
[55] integrate machine learning with template-based methods, 
while NucBind [8] combines predictions from both COACH-D 
[16] and SVMnuc [8]. Graph-based approaches, such as GraphSite 
[20] and GLMSite [56], have introduced new levels of sophistica-
tion by encoding secondary structure and spatial positions of 
atoms. While these hybrid methods outperform some of the state-
of-the-art deep learning-only based frameworks, their hybrid 
approaches and high dependence on the quality of the templates 
make them susceptible to orphan proteins with low homology 
depths. However, with the recent surge in the availability of various 
families of protein language models such as ESM and ProtTrans, an 
array of deep learning–based binding site prediction methods have 
emerged as shown in Table 1. Methods such as EquiPNAS [52], 
CLAPE [57], ULDNA [58], EGPDI [4], ESM-NBR [59], and 
bindEmbed21DL [60], utilizing these language model embed-
dings, have surpassed those without them in terms of prediction 
accuracy, reducing the overall dependency on evolutionary infor-
mation for binding site prediction task [61]. 

2.2 Significance of 
pLMs for Protein– 
Nucleic Acid Binding 
Site Prediction 

While computational methods have advanced in predicting protein 
and nucleic acid binding sites, significant challenges persist, partic-
ularly in effectively utilizing protein-related data. Sequence-based 
approaches, which depend heavily on evolutionary information, 
often struggle with orphan proteins and encounter difficulties 
with intrinsically disordered proteins (IDPs) and regions (IDRs) 
due to their unstable and dynamic structures [62]. Additionally, 
many existing techniques rely on manually curated features that 
demand domain-specific expertise and may miss critical biological 
insights [17]. 

In contrast, protein language models (pLMs) present notable 
advantages in protein–nucleic acid binding predictions. Using self-
supervised learning, pLMs can capture long-range dependencies 
and structural information from sequences without requiring



manual feature engineering [63]. These large language models, 
originally designed for natural language tasks like translation and 
question-answering, have evolved into biological language models 
due to the linguistic parallels between human and biological lan-
guages. Through transfer learning, these models excel at capturing 
the structure and function of biological molecules such as proteins, 
creating rich feature representation from large datasets of protein 
sequences, which proves to be significant for binding site prediction 
tasks (see Notes 3 and 4). This approach minimizes the reliance on 
evolutionary data and enables more accurate and generalizable 
embeddings [64]. 
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However, in the context of binding site prediction, especially 
with nucleic acid ligands, the information derived from pLMs 
should account for the interactions between proteins and nucleic 
acids. A promising approach can be the potential incorporation of 
multimodal learning, where pLMs designed for DNA and RNA 
sequences [65, 66], or a platform like BioSeq-BLM, capable of 
analyzing DNA, RNA, and protein sequences using a range of 
biological language models [67] can be leveraged. This is especially 
valuable for improving prediction accuracy and efficiency when 
dealing with highly flexible molecules like RNA [61]. 

2.3 Overview of 
EquiPNAS Framework 

The primary objective of the EquiPNAS method is to accurately 
predict nucleic acid (both DNA and RNA)-binding residues for a 
given input protein 3D structure as shown in Fig. 1. The prediction 
framework follows a structured methodology that consists of three 
key components. The first component is the graph representation 
of the protein, which involves constructing a graph in which nodes 
correspond to individual residues and edges denote interactions 
among them. This graph structure effectively captures the spatial 
and relational information inherent to the protein. The second 
component involves feature generation for both nodes (residues) 
and edges (interactions) within the graph. This includes the extrac-
tion of sequence-based and structure-based information, alongside 
the utilization of protein language model (pLM) embeddings 
derived from the ESM-2 model [47], thereby enriching the data 
set available for predictive purposes. The final component employs 
an E(3) equivariant graph neural network (EGNN) to process the 
graph representation and make binding site predictions. By lever-
aging the coordinate information from the input monomer in 
conjunction with the generated features, the EGNN performs 
graph node classification, estimating the probability of whether 
each residue acts as a binding site for the corresponding nucleic 
acid as annotated in Fig. 1. In the subsequent sections, each of 
these components will be explored in detail, illuminating their 
significance within the overarching EquiPNAS architecture and 
the enhanced predictive capabilities they provide.
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Fig. 1 Experimental structure of (a) protein–RNA complex (PDB ID: 5HR7_B) and (b) protein–DNA complex 
(PDB ID: 4ZM2_B) with proteins shown in surface representation. Each residue of the protein structure is color 
coded according to its predicted probability score ( p) by EquiPNAS, visualizing the correlation between 
EquiPNAS predictions and experimentally derived binding sites 

2.3.1 Protein Graph 

Representation 

Protein as a Graph 

In the EquiPNAS framework, proteins are represented as graphs 
wherein each residue is depicted as a node. An edge is established 
between two nodes if the Cα atoms of the corresponding residues 
are within a defined distance threshold, thus transforming the 
protein structure into an interactive network of components. 

