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ABSTRACT This paper presents online prior-knowledge-based data-driven approaches for verifying sta-
bility and learning a stabilizing dynamic controller for linear stochastic input-output systems. The system
is modeled in an autoregressive exogenous (ARX) framework to accommodate cases where states are not
fully observable. A key challenge addressed in this article is online stabilizing open-loop unstable systems,
where collecting sufficient data for controller learning is impractical due to the risk of failure. To mitigate
this, the proposed method integrates uncertain prior knowledge, derived from system physics, with limited
available data. Inspired by set-membership system identification, the prior knowledge set is dynamically
updated as new data becomes available, reducing conservatism over time. Unlike traditional approaches, this
method bypasses explicit system identification, directly designing controllers based on current knowledge
and data. A connection between ARX models and behavior theory is established, providing necessary and
sufficient stability conditions using strict lossy S-Lemma. Quadratic difference forms serve as a framework
for Lyapunov functions, and robust dynamic controllers are synthesized via linear matrix inequalities. The
methodology is validated through simulations, including an unstable scalar system visualizing the integration
of prior knowledge and data, and a rotary inverted pendulum demonstrating controller effectiveness in a
nonlinear, unstable setting.

INDEX TERMS Behavior theory, data-driven control, linear matrix inequalities, robust control, uncertain
systems.

I. INTRODUCTION
Data-driven control stability verification and stabilizing con-
troller design have gained significant attention for their ability
to autonomously learn controllers and verify their properties
in real-time without requiring precise knowledge of system
dynamics [1], [3], [4], [5], [6], [7], [8], [28]. This paradigm
shift offers new opportunities for managing dynamic and un-
certain systems where traditional model-based methods often

fall short [9]. However, these methods face challenges. A key
issue is the need for rich data to learn controllers and verify
system properties, with the data richness requirements varying
depending on the control task or property being verified [1].
Moreover, under system disturbance, it is generally impos-
sible to learn an accurate point-based model; instead, a set
of models is derived to explain the data. Robust controller
design based on such sets can become overly conservative,
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if not infeasible, if the model set is large. Another critical lim-
itation is the requirement for full-state measurements, which
are often unavailable in real-world applications. In such cases,
learning a controller from observed input-output data alone is
desired but challenging. Thus, it is essential to address these
data-related challenges in three key areas: reducing the num-
ber of samples required for learning, shrinking the size of the
systems conforming to data and prior knowledge online, and
enabling control design based solely on observable outputs
rather than full-state information.

A. BACKGROUND
Prior knowledge-based data-driven control verification and
design has recently demonstrated significant potential in
reducing the number of samples required and minimizing con-
troller conservatism. This approach achieves these objectives
by integrating prior knowledge about the system’s attributes
with data collected from an uncertain system [10] during
the controller learning process. By utilizing prior knowledge
from a well-understood nominal system, controllers for the
actual system can be designed with minimal data [11]. This
approach is particularly beneficial when the actual system is
challenging, hazardous, or costly to interact with frequently
for data collection [12]. Additionally, prior-knowledge-based
data-driven methods can adapt to parameter variations and
maintain stable control strategies despite uncertainties and
dynamic changes in system behavior [13]. However, existing
methods often assume full access to the system’s states, which
may not be feasible in many real-world applications. The
solutions found in these frameworks are offline, and they do
not incorporate online data from the system, which limits the
behavior of the controller. Also, the prior knowledge set is
static and is not updated as time evolves.

Data-driven control methods have recently been extended
to systems with input-output measurements, as highlighted
in several studies [14], [15], [16]. These methods often in-
volve transforming the input-output system into an artificial
state-space representation, where the state vector consists of
shifted inputs and outputs. While this transformation enables
the application of state-space data-driven control techniques,
it comes with notable limitations. The resulting state-space
models are frequently non-minimal and high-dimensional,
which significantly increases the data requirements for ef-
fective control design. This poses a particular challenge for
complex physical systems, where data collection can be
costly, time-consuming, or constrained by practical limita-
tions.

