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The simulation of the predissociation spectrum of the Na, 2311, ~ 331, « b*II, (v = 14, J = 14) transition,
observed earlier with the Perturbation Facilitated Optical-Optical Double Resonance (PFOODR) experimental
method, is done within the Optimizer project with our Split-operator computational package using Padé
approximations for all functions involved in the model. This simulation reproduces the experimental spectrum
satisfactory well. The parameters of the model functions involved in the simulations are determined and
reported. A brief description of our computational methods and programs is presented.

Introduction

We have developed the Optimizer project [1,2] in various versions
over time during the last three decades or more. Although we believe
that its main application is the analysis of molecular spectra it can also
be used more broadly including problems that require optimization
in various fields of science such as engineering and technology, for
example. Most of our scientific results (e.g., [3-19] and references
therein) were possible by using the Optimizer project.

The Optimizer project facilitates construction and optimization of
complicated mathematical models of a versatile nature. The optimiza-
tion process relies on using the familiar Levenberg-Marquardt algo-
rithm [20,21] based on Singular Value Decomposition (SVD) [22] of the
design matrix, which when needed, can be switched to any other one. It
supports various methods of problem regularization, robust estimators
and tools to parallelize the computation, for example.

The model construction can be done block-by-block from rela-
tively simple “standard” modeling programs (blocks) with a convenient

universal mechanism of transferring data from block to block. The
program codes are subjected to some conventional regulations enabling
them to be easily embedded into the entire Optimizer model. A library
of such modeling programs is available for general approximation
problems in addition to computational molecular spectroscopy along
with the main Optimizer package, which is continually improved and
extended.

All program components are written in MATLAB algorithmic lan-
guage and can be executed using the MATLAB [23] or OCTAVE [24]
environments. They are available with detailed instruction manuals and
test samples for a free download [2] on the Internet.

The predissociation spectrum of the Na, 2*IT, ~ 33 II, « b*IT, (v =
14, J = 14) transition was observed and reported by Liu et al. in [25].
The experimental technique was based on the Perturbation Facilitated
Optical-Optical Double Resonance (PFOODR) technique [3,7,26-36]
to probe excited triplet states and detect fluorescence to the lower
lying electronic states. The general scheme of the PFOODR experiment
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Fig. 1. (Color online) The scheme of the PFOODR experiment [25]. The pump laser
excites directly the intermediate “window” level, whose approximate position is shown
with the horizontal dotted line, and the probe laser excites the states of the mixed
2311, ~ 3°11, complex above the dissociation limit of 2°I7, and below the one of 3311,.

Ref. [25] is shown in Fig. 1 with the ab initio adiabatic potential energy
functions of Ref. [37].

The spectrum in Fig. 2 is characterized by broad fluorescence spec-
tral features caused by the non-adiabatic interaction between the 33 IT o
and 2°I1, states as well as by additional narrower spectral lines at-
tributed to the participation of the 43 Z; and 234, states. Predisso-
ciation is an example of quantum resonances, which are among the
most important and intriguing phenomena in quantum physics [38,39].
During predissociation a molecule in a bound rovibrational level below
the dissociation limit of its electronic state can dissociate into atoms by
coupling to a continuum level that belongs to a lower lying electronic
state above its dissociation limit. Inverse predissociation can also play a
role in the formation of molecules in the interstellar molecular clouds,
for example (see Refs. [40,41]).

A preliminary simulation (with a participation of some of us) of
the predissociation spectrum of the Na, 2°I, ~ 3°I, « b,
(v = 14, J = 14) transition by using the multichannel Split-Operator
method [42-48] was shown at the conference [49]. A few years later
Narevicius et al. [50] reported a simulation of this spectrum using the
complex scaling method [51] with ab initio potential functions [37].
The spectrum was not reproduced quantitatively by shifting the ab initio
potentials of the 23Hg and 33Hg states relative to each to optimize
the widths of the resonance peaks in the simulation compared to
the experiment. To the best of our knowledge, no other attempts to
simulate or analyze this spectrum have been performed since then.

In the present work we have improved our multichannel Split-
operator computer program and adapted it to meet the requirements of
the Optimizer project. We checked its ability to simulate predissociation
resonances in the predissociation spectrum being discussed in this
work. For this purpose, we constructed the model of the two-channel
coupling of the 3317, ¢ and 2’1 ¢ States using Padé approximations [52-
65] for all the functions involved. We optimized the parameters of the
model to get the best reproduction of the experimental spectrum.

