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A B S T R A C T

The simulation of the predissociation spectrum of the Na2 23𝛱𝑔 ∼ 33𝛱𝑔 ← 𝑏3𝛱𝑢 (𝑣 = 14, 𝐽 = 14) transition,
observed earlier with the Perturbation Facilitated Optical–Optical Double Resonance (PFOODR) experimental
method, is done within the Optimizer project with our Split-operator computational package using Padé
approximations for all functions involved in the model. This simulation reproduces the experimental spectrum
satisfactory well. The parameters of the model functions involved in the simulations are determined and
reported. A brief description of our computational methods and programs is presented.
Introduction

We have developed the Optimizer project [1,2] in various versions
over time during the last three decades or more. Although we believe
that its main application is the analysis of molecular spectra it can also
be used more broadly including problems that require optimization
in various fields of science such as engineering and technology, for
example. Most of our scientific results (e.g., [3–19] and references
herein) were possible by using the Optimizer project.
The Optimizer project facilitates construction and optimization of

omplicated mathematical models of a versatile nature. The optimiza-
ion process relies on using the familiar Levenberg–Marquardt algo-
ithm [20,21] based on Singular Value Decomposition (SVD) [22] of the
design matrix, which when needed, can be switched to any other one. It
supports various methods of problem regularization, robust estimators
and tools to parallelize the computation, for example.

The model construction can be done block-by-block from rela-
tively simple ‘‘standard’’ modeling programs (blocks) with a convenient

∗ Corresponding author at: St. Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034, Russia.
E-mail addresses: v.sovkov@spbu.ru (V.B. Sovkov), wujz@sxu.edu.cn (J. Wu).

universal mechanism of transferring data from block to block. The
program codes are subjected to some conventional regulations enabling
them to be easily embedded into the entire Optimizer model. A library
of such modeling programs is available for general approximation
problems in addition to computational molecular spectroscopy along
with the main Optimizer package, which is continually improved and
extended.

All program components are written in MATLAB algorithmic lan-
guage and can be executed using the MATLAB [23] or OCTAVE [24]
environments. They are available with detailed instruction manuals and
test samples for a free download [2] on the Internet.

The predissociation spectrum of the Na2 23𝛱𝑔 ∼ 33𝛱𝑔 ← 𝑏3𝛱𝑢 (𝑣 =
14, 𝐽 = 14) transition was observed and reported by Liu et al. in [25].
The experimental technique was based on the Perturbation Facilitated
Optical–Optical Double Resonance (PFOODR) technique [3,7,26–36]
to probe excited triplet states and detect fluorescence to the lower
lying electronic states. The general scheme of the PFOODR experiment
vailable online 12 June 2024
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Fig. 1. (Color online) The scheme of the PFOODR experiment [25]. The pump laser
excites directly the intermediate ‘‘window’’ level, whose approximate position is shown
with the horizontal dotted line, and the probe laser excites the states of the mixed
23𝛱𝑔 ∼ 33𝛱𝑔 complex above the dissociation limit of 23𝛱𝑔 and below the one of 33𝛱𝑔 .

ef. [25] is shown in Fig. 1 with the ab initio adiabatic potential energy
unctions of Ref. [37].
The spectrum in Fig. 2 is characterized by broad fluorescence spec-

ral features caused by the non-adiabatic interaction between the 33𝛱𝑔
nd 23𝛱𝑔 states as well as by additional narrower spectral lines at-
ributed to the participation of the 43𝛴+

𝑔 and 23𝛥𝑔 states. Predisso-
iation is an example of quantum resonances, which are among the
ost important and intriguing phenomena in quantum physics [38,39].
uring predissociation a molecule in a bound rovibrational level below
he dissociation limit of its electronic state can dissociate into atoms by
oupling to a continuum level that belongs to a lower lying electronic
tate above its dissociation limit. Inverse predissociation can also play a
ole in the formation of molecules in the interstellar molecular clouds,
or example (see Refs. [40,41]).
A preliminary simulation (with a participation of some of us) of

he predissociation spectrum of the Na2 23𝛱𝑔 ∼ 33𝛱𝑔 ← 𝑏3𝛱𝑢
𝑣 = 14, 𝐽 = 14) transition by using the multichannel Split-Operator
ethod [42–48] was shown at the conference [49]. A few years later
arevicius et al. [50] reported a simulation of this spectrum using the
omplex scaling method [51] with ab initio potential functions [37].
he spectrum was not reproduced quantitatively by shifting the ab initio
otentials of the 23𝛱𝑔 and 33𝛱𝑔 states relative to each to optimize
he widths of the resonance peaks in the simulation compared to
he experiment. To the best of our knowledge, no other attempts to
imulate or analyze this spectrum have been performed since then.
In the present work we have improved our multichannel Split-

perator computer program and adapted it to meet the requirements of
he Optimizer project. We checked its ability to simulate predissociation
esonances in the predissociation spectrum being discussed in this
ork. For this purpose, we constructed the model of the two-channel
oupling of the 33𝛱𝑔 and 23𝛱𝑔 states using Padé approximations [52–
5] for all the functions involved. We optimized the parameters of the
odel to get the best reproduction of the experimental spectrum.
In the Appendix we present brief description of our computational
ethods and programs.

