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Abstract. Knowledge graphs (KGs) serve as powerful tools for orga-
nizing and representing structured knowledge. While their utility is 
widely recognized, challenges persist in their automation and complete-
ness. Despite efforts in automation and the utilization of expert-created 
ontologies, gaps in connectivity remain prevalent within KGs. In response 
to these challenges, we propose an innovative approach termed “Medi-
cal Knowledge Graph Automation (M-KGA)”. M-KGA leverages user-
provided medical concepts and enriches them semantically using Bio-
Portal ontologies, thereby enhancing the completeness of knowledge 
graphs through the integration of pre-trained embeddings. Our approach 
introduces two distinct methodologies for uncovering hidden connections 
within the knowledge graph: a cluster-based approach and a node-based 
approach. Through rigorous testing involving 300 frequently occurring 
medical concepts in Electronic Health Records (EHRs), our M-KGA 
framework demonstrates promising results obtained 50% accuracy, 57% 
F1-score, 50% recall and 65% precision on a cluster base approach. Sim-
ilarly, we achieve 85% accuracy, 87% F1-score, 89% recall and 88% pre-
cision on a node base approach indicating its potential to address the 
limitations of existing knowledge graph automation techniques. 

Keywords: Knowledge Graphs · Ontologies · Healthcare · Decision 
Support systems 

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025 
S. Tiwari et al. (Eds.): KGSWC 2024, LNCS 15459, pp. 62–77, 2025. 
https://doi.org/10.1007/978-3-031-81221-7_5 



Accelerating Medical Knowledge Discovery 63

1 Introduction 

While once considered a relic of early Artificial Intelligence (AI) research [ 1], 
knowledge graphs (KGs) have experienced a remarkable resurgence in recent 
years. Knowledge graphs, which serve as the foundation of symbolic AI, consist 
of interconnected knowledge pertaining to many domains like medical, finance, 
commerce, and education [ 2]. Particularly in medicine, KGs have emerged as 
indispensable tool. 

KGs offer numerous advantages over traditional relational databases, pri-
marily stemming from their diverse array of nodes and the ability to establish 
connections between them. This versatility lends itself to applications ranging 
from search engine optimization to recommendation systems, knowledge discov-
ery, and research facilitation. However, the process of constructing KGs is inher-
ently labor-intensive, especially in the intricate domain of medicine, despite its 
profound significance. At its core, a KG comprises facts, often represented as 
triplets, each consisting of a relationship and two nodes. With KGs consisting 
of millions to billions of these triplets, their aggregation holds immense poten-
tial for information discovery, data integration, and effective management. Yet, 
crafting KGs, particularly within the medical domain, presents formidable chal-
lenges due to the complexity of medical concepts and relationships between them. 
Compounding these challenges is the prevalence of unstructured medical data, 
further complicating the KG creation process. 

Various methodologies for graph creation have emerged in recent years, rang-
ing from automatic to semi-automated and manual approaches [ 3]. While these 
methods addresses some challenges. However they often suffer from significant 
deficiencies such as they lack standardized platforms or code for graph creation 
despite offering graphical methodologies. Furthermore, some approaches utilize 
hospital notes to generate nodes and relations, they overlook the potential ben-
efits of data augmentation, resulting in incomplete graphs. Additionally, there 
is currently no promising technology capable of generating graphs in real-time, 
further impeding the process. 