In the Appendix we present brief description of our computational
methods and programs.

Theory and algorithms

In the diabatic representation [66], the two-channel potential is a
matrix

Vi(R)

W(R) (€8]

Ugiap(R) = W(R)] ,

V2(R)

where R is the interatomic distance, V;(R) and V,(R) are the diabatic
potential functions of the molecular electronic states, W (R) is the
interaction matrix element. The eigenvalues of this matrix are the
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adiabatic potential functions U, (R) and U,(R) (deffer by the “+ ” and
“—" signs below):

ViR = 3 [V1 (R) + V5(R) +
@

\/(VI(R) —- (R + 4w2(R)J ,

Vi = £ [0+ v
®

e\/ (U\(R) = Uy(R))* — 4W2<R)J

(e is a conventional sign factor, which should be inverted at cross
points), while the normalized eigenvectors being arranged column-wise
comprise the transformation matrix from the adiabatic to the diabatic
representation:

rO® PR
Fa—»d(R) = |: 1(2) 2(2) (4)
2w 2w
with
F15 R = 11,(RIf ) (R).
~1/2
FA® = (a,+1)
-1 %)
112(R) = [6V(R):L V8V2(R) + 1] ,
sv(R) = 2R MR
2W(R)

As is well known [67], the diabatic potential functions can cross each
other, while the adiabatic ones cannot and instead give rise to avoided
crossing.

There are number of ambiguities in the above set of equations that
need to be addressed before they can be used for specific calculations.
First, the columns in Eq. (4) can be swapped, resulting in a switch of
the order of the adiabatic potential functions. We choose to assign the
first column of the matrix to the state with lower adiabatic potential.
Second, the sign of every column of (4) is undefined, reflecting the well
known arbitrariness of eigenvector phases and resulting in the change
of sign of the function being transformed with the help of this matrix.
The signs of the interaction function W (R) relative to the signs of the
transition moment functions M,(R) and M,(R) in either diabatic or
adiabatic representation reflects the choice of the signs of the electronic
eigenfunctions in the same representation, while a switch of a sign
of a column in (4) implies a switch of the sign of a (transformed)
electronic eigenfunction in one of these representations. In principle,
with any consistent choice of signs at every point R independently the
theory remains correct, however, it is evident that smooth functions
are easier to interpret and compute. We adopted the rule that the signs
of the diagonal elements f {])(R) and féz)(R) to coincide with the sign
of W (R); notice, that our final W (R) occurred negative in the entire
range, causing no problems with the switch of all relevant signs at a
point of W(R) = 0.

Our computations were performed in the following way. First, we
linearly transformed (warped) the ab initio adiabatic potentials [37] of
the 3311, and 2°11, states placing the long-range limit to the approxi-
mate atomic 3s + 3d and 3s + 4p energies [68] (neglecting the fine and
hyperfine splitting), and the bottom at the approximate experimental
energy of the potential minimum [69]. We deperturbed these potentials
using Eq. (3) with the implied cross point at R, ~ 2.8 A and the
constant value for W(R) = —153 cm™! (following the rough model
of [49]). Then, we fitted the diabatic potential energy curves to the
Padé functions and used them as the zeroth order approximations. In
contrast, the zeroth order approximations for the interaction W (R) and
the transition moment functions M,(R) and M,(R) were just constants.

To generate the initial wavepacket, we computed the wavefunction
of the Na, b*I, (v = 14, J = 14) level with our programs of the
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Fig. 2. (Color online) The experimental [25] and fitted predissociation spectra of the Na, 3? mn, ~ 231'1g «— b1, (v =14, J = 14) transition.

Numerov method [70], already included into the Optimizer project [2].
For the potential function of the b*IT, state we took the one reported
in [71]. In the course of the computations we eliminated a misprint
in the table II of [71]: the decimal order of the parameter a5 of the
b31T, state must be “4” in place of the reported value “5”; otherwise
it was impossible to reproduce the ro-vibrational term values with this
potential.

After that, the following iteratively repeated procedure was applied:

1. The diabatic potential energy functions of both states, the in-
teraction function, and the transition moment functions were
computed from their current Padé parameters at the required
spatial grid points.

