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Abstract

Interactions between proteins and nucleic acids are essential for understanding a wide range of cellular and
evolutionary processes. Recent advancements in protein language models (pLMs), trained on vast protein
sequence data, have revolutionized various predictive modeling tasks, offering unprecedented scalability
and generalizability. Consequently, a number of computational methods have been developed in the recent
past for protein—nucleic acid binding site prediction powered by pLMs. To this end, we recently developed
the EquiPNAS method that integrates pLM embeddings with E(3) equivariant deep graph neural networks
for enhancing accuracy and robustness in predicting protein—-DNA and protein—RNA binding sites, thereby
reducing the dependency on evolutionary information. Here we present an overview of the recent protein—
nucleic acid binding site prediction methods, emphasizing the recent advances in harnessing the potential of
pLMs, and provide a detailed description of the EquiPNAS methodology as well as the necessary materials
and procedures for the computational prediction of protein—-DNA and protein—RNA binding sites.

Key words Protein-DNA binding site prediction, Protein—RNA binding site prediction, Language
models, Graph neural networks

1 Introduction

Proteins interact with nucleic acids, including DNA and RNA, to
perform critical cellular functions such as regulating gene expres-
sion, facilitating DNA replication, and mediating cellular signaling
pathways. The precise identification of these interaction or binding
sites where proteins interact with nucleic acids is fundamental to
understanding these biological processes [1-5]. This understand-
ing has significant implications not only for basic biological research
but also for practical applications in drug design and therapeutic
interventions. While traditional laboratory methods for identifying
these binding sites are effective [6, 7], they are often time-
consuming, expensive, and technically challenging, prompting
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researchers to explore computational approaches for predicting
these sites based on available data. Computational methods for
predicting protein—nucleic acid binding sites can be categorized
into two main types: sequence-based methods [8-15] and
structure-aware methods [8, 16-20]. Sequence-based methods
rely solely on the amino acid sequences of proteins to make predic-
tions about binding affinities and interaction sites. On the other
hand, structure-aware methods utilize 3D structural information
derived from experiments or computational predictions, resulting
in more precise binding site predictions. However, these
approaches frequently depend on limited experimental data from
structural databases such as the Protein Data Bank (PDB) [21],
which may not provide comprehensive coverage for all protein—
nucleic acid interactions. The introduction of AlphaFold2 [22] and
AlphaFold3 [23] significantly expands this landscape by providing
highly accurate structural models for a wide range of proteins and
their interactions, including with nucleic acids. Additionally, the
AlphaFold Database [24] offers a comprehensive repository of
these predicted structures, allowing researchers to access valuable
data that was previously inaccessible. These advancements alleviate
the limitations associated with reliance on PDB and enhance the
predictive capabilities of protein structure modeling [25] and bind-
ing site identification.

Currently, large language models (LLMs) have emerged as
transformative tools in the field of artificial intelligence [26-30],
possessing the capability to comprehend and generate human lan-
guage through the analysis of extensive textual datasets. Their
applications extend across numerous domains, encompassing natu-
ral language processing tasks such as sentiment analysis, language
translation, and content generation [31-33], thereby reshaping
industries ranging from healthcare [34-39] to finance [40-
44]. Notably, in the area of protein—nucleic acid binding site pre-
dictions, LLMs demonstrate significant advancements by lever-
aging their understanding of biological sequences and molecular
interactions. The advent of protein language models (pLMs) [45—
50], which are analogous to natural language processing models
but specifically trained on extensive datasets of protein sequences,
has opened new avenues for predicting protein characteristics and
functions. While the application of pLMs in predicting protein—
nucleic acid binding sites is still in its formative stages, their poten-
tial for enhancing prediction accuracy is considerable
[48, 50]. Research initiatives such as EquiPPIS [51] lay critical
groundwork for advancements in predicting protein—RNA binding
positions.