In response to these challenges, our proposed approach, Medical Knowledge 
Graph Automation (M-KGA), effectively addresses these obstacles by seamlessly 
processing both structured and unstructured data in real-time. The preprocess-
ing steps involve Named Entity Recognition (NER)-based keyword extraction 
from unstructured data using the SciSpacy library [ 4], tailored for scientific and 
biomedical content. Subsequently, a knowledge filtration phase eliminates dupli-
cates and extraneous terms before rapidly generating the knowledge graph using 
Neo4j’s query language, ‘Cypher’. Furthermore, we leverage Bioportal [ 5] for data 
augmentation, enriching medical terms semantically via incorporating metadata 
such as definitions, synonyms, and hierarchies. Following data augmentation, a 
semantic information filtration phase removes duplicates and non-English terms, 
enhancing the quality of the knowledge graph. To uncover concealed linkages and 
associations between medical terms, we utilize the pre-trained contextual word 
embedding model Clinical BERT [ 6], trained on the MIMIC-III dataset. This 
facilitates the discovery of valuable insights within the data and contributes
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to the creation of a comprehensive knowledge graph. We proposed cluster-based 
and node-based comparison methods to unveil hidden relationships by exploiting 
Clinical BERT within the knowledge graph. 

Furthermore, our proposed approach enables users to effortlessly navigate 
complex features and generate autonomous knowledge graphs. Consequently, 
users can efficiently generate KGs based on input data, eliminating the need for 
prolonged waiting periods. Additionally, users have access to the generated files 
for further study and analysis. Ultimately, the discovery of hidden connections 
through our approach aids clinicians in gaining a deeper understanding of patient 
symptoms. Also it is benefiting insurance companies in identifying fraudulent 
claims and examining inaccurate forecasts of medical codes. 

In summary, our research makes the following contributions: 

i. Proposed a significant approach for automating the construction of a Medical 
Knowledge Graph, known as Medical Knowledge Graph Automation (M-
KGA). 

ii. Utilization of node-based and cluster-based comparisons for KG completion. 
iii. Conducting rigorous evaluation to demonstrate the efficiency of our tech-

nique and the resulting knowledge graph. 

Further, the paper is arranged as: Related work on KG automation in the 
medical and other fields is discussed in Sect. 2. The proposed methodology to 
create KG is presented in Sect. 3. The result and assessment is describe in Sect. 4, 
conducted on several medical use cases. Finally, we have comprehensively pre-
sented the limitation, future direction and conclusion in Sect. 5. 

2 Related Work 

Over the past few years, numerous knowledge graph (KG) automation techniques 
have emerged across sectors like business, healthcare, finance, and education, 
each designed for specific use cases. KG creation in healthcare, however, faces 
unique challenges due to the data’s diversity, volume, and complexity. While 
KG completion methods are valuable for uncovering connections using machine 
learning, they are rarely applied. Additionally, there is no platform that provides 
a fully automated KG for any specific area within the medical field. 

Medical KG are built using a variety of approaches, including human, semi-
automatic, and automated methods, as well as modern and conventional pro-
cedures. An important example of a semi-automated graph generation pro-
cedure that made use of scientific literature and pre-existing datasets is the 
COVID-19 graph [ 7]. Evidence mining, hypothesis ranking, and relation extrac-
tion were carried out using hierarchical spherical embeddings, ontology-enriched 
text embeddings, and cross-media semantic-structure representation. A mecha-
nism for producing reports and responding to inquiries was also devised. 7,230 
diseases, 9,123 chemicals, and 50,864 genes are included in the final KG. There 
are 1,725,518 chemical-gene relationships, 5,556,670 chemical-disease ties, and 
77,844,574 gene-disease links.
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Another method for creating healthcare knowledge graphs was available; 
it consisted of eight modules and produced a KG semi-automatically uti-
lizing 16,217,270 de-identified clinical visit data from 3,767,198 patients [ 8]. 
Entity recognition, entity normalization, relation extraction, property calcula-
tion, graph cleaning, related-entity ranking, and graph embedding are among 
the processes in the process. To store extra context in healthcare graphs, the 
quadruplet form is used instead of the traditional triplet. A medical KG of 
22,508 entities and 579,094 quadruplets with nine distinct entity kinds was the 
end result. 