2. The two-channel diabatic initial wavepacket was formed by
multiplying the »*IT, (v = 14, J = 14) wavefunction by the
transition moment functions of the corresponding channels.

3. The adiabatic potential functions were computed from the dia-
batic ones using Eq. (2), and the set of transformation matrices
was computed using Egs. (4) and (5).

4. Next, the two-channel evolution (the time autocorrelator) of the
wavepacket in the field of the 3’1, ~ 2°II, electronic state
complex was computed with our Split-operator programs.

5. The predissociation spectrum was computed using a Fourier
transform of the time autocorrelator and compared with the
experimental one.

Besides that, we added to the data being fitted and simulated the ab
initio calculated [37] adiabatic potential functions and the adiabatic
transition moment functions, although with rather smaller weights.
Then, model parameters were corrected and the procedure was re-
peated until a satisfactory reproduction of the experimental spectrum
was achieved.

In most computations, the spatial grid was set between 2 A and
26.564 A with step 0.012 A, and the time grid spanned the 0 to
30 fs range with step of 0.001 fs (permitting computation of the time
autocorrelator in the range from —60 fs to 60 fs [46]). In the long-
range region, the wavepacket was damped by the cosine-type absorbing
function described in our work [72] with the recommended parameters
(in the designations of [72]) E, = 100 em™!, k=31 =4, a =0.266,
I, = 1, y = 1, with its right boundary located at the very end of
the spatial grid and the corresponding left boundary at R, = 22.76 A
When the main computation was finished, we tried altered parameters:
reduced spatial and time steps twice, extended the time grid to 50 fs,
set the reference energy of the absorbing function to E, = 30 cm™!,

T 36 ' : g > i 9
S 35} T R
> 34} < :
O 33F y model 3 :
— E H o ab initio 3 Hq ]
~ 32 i : Na2
31" 7 ---- moc'ie'l' 231_[ ]
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D 20f W ]
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Fig. 3. (Color online) The ab initio and the final model adiabatic potential energy
curves of the Na, 3*IT, and 2°IT, states. The origin of the energy scale is at the
bottom of the ground state Na, X ‘Z‘gﬂ

extended the absorbing region to I = 6 with a = 0.306 [72],—and
observed no noticeable change in the computed spectrum.

Results

The final simulation of the Na, 3*IT, ~ 2311, «— b1, (v =14, J =
14) predissociation spectrum is compared with the experimental one in
Fig. 2.

The final Padé approximant parameters of all diabatic functions that
were used to reproduce the results of the present paper, are reported
in Tables 1 and 2. We would like to emphasize that the simulated
spectrum in Fig. 2 was computed with the parameters in Tables 1 and
2 exactly, i. e. being already rounded.

The general view of the final adiabatic 3317, and 2°II, state po-
tential functions along with the ab initio ones is shown in Fig. 3, and
a magnified view of the region of the (avoided) crossings is shown in
Fig. 4.

The function of the interaction matrix element is shown in Fig. 5

The transition moment functions of the Na, 3°II, « b’Il, and
21, « b*II, optical transitions in both diabatic and adiabatic rep-
resentations are shown in Fig. 6 along with the ab initio [37] ones.

Discussion

In our opinion, the reproduction of the experimental spectrum with
our final simulation in Fig. 2 is exceptionally good, with the quality
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Parameters of the Padé functions approximating the Na, 3°17, and 2°I7, diabatic potentials involved in the model. All values

are measured in A and cm~!. The origin of the energy scale is at the bottom of the ground state Na, X IZ;. Uncertainties of
the fitted model parameters are of the order of magnitude of the last decimal digit reported.

3, 21,
Parameter Value Parameter Value Parameter Value Parameter Value
Xo 3.686 by 1 X 4.441 by 1
C 36311.4 b, 0 c 35188.6 b, 0

b, 2840 b, 0.97
ay —4467 by 1285 ap —-6400 by 0.3
a, 0 by 220 a, 0 by 0.152
a, —-1.2685e+07 bs 330 a, —4800 bs 0.045
ay -5.62e+06 be 130 as —2800 be -0.011
a, 5.25e+06 by -300 a, 660 by —-0.0011
as 400 000 b -27 as —45 b 0.0009
ag -90 000 by 99
a; —8.167e+05 by 29.02
ag 1.235e+05 by, -3.5
ay 15000 by -2.21
ay -3450 by 0.332
ay, -1200 by 0.021

Table 2

Parameters of the Padé functions approximating the Na, 2*IT, ~ 3*I1, interaction matrix
element W and 3*I1, < b*I1,, 2°I1, < b*Il, transition moments M involved in the
model. All values are measured in A, cm~!, and D. Uncertainties of the fitted model
parameters are of the order of magnitude of the last decimal digit reported.