Although numerous methods have been developed for
protein—nucleic acid binding site prediction, EquiPNAS [52] is
one of the first methods to leverage pLM embeddings for the
effective prediction of both DNA and RNA binding protein
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residues, consistently surpassing state-of-the-art techniques across
an array of widely utilized benchmarking datasets for protein—-DNA
and protein—RNA binding site prediction tasks. This innovative
approach employs a specific type of graph neural network known
as E(3) Equivariant Graph Neural Network (EGNN) [53], which
excels at processing the intricate three-dimensional (3D) nature of
protein structures. By being sensitive to positional, rotational, and
orientational transformations, this model maintains robustness and
accuracy, even when utilizing protein structures predicted by
AlphaFold2 [22] as opposed to those resolved through experimen-
tal methods (see Notes 1 and 2).

2 Method

2.1 Overview of
Existing Protein—
Nucleic Acid Binding
Site Prediction
Methods

Table 1

A selection of state-of-the-

Protein—nucleic acid binding site prediction is a well-studied prob-
lem with numerous methods available in the literature utilizing a
combination of network architectures and features as listed in
Table 1. Currently, the available protein—nucleic acid binding site
prediction methods can be broadly divided into sequence-based
and structure-based approaches. Sequence-based methods, such
as NCBRPred [9], DNAPred [10], and RNABindRPlus [12],
leverage the abundance of protein sequence data to predict nucleic

art, deep learning-based frameworks for protein—nucleic acid binding site

prediction, arranged in descending order by year of publication

Name Year Architecture pLM_Method Protein—DNA/RNA
EquiPNAS (Roche et al.) 2024 EGNN ESM2 Both

CLAPE (Liu et al.) 2024 CNN ProtBert Protein—-DNA
ULDNA (Zhu et al.) 2024 LSTM-attention  ESM2, ProtTrans Protein-DNA
EGPDI (Zheng et al.) 2024 EGNN+GCN-II  ESM2, ProtTrans Protein—-DNA
ESM-NBR (Zeng et al.) 2023 BiLSTM + MLP  ESM2 Both
GLMsite (Song et al.) 2023 GVP-GNN ProtTrans Both
GraphSite (Yuan et al.) 2022 Graph transformer — Protein-DNA
bindEmbed21DL (Littmann et al.) 2021 CNN ProtT5 Both
GraphBind (Xia et al.) 2021 GNN — Both
NCBRPred (Zhang et al.) 2021 BiGRU — Both
NucleicNet (Lam et al.) 2019 ResNet - Protein—RNA
aaRNA (Li et al.) 2014 DenseNet - Protein—RNA
RNABindRPlus (Walia et al.) 2014 SVM — Protein—RNA
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2.2 Significance of
PLMs for Protein—
Nucleic Acid Binding
Site Prediction

acid binding sites. These methods often utilize machine learning
techniques, such as hidden Markov models and bidirectional Gated
Recurrent Units (BiGRUs), to capture patterns from sequence
data. Although these methods are widely applicable, their reliance
solely on sequence information limits their predictive accuracy, as
they miss critical spatial details of protein—nucleic acid interactions.
Structure-based methods, including COACH-D [16], NucBind
[8], and GraphBind [19], incorporate three-dimensional structural
information, which enhances prediction accuracy. By utilizing
structural templates or advanced computational models like graph
neural networks, structure-based methods can better capture the
intricate spatial patterns essential for identifying binding sites.

In recent years, hybrid methods have emerged, combining
both sequence-based and structure-based approaches to improve
prediction outcomes. For instance, DNABind [54] and NABind
[55] integrate machine learning with template-based methods,
while NucBind [8] combines predictions from both COACH-D
[16] and SVMnuc [8]. Graph-based approaches, such as GraphSite
[20] and GLMSite [56], have introduced new levels of sophistica-
tion by encoding secondary structure and spatial positions of
atoms. While these hybrid methods outperform some of the state-
of-the-art deep learning-only based frameworks, their hybrid
approaches and high dependence on the quality of the templates
make them susceptible to orphan proteins with low homology
depths. However, with the recent surge in the availability of various
families of protein language models such as ESM and ProtTrans, an
array of deep learning—based binding site prediction methods have
emerged as shown in Table 1. Methods such as EquiPNAS [52],
CLAPE [57], ULDNA [58], EGPDI [4], ESM-NBR [59], and
bindEmbed21DL [60], utilizing these language model embed-
dings, have surpassed those without them in terms of prediction
accuracy, reducing the overall dependency on evolutionary infor-
mation for binding site prediction task [61].