Knowledge graphs are widely used in fields such as medicine, diagnosis, and 
fraud detection. A Fraud, Waste, and Abuse (FWA) detection system, utilizing a 
Chinese medical knowledge graph, was developed to identify fraudulent claims in 
insurance [ 9]. Entities were extracted using deep learning techniques, with human 
validation ensuring accuracy. The graph, built from medical texts and drug labels 
from the Chinese Food and Drug Administration, comprised 1,616,549 nodes and 
5,963,444 relations, achieving a 70% accuracy in detecting fraud claims. 

Knowledge Graphs are often constructed for text data, which makes up 80% 
of all available data. The Semi-automated KG Construction and Application 
(SAKA) framework [ 10] is an interesting use case that utilizes both auditory and 
structured data for KG generation. The audio-based KG Information Extraction 
(AGIE) technique employs Voice Activity Detection (VAD), Speaker Diarization 
(SD), and the Medical Information Extractor (MIE) model to extract entities. 
Additionally, a system was developed to handle user inquiries and ensure the 
data remains relevant and updated. Testing on datasets like LibriSpeech, Vox-
Celeb, and doctor-patient dialogues showed promising results. An automated 
medical knowledge graph for “Subarachnoid hemorrhage” used over a thousand 
case records, enhanced by Bioportal ontologies across several layers, including 
semantic, statistical, and predictive knowledge layers [ 11]. Although the source 
code is publicly available, adapting it for other medical fields is challenging, 
as switching ontologies alone isn’t enough, and word embeddings need retrain-
ing. The authors also overlooked knowledge graph (KG) completion. Another 
automation method for evidence-based medicine focused on cerebral aneurysm 
and COVID-19, using peer-reviewed ontologies and clustering models with deep 
learning techniques like RNN and BioBERT [ 12]. Accuracy reached 93% for 
COVID and 82% for aneurysm datasets. 

The majority of approaches depict the KG creation process in a manual or 
semi-automated manner, as the literature demonstrates. The majority of them 
are tailored to specific use cases and the medical field, and they rarely incorporate 
the KG completion technique, which can harness the potential of BIG data to 
uncover facts. Although the generated KGs are indeed helpful in many ways, 
they cannot be applied generally. Furthermore, there isn’t a platform that can 
handle user requests to validate specific use cases and create the appropriate 
KG in a matter of minutes or seconds. Our method, which offers automation, 
is distinct and creative in that it uses expert-created ontologies to produce a 
full and comprehensive KG while satisfying the user’s request for a specific KG
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generation. People can benefit from the approach in a variety of fields, and the 
KGs produced by our method can be used to enhance the research of others. 

3 Methods 

Our proposed approach is designed in mutiple steps. Figure 1 illustrates the 
entire workflow of the Medical-Knowledge Graph Automation (M-KGA). This 
approach acquire data in two formats: structured and unstructured. It then 
applies various natural language processing (NLP) techniques to process the 
data. Initially, Bioportal is utilized to identify and enhance medical concepts 
with semantic information. The fetched data is filtered and used to create nodes 
in a knowledge graph (KG) along with their relationships. A pre-trained con-
textual word embedding model Clinical BERT is leaveraged to discover hidden 
connections for KG completion. Finally, a Cypher query file is generated to facil-
itate the creation of the semantically enriched KG in Neo4j. The details of each 
individual stage are outlined below. 

3.1 User Input 

The M-KGA technique allows users to input medical data in two distinct for-
mats: structured and unstructured. When we say “structured,” we mean that 
the user defines the medical terms with precision. The data does not contain 
any interconnected notions. Here is an example of a text that is organized in a 
structured manner: 

Structured Input Example: 
[‘fever’, ‘diarrhea’, ‘insomnia’, ‘severe acute respiratory syndrome’, ‘dia-
betes’] 

Unstructured text, on the other hand, is free natural language text that 
is understandable to people but not to computers. It is the text written by a 
medical professional for instance diagnosis of a patient. An illustration is: 

Unstructured Input Example: 
[“If you have a condition called polyuria, it’s because your body makes more 
pee than normal. Adults usually make about 3 liters of urine per day. But 
with polyuria, you could make up to 15 liters per day. It’s a classic sign of 
diabetes.”] 