P, ~3 M, W 3, < b1, M 2, < v, M

Parameter Value Parameter Value Parameter Value
X 2.906 X 5 X 5
C 0 C 0 C 5
ap ~140 a, 0.48 a, -16.3
a; -530 a —-0.55 a -9
a, 2.6 a —0.4 a -2.16
by 1 by 1 by 1
b -0.4 by 0.9 b 0.49
b, 0.2 b, 0.2143 b, 0.2
‘T " " " " " "
% Nag 1
3 ]
= 31,
— adiabatic |
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Fig. 4. (Color online) The final model diabatic (solid lines) and adiabatic (dashed
lines) potential energy curves of the Na, 3°I1, and 2°11, states in the region of the
(avoided) crossings. The origin of the energy scale is at the bottom of the ground state
Na, X'}
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Fig. 5. (Color online) The final model interaction matrix element of the Na, 3*IT, ~
2311, state complex.
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Fig. 6. (Color online) The moment functions of the Na, 3°I1, < b*IT, and 2*I1, < b1,
optical transitions: dots—ab initio, solid lines—model adiabatic, dashed lines—model
diabatic.

close to the accuracy of the experimental measurements. The wave-
lengths, widths, and intensities of the resonance peaks are accurately
reproduced. The remaining discrepancies in the forms of some of the
line profiles can be attributed to both experimental inaccuracies and
restrictions of our model, including ignoring the triplet character of the
states, spin-orbit mixing of the initial 5°II, state with the A' =+ state,
and perturbations from other near-lying states.

The most important factor determining the quality of this repro-
duction is the outer branch of the 3*IT, state potential above the
3s + 3d (lower) dissociation limit, which can be considered the most
reliable quantitative result of our investigation. Other parameters are
less influential but necessary for the model.

It is interesting and rather unexpected that our final potential
functions have two crossing points at about 2.69 A and 3.01 A—see
Fig. 4. The previous simulations [49,50] implied the existence of only
one crossing point. It was noted [25,50] that the position of the crossing
point influences the widths of the resonance peaks. Probably, ignoring
the possible existence of an additional crossing point can explain the
difficulty in the simulation of the spectral line widths in [50].

Our final transition moment functions in Fig. 6 are relatively close
to the ab initio ones, however, we must recognize that the deviations
remain significant, especially in the short-range region, which is the
most important in the formation of the initial wavepacket.

The number of parameters of the 33Hg state potential in Table 1
exceeds the analogous number of parameters of the 2317 ¢ State poten-
tial. In the beginning we tried to describe it with the same number of
parameters as 2> IT , but were unsuccessful. Fig. 7 provides the explana-
tion. The initial version of the function (smaller set of parameters) was
unable to reproduce the bend at around 8 A, which is clearly seen in
the ab initio potential energy curve (Fig. 7(a)), causing significant shifts
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Fig. 7. (Color online) Influence of the Na, 3° 11, potential function bends on the predissociation spectrum: (a) adiabatic ab initio and intermediate model potentials; (b) adiabatic
ab initio and final model potentials; (c) experimental (dots) and intermediate model (line) spectra; (d) experimental [25] (dots) and final model (line) spectra.

of the computed peaks in the range of wavelengths shorter than 4935 A
(Fig. 7(c)). The final version of the function (bigger set of parameters)
reproduced this bend (Fig. 7(b)) and improved the positions of the
computed peaks (Fig. 7(d)). On the one hand, this confirms once more
the importance of even subtle features of the 3°IT, state potential in
our model, and on the other hand, this confirms the quality of the
long-range ab initio potentials [37], exhibiting those subtle features.