heory and algorithms

In the diabatic representation [66], the two-channel potential is a
atrix

diab(𝑅) =
[

𝑉1(𝑅) 𝑊 (𝑅)
𝑊 (𝑅) 𝑉2(𝑅)

]

, (1)

here 𝑅 is the interatomic distance, 𝑉1(𝑅) and 𝑉2(𝑅) are the diabatic
otential functions of the molecular electronic states, 𝑊 (𝑅) is the
2

nteraction matrix element. The eigenvalues of this matrix are the
diabatic potential functions 𝑈1(𝑅) and 𝑈2(𝑅) (deffer by the ‘‘+ ’’ and
‘−’’ signs below):

𝑈1,2(𝑅) =
1
2

[

𝑉1(𝑅) + 𝑉2(𝑅) ±
√

(

𝑉1(𝑅) − 𝑉2(𝑅)
)2 + 4𝑊 2(𝑅)

]

,
(2)

𝑉1,2(𝑅) =
1
2

[

𝑈1(𝑅) + 𝑈2(𝑅) ±

𝜖
√

(

𝑈1(𝑅) − 𝑈2(𝑅)
)2 − 4𝑊 2(𝑅)

] (3)

(𝜖 is a conventional sign factor, which should be inverted at cross
points), while the normalized eigenvectors being arranged column-wise
comprise the transformation matrix from the adiabatic to the diabatic
representation:

𝐹𝑎→𝑑 (𝑅) =

[

𝑓 (1)
1 (𝑅) 𝑓 (1)

2 (𝑅)

𝑓 (2)
1 (𝑅) 𝑓 (2)

2 (𝑅)

]

(4)

with
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑓 (1)
1,2 (𝑅) = 𝑡1,2(𝑅)𝑓

(2)
1,2 (𝑅),

𝑓 (2)
1,2 (𝑅) =

(

𝑡21,2 + 1
)−1∕2

,

𝑡1,2(𝑅) =
[

𝛿𝑉 (𝑅) ∓
√

𝛿𝑉 2(𝑅) + 1
]−1

,

𝛿𝑉 (𝑅) =
𝑉2(𝑅) − 𝑉1(𝑅)

2𝑊 (𝑅)
.

(5)

As is well known [67], the diabatic potential functions can cross each
other, while the adiabatic ones cannot and instead give rise to avoided
crossing.

There are number of ambiguities in the above set of equations that
need to be addressed before they can be used for specific calculations.
First, the columns in Eq. (4) can be swapped, resulting in a switch of
the order of the adiabatic potential functions. We choose to assign the
first column of the matrix to the state with lower adiabatic potential.
Second, the sign of every column of (4) is undefined, reflecting the well
known arbitrariness of eigenvector phases and resulting in the change
of sign of the function being transformed with the help of this matrix.
The signs of the interaction function 𝑊 (𝑅) relative to the signs of the
transition moment functions 𝑀1(𝑅) and 𝑀2(𝑅) in either diabatic or
adiabatic representation reflects the choice of the signs of the electronic
eigenfunctions in the same representation, while a switch of a sign
of a column in (4) implies a switch of the sign of a (transformed)
electronic eigenfunction in one of these representations. In principle,
with any consistent choice of signs at every point 𝑅 independently the
theory remains correct, however, it is evident that smooth functions
are easier to interpret and compute. We adopted the rule that the signs
of the diagonal elements 𝑓 (1)

1 (𝑅) and 𝑓 (2)
2 (𝑅) to coincide with the sign

of 𝑊 (𝑅); notice, that our final 𝑊 (𝑅) occurred negative in the entire
range, causing no problems with the switch of all relevant signs at a
point of 𝑊 (𝑅) = 0.

Our computations were performed in the following way. First, we
linearly transformed (warped) the ab initio adiabatic potentials [37] of
the 33𝛱𝑔 and 23𝛱𝑔 states placing the long-range limit to the approxi-
mate atomic 3𝑠+ 3𝑑 and 3𝑠+ 4𝑝 energies [68] (neglecting the fine and
hyperfine splitting), and the bottom at the approximate experimental
energy of the potential minimum [69]. We deperturbed these potentials
using Eq. (3) with the implied cross point at 𝑅𝑐 ≈ 2.8 Å and the
constant value for 𝑊 (𝑅) = −153 cm−1 (following the rough model
of [49]). Then, we fitted the diabatic potential energy curves to the
Padé functions and used them as the zeroth order approximations. In
contrast, the zeroth order approximations for the interaction 𝑊 (𝑅) and
the transition moment functions 𝑀1(𝑅) and𝑀2(𝑅) were just constants.