The developed code can take data in both formats; if structured text is 
needed, it will ask for the data numerous times. If unstructured formatted text 
is needed, it will accept it all at once and find out the concepts on its own.
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Fig. 1. Medical-Knowledge Graph Automation Approach (M-KGA). 

3.2 NLP-Based Knowledge Filtration 

We propose two NLP-based approaches for knowledge filtration: i) NER-based 
keyword extraction, and ii) knowledge filtration. The NER-based extraction 
identifies medical concepts from unstructured text and converts them into a 
structured format. Then, the knowledge filtration process selects the most rele-
vant information from the extracted data. Each process is detailed below: 

3.2.1 NER-Based Keyword Extraction and Knowledge Filtration 
An unstructured document is input to extract clinical entities using an NER-
based keyword function. This process populates nodes in the medical knowledge 
graph, integrating entities like diseases, treatments, and clinical concepts. We 
used the SciSpacy library [ 6], an extension of spaCy tailored for scientific and 
biomedical text, specifically leveraging the en core sci sm model optimized for 
this domain. The NER-based function processes the unstructured text to extract
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clinical concepts, producing a list of entities that can be seamlessly integrated 
into the medical knowledge graph. 

Subsequently, acquiring a list of clinical or medical concepts, knowledge fil-
tration function would be applied to choose only relevant and prominent con-
cepts. The concepts that are previously extracted may contain some redundan-
cies. Knowledge Filtration looks for duplicates in the data by Fuzzy-matching 
and filters it further. Additionally, the knowledge filtration assists the medical 
practice in decision making towards building a comprehensive KG by includ-
ing and excluding certain concepts. The concept that is extracted during the 
NER-based keyword extraction process may be not relevant to current problem, 
disease diagnosis or treatment. By mapping these words to Bioportal Ontologies, 
more filtering is applied. 

3.3 Semantic Information Extraction 

The organized, enhanced, and sifted material from the preceding stage is used 
in the semantic information extraction step. Mapping these terms to expert-
created Bioportal ontologies [ 5] allows you to retrieve the semantically enriched 
information using the Bioportal REST API. Our approach’s strength is rooted 
in the notion that M-KGA is not exclusive to any particular medical condition 
or illness. Instead, it attempts to enrich data without being limited to particular 
ontologies. 

Different sorts of semantically enriched information are retrieved from ontolo-
gies Such as Synonyms words, phrases, or morphemes that share the same mean-
ing as the term being mapped, Definition which is a group of terms or phrases 
that provide a longer description of the term that is mapped. In this process, 
the two types of semantic information extraction took place. 

3.4 Semantic Knowledge Filtration 

Since our method is not limited to a specific medical condition or issue, M-
KGA anticipates a high degree of data diversity, variation, and redundancy. In 
this step, data that has been semantically enhanced is filtered using a variety 
of techniques. The method attempts to translate data from many languages 
to English, eliminate duplicates from the retrieved data, and then use fuzzy-
matching to further filter the findings. 

3.4.1 Translation, Duplicate Removal and Fuzzy Matching 
The data used in the enrichment stage is multilingual and comes from many 
ontologies. To translate this material, we exploited the ‘translate’ library in 
python. We need to take this action since, in the absence of translation, we will 
lose some important information. Text that we identified as non-English was 
translated into English; if the language cannot be identified or there are any 
exceptions, the text is eliminated. The subsequent stage does not include this 
deleted portion. Since the non-English text cannot be used in any further steps,
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it has been removed. Pre-trained model employed to find hidden connections 
are unable to comprehend the data, which will result in problems. Aside from 
that, this step will address the limitations imposed by Neo4j on the creation of 
a Cypher Node ID. 