We also explored the ability of the Fourier grid method (see [73-
76]) in our realization of it for the Optimizer project (see the brief
description in [72] with more detail given in the manual in [2]) to
predict properties of the predissociation resonances in terms of the
complex energies. For this purpose, we took our final potential energy
functions of the 3317g and 23 I, states and the interaction function
W (R), and embedded the optical potential with the same parameters
as of the absorbing function used in the main computation above.
Embedding an optical potential makes the Fourier-grid Hamiltonian
complex-type with complex-type eigenenergies. The inverse of the
imaginary part of this eigenenergy is proportional to the lifetime of
the decaying state, located at the energy equal to the real part of
it. In Fig. 8, circles connected with the solid line (red in the online
color version) are those “lifetimes” versus the real-type energies of the
states.

Although some weak peaks are observed near the positions of
resonances, they are not much stronger than the neighboring “non-
resonant” peaks. Besides, some artifacts (deep dips) are observed,
which can confuse the interpretation of the results. We suppose that the
long lifetimes of the non-resonant states are caused by a long distance
of the region before the absorbing function, so that the non-resonant
parts of the wavepacket indeed lives there for a relatively long time. To
check this, we shifted the left boundary of the absorbing region from
R, =22.76 A to R, = 10 A and repeated the computation. The result
is shown in Fig. 8 as diamonds connected by the dashed line (blue in
the online color version). This indeed made the resonance peaks much
more prominent. This allowed us to separate the most intense peaks
(biggest lifetimes) and plot them in Fig. 9 on the same scale as the
experimental spectrum. Although some correspondence between the
observed and calculated resonances takes place, the positions of the
computed ones are noticeably shifted in the short-wavelength region.

For a comparison, we computed the unperturbed eigenenergies of
the 3317 ¢ state in the diabatic representation with the Numerov method,
and showed them in Figs. 8 and 9 as squares located at the abscissa. It
is seen, that the positions of the model complex-type-energy resonances
are closer to the experimental peaks in the long-wavelength region but
deviate in the short-wavelength region, while the unperturbed eigenen-
ergies are closer to the experimental peaks in the short-wavelength
region, but deviate in the long-wavelength region. This can be ex-
plained by the fact that at the higher energies the perturbation of the
33Hg states becomes weaker (in part, that is reflected by the narrower
peaks), while the influence of the absorbing optical potential distorts
more strongly the Fourier-grid Hamiltonian.

Overall, the approach based on the complex-type eigenenergies
of the Fourier-grid Hamiltonian with the embedded optical potential
seems not to be very reliable even if it can show some characteristics
of the resonances. Its results strongly depend on the parameters of
the optical potential and other technical details. We expect that more
sophisticated methods that use the complex-type eigenenergies, such
as the method of the complex scaling [50,51], are able to give much
better results. However, these method are not included in the Optimizer
project yet and are currently outside of the scope of our research.

The only works investigating the lower-lying bound levels of the
sodium dimer states under consideration, which we are aware of, are
Refs. [28,69,77,78]. However, we have not found estimates of the
parameters of the interaction between the Na, 2311g and 3317‘g states
in them, which could be compared to our results.

Conclusions

We have demonstrated the efficiency of the multichannel Split-
operator method programs, embedded into the Optimizer project for
description of resonance phenomena, such as molecular predissociation
spectra. The experimental Na, 2°IT, ~ 3*II, « b’II, (v = 14, J = 14)
spectrum was simulated with an accuracy close to the experimental
results. We also demonstrated the ability of the Padé approximants
to describe all important features of the potential energy and other
functions involved in the model, including subtle bends. The fitted
parameters that enabled the reproduction of the results of the present
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Fig. 8. The experimental [25] Na, 3*1‘[ZZ ~23 I, « b*II, (v =14, J = 14) predissociation spectrum (dots), lifetimes estimated with the Fourier grid method with the optical potential
starting at R, = 22.76 A (circles connected with a solid line) and R,=10 A (diamonds connected with a dashed line), and the eigenenergies of the Na, 3°I1, (J = 14) state (squares
at the abscissa). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 9. (Color online) The experimental [25] Na, 3311, ~ 2°IT, < b*II, (v = 14, J = 14) predissociation spectrum (dots), lifetimes estimated with the Fourier grid method with the
optical potential starting at R, = 10 A (circles with stems), and the eigenenergies of the Na, 3°I1, (J = 14) state (squares at the abscissa).

paper, are reported. We also showed that the straightforward computa-
tion of the complex-type eigenenergies of the Fourier-grid Hamiltonian
with the embedded optical potential can give results in an approximate
description of the resonances but is not very reliable quantitatively.
A brief introduction of the computer programs used in the present
research and embedded into the Optimizer project is presented in the
Appendix.
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Appendix A. Padé approximants in the optimizer project