To generate the initial wavepacket, we computed the wavefunction
3
of the Na2 𝑏 𝛱𝑢 (𝑣 = 14, 𝐽 = 14) level with our programs of the
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Fig. 2. (Color online) The experimental [25] and fitted predissociation spectra of the Na2 33𝛱𝑔 ∼ 23𝛱𝑔 ⟵ 𝑏3𝛱𝑢 (𝑣 = 14, 𝐽 = 14) transition.
Numerov method [70], already included into the Optimizer project [2].
For the potential function of the 𝑏3𝛱𝑢 state we took the one reported
in [71]. In the course of the computations we eliminated a misprint
in the table II of [71]: the decimal order of the parameter 𝑎5 of the
𝑏3𝛱𝑢 state must be ‘‘4’’ in place of the reported value ‘‘5’’; otherwise
it was impossible to reproduce the ro-vibrational term values with this
potential.

After that, the following iteratively repeated procedure was applied:

1. The diabatic potential energy functions of both states, the in-
teraction function, and the transition moment functions were
computed from their current Padé parameters at the required
spatial grid points.

2. The two-channel diabatic initial wavepacket was formed by
multiplying the 𝑏3𝛱𝑢 (𝑣 = 14, 𝐽 = 14) wavefunction by the
transition moment functions of the corresponding channels.

3. The adiabatic potential functions were computed from the dia-
batic ones using Eq. (2), and the set of transformation matrices
was computed using Eqs. (4) and (5).

4. Next, the two-channel evolution (the time autocorrelator) of the
wavepacket in the field of the 33𝛱𝑔 ∼ 23𝛱𝑔 electronic state
complex was computed with our Split-operator programs.

5. The predissociation spectrum was computed using a Fourier
transform of the time autocorrelator and compared with the
experimental one.

Besides that, we added to the data being fitted and simulated the ab
initio calculated [37] adiabatic potential functions and the adiabatic
transition moment functions, although with rather smaller weights.
Then, model parameters were corrected and the procedure was re-
peated until a satisfactory reproduction of the experimental spectrum
was achieved.

In most computations, the spatial grid was set between 2 Å and
26.564 Å with step 0.012 Å, and the time grid spanned the 0 to
30 fs range with step of 0.001 fs (permitting computation of the time
autocorrelator in the range from −60 fs to 60 fs [46]). In the long-
range region, the wavepacket was damped by the cosine-type absorbing
function described in our work [72] with the recommended parameters
(in the designations of [72]) 𝐸0 = 100 cm−1, 𝑘 = 3, 𝑙 = 4, 𝛼 = 0.266,
𝑙+ = 1, 𝛾 = 1, with its right boundary located at the very end of
the spatial grid and the corresponding left boundary at 𝑅𝑏 = 22.76 Å.
When the main computation was finished, we tried altered parameters:
reduced spatial and time steps twice, extended the time grid to 50 fs,

−1
3

set the reference energy of the absorbing function to 𝐸0 = 30 cm ,
Fig. 3. (Color online) The ab initio and the final model adiabatic potential energy
curves of the Na2 33𝛱𝑔 and 23𝛱𝑔 states. The origin of the energy scale is at the
bottom of the ground state Na2 𝑋1𝛴+

𝑔 .

extended the absorbing region to 𝑙 = 6 with 𝛼 = 0.306 [72],—and
observed no noticeable change in the computed spectrum.

Results

The final simulation of the Na2 33𝛱𝑔 ∼ 23𝛱𝑔 ⟵ 𝑏3𝛱𝑢 (𝑣 = 14, 𝐽 =
14) predissociation spectrum is compared with the experimental one in
Fig. 2.

The final Padé approximant parameters of all diabatic functions that
were used to reproduce the results of the present paper, are reported
in Tables 1 and 2. We would like to emphasize that the simulated
spectrum in Fig. 2 was computed with the parameters in Tables 1 and
2 exactly, i. e. being already rounded.

The general view of the final adiabatic 33𝛱𝑔 and 23𝛱𝑔 state po-
tential functions along with the ab initio ones is shown in Fig. 3, and
a magnified view of the region of the (avoided) crossings is shown in
Fig. 4.

The function of the interaction matrix element is shown in Fig. 5
The transition moment functions of the Na2 33𝛱𝑔 ← 𝑏3𝛱𝑢 and

23𝛱𝑔 ← 𝑏3𝛱𝑢 optical transitions in both diabatic and adiabatic rep-
resentations are shown in Fig. 6 along with the ab initio [37] ones.