To overcome the limitations of state-space approaches, al-
ternative methods rooted in behavioral theory [17], [18] have
been proposed [19]. This framework has redefined key con-
trol problems, such as data-enabled model predictive control
(MPC) [3], [20], [21], by focusing on designing feedback
controllers directly from input-output data. These methods by-
pass state construction by employing higher-order difference
equations or autoregressive exogenous (ARX) systems. How-
ever, these data-driven approaches typically do not leverage

available prior knowledge of the system. Incorporating initial
physical insights reduces the number of unknown parameters,
enabling parameter estimation with fewer data points and im-
proving efficiency. On top of that, one may shrink the size of
the available information using the newly available data.

B. CONTRIBUTIONS
This article addresses the challenges of stability analysis
and dynamic stabilizing controller design for systems mod-
eled by ARX representations. It does so by relying solely
on noisy input-output data—which alone might not be suf-
ficient for full system identification—and by incorporating
prior knowledge that is continuously refined with online data.
The approach utilizes the quadratic difference form (QDF) as
a natural framework for Lyapunov functions in autonomous
AR systems [22], [23]. QDF is particularly effective for
describing stability in systems governed by higher-order dif-
ference equations, especially in the discrete-time domain [24],
[25]. Yakubovich’s S-Lemma [2], [26], [27], [29] is another
critical tool employed in this work. Specifically, the lossy S-
Lemma [30] is used to integrate multiple information sources,
such as prior knowledge and noisy data, for stability analysis
and learning stable closed-loop controllers. This methodology
enables our algorithm to obtain a solution through a one-shot
optimization for the set of systems consistent with both the
collected data and the initial prior knowledge, and improve
the prior knowledge set on the go. This is in contrast to
the iterative nature of some data-driven approaches, such as
reinforcement learning techniques [31], [32]. Value iteration
methods iteratively learn a sequence of improved stabilizing
solutions. However, they typically do not account for prior
knowledge and are data-hungry. Besides, they typically re-
quire input-state data, in contrast to our presented approach,
which relies on input-output data. The size of the overlap
between data and the prior knowledge set can vary, poten-
tially impacting controller performance [30]. To this end, this
paper introduces an online, adaptive method inspired by set-
membership system identification [33] to address this. This
approach dynamically updates the prior knowledge set at each
step, bypassing explicit system identification and incorporat-
ing new data in real-time to prevent performance degradation.
The proposed prior-knowledge-based data-driven methods for
stability analysis and feedback control synthesis are computa-
tionally efficient, leveraging linear matrix inequalities (LMIs)
in the presence of measurement disturbance [30], [34] to find
solutions. Initially, the method identifies a compact set of
systems that includes the actual system using nominal system
information and then refines this set with available data. It
assumes a close relationship between the nominal and actual
systems, ensuring a non-empty overlap of noisy data and prior
knowledge.

If initial prior knowledge is available, the collected data
do not need to meet the persistent excitation (PE) conditions.
Although the set of models consistent with the data may be
non-compact, its intersection with the initial prior knowledge
can be over-approximated by a compact set. Typically, the
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persistent excitation (PE) condition is imposed to ensure the
compactness of the model set derived from data [35], [36].
In contrast to policy or value iteration methods, which often
yield a low proportion of stable controllers under limited data,
our approach enables stability analysis and the synthesis of
a stabilizing controller. Two simulation examples—a scalar
system and a rotary inverted pendulum—are used throughout
the paper to illustrate and clarify the methodology.

II. SYSTEM SETTING AND PROBLEM FORMULATION
Notations: Rm×n represents the real linear space for all real
matrices with dimensions m × n. Rn

s denotes the set of all real
symmetric matrices of size n × n. The set of non-negative and
positive integers is represented by Z+ and N, respectively. In

is used to denote the identity matrix with dimensions n × n,
and a zero matrix of size n × m is represented as 0n×m. The
notation Q(�,�,≺,�)0 indicates that Q is either negative
or positive semi-definite and negative or positive definite.
When the context is clear, the subscripts indicating the matrix
dimensions may be omitted for brevity. The More-Penrose
pseudoinverse of a matrix M is shown by M†. We use col (a, b)
to represent the column-wise stacking of vectors a and b,
i.e., [a�, b�]�. A discrete interval from 0 to N > 0 with a
step size of k is denoted by [0, N]k . A shorthand writing as

M =
[

A B
� C

]
for matrix M =

[
A B

B� C

]
is used throughout

this paper. Random variables uniformly distributed in [a, b]
are denoted by U [a, b].

