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Abstract
In previous work of the authors, we investigated the Born and inverse Born
series for a scalar wave equation with linear and nonlinear terms, the nonlin-
earity being cubic of Kerr type (DeFilippis et al 2023 Inverse Problems 39
125015). We reported conditions which guarantee convergence of the inverse
Born series, enabling recovery of the coefficients of the linear and nonlinear
terms. In this work, we show that if the coefficient of the linear term is known,
an arbitrarily strong Kerr nonlinearity can be reconstructed, for sufficiently
small data. Additionally, we show that similar convergence results hold for
general polynomial nonlinearities. Our results are illustrated with numerical
examples.

Keywords: Kerr nonlinearities, inverse scattering, inverse Born series

1. Introduction

There has been considerable recent interest in inverse problems for nonlinear partial differ-
ential equations (PDEs) [1, 2, 3, 6, 11–15, 17–20]. Applications of such problems arise in a
variety of contexts, including optical imaging and seismology. Similar to the case of linear

∗
Author to whom any correspondence should be addressed.

Original Content from this work may be used under the terms of the Creative Commons Attribution
4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the

title of the work, journal citation and DOI.

© 2024 The Author(s). Published by IOP Publishing Ltd 1

https://doi.org/10.1088/1361-6420/ad92a1
https://orcid.org/0000-0002-8240-7247
https://orcid.org/0000-0003-0545-1962
mailto:moskow@math.drexel.edu
mailto:nad9961@nyu.edu
mailto:john.schotland@yale.edu
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6420/ad92a1&domain=pdf&date_stamp=2024-11-26
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Inverse Problems 40 (2024) 125020 N DeFilippis et al

PDEs, the goal is to recover an unknown spatially varying coefficient from boundary meas-
urements. The above referenced works have demonstrated that nonlinearity is of great utility in
proving uniqueness of the solution to the inverse problem for a large class of nonlinear PDEs.
We note that reconstruction methods have also been developed [4, 6, 8, 9, 16, 21]. In this paper,
we show that nonlinearity is also helpful for reconstruction, in the sense that in certain cases,
an arbitrarily strong nonlinearity can be recovered for sufficiently small scattering data.

In previous work [8], we considered the inverse problem of recovering the coefficients of
a nonlinear elliptic PDE arising in the study of the Kerr effect. The Kerr effect is a nonlinear
optical process that leads to focusing or defocusing of light [5]. In [8] the unknowns to be
reconstructed are the coefficients of both a linear term and a cubic term in the PDE. To this end,
we constructed the Born series and found a recursive formula for the forward operators arising
in the series. We also obtained bounds on the forward operators and gave conditions which
guarantee convergence of the inverse born series (IBS). The IBS was then used to reconstruct
both coefficients from boundarymeasurements. Although the IBS has been extensively applied
to inverse problems for linear PDEs [23], DeFilippis et al [8] was the first report of its use for
a nonlinear PDE.

In this paper, we consider a variant of the above the inverse problem in which the coefficient
of the linear term is known a priori. Surprisingly, we find that not reconstructing the linear term
leads to several advantages. First, it is possible to find explicit bounds on the forward operators
in the Born series. In contrast, in our previous work [8], the bounds on the forward operators
were not explicit. Second, we show that when reconstructing the coefficient of the cubic term,
the IBS converges if the boundary data is sufficiently small. This finding is strikingly different
than the case of the linear inverse problem, where the IBS series fails to converge for suffi-
ciently large data. Finally, our results extend to the case of general polynomial nonlinearities.
These include second and third harmonic generation, which affords a much greater range of
physical applications [5]. We note that the linear response of a scattering medium can, in prin-
ciple, be acquired by means of hole burning experiments, in which the nonlinear response is
suppressed [5].

The paper is organized as follows. In section 2, we restate the forward problem and the fixed
point convergence result for small data with a known linear term.We then describe the forward
Born series in section 3, where we also find explicit expressions for the bounds on the forward
operators. In section 4 we state the convergence results for the IBS, where we show that small
data leads to an arbitrarily large radius of convergence for the IBS. The case of more general
polynomial nonlinearities is treated in section 5. Section 6 contains numerical reconstructions
for a two-dimensional medium. Our conclusions are presented in section 7.