Discussion

In our opinion, the reproduction of the experimental spectrum with

our final simulation in Fig. 2 is exceptionally good, with the quality
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Table 1
Parameters of the Padé functions approximating the Na2 33𝛱𝑔 and 23𝛱𝑔 diabatic potentials involved in the model. All values
are measured in Å and cm−1. The origin of the energy scale is at the bottom of the ground state Na2 𝑋1𝛴+

𝑔 . Uncertainties of
the fitted model parameters are of the order of magnitude of the last decimal digit reported.
33𝛱𝑔 23𝛱𝑔

Parameter Value Parameter Value Parameter Value Parameter Value

𝑥0 3.686 𝑏0 1 𝑥0 4.441 𝑏0 1
𝐶 36311.4 𝑏1 0 𝐶 35188.6 𝑏1 0

𝑏2 2840 𝑏2 0.97
𝑎0 −4467 𝑏3 1285 𝑎0 −6400 𝑏3 0.3
𝑎1 0 𝑏4 220 𝑎1 0 𝑏4 0.152
𝑎2 −1.2685e+07 𝑏5 330 𝑎2 −4800 𝑏5 0.045
𝑎3 −5.62e+06 𝑏6 130 𝑎3 −2800 𝑏6 −0.011
𝑎4 5.25e+06 𝑏7 −300 𝑎4 660 𝑏7 −0.0011
𝑎5 400000 𝑏8 −27 𝑎5 −45 𝑏8 0.0009
𝑎6 −90000 𝑏9 99
𝑎7 −8.167e+05 𝑏10 29.02
𝑎8 1.235e+05 𝑏11 −3.5
𝑎9 15000 𝑏12 −2.21
𝑎10 −3450 𝑏13 0.332
𝑎11 −1200 𝑏14 0.021
Table 2
Parameters of the Padé functions approximating the Na2 23𝛱𝑔 ∼ 33𝛱𝑔 interaction matrix
lement 𝑊 and 33𝛱𝑔 ← 𝑏3𝛱𝑢, 23𝛱𝑔 ← 𝑏3𝛱𝑢 transition moments 𝑀 involved in the
model. All values are measured in Å, cm−1, and D. Uncertainties of the fitted model
arameters are of the order of magnitude of the last decimal digit reported.
23𝛱𝑔 ∼ 33𝛱𝑔 , 𝑊 33𝛱𝑔 ← 𝑏3𝛱𝑢, 𝑀 23𝛱𝑔 ← 𝑏3𝛱𝑢, 𝑀

Parameter Value Parameter Value Parameter Value

𝑥0 2.906 𝑥0 5 𝑥0 5
𝐶 0 𝐶 0 𝐶 5
𝑎0 −140 𝑎0 0.48 𝑎0 −16.3
𝑎1 −530 𝑎1 −0.55 𝑎1 −9
𝑎2 2.6 𝑎2 −0.4 𝑎2 −2.16
𝑏0 1 𝑏0 1 𝑏0 1
𝑏1 −0.4 𝑏1 0.9 𝑏1 0.49
𝑏2 0.2 𝑏2 0.2143 𝑏2 0.2

Fig. 4. (Color online) The final model diabatic (solid lines) and adiabatic (dashed
lines) potential energy curves of the Na2 33𝛱𝑔 and 23𝛱𝑔 states in the region of the
avoided) crossings. The origin of the energy scale is at the bottom of the ground state
a2 𝑋1𝛴+

𝑔 .

Fig. 5. (Color online) The final model interaction matrix element of the Na2 33𝛱𝑔 ∼
3𝛱𝑔 state complex.
4

Fig. 6. (Color online) The moment functions of the Na2 33𝛱𝑔 ← 𝑏3𝛱𝑢 and 23𝛱𝑔 ← 𝑏3𝛱𝑢
optical transitions: dots—ab initio, solid lines—model adiabatic, dashed lines—model
diabatic.

close to the accuracy of the experimental measurements. The wave-
lengths, widths, and intensities of the resonance peaks are accurately
reproduced. The remaining discrepancies in the forms of some of the
line profiles can be attributed to both experimental inaccuracies and
restrictions of our model, including ignoring the triplet character of the
states, spin–orbit mixing of the initial 𝑏3𝛱𝑢 state with the 𝐴1𝛴+

𝑢 state,
and perturbations from other near-lying states.

The most important factor determining the quality of this repro-
duction is the outer branch of the 33𝛱𝑔 state potential above the
3𝑠 + 3𝑑 (lower) dissociation limit, which can be considered the most
reliable quantitative result of our investigation. Other parameters are
less influential but necessary for the model.

It is interesting and rather unexpected that our final potential
functions have two crossing points at about 2.69 Å and 3.01 Å—see
Fig. 4. The previous simulations [49,50] implied the existence of only
one crossing point. It was noted [25,50] that the position of the crossing
point influences the widths of the resonance peaks. Probably, ignoring
the possible existence of an additional crossing point can explain the
difficulty in the simulation of the spectral line widths in [50].