This duplicate removal step takes the enriched data from the previous stage 
and tries to remove the duplicates. As we are fetching data from 1000+ Bioportal 
ontologies, we will likely data massive duplications. In this step we used semantic 
information, changed all synonyms and definitions to lower case and then used 
simple set operation on python to remove redundant entries. 

An expansion of the duplicate removal process is fuzzy matching. Certain 
enriched data may contain semantically comparable text that cannot be removed 
with set procedures. In an effort to maintain the content’s uniqueness, we 
employed this strategy. This also fixes problems in the ID creation stage and 
greatly aids in the removal of semantically duplicate items. 

3.5 Knowledge Graph Creation 

Creating a KG is a challenging endeavor in and of itself because it requires 
extreme caution while creating nodes and interactions. The KG was developed 
in Neo4j’s Cypher query language. The format has unique limitations. The node 
ID in Cypher ought to begin with a character rather than a number, special char-
acter, non-English phrase, etc. Taking these factors into account, we produced 
graphs. This will be further explained in the steps following. 

3.5.1 Node ID Creation 
Nodes ID was developed with the understanding that hundreds of connections— 
both hidden and provided by the ontology—must be made between nodes. We 
translated the Node content or enriched data into ID by adhering to the ID 
requirements for different KG formats in order to reduce the amount of comput-
ing resources required for ID retrieval for comparison and connection formation. 
As previously stated, the Node ID in Cpyher only accepts data in English format; 
special characters are not permitted, etc. Using this method, the enriched data 
on .polyuria is transformed into IDs such as .excessivesecretionofurine from the 
definition of ’excessive secretion of urine’. Therefore, we don’t have to go look 
for the ID connected to that Node every time we need to establish a connection. 
All we had to do was apply our function and turn the content into ID. 

3.5.2 Nodes and Relationships Creation 
This step builds the nodes for the structured and unstructured (converted to 
structured) data, as well as the semantically enriched data, according to the 
ID creation technique previously outlined. Different kinds of nodes have been 
created. Synonyms, medical concepts, definitions and so on are among the cat-
egories. Depending on its kind, every node in the graph is represented by a 
distinct color. The node displays the content. All KG nodes are constructed in 
this step.
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After node creation, relationships among different nodes based on the expert 
crafted ontology-provided connections are created. With each iteration, a seman-
tically enriched node is created with ID, the connection creation step, uses the 
ID and connects the node with the main medical concept. Same is the case for 
all semantically enriched data. Here, relationships are also of different types such 
as synonyms, definitions, and so on. Relationships are labeled and directed. 

3.6 Hidden Connection Extraction 

The earlier processes collect user data, filter it, obtain enriched data from ontolo-
gies produced by experts, and produce a knowledge graph. In addition to the 
links supplied by experts, our method looks for hidden connections absent from 
ontologies. The ontologies offer richer medical terminology, but it might be chal-
lenging to determine whether or not these concepts are related to one another. 
Exist any connections that could be omitted to improve the analysis of the med-
ical data? We made knowledge graphs, but how do we complete them? 

To address these problems, we attempted using KG embeddings for our 
method, which can predict links given KG triplets. Sadly, these methods are 
ineffective for tiny graphs. Our method can create both large and tiny KG in 
response to user requests; nevertheless, KG embeddings are unable to function 
on small networks because these models need thousands of triplets. Therefore, in 
order to create connections, we took advantage of word embeddings to determine 
a word’s meaning and relationships with other words. It should be highlighted 
that our method looks for connections with other medical concepts and their 
enriched content rather than trying to establish links with its semantic enriched 
nodes, which are all already connected. 