While computational methods have advanced in predicting protein
and nucleic acid binding sites, significant challenges persist, partic-
ularly in effectively utilizing protein-related data. Sequence-based
approaches, which depend heavily on evolutionary information,
often struggle with orphan proteins and encounter difficulties
with intrinsically disordered proteins (IDPs) and regions (IDRs)
due to their unstable and dynamic structures [62]. Additionally,
many existing techniques rely on manually curated features that
demand domain-specific expertise and may miss critical biological
insights [17].

In contrast, protein language models (pLLMs) present notable
advantages in protein—nucleic acid binding predictions. Using self-
supervised learning, pLMs can capture long-range dependencies
and structural information from sequences without requiring
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manual feature engineering [63]. These large language models,
originally designed for natural language tasks like translation and
question-answering, have evolved into biological language models
due to the linguistic parallels between human and biological lan-
guages. Through transfer learning, these models excel at capturing
the structure and function of biological molecules such as proteins,
creating rich feature representation from large datasets of protein
sequences, which proves to be significant for binding site prediction
tasks (see Notes 3 and 4). This approach minimizes the reliance on
evolutionary data and enables more accurate and generalizable
embeddings [64].

However, in the context of binding site prediction, especially
with nucleic acid ligands, the information derived from pLMs
should account for the interactions between proteins and nucleic
acids. A promising approach can be the potential incorporation of
multimodal learning, where pLMs designed for DNA and RNA
sequences [65, 66], or a platform like BioSeq-BLM, capable of
analyzing DNA, RNA, and protein sequences using a range of
biological language models [67 ] can be leveraged. This is especially
valuable for improving prediction accuracy and efficiency when
dealing with highly flexible molecules like RNA [61].

The primary objective of the EquiPNAS method is to accurately
predict nucleic acid (both DNA and RNA)-binding residues for a
given input protein 3D structure as shown in Fig. 1. The prediction
framework follows a structured methodology that consists of three
key components. The first component is the graph representation
of the protein, which involves constructing a graph in which nodes
correspond to individual residues and edges denote interactions
among them. This graph structure eftectively captures the spatial
and relational information inherent to the protein. The second
component involves feature generation for both nodes (residues)
and edges (interactions) within the graph. This includes the extrac-
tion of sequence-based and structure-based information, alongside
the utilization of protein language model (pLM) embeddings
derived from the ESM-2 model [47], thereby enriching the data
set available for predictive purposes. The final component employs
an E(3) equivariant graph neural network (EGNN) to process the
graph representation and make binding site predictions. By lever-
aging the coordinate information from the input monomer in
conjunction with the generated features, the EGNN performs
graph node classification, estimating the probability of whether
each residue acts as a binding site for the corresponding nucleic
acid as annotated in Fig. 1. In the subsequent sections, each of
these components will be explored in detail, illuminating their
significance within the overarching EquiPNAS architecture and
the enhanced predictive capabilities they provide.
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Fig. 1 Experimental structure of (a) protein-RNA complex (PDB ID: 5HR7_B) and (b) protein—DNA complex
(PDB ID: 4ZM2_B) with proteins shown in surface representation. Each residue of the protein structure is color
coded according to its predicted probability score (p) by EquiPNAS, visualizing the correlation between
EquiPNAS predictions and experimentally derived binding sites

2.3.1 Protein Graph
Representation

Protein as a Graph

Interacting Residue Pairs

2.3.2 Feature Generation

Sequence-Based Features

In the EquiPNAS framework, proteins are represented as graphs
wherein each residue is depicted as a node. An edge is established
between two nodes if the Ca atoms of the corresponding residues
are within a defined distance threshold, thus transforming the
protein structure into an interactive network of components.

Residues are classified as interacting based on specific criteria.
Notably, the distance between their Ca atoms must be less than
or equal to 14 A for DNA-binding interactions and 15 A for
RNA-binding interactions. Furthermore, the residues must be at
least six positions apart within the protein sequence. This require-
ment ensures that only relevant interactions are captured, offering a
focused representation of the protein’s binding potential. Through
this graph-based approach, EquiPNAS adeptly captures both spa-
tial relationships and interaction dynamics, facilitating accurate
predictions of P-NA binding sites.