Our final transition moment functions in Fig. 6 are relatively close
to the ab initio ones, however, we must recognize that the deviations
remain significant, especially in the short-range region, which is the
most important in the formation of the initial wavepacket.

The number of parameters of the 33𝛱𝑔 state potential in Table 1
exceeds the analogous number of parameters of the 23𝛱𝑔 state poten-
tial. In the beginning we tried to describe it with the same number of
parameters as 23𝛱𝑔 but were unsuccessful. Fig. 7 provides the explana-
tion. The initial version of the function (smaller set of parameters) was
unable to reproduce the bend at around 8 Å, which is clearly seen in

the ab initio potential energy curve (Fig. 7(a)), causing significant shifts
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Fig. 7. (Color online) Influence of the Na2 33𝛱𝑔 potential function bends on the predissociation spectrum: (a) adiabatic ab initio and intermediate model potentials; (b) adiabatic
ab initio and final model potentials; (c) experimental (dots) and intermediate model (line) spectra; (d) experimental [25] (dots) and final model (line) spectra.
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of the computed peaks in the range of wavelengths shorter than 4935 Å
(Fig. 7(c)). The final version of the function (bigger set of parameters)
eproduced this bend (Fig. 7(b)) and improved the positions of the
omputed peaks (Fig. 7(d)). On the one hand, this confirms once more
he importance of even subtle features of the 33𝛱𝑔 state potential in
ur model, and on the other hand, this confirms the quality of the
ong-range ab initio potentials [37], exhibiting those subtle features.
We also explored the ability of the Fourier grid method (see [73–

6]) in our realization of it for the Optimizer project (see the brief
escription in [72] with more detail given in the manual in [2]) to
predict properties of the predissociation resonances in terms of the
complex energies. For this purpose, we took our final potential energy
functions of the 33𝛱𝑔 and 23𝛱𝑔 states and the interaction function
𝑊 (𝑅), and embedded the optical potential with the same parameters
as of the absorbing function used in the main computation above.
Embedding an optical potential makes the Fourier-grid Hamiltonian
complex-type with complex-type eigenenergies. The inverse of the
imaginary part of this eigenenergy is proportional to the lifetime of
the decaying state, located at the energy equal to the real part of
it. In Fig. 8, circles connected with the solid line (red in the online
color version) are those ‘‘lifetimes’’ versus the real-type energies of the
states.

Although some weak peaks are observed near the positions of
resonances, they are not much stronger than the neighboring ‘‘non-
resonant’’ peaks. Besides, some artifacts (deep dips) are observed,
which can confuse the interpretation of the results. We suppose that the
long lifetimes of the non-resonant states are caused by a long distance
of the region before the absorbing function, so that the non-resonant
parts of the wavepacket indeed lives there for a relatively long time. To
check this, we shifted the left boundary of the absorbing region from
𝑅𝑏 = 22.76 Å to 𝑅𝑏 = 10 Å and repeated the computation. The result
is shown in Fig. 8 as diamonds connected by the dashed line (blue in
the online color version). This indeed made the resonance peaks much
more prominent. This allowed us to separate the most intense peaks
(biggest lifetimes) and plot them in Fig. 9 on the same scale as the
experimental spectrum. Although some correspondence between the
observed and calculated resonances takes place, the positions of the
computed ones are noticeably shifted in the short-wavelength region.
5

p

For a comparison, we computed the unperturbed eigenenergies of
the 33𝛱𝑔 state in the diabatic representation with the Numerov method,
and showed them in Figs. 8 and 9 as squares located at the abscissa. It
is seen, that the positions of the model complex-type-energy resonances
are closer to the experimental peaks in the long-wavelength region but
deviate in the short-wavelength region, while the unperturbed eigenen-
ergies are closer to the experimental peaks in the short-wavelength
region, but deviate in the long-wavelength region. This can be ex-
plained by the fact that at the higher energies the perturbation of the
33𝛱𝑔 states becomes weaker (in part, that is reflected by the narrower
peaks), while the influence of the absorbing optical potential distorts
more strongly the Fourier-grid Hamiltonian.

Overall, the approach based on the complex-type eigenenergies
of the Fourier-grid Hamiltonian with the embedded optical potential
seems not to be very reliable even if it can show some characteristics
of the resonances. Its results strongly depend on the parameters of
the optical potential and other technical details. We expect that more
sophisticated methods that use the complex-type eigenenergies, such
as the method of the complex scaling [50,51], are able to give much
better results. However, these method are not included in the Optimizer
project yet and are currently outside of the scope of our research.