3.6.1 Clinical BERT Embeddings 
We took advantage of Clinical BERT embeddings to extract vector representa-
tion of medical concepts and their contextual meta-data. We utilized the Clini-
cal BERT embeddings, which are trained on a sizable medical corpus, in place 
of creating our own model. Medical Information Mart for Intensive Care III 
(MIMIC-III) is used to train the model. We took use of their pretrained nature 
and open-source nature to comprehend medical concepts and their interrelation-
ships. We calculated the degree of similarity between various terms and built 
relations that led to knowledge graph completion based on the distance and 
user-defined threshold. 

3.6.2 Cluster-Based Comparison 
We offered two methods for locating the links that are buried in knowledge 
graphs. We treated every medical concept and its semantically enriched data 
as a cluster in a cluster-based method. Using all available semantic informa-
tion, we composed a paragraph and then used the Clinical BERT model to look 
for embeddings. Clinical BERT implementation is not scalable and introduces 
mistakes on big clusters. In order to address this method, we segmented the
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paragraph into chunks, handled exceptions, fetched embeddings for each chunk 
and then divided by the total number of pieces. A cluster is mapped with other 
clusters according to a user-defined threshold. The threshold and the degree to 
which users require specific or general connections are key factors here. In actu-
ality, the threshold is the separation between the clusters. To determine whether 
clusters have strong relationships or not, users can choose the lower thresh-
old. Cluster-based comparisons or connections lead to KG completion quickly 
and at low computing cost. This step introduces further relationships named 
’embedding match cluster’ in the KG. Figure 2 is an example of Cluster-based 
comparison method. 

Fig. 2. Cluster-based comparison on Medical diagnosis use-case. 

3.6.3 Node-Based Comparison 
In contrast to the cluster-based approach, the node-based technique looks for 
connections with other nodes in the cluster. Using word embeddings, this com-
pares a single node to every other cluster’s node based on nodes. The lack of a 
large amount of text on the nodes means that scalability is not an issue. Fur-
thermore, this method requires around n2 time and is computationally costly, as 
opposed to the cluster-based method. Because the node-based technique allows 
us to determine the exact match of the link, it is much easier to understand. 
Here, connections are also established according to user-specified thresholds. 
Depending on the size of the graph, connecting nodes takes minutes. Figure 3 
shows the result depiction of this method. This adds relationship named ‘embed-
ding match node’ in the KG.
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Fig. 3. Node-based comparison on Medical diagnosis use-case. 

3.7 Use Case Testing 

To determine the efficacy of our method, we ran three separate use cases through 
it. Three use cases were selected: medical claims, medical diagnostics, and med-
ical coding. We used the dataset “CodiEsp” [ 13] to test each of these use cases. 
Experts annotate CodiEsp data with ICD-10 codes. To test our strategy, we 
used the discharge summaries along with their annotations. 

3.7.1 Medical Coding, Claim Verification and Medical Diagnosis 
We used several synopses, medical terms, and related medical codes We extracted 
the medical terms contained in the descriptions of the medical codes after con-
verting them into descriptions. We then used our Medical-Knowledge Graph 
Automation (M-KGA) technique to see the outcomes after passing all the med-
ical concepts-such as discharge summaries or descriptions of diagnostic codes— 
through it. True positive and true negative cases were used in our tests. We 
took the summaries, applied our method to their annotations, annotated the 
summaries once again with fictitious examples, and retested the method. The 
approach demonstrated its usefulness through visualization and proved satisfac-
tory in all cases. We also experimented with various thresholds. 

We also tested the method for medical diagnosis using CodiEsp data. Each 
medical summary’s knowledge graph was made using the concepts that were 
extracted from the summaries using the NER-based keyword extraction stage. 
We applied both node-based and cluster-based comparisons, and we generated 
a complete KG. We presume that any medical ideas included in a summary
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must be related to one another; this relationship will confirm the usefulness 
of our method for completing graphs and offer a far more profound compre-
hension of the relationships taken from ontologies. Using our node-based and 
cluster-based comparisons technique, the strategy demonstrated significance in 
all experiments and most medical terms within the same summary generated 
links. To better understand the approach’s operation, we also put it to the test 
with negative cases as well. 