A. SYSTEM REPRESENTATION USING ARX MODEL
In this paper, the actual system that follows linear input-output
dynamics with disturbance is described using an input-output
system ARX model with disturbance [24]

y(t + L) + [−QL−1 PL−1]

[
u(t + L − 1)
y(t + L − 1)

]

+ · · · + [−Q0 P0]

[
u(t )
y(t )

]
= v(t ). (1)

where we have u(t ) ∈ R
m as input, y(t ) ∈ R

p as the output of
the system and L > 0 is the order of the system. The process
disturbance of the system is shown by the vector v ∈ R

p. In
this representation, P ∈ R

p×p and Q ∈ R
p×m are the physical

coefficients of the system. In this paper, the model of the
system is the same as the actual system. Choosing an ARX
model instead of the input-state-output framework provides
a more practical basis for data-driven control. We define the
combined physical coefficient matrix R̃ ∈ R

p×(qL) as follows

R̃ := [−Q0 P0 − Q1 P1 . . . − QL−1 PL−1
]
, (2)

where q := p + m. We differentiate between the nominal pa-
rameters, R̃η, and the unknown actual parameters, R̃�.

For a system without input, R̃ can be set to

P̃ := [
0 P0 0 P1 . . . 0 PL−1

]
.

Under this condition, (1) simplifies to describe autonomous
systems as follows

y(t + L) + PL−1 y(t + L − 1) + · · · + P0 y(t ) = v(t ). (3)

B. BEHAVIOR THEORY
This subsection explores the behavioral framework as a mod-
eling tool in characterizing dynamical systems. A dynamical
system can be characterized by a triple � = (T,W,B), where
the time axis is defined by T, and W represents the signal
space in which the system variables take their values. The
behavior, denoted by B ⊂ W

�, is the set of all possible
trajectories of the system variable. To describe a noisy linear
time-invariant discrete-time dynamical system, one can set
T = Z+ and W = R

q, and represent � using the following
linear difference algebraic equation [17]

R0w(t ) + R1w(t + 1) + · · · + RLw(t + L) = v(t ), (4)

where the manifest variable is denoted by w ∈ R
q. The

constant coefficient matrices, represented by Ri ∈ R
p×q, i =

[1, L]1, capture the physical parameters of the system. As will
be discussed later, these parameters can be learned, grouped
into a set of uncertain parameters, and/or estimated. If v(t ) =
0, ∀ t ∈ Z+, then, (4) is called a kernel representation of the
system in the space of solutions w : Z+ → R

q. By employing
a shift operator σx(t ) = x(t + 1), one can represent (4) in the
shorthand format [25] as

R(σ )w = v,

R(ξ ) := R0 + R1ξ + · · · + RLξL ∈ R
p×q[ξ ], (5)

The notation σ iw(t ), which represents the repeated applica-
tion of the shift operator σ , results in w(t + i), where i =
0, 1, . . . , L. This shorthand allows for a concise representation
of future values of the manifest variable w at different time
steps. Thus, one can describe the set of behaviors of the linear
system as [17], [24], [25]

B = {w ∈ R
q | R(σ )w = v}. (6)

The relationship between the ARX model and behavioral the-
ory becomes clear when we consider the manifest variable as

w(t ) := [
u�(t ) y�(t )

]�
.

To facilitate this discussion, we define

P(ξ ) = IξL + PL−1ξ
L−1 + · · · + P1ξ + P0, (7a)

Q(ξ ) = QL−1ξ
L−1 + · · · + Q1ξ + Q0. (7b)

These definitions serve as the basis for linking the ARX
framework to behavior theory in the subsequent sections.