2. Forward problem

We consider a bounded domain Ω in Rd with a smooth boundary, for d⩾ 2. The scalar field
u, which for the Kerr effect, obeys the nonlinear PDE

∆u+ k2u+ k2β (x) |u|2u= 0 in Ω , (1)

∂u
∂ν

= g on ∂Ω , (2)

where the wavenumber k is real and ν is the unit outward normal to ∂Ω. The coefficient β is
the nonlinear susceptibility [5], which we assume is real valued and g is a boundary source. It
follows that u is real valued, so that |u|2u= u3. More generally, u is complex valued, in which
case the results hold with small modifications.
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Remark. Here, for simplicity, we have assumed that the coefficient of the linear term is con-
stant. If the coefficient of the linear term is not constant, our results carry over by modifying
the associated Green’s function as explained below.

To proceed, we require the solution u0 to the linear problem

∆u0 + k2u0 = 0 in Ω , (3)

∂u0
∂ν

= g on ∂Ω (4)

which we assume throughout this paper is well posed, that is, that −k2 is not a Neumann
eigenvalue of the Laplacian on Ω. Following standard procedures [7], we find that the field u
obeys the integral equation

u(x) = u0 (x)− k2
ˆ
Ω

G(x,y)β (y)u3 (y)dy . (5)

where the Green’s function G obeys

∆xG(x,y)+ k2G(x,y) = δ (x− y) in Ω , (6)

∂G
∂νy

= 0 on ∂Ω . (7)

We define the nonlinear operator T : C(Ω)→ C(Ω) by

T(u) = u0 − k2
ˆ
Ω

G(x,y)β (y)u3 (y)dy. (8)

Note that if u ∈ C(Ω) is a fixed point of T, then u satisfies equation (5). The following result
provides conditions for existence of a unique solution to (5) within a ball in C(Ω).

Proposition 1. Let T : C(Ω)→ C(Ω) be defined by (8) and define µ by

µ= k2 sup
x∈Ω

ˆ
Ω

|G(x,y) |dy. (9)

If

∥β∥∞ <
4

27µ∥u0∥2C(Ω)
,

then T has a unique fixed point on the ball of radius ∥u0∥C(Ω)/2 about u0 in C(Ω), and fixed
point iteration starting with u0 converges in C(Ω) to the unique fixed point u.

The proof is given in the appendix of [8]. We note that this shows that given any bounded
β, the fixed point iteration will converge for small enough u0; that is, for small enough data
g. Hence the same is true for the forward Born series [8]. However, the fixed point analysis
does not provide bounds on the forward operators, and therefore does not provide information
about the convergence of the inverse Born series.

3
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3. Born series

The forward problem is to compute the field u on ∂Ω given a prescribed source g on ∂Ω.
For the inverse problem, we will consider a set of sources g where each is associated with
a boundary point x ∈ ∂Ω, and in this manner view u and u0 as functions in C(Ω× ∂Ω). A
series representing the solution of the forward problem is derived by iteration of the integral
equation (5), beginning with the background field u0. By doing this, one can show that we
obtain

ϕ = K1 (β)+K2 (β,β)+K3 (β,β,β)+ · · · , (10)

where ϕ = u− u0 is the data on the boundary. In [8], we found that the forward operator

Kn : [L
∞ (Ω)]

n → C(∂Ω× ∂Ω)

is a n-linear operator (multilinear of order n) and given by the recursive formula

K0 = u0,

K1 = Bu0 ⊗ u0 ⊗ u0,

Kn+1 = B
∑

(i1,i2,i3)
i1+i2+i3=n
0⩽i1,i2,i3⩽n

Ki1 ⊗Ki2 ⊗Ki3 . (11)

where the tensor operator B takes a multilinear operator of order l to one of order l+ 1

BTl (β1, . . . ,βl,βl+1) = b(Tl (β1, . . . ,βl) ,βl+1) ,

and the operator b : C(Ω)× [L∞(Ω)]→ C(Ω) is given by

b(v,β) = k2
ˆ
Ω

G(x,y)β (y)v(y)dy. (12)