4 Results, Evaluation and Discussion 

In this section, we present the results obtained from the implementation and 
testing of our proposed Medical Knowledge Graph Automation (M-KGA) app-
roach. The evaluation aims to assess the effectiveness and efficiency of M-KGA 
in constructing comprehensive knowledge graphs from medical concepts pro-
vided by users. We conducted experiments using a diverse set of 300 medical 
concepts to evaluate the performance of our approach across various domains 
within healthcare. 

Table 1. Inter Annotator Agreement (IAA) Among Domain Experts for Node-based 
Annotation 

% of Agreement Cohen’s Kappa Value 
Expert1 Expert2 Expert3 IAA between two Expert 

Expert1 1 94.25% 93.79% Expert1, Expert2 0.86 

Expert2 94.25% 1 94.55% Expert1, Expert3 0.87 

Expert3 93.79% 94.55% 1 Expert2, Expert3 0.86 

Table 2. Inter Annotator Agreement (IAA) Among Domain Experts for Cluster-based 
Annotation 

% of Agreement Cohen’s Kappa Value 
Expert1 Expert2 Expert3 IAA between two Expert 

Expert1 1 92.56% 91.27% Expert1, Expert2 0.85 

Expert2 92.56% 1 91.85% Expert1, Expert3 0.84 

Expert3 91.27% 91.85% 1 Expert2, Expert3 0.84 

In our evaluation, we partitioned the 300 medical concepts into two sets: 150 
for assessing the cluster-based comparison method and another 150 for evaluat-
ing the node-based comparison approach. Each set underwent pairing, facilitated 
by the GPT-3.5 model, to create pairs of medical concepts. These pairs were
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Fig. 4. Node-based verses Cluster-based comparison on Medical diagnosis use-case. 

compiled into an Excel file for annotation by human medical experts. Owing to 
this, we calculated Inter-Annotator Agreement (IAA) assesses how consistently 
multiple annotators (domain experts) can make identical annotation decisions 
for a specific category, playing a vital role in validating and reproducing anno-
tation results. Similarly, We utilized a well- known statistical measurements for 
the evaluation purposes Cohen’s Kappa which is a statistical coefficient that 
quantifies the degree of agreement and reliability in statistical classification. 
It measures the concordance between two annotators (Domain Experts), each 
categorizing items into exclusive categories. Kappa value greater than 0.81% 
presented almost perfect agreements, where as the proposed framework achieve 
almost perfect annotation agreements of over 90% and Cohen’s Kappa over 81% 
among the three domain experts both at Node-based and Cluster-based annota-
tion as shown in Table 1 and Table 2. This indicates the robustness and reliability 
of the “M-KGA” framework in facilitating agreement among domain experts in 
knowledge graph recommendations. 

The experts were tasked with annotating each pair based on measures of 
True Positive (TP), False Positive (FP), True Negative (TN), and False Negative 
(FN), providing valuable insights into the accuracy and performance of our app-
roach. Following the annotation process, we applied both the cluster-based and 
node-based comparison methods to the pairs of medical concepts with thresh-
old=4. Utilizing these methods, we constructed knowledge graphs for each pair 
and analyzed whether they successfully identified connections as annotated by 
the experts. Given that traditional ontologies often struggle to find connections 
among certain medical concepts, our objective was to determine if our approach 
could uncover hidden connections that might otherwise remain undiscovered. 
This analysis aimed to ascertain the efficacy of our proposed methods in aug-
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menting existing knowledge and revealing previously unrecognized relationships 
within the medical domain. 