Remark 1: The leading coefficient of P(ξ ) is taken to be
Ip×p, while the leading coefficient of Q(ξ ) is 0p×m. This has
several consequences. Firstly, it ensures that P(ξ ) is non-
singular, which in turn implies that P(ξ )−1Q(ξ ) is strictly
proper. As a result, (1) effectively represents a causal input-
output system, where u is the control input, y is the output,
and v is the input disturbance. The strictly proper nature of
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FIGURE 1. The schematic of a rotary inverted pendulum system.

P(ξ )−1Q(ξ ) is a crucial property for establishing feedback
interconnection.

Definition 1: Let B̄(P) be the behavior of the deterministic
autonomous system P(σ )y = 0 as in (3). For the determinis-
tic autonomous system P(σ )y = 0, it is defined to be stable
if all solutions y ∈ B̄(P) over the non-negative integers Z+
converge to zero as time t → ∞.

C. PROBLEM FORMULATION
This paper presents a novel approach for stability analysis and
dynamic controller design under conditions of limited data
and substantial uncertainty in prior knowledge. By relying
solely on input-output data, our method exhibits robustness
against uncertainties in physical coefficients, noisy measure-
ments, and sparse observations. The approach achieves this by
constructing a compact set of admissible systems that captures
the possible range of system behaviors, effectively integrating
available data with domain-specific insights. Specifically, the
paper focuses on (i) assessing the stability of systems de-
scribed by (3), and (ii) synthesizing stabilizing feedback for
systems defined by (1). In both cases, the physical coefficients
R̃ are estimated from online data and refined with prior knowl-
edge, which may originate from an initial estimate and be
iteratively updated with new data, as explained in subsequent
sections.

We consider the systems that conform to the intersection
of two information sets (i) the set of system coefficients R̃
that is consistent with the prior-knowledge-based information
E t

pk , and (ii) the set of system coefficients that are consistent
with the online noisy input-output data E t

data. To proceed,
we define the intersection of these two information sets as a
prior-knowledge-based data-driven overlap set (PDOS) as the
following

E t
PDOS := {R̃ : R̃ ∈ E t

pk ∩ E t
data}. (8)

E t
PDOS is a dynamic set and is updated as new data becomes

available. A graphical representation of this set for a scalar
system is provided in Fig. 2.

FIGURE 2. A geometric representation of a dynamic system with a single
input and output, showing the data-conformity sets E1

data, E2
data, E3

data, the
initial prior-knowledge set E0

pk , and the actual system R̃�. The overlap
between data sets and prior knowledge varies in size and shape with
different data sets, potentially degrading controller performance when
designed based on the overlap if no refinement on the prior knowledge
set is performed.

The formal problem formulations are given below to clearly
define the scope and objectives, with the necessary assump-
tions and structural components introduced later to ensure a
logical and comprehensive progression.

Problem 1: Online Stability Analysis: Consider the
stochastic uncertain autonomous system (3). Assume that the
actual system and nominal model are close to each other. At
time step t , develop a stability test for the actual system such
that P̃� ∈ E t

PDOS .
Problem 2: Online Stabilizing Controller Synthesis:

Consider the stochastic uncertain system (1). Assume that the
actual system and nominal model are close to each other. At
time step t , learn a stabilizing controller for the actual system
such that R̃� ∈ E t

PDOS .
Remark 2: Problem 1 in the deterministic case follows the

stability definition as stated in Definition 1.
Remark 3: In both Problems 1 and 2, it is stated that the

actual system and the nominal model are closely related. As-
sumption 1 formally quantifies this condition. Furthermore,
since the actual system is unknown, a solution will be pro-
vided for the set that encompasses the actual system, ensuring
that the obtained solution remains valid for the actual system
as well.

III. MOTIVATING EXAMPLE AND PRELIMINARIES
In this section, we provide a motivating example that we will
use later in our simulation results. We also present a few
preliminary results regarding Matrix Quadratic Functions that
will be used later in stability analysis.