Interacting Residue Pairs Residues are classified as interacting based on specific criteria. 
Notably, the distance between their Cα atoms must be less than 
or equal to 14 Å for DNA-binding interactions and 15 Å for 
RNA-binding interactions. Furthermore, the residues must be at 
least six positions apart within the protein sequence. This require-
ment ensures that only relevant interactions are captured, offering a 
focused representation of the protein’s binding potential. Through 
this graph-based approach, EquiPNAS adeptly captures both spa-
tial relationships and interaction dynamics, facilitating accurate 
predictions of P-NA binding sites. 

2.3.2 Feature Generation 

Sequence-Based Features 

The generation of sequence-based features is essential for the effec-
tive representation of proteins. Each amino acid is encoded using a 
simple binary (one-hot) encoding scheme for the 20 standard 
amino acids. Additionally, a Position-Specific Scoring Matrix 
(PSSM) is obtained through PSI-BLAST [68], with subsequent 
normalization of values to maintain consistent scaling. To augment



the feature set, a Multiple Sequence Alignment (MSA) is generated 
using MMseqs2 [69] and subsequently refined by ColabFold [70] 
pipeline to provide distilled evolutionary information to the model. 
Finally, the language model embeddings have been extracted from 
ESM-2, a pre-trained protein language model (pLM) containing 
15 billion parameters represented by a feature dimension of 5120 
for each residue in the protein sequence. 
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Structure-Based Features Structure-based features capture critical aspects of the protein’s 
topology and spatial orientation [71]. One-hot encoding is utilized 
for secondary structure and solvent accessibility, indicating the 
exposure of each residue to the surrounding environment. Further-
more, geometric relationships—such as bond angles and the posi-
tioning of residues in three-dimensional space—are meticulously 
recorded. The framework also tracks the number of residues in 
contact and computes their spatial positions relative to the protein’s 
center, thus refining the understanding of interaction dynamics. 

Edge Features For edge features, the framework calculates the ratio of sequence 
distance to three-dimensional (3D) distance for each pair of inter-
acting residues. This ratio provides valuable insights into the spatial 
relationships between residues, significantly contributing to the 
overall predictive capability of the framework. 

Coordinate Features Finally, coordinate features leverage the 3D coordinates (x, y, z) of 
each residue’s Cα atom, effectively capturing the spatial arrange-
ment within the protein structure. By integrating these diverse 
feature sets, EquiPNAS substantially enhances its ability to accu-
rately predict protein–nucleic acid binding sites. 

2.4 Architecture The core architecture of EquiPNAS is constructed utilizing deep E 
(3)-equivariant graph neural networks (EGNNs), specifically tai-
lored to predict protein–DNA and protein–RNA binding sites. 
These networks operate by leveraging features pertinent to the 
protein’s structure and its spatial coordinates, such as the positions 
of Cα atoms in three-dimensional space. The architecture com-
prises multiple layers of equivariant graph convolution layers 
(EGCL), which simultaneously update both the node features, 
and the coordinates of the protein based on the interactions 
(edges) among residues. 

The process can be outlined as follows: (1) Node representation: 
Each node, representing a residue in the graph, encompasses fea-
tures (such as the amino acid type) and coordinates (indicating its 
spatial position). These attributes undergo transformation across 
several layers of the network (2) Feature and coordinate updates: 
The layers update the node features and coordinates by utilizing 
edge information, including the distances between residues.



(3) Interaction learning: Within each layer, the model learns how 
residues interact based on the provided features, continuously 
refining its predictions to enhance accuracy. 
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The EGNN employs 12 layers of transformations, each char-
acterized by 768 hidden dimensions. To mitigate the risk of over-
fitting, dropout regularization is applied at every layer, ensuring the 
model generalizes effectively beyond the training data. Ultimately, 
the model predicts the likelihood of each residue acting as a binding 
site for nucleic acids (DNA or RNA), condensing all acquired 
information into a singular predictive score. The training procedure 
of this model is conducted using ADAM optimizer [72] and cosine 
annealing [73] for dynamic adjustment of learning rates. The train-
ing process extends for up to 40 epochs on a high-performance 
NVIDIA Graphics Processing Unit (GPU), ensuring robust 
learning from the datasets. To assess the efficacy of the EGNN 
structure in enhancing prediction accuracy, baseline models devoid 
of equivariant updates were also trained for comparative purposes. 
This allows for a thorough evaluation of the model’s performance 
enhancements attributable to the incorporation of equivariant 
features. 

3 Materials 

To train and evaluate a machine learning–based model for protein– 
DNA binding site prediction, the GraphBind [19] study’s 
Train_573 (573 protein chains) and Test_129 (129 chains) datasets 
are used, along with GraphSite’s [20] Test_181 (181 chains). All 
datasets, curated from BioLiP [74] and filtered with CD-Hit [75] 
for non-redundancy, span different timeframes: Train_573 
(pre-2016), Test_129 (2016–2018), and Test_181 (2018–2021), 
with varying counts of binding and non-binding residues. For 
protein–RNA binding site prediction, Train_495 (495 chains) 
and Test_117 (117 chains) from GraphBind are utilized, also pro-
cessed from BioLiP and filtered with CD-Hit. These datasets con-
tain a higher proportion of non-binding residues compared to 
binding residues, necessitating the use of specialized metrics for 
evaluation, as detailed below. 