The only works investigating the lower-lying bound levels of the
sodium dimer states under consideration, which we are aware of, are
Refs. [28,69,77,78]. However, we have not found estimates of the
arameters of the interaction between the Na2 23𝛱𝑔 and 33𝛱𝑔 states
n them, which could be compared to our results.

onclusions

We have demonstrated the efficiency of the multichannel Split-
perator method programs, embedded into the Optimizer project for
escription of resonance phenomena, such as molecular predissociation
pectra. The experimental Na2 23𝛱𝑔 ∼ 33𝛱𝑔 ← 𝑏3𝛱𝑢 (𝑣 = 14, 𝐽 = 14)
pectrum was simulated with an accuracy close to the experimental
esults. We also demonstrated the ability of the Padé approximants
o describe all important features of the potential energy and other
unctions involved in the model, including subtle bends. The fitted

arameters that enabled the reproduction of the results of the present
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Fig. 8. The experimental [25] Na2 33𝛱𝑔 ∼ 23𝛱𝑔 ← 𝑏3𝛱𝑢 (𝑣 = 14, 𝐽 = 14) predissociation spectrum (dots), lifetimes estimated with the Fourier grid method with the optical potential
tarting at 𝑅𝑏 = 22.76 Å (circles connected with a solid line) and 𝑅𝑏 = 10 Å (diamonds connected with a dashed line), and the eigenenergies of the Na2 33𝛱𝑔 (𝐽 = 14) state (squares
t the abscissa). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 9. (Color online) The experimental [25] Na2 33𝛱𝑔 ∼ 23𝛱𝑔 ← 𝑏3𝛱𝑢 (𝑣 = 14, 𝐽 = 14) predissociation spectrum (dots), lifetimes estimated with the Fourier grid method with the
optical potential starting at 𝑅𝑏 = 10 Å (circles with stems), and the eigenenergies of the Na2 33𝛱𝑔 (𝐽 = 14) state (squares at the abscissa).
paper, are reported. We also showed that the straightforward computa-
tion of the complex-type eigenenergies of the Fourier-grid Hamiltonian
with the embedded optical potential can give results in an approximate
description of the resonances but is not very reliable quantitatively.
A brief introduction of the computer programs used in the present
research and embedded into the Optimizer project is presented in the
Appendix.
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Appendix A. Padé approximants in the optimizer project

The Padé approximant [52] of a dependence 𝑦(𝑥) can be defined as:

𝑦(𝑥) = 𝐶 +
𝑃𝑛(𝑥)
𝑃𝑑 (𝑥)

≡

𝐶 +
∑𝑁𝑛
𝑘=0 𝑎𝑘(𝑥 − 𝑥0)

𝑘

∑𝑁𝑑
𝑘=0 𝑏𝑘(𝑥 − 𝑥0)

𝑘

(6)

Equivalent forms parameterize the polynomials 𝑃𝑛(𝑥) and 𝑃𝑑 (𝑥) via
heir nodes 𝑧𝑛∕𝑑𝑘 in place of the coefficients 𝑎𝑘 and 𝑏𝑘:

𝑃𝑛∕𝑑 = 𝐶𝑛∕𝑑

𝑁𝑛∕𝑑
∏

𝑘=1
(𝑥 − 𝑧𝑛∕𝑑𝑘 ). (7)

For real-type functions, the nodes 𝑧𝑛∕𝑑𝑘 can either be real-type or pairs of
mutually conjugated complex-type nodes. Our program supports both
types of the parameterization.

A polynomial is a partial case of the Padé approximant with 𝑃𝑑 (𝑥) =
1, but in general, it is an approximation tool that has greater power. A
relatively simple analytical form allows one to easily manage analytical
properties such as poles, zeros, extrema, infliction points, asymptotes,
etc.

Prospects of using the Padé approximants to describe potential en-
ergy curves of molecules have been discussed for several decades [53–
65]. Nonetheless, their application in this field is still rather limited.
One of the reasons is that, sometimes in the course of the optimization
(fit) process, they can produce unexpected features, such as undesirable
poles, bends, etc., between the nodes of a computational grid, while at
the nodes everything looks fine; we encountered such problems with
first versions of our programs. Murrel et al. [58], based on their test
computations, did not recommend using Padé approximants for this
purpose. A recent review [79] presenting 50 most popular analytical
representations of potential energy functions did not even include the
Padé approximants in this list.

However, these difficulties are easily overcome within the mech-
anisms of the Optimizer project. At every step of the optimization
process, the desirable properties (absence of poles, absence or existence
of predefined number of extrema and infliction points in any predefined
range, etc.) can be checked either analytically or numerically, in a case
of their violation causing a break of the computation and an automatic
reduce of the optimization step until the desired properties are fulfilled.
In part, we successfully used this strategy in the present work.