A. MOTIVATING EXAMPLE
Stabilizing a rotary inverted pendulum as shown in Fig. 1 is a
classic problem in control systems, often used to demonstrate
and evaluate control strategies due to its inherently unstable
nature. This system consists of a rigid rod (pendulum) at-
tached to a rotating arm, which is mounted on a motor-driven
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TABLE 1. Parameters and variables in the model of the rotary inverted
pendulum system.

pivot. The motor enables the arm to rotate in the horizontal
plane (x, y), while the pendulum oscillates in the vertical
plane (x, z). The control task focuses on stabilizing the pen-
dulum in its upright position by adjusting the rotary arm’s
position. However, collecting data to develop a stabilizing
controller poses a potential safety risk, as the pendulum may
enter regions where the linearization assumptions no longer
hold, leading to inaccuracies in the physical model. To this
end, one can develop some physical models for the system,
such as the following, and use the uncertain information as a
baseline for developing a stabilizing controller. On the other
hand, prior knowledge of the system might be uncertain and
may not stabilize the actual system when a controller is de-
signed based on it. To this end, a method that considers both
information sets and refines the model online is needed. The
physical parameter descriptions are brought in Table 1.

Consider the variables α and β, which are both functions of
time. For notational simplicity, we have omitted the explicit
dependence on t in the expressions that follow. According
to the Euler-Lagrange method, the nonlinear dynamics of the
rotary inverted pendulum (known as Furuta pendulum [37]) is
By linearizing (9), shown at the bottom of this page, around
the vertical inverted unstable equilibrium state (β = 0, β̇ =

0) the following is resulted

[Jr + mpL2
r ]α̈ − [mpLPLr]β̈ + [Cr]α̇ = τ, (10a)

−[mpLpLr]α̈ + [mpL2
p]β̈ − [mpLpg]β = 0. (10b)

Next, to discretize (10), for a continuous function f (t ) we first
bring the following standard approximation rule [38]

f̈ (t ) ≈ f (t + 2
t ) − 2 f (t + 
t ) + f (t )


t2 , (11a)

ḟ (t ) ≈ f (t + 
t ) − f (t )


t
, (11b)

where 
t is the discretization step size. By incorporating
(11) in (10) and after some algebraic manipulation one has
the linear discretized model of the rotary inverted pendulum
system (12), shown at the bottom of this page, with v(t ) as
the disturbance term which contains the linearization error
and also the disturbance on the system’s output. By taking

y(t ) =
[
α(t )
β(t )

]
, one can rewrite (12) in the format of ARX

systems (1).
Although physical laws define the system model structure,

parameters mp, Jr,Cr may exhibit temporal variations or un-
certainties [39]. By considering a range of values for these
parameters, we can construct a set of potential model pa-
rameters, each representing a permissible configuration. This
set forms the foundation of our initial prior knowledge set.
However, using only this physical knowledge and discarding
the collected data can lead to infeasibility and/or conserva-
tiveness. The system data can also be leveraged to identify
another set of admissible systems. Integrating uncertain prior
physical knowledge with (possibly non-rich) collected data is
crucial. Also, refining the prior knowledge set is necessary for
the controller to accurately meet the system’s parameters. All
this motivates us to develop a control methodology that takes
advantage of the initial prior knowledge and updates it online
as new data becomes available.

[Jr + mpL2
r ]α̈ − [

mpLPLr cos (β )
]
β̈ +

[
Cr + 1

2
mpL2

p sin (2β )β̇

]
α̇ +

[
mpLpLr sin (β ) + 1

2
mpL2

p sin (2β )α̇

]
β̇ = τ, (9a)

− [
mpLpLr cos (β )

]
α̈ +

[
mpL2

p

]
β̈ −

[
1

2
mpL2

p sin (2β )α̇

]
α̇ − [mpLpg] sin (β ) = 0. (9b)

⎡
⎣α(t + 2)

β(t + 2)

⎤
⎦

︸ ︷︷ ︸
y(t+2)

= −

⎡
⎢⎣− 2Jr−Cr
t

Jr
0

Cr Lr
t
Jr Lp

−2

⎤
⎥⎦

︸ ︷︷ ︸
P1

⎡
⎣α(t + 1)