The predictive performance of EquiPNAS is compared with an 
array of existing methods for protein–nucleic acid binding site 
prediction. The structure-aware methods such as NucBind [8], 
DNABind [54], GraphBind [19], and GraphSite [20] represent 
the state-of-the-art methodologies in the literature, with Graph-
Bind currently being the top-performing method for protein–RNA 
binding site prediction. Two key metrics Receiver Operating 
Characteristic–Area Under the Curve (ROC-AUC) and Precision-
Recall–Area Under the Curve (PR-AUC) are used for this compar-
ison, which provides a robust, threshold-independent assessment of



classification models, especially when dealing with imbalanced data-
sets. The ROC curve plots the true positive rate (TPR) against the 
false positive rate (FPR), whereas the PR curve plots precision 
(positive predictive value) against recall (TPR) at different thresh-
olds. Area Under the Curve (AUC) represents the overall ability of 
the model to distinguish between positive and negative classes, 
where a ROC-AUC of 1.0 indicates perfect classification. 
PR-AUC, which is the area under the Precision-Recall curve, is 
particularly useful for evaluating models on imbalanced datasets 
where the positive class is rarer than the negative class (see Note 5). 
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4 Notes 

1. All the structure-aware methods, such as GraphSite, Graph-
Bind, and EquiPNAS rely on 3D structures of proteins for 
binding site prediction. While the use of experimental struc-
tures shows better accuracy for all the competing methods, 
EquiPNAS experiences a minimal performance drop when 
using AlphaFold2 predicted structures highlighting its robust-
ness and generalizability with predicted input structures. 

2. The accuracy of EquiPNAS predictions correlates with Alpha-
Fold2’s self-estimated accuracy, measured by pLDDT with 
high confidence predictions leading to better ROC-AUC and 
PR-AUC scores. This suggests that the self-estimated accuracy 
of AlphaFold2 models can reliably predict the accuracy of 
EquiPNAS binding site predictions, especially for highly confi-
dent AlphaFold2 structures. 

3. EquiPNAS incorporates pretrained pLM embeddings from the 
ESM-2 model as essential sequence-based features, which play 
a more critical role in performance compared to evolutionary 
features like PSSM and MSA. Excluding pLM features results 
in a significant performance drop; in contrast, removing evolu-
tionary features leads to only minor reductions in accuracy. 
This highlights that pLM embeddings play a major role in 
EquiPNAS’s improved performance, whereas evolutionary fea-
tures contribute only modestly. 

4. The ESM-2 provides a range of pre-trained protein language 
models (pLMs) with sizes from 8 million to 15 billion para-
meters. EquiPNAS uses the largest model, esm2_t48_15-
B_UR50D, with 15 billion parameters by default. 
Interestingly, EquiPNAS with the smallest model, esm2_t6_8-
M_UR50D, performed the worst and the performance consis-
tently improved as the number of parameters increased, 
confirming that the largest model, esm2_t48_15B_UR50D, 
yields the best results for both protein–DNA and protein–
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RNA binding site predictions, showing the significance of large 
LLMs in protein bioinformatics. 

5. While the ROC-AUC achieved by EquiPNAS demonstrates 
high accuracy, the PR-AUC results indicate poorer perfor-
mance overall in terms of binding site prediction. A model 
with high ROC-AUC but low PR-AUC suggests that although 
it is effective at distinguishing between positive and negative 
classes, it struggles with precision, leading to a higher number 
of false positives, in this case, binding residue prediction. This 
discrepancy highlights the need for further optimization in 
refining the precision of EquiPNAS, especially in handling 
imbalanced datasets, to ensure more reliable predictions. 
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69. Steinegger M, Söding J (2017) MMseqs2 
enables sensitive protein sequence searching 
for the analysis of massive data sets. Nat Bio-
technol 35:1026–1028 

70. Mirdita M, Schütze K, Moriwaki Y, Heo L, 
Ovchinnikov S, Steinegger M (2022) Colab-
Fold: making protein folding accessible to all. 
Nat Methods 19:679–682 

71. Jing B, Eismann S, Suriana P, Townshend RJL, 
Dror R (2020) Learning from protein struc-
ture with geometric vector perceptrons. In: 
International conference on learning 
representations 

72. Kingma DP, Ba J (2017) Adam: a method for 
stochastic optimization. https://doi.org/10. 
48550/arXiv.1412.6980 

73. Loshchilov I, Hutter F (2017) SGDR: stochas-
tic gradient descent with warm restarts. 
https://doi.org/10.48550/arXiv.1608.03983 

74. Yang J, Roy A, Zhang Y (2013) BioLiP: a semi-
manually curated database for biologically rele-
vant ligand–protein interactions. Nucleic Acids 
Res 41:D1096–D1103 

75. Huang Y, Niu B, Gao Y, Fu L, Li W (2010) 
CD-HIT suite: a web server for clustering and 
comparing biological sequences. Bioinformat-
ics 26:680–682