The potential energy functions of molecules at large interatomic dis-
tances 𝑅 ≡ 𝑥 are expected [66] to exhibit the inverse-power character:

𝑈 (𝑅∼∞) ∼ 𝐶 + 𝐶1∕𝑅𝑁1 + 𝐶2∕𝑅𝑁2 +⋯

with the leading powers depending on the state of a molecule (rather
often, 𝑁1 = 3, 𝑁2 = 6, … ), while the so-called dispersion coefficients
(𝐶1, 𝐶2, … ) are either precomputed or estimated from experimental
data. The Padé approximants can easily ensure a desirable asymptotic
behavior.

Indeed, making the leading asymptotic term to be ∼ 1∕𝑅𝑁1 is
achieved via making the power 𝑁𝑑 of the polynomial 𝑃𝑑 (𝑥) in Eq. (6)
bigger than the power 𝑁𝑛 of 𝑃𝑛(𝑥) by 𝑁1, i. e., 𝑁1 = 𝑁𝑑 − 𝑁𝑛, with
𝐶1 = 𝑎𝑁𝑛∕𝑏𝑁𝑑 . Then, assuming 𝑥0 = 0 and substituting 𝑞 = 1∕𝑥,

∑𝑁𝑛
𝑘=0 𝑎𝑘𝑥

𝑘

∑𝑁𝑑
𝑘=0 𝑏𝑘𝑥

𝑘
−
𝑎𝑁𝑛
𝑏𝑁𝑑

1
𝑥𝑁𝑑−𝑁𝑛

= 𝑞𝑁𝑑−𝑁𝑛×

∑𝑁𝑛−1
𝑘=0 𝑎𝑘𝑞𝑁𝑛−𝑘 − (𝑎𝑁𝑛∕𝑏𝑁𝑑 )

∑𝑁𝑑−1
𝑘=0 𝑏𝑘𝑞𝑁𝑑−𝑘

∑𝑁𝑑 𝑁 −𝑘
.
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𝑘=0 𝑏𝑘𝑞 𝑑
Hence, for the next asymptotic term:

𝑁𝑛𝑒𝑥𝑡 =𝑁𝑑 −𝑁𝑛 + 1,

𝐶𝑁𝑛𝑒𝑥𝑡 =
𝑎𝑁𝑛−1 − (𝑎𝑁𝑛∕𝑏𝑁𝑑 )𝑏𝑁𝑑−1

𝑏𝑁𝑑
.

The latter relation enables setting this term to any desirable value
(including the zero one) via fixing the approximant structure and
equating a part of its coefficients to some definite values.

For example, in order to the leading asymptotic term to be ∼1∕𝑥3,
the power of the polynomial in the denominator must be bigger than
the power of the polynomial in the numerator by 3: 𝑁𝑑 = 𝑁𝑛 + 3. The
easiest way to ensure the behavior of ∼ 1∕𝑥6 for the next asymptotic
term is (with 𝑥0 = 0) to equate to zero two penultimate coefficients
𝑎𝑘 and three penultimate coefficients 𝑏𝑘. If 𝑏𝑁𝑑 = 1, then the leading
dispersion coefficient 𝐶1 will be just equal to 𝑎𝑁𝑛 and the next one
𝐶2 will be equal to the last nonzero penultimate coefficients 𝑎𝑘′ (with
𝑘′ = 𝑁𝑛 − 3 in our example). It is easy to extend this reasoning to
asymptotic terms of higher orders.

Our program can handle the following problems:

• Compute values 𝑦𝑖 of the Padé function (6), (7) at a predefined
grid {𝑥𝑖} using a predefined set of parameters.

• Compute values of the function and its derivatives of predefined
orders at a set of some extra points.

• Impose constraints of the equality of the function itself and/or
its derivatives of predefined orders at predefined points to prede-
fined values via correction of a predefined set of parameters.

• Compute the local design matrix (Jacobi matrix) of the depen-
dence

𝑦𝑖 = 𝑓 ({𝑎𝑘}, {𝑏𝑘}, 𝑥0, 𝐶𝑎𝑑𝑑 , 𝐶𝑚𝑢𝑙)

or the equivalent dependence on the nodes 𝑧𝑛∕𝑑𝑘 in place of 𝑎𝑘, 𝑏𝑘,
in accordance with the regulations of the package Optimizer [2].

• Compute the polynomial coefficients 𝑎𝑘, 𝑏𝑘 Eq. (6) from the nodes
𝑧𝑛∕𝑑𝑘 Eq. (7) or vice versa.

• Compute coordinates and function values of the extrema and the
inflection points.

• Estimate coefficients at 1∕𝑥𝑝 (including positive and negative
integer 𝑝) in the long-range asymptote 𝑥→ ∞.

• Support working with a composite function, when the formal
variable 𝑥 is a predefined function of a physical variable 𝑅.

A more comprehensive manual is accessible online [2], with the
program codes and executable samples.

