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Abstract

The reduced Lippmann-Schwinger-Lanczos (LSL) algorithm, initially designed for two-
dimensional (2D) inverse problems within the diffusion domain in the context of
reduced-order modeling (ROM) (Baker et al., Regularized reduced order Lippmann-
Schwinger-Lanczos method for inverse scattering problems in the frequency domain
(submitted). arXiv:2311.16367v1) and later adapted to one-dimensional (1D) inverse
scattering in the wave domain (Abilgazy and Zaslavsky, Lippmann- S chwinger-Lanczos
approach for inverse scattering problem of Schrédinger equation in the resonance
frequency domain. Extended abstracts of IPMS 2024 conference (accepted)), is
extended in this work to address 2D Schrédinger inverse problems. Numerical
experiments demonstrate that the required frequency sampling rate for 2D wave
problems is substantially lower than for the 1D case, attributed to the inherently
overdetermined nature of the 2D inverse problem. This finding suggests potential
efficiency gains for solving high- dimensional wave-based inverse problems using
reduced sampling strategies.

Keywords (separated by “ - )

Lippmann- Schwinger equation - Lanczos - Reduced order model

MSC 2020 (separated by “ -

")

35R30-47A52 - 65N21 - 65F22 - 78 A46



Author's Proof

Chapter 32
Reduced Order

Lippmann-Schwinger-Lanczos Inverse
Scattering Method

Justin Baker, Elena Cherkaev, Vladimir Druskin, Shari Moskow,
and Mikhail Zaslavsky

Abstract The reduced Lippmann-Schwinger-Lanczos (LSL) algorithm, initially
designed for two-dimensional (2D) inverse problems within the diffusion domain
in the context of reduced-order modeling (ROM) (Baker et al., Regularized reduced
order Lippmann-Schwinger-Lanczos method for inverse scattering problems in
the frequency domain (submitted). arXiv:2311.16367v1) and later adapted to
one-dimensional (1D) inverse scattering in the wave domain (Abilgazy and
Zaslavsky, Lippmann-Schwinger-Lanczos approach for inverse scattering problem
of Schrodinger equation in the resonance frequency domain. Extended abstracts
of IPMS 2024 conference (accepted)), is extended in this work to address 2D
Schrodinger inverse problems. Numerical experiments demonstrate that the required
frequency sampling rate for 2D wave problems is substantially lower than for the 1D
case, attributed to the inherently overdetermined nature of the 2D inverse problem.
This finding suggests potential efficiency gains for solving high-dimensional wave-
based inverse problems using reduced sampling strategies.
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The inverse scattering problem formulated for the Helmholtz and Schrddinger
operators has wide-reaching applications in fields such as quantum mechanics,
remote sensing, geophysical, and medical imaging. Efficient numerical methods
for inverse scattering have been developed in application to acoustic imaging, elec-
tromagnetic sensing, seismic exploration, and other fields. These methods include
iterative techniques based on adjoint or backpropagation methods, Born and Rytov
approximations, layer stripping methods, asymptotic methods for small volume
inhomogeneities, Kirchhoff migration, and solving the Lippmann-Schwinger (LS)
integral equation, see [7, 12, 14] , also see a more recent review [13] and references
therein discussing, in addition to the above mentioned techniques, far field and near
field methods as well as phaseless recovery and nonlinear approaches. The problem
is known to be severely ill-posed [6, 11].

Here, we use a truncated Lanczos representation to compute the data-driven
internal solution of the PDE with unknown coefficients and then substitute it into
the LS problem, thus effectively making it linear, as proposed in [9]; this results
in the Lippmann-Schwinger-Lanczos (LSL) algorithm. The stgsiity of projection
subspaces in reduced order models (ROMs) is a critical CE‘I‘I, particularly
when dealing with ill-posed problems. The sensitivity to data errors and potential
nonphysical indefiniteness of the mass and stiffness matrices can lead to the
loss of the Hamiltonian property in the reduced order system. To address this
issue, two level ROM regularization via Gramian truncation is introduced in [3]
to stabilize the LS algorithm. for the solution of the 2D inverse problem in the
diffusion regime. The problem considered in [3] used a multiple-input multiple-
output (MIMO) formulation corresponding to a symmetry preserving discretization
of the 2D Neumann-to-Dirichlet (NtD) map. The LSL algorithm was extended to
the wave domain for 1D inverse scattering problems [1] in single-input single-output
(SISO) formulation, corresponding to the data given as a frequency-dependent 1D
NtD a.k.a. scalar Weyl or transfer function. Here we apply the LSL algorithm to
a 2D inverse problem in MIMO formulation for Schrodinger equation in the wave
domain, which is a commonly used model in inverse scattering.