In Fig. 4, the metrics constructed using True Positive (TP), False Positive 
(FP), True Negative (TN), and False Negative (FN) are presented. Our anal-
ysis focused on evaluating accuracy, F1 score, recall, and precision based on 
these metrics. The comparison depicted in the Fig. 4 highlights the performance 
disparity between the node-based and cluster-based methods. Notably, the node-
based method emerges as the clear frontrunner, exhibiting significantly higher 
accuracy, F1 score, recall, and precision compared to the cluster-based approach. 
This observation underscores the effectiveness of the node-based method in accu-
rately capturing connections within the knowledge graph, ultimately leading to 
superior performance across all evaluated metrics. The observed limitations in 
accuracy, F1 score, recall, and precision of the cluster-based method can be 
attributed to the utilization of Clinical BERT. While Clinical BERT is a power-
ful pre-trained model, its efficacy is constrained by practical considerations such 
as computational resources and sample size limitations. Due to the vast scale of 
clusters within the knowledge graph, it becomes necessary to divide them into 
smaller, manageable chunks for processing. However, this segmentation intro-
duces a challenge: the loss of contextual coherence across multiple chunks. As 
a consequence, the embeddings derived from fragmented clusters may lack the 
holistic context necessary for accurate representation and inference, resulting in 
diminished performance metrics. This phenomenon underscores the importance 
of considering both the capabilities and limitations of pre-trained models when 
designing and implementing knowledge graph construction methodologies. 

In addition to evaluation measures, transparency and time are critical fac-
tors in assessing the effectiveness of the M-KGA approach. As depicted in Figs. 2 
and 3, transparency refers to the clarity and comprehensibility of the constructed 
knowledge graph. The node-based method excels in transparency by establishing 
direct connections between nodes, thereby presenting a clear and intuitive rep-
resentation of relationships. In contrast, the cluster-based approach may exhibit 
less transparency, as it tends to add fewer relationships, resulting in a less explicit 
depiction of connections. Time, on the other hand, pertains to the efficiency of 
the knowledge graph construction process. The cluster-based approach demon-
strates an advantage in terms of time efficiency, requiring less computational 
resources and processing time compared to the node-based method. However, 
this efficiency comes at a cost, as the cluster-based approach may sacrifice per-
formance metrics such as accuracy, F1 score, recall, and precision, as previously 
discussed. While the cluster-based approach offers a quicker construction pro-
cess, it may compromise transparency and performance. In contrast, the node-
based method prioritizes transparency and performance, albeit at the expense 
of increased computational complexity and time consumption. Thus, the choice 
between these approaches should be carefully considered based on the specific 
requirements and priorities of the knowledge graph application.
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5 Conclusion and Future Work 

In conclusion, this study introduces the Medical Knowledge Graph Automa-
tion (M-KGA) approach, which aims to address the challenges associated with 
automating the construction of knowledge graphs (KGs) and enhancing their 
completeness. Leveraging user-provided medical concepts and BioPortal ontolo-
gies, M-KGA enriches the semantic content of KGs using pre-trained embed-
dings, thereby facilitating a more comprehensive representation of structured 
medical knowledge. Our approach incorporates two distinct methodologies, 
namely a cluster-based approach and a node-based approach, to uncover hid-
den connections within the knowledge graph. Through rigorous testing involving 
300 medical concepts, our M-KGA framework demonstrates promising results, 
showcasing its potential to overcome the limitations of existing knowledge graph 
automation techniques. The performance metrics and graph visualizations pre-
sented in this study underscore the effectiveness of our approach in enhancing 
the transparency and accuracy of knowledge graphs, particularly in the med-
ical domain. Looking ahead, future work will focus on addressing scalability 
issues associated with the cluster-based method, aiming to improve its perfor-
mance. Additionally, we plan to explore retrieval augmented generation (RAG) 
with Large Language Models (LLMs), for knowledge graph development and 
performance comparison with our current approach. By continuing to innovate 
and refine our approach, we aim to further advance the field of knowledge graph 
automation and contribute to the development of more comprehensive and accu-
rate representations of structured knowledge in healthcare domain. 
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