The Padé approximant [52] of a dependence y(x) can be defined as:

I 1C)
X) = =
Y Py

S (=5t 6)

C+ N
Xl bi(x = x)k

Equivalent forms parameterize the polynomials P,(x) and P,(x) via

their nodes ZZ/ 4 in place of the coefficients a, and by:

Nusa
d
Pua = Coja [] =2, @
k=1

For real-type functions, the nodes ZZ/ 4 can either be real-type or pairs of

mutually conjugated complex-type nodes. Our program supports both
types of the parameterization.

A polynomial is a partial case of the Padé approximant with P;(x) =
1, but in general, it is an approximation tool that has greater power. A
relatively simple analytical form allows one to easily manage analytical
properties such as poles, zeros, extrema, infliction points, asymptotes,
etc.

Prospects of using the Padé approximants to describe potential en-
ergy curves of molecules have been discussed for several decades [53-
65]. Nonetheless, their application in this field is still rather limited.
One of the reasons is that, sometimes in the course of the optimization
(fit) process, they can produce unexpected features, such as undesirable
poles, bends, etc., between the nodes of a computational grid, while at
the nodes everything looks fine; we encountered such problems with
first versions of our programs. Murrel et al. [58], based on their test
computations, did not recommend using Padé approximants for this
purpose. A recent review [79] presenting 50 most popular analytical
representations of potential energy functions did not even include the
Padé approximants in this list.

However, these difficulties are easily overcome within the mech-
anisms of the Optimizer project. At every step of the optimization
process, the desirable properties (absence of poles, absence or existence
of predefined number of extrema and infliction points in any predefined
range, etc.) can be checked either analytically or numerically, in a case
of their violation causing a break of the computation and an automatic
reduce of the optimization step until the desired properties are fulfilled.
In part, we successfully used this strategy in the present work.

The potential energy functions of molecules at large interatomic dis-
tances R = x are expected [66] to exhibit the inverse-power character:

U(R~c0) ~C+C; /RN +C, /RN + ...

with the leading powers depending on the state of a molecule (rather
often, N; =3, N, =6, ...), while the so-called dispersion coefficients
(Cy, C,, ...) are either precomputed or estimated from experimental
data. The Padé approximants can easily ensure a desirable asymptotic
behavior.

Indeed, making the leading asymptotic term to be ~ 1/RM is
achieved via making the power N, of the polynomial P,(x) in Eq. (6)
bigger than the power N, of P,(x) by Ny, i e, N, = N; — N,, with
C, =ay, /by, Then, assuming x, = 0 and substituting g = 1/x,

Ny k
Yo QX ay, 1 N

— =N,
—_— = X
bNd de_Nn 9

N,
Zki() bkxk
N,—1 - Ng—1 -
DI AL k—(aNn/bNd)Zk;jo bgNa*

N, -
Do bregNa
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Hence, for the next asymptotic term:

N,

next

=N, - N, +1,

an,-1~ (aN,,/bNd)ber
Cy = .

next

by,

The latter relation enables setting this term to any desirable value
(including the zero one) via fixing the approximant structure and
equating a part of its coefficients to some definite values.

For example, in order to the leading asymptotic term to be ~1/x3,
the power of the polynomial in the denominator must be bigger than
the power of the polynomial in the numerator by 3: N, = N, + 3. The
easiest way to ensure the behavior of ~ 1/x% for the next asymptotic
term is (with x, = 0) to equate to zero two penultimate coefficients
a, and three penultimate coefficients b;. If by, = 1, then the leading
dispersion coefficient C; will be just equal to ay, and the next one
C, will be equal to the last nonzero penultimate coefficients a;, (with
k' = N, — 3 in our example). It is easy to extend this reasoning to
asymptotic terms of higher orders.

Our program can handle the following problems:

Compute values y; of the Padé function (6), (7) at a predefined
grid {x;} using a predefined set of parameters.

Compute values of the function and its derivatives of predefined
orders at a set of some extra points.