The generation of sequence-based features is essential for the effec-
tive representation of proteins. Each amino acid is encoded using a
simple binary (one-hot) encoding scheme for the 20 standard
amino acids. Additionally, a Position-Specific Scoring Matrix
(PSSM) is obtained through PSI-BLAST [68], with subsequent
normalization of values to maintain consistent scaling. To augment



Structure-Based Features

Edge Features

Coordinate Features

2.4 Architecture
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the feature set, a Multiple Sequence Alignment (MSA) is generated
using MMseqs2 [69] and subsequently refined by ColabFold [70]
pipeline to provide distilled evolutionary information to the model.
Finally, the language model embeddings have been extracted from
ESM-2, a pre-trained protein language model (pLM) containing
15 billion parameters represented by a feature dimension of 5120
for each residue in the protein sequence.

Structure-based features capture critical aspects of the protein’s
topology and spatial orientation [71]. One-hot encoding is utilized
for secondary structure and solvent accessibility, indicating the
exposure of each residue to the surrounding environment. Further-
more, geometric relationships—such as bond angles and the posi-
tioning of residues in three-dimensional space—are meticulously
recorded. The framework also tracks the number of residues in
contact and computes their spatial positions relative to the protein’s
center, thus refining the understanding of interaction dynamics.

For edge features, the framework calculates the ratio of sequence
distance to three-dimensional (3D) distance for each pair of inter-
acting residues. This ratio provides valuable insights into the spatial
relationships between residues, significantly contributing to the
overall predictive capability of the framework.

Finally, coordinate features leverage the 3D coordinates (x, y, z) of
each residue’s Ca atom, effectively capturing the spatial arrange-
ment within the protein structure. By integrating these diverse
feature sets, EquiPNAS substantially enhances its ability to accu-
rately predict protein—nucleic acid binding sites.

The core architecture of EquiPNAS is constructed utilizing deep E
(3)-equivariant graph neural networks (EGNNSs), specifically tai-
lored to predict protein—-DNA and protein—RNA binding sites.
These networks operate by leveraging features pertinent to the
protein’s structure and its spatial coordinates, such as the positions
of Ca atoms in three-dimensional space. The architecture com-
prises multiple layers of equivariant graph convolution layers
(EGCL), which simultaneously update both the node features,
and the coordinates of the protein based on the interactions
(edges) among residues.

The process can be outlined as follows: (1) Node representation:
Each node, representing a residue in the graph, encompasses fea-
tures (such as the amino acid type) and coordinates (indicating its
spatial position). These attributes undergo transformation across
several layers of the network (2) Feature and coordinate updates:
The layers update the node features and coordinates by utilizing
edge information, including the distances between residues.
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(3) Interaction learning: Within each layer, the model learns how
residues interact based on the provided features, continuously
refining its predictions to enhance accuracy.

The EGNN employs 12 layers of transformations, each char-
acterized by 768 hidden dimensions. To mitigate the risk of over-
fitting, dropout regularization is applied at every layer, ensuring the
model generalizes effectively beyond the training data. Ultimately,
the model predicts the likelihood of each residue acting as a binding
site for nucleic acids (DNA or RNA), condensing all acquired
information into a singular predictive score. The training procedure
of this model is conducted using ADAM optimizer [72 ] and cosine
annealing [ 73] for dynamic adjustment of learning rates. The train-
ing process extends for up to 40 epochs on a high-performance
NVIDIA Graphics Processing Unit (GPU), ensuring robust
learning from the datasets. To assess the efficacy of the EGNN
structure in enhancing prediction accuracy, baseline models devoid
of equivariant updates were also trained for comparative purposes.
This allows for a thorough evaluation of the model’s performance
enhancements attributable to the incorporation of equivariant
features.