We note that the extension to a more general class of inverse problems may
be possible with additional iterations [5], however, introducing iterations would
compromise the advantages provided by direct inversion methods.

The LSL Method We consider the Schrédinger equation in a bounded domain £2
inR94, d > 1, with a smooth boundary 952 at the wavenumber squared A,

Au(x) + p(x)u(x) + Au(x) =0 in £2, g_u =g on 352. (32.1)
n

The inverse scattering problem seeks identifying the nonnegative potential p(x)
using measured multifrequency Dirichlet data at a single or multiple receivers along
the boundary, corresponding to a partial NtD map given by Neumann condition g.

Notice that we can rewrite the inhomogeneous Neumann boundary condition
as the source g(x) in the domain, assuming g(x) is a compactly supported real
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distribution localized near the boundary. A complete set of such distributions will
define the NtD operator, which is a tensor of order 2d — 2 for every A. Thus, the
inverse problem of determining p(x) from the NtD given for a frequency interval
becomes overdetermined for d > 1. Denoting the operator in (32.1) as &, we
(formally) represent the solution using the resolvent operator as

u=(L+r"g, where £ =—A+pl (32.2)

defined for functions on £2 satisfying the homogeneous Neumann boundary condi-
tion at d£2. The LSL method uses the values of the transfer function F(A) as the
data:

FA) = (g.u) = f gux, \dx = (g, (~A+pl + 117" g) (32.3)
a2

The case with d = 1 considered in [1] corresponds to the Schrédinger equation
for a scalar function u in the domain £2 = (0, L), 0 < L < o0. The data for the
inversion are the values of the function F'(X) and its derivative given for specific
rieR j=1,....m:

FM)h=z; € R, mlx:x- eR for j=1,....,m. (32.4)
di !

The SISO inverse problem requires to determine p(x) in (32.1) from the data (32.4)
with real or complex-valued function F(X) and correspond collocated receiver
and transmitter density g(x) as given by (32.3). The MIMO formulation with
I collocated transmitter and receiver distributions g; normally used for d > 1
and usually corresponds to symmetrix matrix valued function F() € C*! with
elements

Fj() = (g, (—A+pl +Al)lg;), i=1,...,1, j=1,...,1

Normally g; are chosen in such way, that (1) becomes an approximation of the
NtD map.

In [3], the authors considered diffusion formulation with data on an interval
of R,. Here we consider a wave formulation on the real negative interval A <
[Amin, 0] € R_. The diffusion case corresponds to the Laplace transform of the
diffusion equation with exponential factor e=* with A > 0. Our formulation in
the wave domain arises from the Fourier transform of the wave equation with the
time-dependent harmonic factor e*'®, where w is the harmonic frequency of the
oscillation yielding A = —?. Shifting from positive to negative intervals of A
in wave problems produces images of significantly higher resolution, however it
requires different sampling strategies.

A positive interval lays outside of the spectrum of %, and the choice of the
data points can be based, for example, on H> optimal points [4]. However, a large
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enough negative interval contain the spectrum, so to accurately describe the transfer
function, the data points should separate the spectral points, i.e., at least alternate
with the spectral points. Density of spectral points can be estimated via Weyl’s law

N
lim —— = (27) “w vol(£2), (32.5)
—00

where w, is the volume of the unit ball in R4. Here N (A) is the number of the
eigenvalues less than or equal to A. Generally, we choose density of sample
points as céfx N (A1) with a moderate integer oversampling constant ¢ > 1, that for
d > 1 yields good results. To avoid overflow, we remove data points with absolute
measurement values above certain threshold, that lay to close to the spectral points.
We also note that inverse scattering problem in multi-dimensional case d > 1 is
over-determined for MIMO scenario, so it is enough to use ¢ = 2. In contrast, for
1D SISO problem values ¢ > 3 are required for good reconstructions [1].

Lippmann-Schwinger Integral Equation If Fj is the background transfer func-
tion corresponding to the solution u° for known po, then the nonlinear Lippmann-
Schwinger equation for the unknown function p can be written as

Fo— F = (u°, pu) (32.6)

where u is the (unknown) solution corresponding to the (unknown) coefficient p.
One of the main difficulties of applying the LS approach to inverse problems is that
this is a nonlinear equation. The LSL method [9] uses a (data-driven) approximate
u of the solution u which is computed via Lanczos orthogonalization directly from
the data without knowing p. This leads to the linear with respect to p equation:
Fo — F =~ (u°, pit). This precomputing is based on embedding properties of the
data-driven reduced order models (ROMSs) developed in [8] and results in the linear
system of equations for p(x):

Fo(hj) — F(Aj) = fw uo(x, Aj)a(x, Aj)p(x)dx,  j=1,....m  (32.7)