Impose constraints of the equality of the function itself and/or
its derivatives of predefined orders at predefined points to prede-
fined values via correction of a predefined set of parameters.
Compute the local design matrix (Jacobi matrix) of the depen-
dence

i = f({ak}v {bk}’xOvCadmCmul)

or the equivalent dependence on the nodes zZ/ ?in place of ay, b,
in accordance with the regulations of the package Optimizer [2].
Compute the polynomial coefficients a;, b, Eq. (6) from the nodes
zz/ d Eq. (7) or vice versa.

Compute coordinates and function values of the extrema and the
inflection points.

Estimate coefficients at 1/x” (including positive and negative
integer p) in the long-range asymptote x — oco.

Support working with a composite function, when the formal
variable x is a predefined function of a physical variable R.

A more comprehensive manual is accessible online [2], with the
program codes and executable samples.

Appendix B. Split-operator method in the optimizer project

The Split-operator method [42-48] is a kind of the so-called pseudo-
spectral methods. It is aimed at a simulation of the dynamics of a quan-
tum system and, based on it, of a probability (intensity) distribution in
a spectrum of a transition in such a system.

The quantum evolution operator at a short time interval 6¢ can be
approximated with:

T(61) = exp {—%H&t} = exp{—%K&t - %U&t} ~

i i i
exp{—gKét/Z}exp{—EU(St}exp{—%Két/Z} ~ (€©)]
i i i
exp {_EU&/Z} exp {—gKét} exp {—gUét/Z} s
n” P

where H is the Hamiltonian, K = s is the operator of the
system kinetic energy and U(R) is the potential energy (generally,
multichannel as in Eq. (1)). These forms are unitary, symmetrical and
keep an important property of the time reversibility. Further on, we
name these two approximations the KUK and UKU forms.

The operator exp —%U&t is diagonal relative the coordinate R in
the coordinate representation and relative the channel index in the adi-
abatic representation, i.e., its action on a wavepacket is easily computed
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(as just a multiplication) in the coordinate adiabatic representation.
Analogously, the action of the operator exp{—%K&t} is easily com-

puted in the momentum diabatic representation. As is well known
from Quantum Mechanics, the transform between the coordinate and
momentum representations and vice versa is just the Fourier transform,
while the transform between the adiabatic and diabatic representations
is done with the transform matrices analogous to Eq. (4). This means
that the evolution of a wavepacket y(f = 0, R) in an entire time range
can be computed as a sequence of its multiplication by one diagonal
operator in one of these representation at a reasonably short time
interval 6t, transform to the other representation, multiplication by
another diagonal operator, transform back to the first representation,
and so on until the desired final time is achieved.

For a computing of the evolution of a bound state, no extra compli-
cations are needed. However, if a free (decaying) state is considered,
some artificial features arise, which should be damped. Indeed, the
spatial computational grid is anyway finite, so, when the modeled
wavepacket arrives at its boundary, it is partially reflected from it and
partially enters the grid from the opposite boundary (in the theory of
the Fourier transform, it is called the aliasing effect), demonstrating
nonphysical behavior. To overcome this drawback, absorbing boundary
conditions or an imaginary-type “optical” potential [72] are usually
embedded.

When an optical transition of a molecule from an initial state with
the wavefunction @(R) into a (multichannel) system of final states
is considered, the initial multichannel wavepacket w(t = 0, R) is
constructed via a multiplication of @(R) by a corresponding transi-
tion moment function M, (R) in every kth channel: y,(r = 0, R) =
M (R)p(R). Then the evolution y (¢, R) is calculated the way described
above with the estimate at every time instant of a time autocorrelation
function

S0 =yt =0, Ry, R)

and the distribution of the transition probability (the spectrum of the
transition) is estimated as the Fourier transform of the autocorrelator
S(t) (see also [46]).

We wrote and adapted to the Optimizer project several variants
of the Split-operator programs. First, we realized both KUK and UKU
schemes Eq. (8). Our test computations have shown that these two
schemes possess approximately equivalent accuracy, however the KUK
scheme is a little bit faster (see the manual [2] for an explanation
why). Then, every program is written in both pure Matlab codes
(vMatlab versions) and with blocks written in C and embedded with the
help of the Matlab mex-mechanism (vMatlabC versions). The vMatlabC
versions are several times faster than the vMatlab version but have
a somewhat poorer functionality, that is not nevertheless important
for the majority of prospective applications. The absorbing boundary
conditions described in our recent work [72] are supported by all the
versions.

A more detailed manual is available on the internet [2], along with
the program codes and executable samples.
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