3 Materials

To train and evaluate a machine learning—based model for protein—
DNA binding site prediction, the GraphBind [19] study’s
Train_573 (573 protein chains) and Test_129 (129 chains) datasets
are used, along with GraphSite’s [20] Test_181 (181 chains). All
datasets, curated from BioLiP [74] and filtered with CD-Hit [75]
for non-redundancy, span different timeframes: Train_573
(pre-2016), Test_129 (2016-2018), and Test_181 (2018-2021),
with varying counts of binding and non-binding residues. For
protein—RNA binding site prediction, Train_495 (495 chains)
and Test_117 (117 chains) from GraphBind are utilized, also pro-
cessed from BioLiP and filtered with CD-Hit. These datasets con-
tain a higher proportion of non-binding residues compared to
binding residues, necessitating the use of specialized metrics for
evaluation, as detailed below.

The predictive performance of EquiPNAS is compared with an
array of existing methods for protein—nucleic acid binding site
prediction. The structure-aware methods such as NucBind [8],
DNABind [54], GraphBind [19], and GraphSite [20] represent
the state-of-the-art methodologies in the literature, with Graph-
Bind currently being the top-performing method for protein—-RNA
binding site prediction. Two key metrics Receiver Operating
Characteristic—Area Under the Curve (ROC-AUC) and Precision-
Recall-Area Under the Curve (PR-AUC) are used for this compar-
ison, which provides a robust, threshold-independent assessment of
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classification models, especially when dealing with imbalanced data-
sets. The ROC curve plots the true positive rate (TPR) against the
false positive rate (FPR), whereas the PR curve plots precision
(positive predictive value) against recall (TPR) at different thresh-
olds. Area Under the Curve (AUC) represents the overall ability of
the model to distinguish between positive and negative classes,
where a ROC-AUC of 1.0 indicates perfect classification.
PR-AUC, which is the area under the Precision-Recall curve, is
particularly useful for evaluating models on imbalanced datasets
where the positive class is rarer than the negative class (se¢ Note 5).

4 Notes

1. All the structure-aware methods, such as GraphSite, Graph-
Bind, and EquiPNAS rely on 3D structures of proteins for
binding site prediction. While the use of experimental struc-
tures shows better accuracy for all the competing methods,
EquiPNAS experiences a minimal performance drop when
using AlphaFold2 predicted structures highlighting its robust-
ness and generalizability with predicted input structures.

2. The accuracy of EquiPNAS predictions correlates with Alpha-
Fold2’s self-estimated accuracy, measured by pLDDT with
high confidence predictions leading to better ROC-AUC and
PR-AUC scores. This suggests that the self-estimated accuracy
of AlphaFold2 models can reliably predict the accuracy of
EquiPNAS binding site predictions, especially for highly confi-
dent AlphaFold2 structures.

3. EquiPNAS incorporates pretrained pLM embeddings from the
ESM-2 model as essential sequence-based features, which play
a more critical role in performance compared to evolutionary
features like PSSM and MSA. Excluding pLM features results
in a significant performance drop; in contrast, removing evolu-
tionary features leads to only minor reductions in accuracy.
This highlights that pLM embeddings play a major role in
EquiPNAS’s improved performance, whereas evolutionary fea-
tures contribute only modestly.

4. The ESM-2 provides a range of pre-trained protein language
models (pLMs) with sizes from 8 million to 15 billion para-
meters. EqQuiPNAS uses the largest model, esm2_t48_15-
B_URS50D, with 15 billion parameters by default.
Interestingly, EQuiPNAS with the smallest model, esm2_t6_8-
M_URS0D, performed the worst and the performance consis-
tently improved as the number of parameters increased,
confirming that the largest model, esm2_t48_15B_UR50D,
yields the best results for both protein—-DNA and protein—
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RNA binding site predictions, showing the significance of large
LLM:s in protein bioinformatics.

5. While the ROC-AUC achieved by EquiPNAS demonstrates

high accuracy, the PR-AUC results indicate poorer perfor-
mance overall in terms of binding site prediction. A model
with high ROC-AUC but low PR-AUC suggests that although
it is effective at distinguishing between positive and negative
classes, it struggles with precision, leading to a higher number
of false positives, in this case, binding residue prediction. This
discrepancy highlights the need for further optimization in
refining the precision of EquiPNAS, especially in handling

imbalanced datasets, to ensure more reliable predictions.
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