In the above definition we also used the tensor product of multilinear operators. Given Tj and
Tl, which are multilinear operators of order j and l, respectively, the tensor product Tl⊗ Tj is
defined by

Tl⊗ Tj (β1, . . . ,βl,βl+1, . . . ,βl+j) = Tl (β1, . . . ,βl)Tj (βl+1, . . . ,βl+j) ,

so that Tl⊗ Tj is a multilinear operator of order l+ j. See [8] for a proof that fixed point iter-
ations generate the series (10) with operators given by (11). We will refer to this series as the
(forward) Born series. We note that proposition 1 guarantees convergence of the forward Born
series.

In order to analyze the convergence of the inverse Born series, bounds on the norms of the
forward operators Ki are required. For any multilinear operator K of order n on [L∞(Ω)]n, if
we define

|K|∞ = sup
β1,...,βn ̸=0

∥K(β1, . . .βn)∥C(∂Ω×∂Ω)

∥β1∥∞ · · ·∥βn∥∞
,

then we have the following boundedness result.

4
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Proposition 2. The forward operator Kn, given by (11) is a bounded multilinear operator
from [L∞(Ω)]n to C(∂Ω× ∂Ω), and

|Kn|∞ ⩽ ν (Kµ)n , (13)

where

µ= k2 sup
x∈Ω

ˆ
Ω

|G(x,y) |dy, (14)

ν =
3
2
∥u0∥C(Ω×∂Ω),

and

K=
27
4
∥u0∥2C(Ω×∂Ω).

Proof. From lemma 2 of [8], the forward operators Kn, as defined by (11), are bounded mul-
tilinear operators from [L∞(Ω)]n to C(∂Ω× ∂Ω) and satisfy

|Kn|∞ ⩽ νnµ
n, (15)

where

µ= k2 sup
x∈Ω

ˆ
Ω

|G(x,y) |dy, (16)

ν0 = ∥u0∥C(Ω×∂Ω),

and for all n⩾ 0,

νn+1 =
∑

(i1,i2,i3)
i1+i2+i3=n
0⩽i1,i2,i3⩽n

νi1νi2νi3 . (17)

We therefore need to show that the sequence {νn} defined by (17), for any n⩾ 0, satisfies

νn ⩽ νKn.

where K=
27ν2

0
4 and ν = 3

2ν0. We proceed as in [8] and consider the generating function

P(x) =
∞∑
n=0

νnx
n.

From [8] we know that this power series has a positive radius of convergence; here we repeat
the argument while finding the radius explicitly. Computing the cube of P,

(P(x))3 =
∑
i1,i2,i3

xi1xi2xi3νi1νi2νi3

=
∞∑
n=0

fnx
n,

5
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where

fn =
∑

(i1,i2,i3)
i1+i2+i3=n
0⩽i1,i2,i3⩽n

νi1νi2νi3 ,

and multiply (17) by xn and sum to obtain

∞∑
n=0

νn+1x
n =

∞∑
n=0

fnx
n,

which yields

x(P(x))3 −P(x)+ ν0 = 0. (18)

We differentiate with respect to x to

P ′ (x) =− (P(x))3

3x(P(x))2 − 1
(19)

with P(0) = ν0. Just as was argued in [8], this equation must have an analytic solution on an
open interval around x= 0 [24], and this solution must be the series P(x).

Now, since P(x)> 0 for x> 0, (19) implies that P is increasing for x> 0, so long as
3x(P(x))2 < 1. Algebraic manipulation of (18) gives

3xP2 − 1=− 3
P
ν0 + 2,

so as long as 3xP2 − 1< 0, P< 3
2ν0, and the series converges. We can see that this is true

for any 0⩽ x< 4/(27ν20), since in the above equation P< 3
2ν0 when 3x( 32ν0)

2 < 1. We have
therefore shown that for any 0⩽ x< 4/(27ν20), the terms of the series must tend to zero as
n→∞, and in particular must be bounded by some ν. Since the entire series sum is always
bounded by 3

2ν0 and the terms are all positive, we may take ν = 3
2ν0. So, for all n we have that

νn ⩽
3
2
ν0

(
1
x

)n

,

and this holds for any 0< x< 4/(27ν20). Hence we must have

νn ⩽
3
2
ν0

(
27ν20
4

)n

.