LSL Algorithm A critical component of the LSL algorithm is computation of
u, so we address it im more details. Let u; = u(x, A;) be solutions to (32.1)
corresponding to A = A; for j = 1,..., m. We construct the Galerkin system
that determines the data-driven Reduced Order Model (ROM) by projecting the
problem (32.1) into the subspace V spanned by the functions u1(x), . .., upn(x),

(S + AM)c = b. (32.8)
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Here the symmetric, positive definite stiffness and mass m x m block matrices

respectively S and M with / x [ blocks obtained from the data via Loewner algorithm
[3-5, 10]:
F(Ai) — F(A)) dF
Mijj = —————, M;i=——(X). 32.
i Aj_li * i dl( I) ( 9)
and
F(Aj)hj — F(A)A; d(LF
S = (Aj)rj — Fhi) i s ( )(m_ (32.10)
Aj—A; di

The right-hand side b is a real vector of / x [ blocks given by F(A ;). For any A,
the solution to (32.1) can be approximated by data-generated solution

u=i=Ve=V(S+iM) b, (32.11)

where V is an operator that can be represented via semi-infinite matrix V e Rooxm!
with vector-columns from a Hilbert space given by orthogonolized background
snapshots computed for p =0 at A;,i = 1, ..., m. A key component of the data-
driven ROM approach is asymptotic independence of the orthogonolized snapshots
V onunknown p(x), in spite of possibly strong dependence of the original snapshots
u. This is thanks to the specially chosen orthogonalization algorithm via the block-
Lanczos recursion with matrix M—'S and initial block-vector b [5, 9]. Thus, all
the parameters in the r.h.s. of (32.11) can be computed from the data, so we call u
data-driven or data-generated solution.

To summarize, the LSL algorithm executes the following steps. The first step is
constructing the data generated internal solution # via (32.11). The next step is to
solve the linear system of Lippmann-Schwinger integral equations (a linear inverse
problem). Indeed, use of i(x, ;) instead of u(x, A;) in the Lippmann-Schwinger
integral equation produces a linear system for the unknown p(x) given by (32.7).

The disadvantage of the LSL method is that improving the quality of the recon-
structed solution requires increasing the number of frequencies. However, as the
number of frequencies increases, the condition number of Loewner matrices S and
M increases, and due to noisy data they can lose their positive-definiteness, leading
to breakdown of the orthogonalization algorirthm. To prevent this , a regularized
(truncated) Reduced Order Model is constructed in [3] by projecting matrix pencil
(S, M) onto the eigenvectors of M corresponding to the real positive eigenvalues.
Additional regularization is implemented to address intrinsic ill-posedness of

The regularized LSL algorithm provides an efficient approximation of the
resolvent and results in a stable numerical algorithm.

Results of Numerical Simulations for the MIMO Problem Here, we present 2D
results of numerical reconstructions of the perturbation composed of three shapes:
a circle, a rectangle and a corner, embedded in homogeneous background pp = 0
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AN

Born for A € [—80; —2] Reconstruction for 4 € [—80;—2] Reconstruction for 1 € [—380;—2]

Fig. 32.1 Shape perturbation reconstruction using the Born, and LSL methods

in £2 = [—1; 1]2. All three objects have the intensity p = 1, We considered MIMO
dataset with 8 collocated sources/receivers located on the boundary 82 (2 per each
piece of boundary) and multiple frequencies. In Fig. 32.1 we plotted the results of
reconstructions for frequency range A € [—80; —2] obtained by Born (left) and LSL
(middle) as well as by LSL for A € [-380; —2]. As one can observe, our approach
strongly overperforms Born for the same dataset. Also, adding higher frequencies
allowed to sharpen the image significantly. We also note that these reconstructions
are much sharper than the ones obtained in [3] for diffusion Schrodinger problem.

Conclusions The paper discusses the data-driven reduced Lippman-Schwinger-
Lanczos (LSL) method providing an efficient approach to inverse scattering for
multi-dimensional Schrodinger problem in a wave regime. The LSL is the direct
reconstruction algorithm that gives an explicit map between the ROM and the
unknown potential p; it does not require an iterative numerical scheme. Other
advantages of the method are stability of the regularized ROM and construction of
the Galerkin ROM, exactly matching the data, directly from the data. Employing the
wave formulation allowed to sharpen the images compared to diffusion Schrédinger
problem [3]. We observed that the sampling rate can be significantly relaxed
compared to the 1D case [1]. We can speculate that such relaxation is possible thanks
to the overdetermined nature of the 2D formulation using frequency-dependent NtD
map, and probably even more sampling coarsening is expected for 3D problems.
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