β(t + 1)

⎤
⎦

︸ ︷︷ ︸
y(t+1)

−

⎡
⎢⎢⎣

Jr−Cr
t2

Jr
−Lr 
t2 gmp

Jr

−Cr Lr
t
Jr Lp

− gmp Lr
2
t2+Jrg
t2−JrLp

Jr Lp

⎤
⎥⎥⎦

︸ ︷︷ ︸
P0

⎡
⎣α(t )

β(t )

⎤
⎦

︸ ︷︷ ︸
y(t )

+

⎡
⎢⎣


t2

Jr

Lr 
t2

Jr Lp

⎤
⎥⎦

︸ ︷︷ ︸
Q0

τ (t ) + v(t )

(12)
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B. MATRIX QUADRATIC FUNCTIONS
As the foundation of the presented material in this paper,
matrix quadratic functions (MQF) play an important role in
defining sets and S-Lemma in incorporating these sets in sta-
bility analysis and stable control design.

Definition 2: A function F : Rq×r → R
q×q is called a ma-

trix quadratic function if it can be expressed as

F (θ ) := θCθ� + θB� + Bθ� + A (13)

where A ∈ R
q
s and C ∈ R

r
s are symmetric matrices and B is a

matrix defined in R
q×r . Also, (13) is equivalently defined as

the following

F (θ ) :=
[

Iq

θ�

]�
O

[
Iq

θ�

]
. (14)

Define

O :=
[

A B
� C

]
∈ R

r+q
s (15)

and the following generalized Schur complement

O |C := A − BC†B�. (16)

If A ≺ 0 and O |C � 0, then

Q := {θ ∈ R
q×r : F (θ ) � 0} (17)

is compact and nonempty and if O |C = 0, Q reduces to a
singleton [40].

As an extension of the classic lossy S-lemma [41], one has
the following strict lossy S-Lemma. This lemma is useful for
combining multiple information sets in this paper.

Lemma 1: (Strict lossy S-Lemma) Let O0, O1, . . . , Ok ∈
R

r+q
s be symmetric matrices. Assume that[

Iq

θ�

]�
Oi

[
Iq

θ�

]
� 0 for all i = 1, 2, . . . , k.

Then [
Iq

θ�

]�
O0

[
Iq

θ�

]
� 0, ∀ θ ∈ R

q×r (18)

if there exist positive definite scalars τi ≥ 0, i = 1, 2, . . . , k
such that

O0 −
k∑

i=1

τiOi � 0.

Proof: Let θ satisfy the condition[
Iq

θ�

]�
Oi

[
Iq

θ�

]
� 0, ∀i = 1, 2, . . . , k.

Using the given inequality O0 −∑k
i=1 τiOi � 0 for τi ≥ 0, we

transform it by pre- and post-multiplying with

[
Iq

θ�

]
, yielding

[
Iq

θ�

]� (
O0 −

k∑
i=1

τiOi

)[
Iq

θ�

]
� 0.

Expanding this expression, we have[
Iq

θ�

]�
O0

[
Iq

θ�

]
−

k∑
i=1

τi

[
Iq

θ�

]�
Oi

[
Iq

θ�

]
� 0.

Since

[
Iq

θ�

]�
Oi

[
Iq

θ�

]
� 0 for each i, the term

k∑
i=1

τi

[
Iq

θ�

]�
Oi

[
Iq

θ�

]

is non-negative. Thus, we conclude that[
Iq

θ�

]�
O0

[
Iq

θ�

]
� 0,

resulting (18). �

IV. ASSUMPTIONS ON THE INFORMATION SETS
When only partial information about the system’s parameters
is available, the actual parameters are assumed to belong to
predefined sets. Defining these sets requires establishing base-
line assumptions. The following sections outline the necessary
assumptions for constructing information sets, which may
originate from an initial prior knowledge set—based on the
system’s physical properties—or from online data gathered
during operation. These sets form the foundation for stabil-
ity analysis and the design of a dynamic feedback controller
applicable to all systems with similar characteristics.