We note that by majorizing the series by a geometric series, these bounds give another proof
of convergence of the forward series with the same requirements as proposition 1.

Corollary. The Born series

u= u0 +
∞∑
n=1

Kn (β, . . . ,β) ,

6
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where Kn are given by (11), converges in C(Ω) for

∥β∥∞ <
1
Kµ

where K and µ are given as in proposition 2.

4. Inverse Born series (IBS)

The inverse problem is to reconstruct the coefficient β from measurements of the scattering
data ϕ = u− u0 on ∂Ω, and we propose to do this by computing the IBS [23], which is defined
as

β̃ =K1ϕ +K2 (ϕ)+K3 (ϕ)+ · · · , (20)

where the data ϕ ∈ C(∂Ω× ∂Ω). The IBS was analyzed in [10, 22]. The inverse operatorsKm

are given by

K1 (ϕ) = K+
1 (ϕ) , (21)

K2 (ϕ) =−K1 (K2 (K1 (ϕ) ,K1 (ϕ))) , (22)

Km (ϕ) =−
m∑
n=2

∑
i1+···+in=m

K1Kn (Ki1 (ϕ) , . . . ,Kin (ϕ)) , (23)

where K+
1 is some regularized pseudoinverse of K1.

The bounds on the forward operators in proposition 2 allow us to apply theorems 2.2 and
2.4 of [10]. We note that the constants ν and µ in [10] correspond to νKµ and Kµ here in
proposition 2. We denote by ∥K1∥ the operator norm of K1 as a map from C(∂Ω× ∂Ω) to
L∞(Ω), and use ∥u0∥ to refer to the C(Ω× ∂Ω) norm. Theorems 2.2 and 2.4 of [10] yield the
following results.

Theorem 1 (convergence of the IBSs). If ∥K1ϕ∥∞ < r, where the radius of convergence r
is given by

r=
2

27µ∥u0∥2
[√

16C2 + 1− 4C
]
,

with C=max{2, 818 µ∥K1∥∥u0∥3} and µ given by (9), then the IBSs (20) converges.

Theorem 2 (approximation error). Suppose that the hypotheses of theorem 1 hold and that the

Born and IBSs converge. Let β̃ denote the sum of the IBSs. SettingM=max
{
∥β∥∞,∥β̃∥∞

}
,

if we further assume that

M<
4

27µ∥u0∥2

(
1−

√
81
8 µ∥K1∥∥u0∥3

1+ 81
8 µ∥K1∥∥u0∥3

)
, (24)

then the error of the series sum can be estimated∥∥∥β− β̃
∥∥∥
∞

⩽
(
1−

81
8 µ∥K1∥∥u0∥3(

1− 27
4 µ∥u0∥2M

)2 + 81
8
µ∥K1∥∥u0∥3

)−1

∥(I−K1K1)β∥∞ .

7



Inverse Problems 40 (2024) 125020 N DeFilippis et al

Note that if this were a well posed problem, andK1 were a true inverse ofK1, theorem 2 says
that the inverse series would converge to the true β under these hypotheses. Due to the need for
regularization, the right hand side in the conclusion of theorem 2 is nonzero in general. If one
scales u0 (or equivalently the boundary data) by some constant γ, K1 will exactly scale by γ3.
So, we can choose its pseudoinverse K1 to scale by 1/γ3. Hence the quantity 81

8 µ∥K1∥∥u0∥3
will remain fixed, and theorem 1 implies that the radius r will grow arbitrarily large as γ → 0.
Furthermore, in this case theorem 2 says that the error in the series sum is bounded by a
constant times ∥(I−K1K1)β∥ for ∥u0∥ small enough, which is the error introduced with the
(necessary) regularization. The error in the tail of the series can be bounded geometrically, see
[8] for details.