Appendix B. Split-operator method in the optimizer project

The Split-operator method [42–48] is a kind of the so-called pseudo-
spectral methods. It is aimed at a simulation of the dynamics of a quan-
tum system and, based on it, of a probability (intensity) distribution in
a spectrum of a transition in such a system.

The quantum evolution operator at a short time interval 𝛿𝑡 can be
approximated with:

 (𝛿𝑡) = exp
{

− 𝑖
ℏ
𝐻𝛿𝑡

}

= exp
{

− 𝑖
ℏ
𝐾𝛿𝑡 − 𝑖

ℏ
𝑈𝛿𝑡

}

≈

exp
{

− 𝑖
ℏ
𝐾𝛿𝑡∕2

}

exp
{

− 𝑖
ℏ
𝑈𝛿𝑡

}

exp
{

− 𝑖
ℏ
𝐾𝛿𝑡∕2

}

≈

exp
{

− 𝑖
ℏ
𝑈𝛿𝑡∕2

}

exp
{

− 𝑖
ℏ
𝐾𝛿𝑡

}

exp
{

− 𝑖
ℏ
𝑈𝛿𝑡∕2

}

,

(8)

where 𝐻 is the Hamiltonian, 𝐾 = − ℏ2

2𝑚
𝜕2

𝜕𝑅2 is the operator of the
system kinetic energy and 𝑈 (𝑅) is the potential energy (generally,
multichannel as in Eq. (1)). These forms are unitary, symmetrical and
keep an important property of the time reversibility. Further on, we
name these two approximations the KUK and UKU forms.

The operator exp
{

− 𝑖
ℏ𝑈𝛿𝑡

}

is diagonal relative the coordinate 𝑅 in
the coordinate representation and relative the channel index in the adi-

abatic representation, i.e., its action on a wavepacket is easily computed
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(as just a multiplication) in the coordinate adiabatic representation.
Analogously, the action of the operator exp

{

− 𝑖
ℏ𝐾𝛿𝑡

}

is easily com-

puted in the momentum diabatic representation. As is well known
from Quantum Mechanics, the transform between the coordinate and
momentum representations and vice versa is just the Fourier transform,
hile the transform between the adiabatic and diabatic representations
s done with the transform matrices analogous to Eq. (4). This means
hat the evolution of a wavepacket 𝜓(𝑡 = 0, 𝑅) in an entire time range
can be computed as a sequence of its multiplication by one diagonal
operator in one of these representation at a reasonably short time
interval 𝛿𝑡, transform to the other representation, multiplication by
another diagonal operator, transform back to the first representation,
and so on until the desired final time is achieved.

For a computing of the evolution of a bound state, no extra compli-
cations are needed. However, if a free (decaying) state is considered,
some artificial features arise, which should be damped. Indeed, the
spatial computational grid is anyway finite, so, when the modeled
wavepacket arrives at its boundary, it is partially reflected from it and
partially enters the grid from the opposite boundary (in the theory of
the Fourier transform, it is called the aliasing effect), demonstrating
nonphysical behavior. To overcome this drawback, absorbing boundary
conditions or an imaginary-type ‘‘optical’’ potential [72] are usually
embedded.

When an optical transition of a molecule from an initial state with
the wavefunction 𝜑(𝑅) into a (multichannel) system of final states
is considered, the initial multichannel wavepacket 𝜓(𝑡 = 0, 𝑅) is
constructed via a multiplication of 𝜑(𝑅) by a corresponding transi-
tion moment function 𝑀𝑘(𝑅) in every 𝑘th channel: 𝜓𝑘(𝑡 = 0, 𝑅) =
𝑀𝑘(𝑅)𝜑(𝑅). Then the evolution 𝜓(𝑡, 𝑅) is calculated the way described
above with the estimate at every time instant of a time autocorrelation
function

𝑆(𝑡) = ⟨𝜓(𝑡 = 0, 𝑅)|𝜓(𝑡, 𝑅)⟩

and the distribution of the transition probability (the spectrum of the
transition) is estimated as the Fourier transform of the autocorrelator
𝑆(𝑡) (see also [46]).

We wrote and adapted to the Optimizer project several variants
of the Split-operator programs. First, we realized both KUK and UKU
schemes Eq. (8). Our test computations have shown that these two
schemes possess approximately equivalent accuracy, however the KUK
scheme is a little bit faster (see the manual [2] for an explanation
why). Then, every program is written in both pure Matlab codes
(vMatlab versions) and with blocks written in C and embedded with the
help of the Matlab mex-mechanism (vMatlabC versions). The vMatlabC
versions are several times faster than the vMatlab version but have
a somewhat poorer functionality, that is not nevertheless important
for the majority of prospective applications. The absorbing boundary
conditions described in our recent work [72] are supported by all the
versions.

A more detailed manual is available on the internet [2], along with
the program codes and executable samples.
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