5. General polynomial nonlinearities

We now consider the case of general polynomial nonlinearities without a linear term. We con-
sider the PDE

∆u+ k2u+ k2
L∑
l=2

β(l) (x)ul = 0 in Ω , (25)

∂u
∂ν

= g on ∂Ω , (26)

where the unknown coefficients to be reconstructed are β⃗ = (β(2), . . . ,β(L)). We similarly
obtain the forward operators

K0 = u0,

K1 =
L∑
l=2

B(l)u0 ⊗ . . .⊗ u0,

Kn+1 =
L∑
l=2

B(l)
∑

(i1,...,il)
i1+...+il=n
0⩽i1,...,il⩽n

Ki1 ⊗ . . .⊗Kil . (27)

where all of the tensor operators of order p now input a list of p vectors; whereB(l) now extracts
the entry corresponding to the l power,

B(l)T
(
β⃗1, . . . , β⃗q, β⃗q+1

)
= b(l)

(
T
(
β⃗1, . . . , β⃗q

)
, β⃗q+1

)
where b(l) : C(Ω)× [L∞(Ω)]→ C(Ω) is given by

b(l)
(
v, β⃗
)
= k2
ˆ
Ω

G(x,y)β(l) (y)v(y)dy. (28)

One bounds Kn in a similar manner to obtain (15) where now

νn+1 =
L∑
l=2

∑
i1+...+il=n

νi1 . . .νil . (29)

again with

ν0 = ∥u0∥C(Ω×∂Ω).

8
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The generating function for this sequence

P(x) =
∞∑
i=1

νi x
i

satisfies

xQ(P(x))−P(x)+ ν0 = 0 (30)

where

Q(x) =
L∑
l=2

xl.

Differentiating this expression, we find that P is analytic in a neighborhood of zero and is
increasing for x> 0, until xQ ′(P(x)) = 1. Using that Q ′(P)⩽ L

PQ(P), both are increasing,
and that

x
LQ(P)
P

− 1= L− 1− Lν0
P

from the polynomial (30), we deduce that P is analytic while P< Lν0
L−1 . Hence P is analytic

when

x<
ν0

(L− 1)Q
(
Lν0
L−1

) .
Proposition 2 therefore holds in the general case with

ν =
Lν0
L− 1

and

K= (L− 1)
Q
(
Lν0
L−1

)
ν0

,

with again

ν0 = ∥u0∥.

That is, the forward operator Kn, given by (27), is a bounded multilinear operator from
[L∞(Ω)](L−1)n to C(∂Ω× ∂Ω) and

|Kn|∞ ⩽ ν (Kµ)n , (31)

where

µ= k2 sup
x∈Ω

ˆ
Ω

|G(x,y) |dy, (32)

ν =
L

L− 1
∥u0∥C(Ω×∂Ω),

9
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and

K= (L− 1)
Q
(

L
L−1∥u0∥

)
∥u0∥

.

The forward series will converge if Kµ < 1, and we clearly have K⩽ C∥u0∥s with s⩾ 1 for
∥u0∥ small, since we assumed that the polynomial Q has degree greater than or equal to 2. In
a similar manner, the inverse series will have radius

r=
1

2Kµ

[√
16C2 + 1− 4C

]
,

where C=max{2,∥K1∥νKµ}. Note that if we scale the data, the situation is similar to the
cubic case, since Kν scales as Q(∥u0∥), while K1 scales as 1/Q(∥u0∥), so that r→∞ as
∥u0∥→ 0, due to the presence of K in the denominator in the expression for r.

Remark . If the nonlinearity is polynomial in both u and its complex conjugate u, this analysis
carries over, with the forward operators generalized to have conjugates appropriately placed
in (27). If there is at most one term per degree, the constants ν and K will remain the same as
in the real case presented here. If there is more than one term for some degree, the constants
will need to be modified slightly; however, they will scale similarly with ν0.

6. Numerical reconstructions

In this section, we present a few numerical simulations to demonstrate convergence of the IBS
for high contrast. We note that the restriction to the real case and to two dimensions is for
simplicity and is not fundamental. To generate synthetic data, we solve the nonlinear PDE

∆u+ k2u+ k2β (x)u3 = 0 in Ω , (33)

∂u
∂ν

= g on ∂Ω , (34)

and the background PDE

∆u0 + k2u0 = 0 in Ω , (35)

∂u
∂ν

= g on ∂Ω , (36)

by using a Galerkin finite element method as implemented in the FEniCS library in Python.
The domainΩ is the unit disk, and we obtain the finite element mesh automatically in FEniCS.
The boundary source g is taken to be g(x) = g0δ(x− y), where y ∈ ∂Ω and g0 is the strength of
the source. The delta function is approximated by a Gaussian for numerical computations, and
we will force small ∥u0∥ by decreasing g0. The forward operatorsKn are constructed according
to the formulas (11), and the operator B, defined by the corresponding integral operator b given
in (12), is evaluated by solving the a background PDE source problem.We use a different mesh
to compute the forward operators from the one used to generate the boundary data. Note that
these background problems are linear, and only the right-hand side of the PDE changes for
each evaluation of b. The IBSs is implemented according to (21)–(23). The solution to the
linearized inverse problem is given in terms of the operator K1, which is constructed from a
regularized pseudoinverse of the forward operator K1. In our calculations we used the built in

10
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Figure 1. Reconstruction of a high contrast β. Sources were scaled downwith g0 = 0.01
to ensure convergence of the IBS. The projection of the true β onto the regularization
space, K1K1β, indicates an expected best case scenario.

numpy pinv function, which uses SVD and cuts the singular values below the ratio rcond,
which we found we needed to choose between rcond = 10−6 and rcond = 10−4. In all of the
following figures, we employ 16 sources and 32 detectors, and two frequency values k= 1,2,
each for 8 of the sources. Only one value of g0 is used per experiment in order to emphasize
the effects of scaling.

In figure 1 we show an example of the reconstructions of three Gaussians of very high
contrast, in this case over 20:1. The sources were implemented with small g0 = 0.01, and the
series converged rapidly, with the first term already close to the projectionK1K1β. One would

11
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Figure 2. Reconstruction of β with a discontinuous disk shaped inclusion. Sources were
scaled moderately with g0 = .1. The series captures the shape better than the projection
K1K1β.

expect that K1K1β is the best one could hope for given the regularization. The cross section
reveals the rapid convergence.

In our next experiment, we take β to be a disk of high contrast (5:1) with a jump against the
background.We see the reconstructions in figure 2, where we take the source scaling to be only
moderately small, with g0 = 0.1. Here we see the higher order terms in the series improving
the reconstruction. The shape of the disk is recovered even better than K1K1β.

For the third and final experiment, we present a Gaussian and the disk side by side as seen in
figure 3, with a moderate scaling g0 = 0.1. Again the higher order terms in the series improve
the reconstruction, even differentiating the two inhomogeneities better than K1K1β.

12
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Figure 3. Reconstruction of β with a discontinuous disk shaped inclusion and a
Gaussian. Sources were scaled moderately with g0 = .1. The series differentiates the
two inhomogeneities better than the projection K1K1β.

7. Discussion

We have investigated the IBSs for scalar waves with polynomial nonlinearities, where the coef-
ficient of the linear term is constant. We have analyzed the convergence of the IBS, and have
found that given any contrast and regularization, the IBS will converge if the data is taken to be
sufficiently small. Numerical simulations demonstrate that even for very high contrast, for suf-
ficiently small scaling, the error in the reconstructions is dominated by the loss of information
due to regularization, and the reconstruction is quite close to the projection K1K1β. However,
in some cases, when using a more moderate scaling, the reconstructions appear to be better
than the projection. The explanation of this finding will require further study. Furthermore, the
reconstruction results could potentially be improved by using better regularization techniques.
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Our results suggest that high contrast nonlinear inhomogeneities of the type (25) will gen-
erally be less difficult to reconstruct than linear inhomogeneities. In this light, we suspect that
Newton type methods will converge rapidly for small enough data, and for a large class of
problems, the inverse Born approximation (the first term in the inverse series) will itself be
quite close to K1K1β for small data.
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