A. INITIAL PRIOR KNOWLEDGE SET
Assume that the physical dynamics governing the system’s
differential equation are known, implying that the system
order, denoted by L, is also known. Furthermore, consider
that the nominal values of the polynomial physical coeffi-
cients, represented by R̃η as in (2), are known. However,
these coefficients are inherently uncertain and belong to a
defined uncertainty set. The actual system, characterized by
the coefficients R̃�, also follows the structure of (2) and is
assumed to be in close proximity to the nominal system. Given
a reasonable level of prior knowledge regarding the system’s
physical properties, it follows that the nominal and actual
system behaviors must exhibit a degree of similarity. Based
on this premise, we establish the following assumption.

Assumption 1 (Actual and nominal systems): The actual
and nominal systems are considered to be ε − close, ε > 0
to each other ∥∥∥R̃� − R̃η

∥∥∥ ≤ ε. (19)

It can be shown that an ε satisfying (19) almost always
exists. Consequently, Assumption 1 only necessitates an upper
bound on the norm (19). This is where the knowledge of the
system is embedded. The designer possesses knowledge of
the nominal system and the upper bound of the uncertainty
ε. An initial prior knowledge set E0

pk that is the set of all

system coefficients that are ε-close to the nominal system R̃η,
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which based on Assumption 1 includes the actual system R̃�,
is denoted by

E0
pk :=

{
R̃ :

∥∥∥R̃ − R̃η
∥∥∥ ≤ ε

}
. (20)

Lemma 2: The initial prior knowledge set (20) is equiva-
lently described as the following MQF set

E0
pk :=

{
R̃ : θ = R̃,

[
I

θ�

]�
O0

pk

[
I

θ�

]
:= F0

pk (θ ) � 0

}
(21)

where

O0
pk :=

[
ε2I − R̃ηR̃η � R̃η

� −I

]
.

Proof: By squaring both sides of (20), we obtain the fol-
lowing inequality

(R̃ − R̃η )(R̃ − R̃η )� � ε2I

→ −[R̃R̃� − R̃ηR̃� − R̃ηR̃� + R̃ηR̃η � − ε2I] � 0. (22)

By setting θ = R̃ and comparing (22) with (13), one concludes
the proof of the lemma. �

The superscript 0 in (20)-(21) denotes that E0
pk is the initial

prior knowledge set. In Lemma 8, we will show how to update
the prior knowledge set for t > L and get E t

pk in Section VI-C.

B. ONLINE NOISY INPUT-OUTPUT MEASUREMENTS
Let w(t ) = [

u�(t ) y�(t )
]�

. Define h1(w(t )) as the concate-
nation of w(t ) over L steps, given by h1(w(t )) = [w(t −
L)�, . . . ,w(t − 1)�]�. Based on (1), the actual model of the
system at the current time t reads

y(t ) + [−QL−1 PL−1]

[
u(t − 1)
y(t − 1)

]

+ · · · + [−Q0 P0]

[
u(t − L)
y(t − L)

]
= v(t − L), (23)

which can be equivalently written as

[
R̃� I

] [h1(w(t ))
y(t )

]
= v(t − L). (24)

We introduce batch notations for the input-output measure-
ments and disturbance of the system over [t − N + L, t]. Let
the batch notation of the disturbance samples be

V t := [v(t − N ) v(t − N + 1) . . . v(t − L)] . (25)

Then, the system can be represented batch-wise via

[
R̃� I

] [Ht
1(w)

Ht
2(w)

]
= V t , (26)

where Ht
1(w) contains the first qL rows, with q := p + m, and

Ht
2(w) the last p rows of a slightly modified following Hankel

matrix Ht (w) ∈ R
(qL+p)×(N−L+1)

Ht (w) :=⎡
⎢⎢⎢⎢⎢⎣

w(t − N ) w(t − N + 1) . . . w(t − L)
w(t − N + 1) w(t − N + 2) . . . w(t − L + 1)

...
...

...
w(t − N + L − 1) w(t − N + L) . . . w(t − 1)

y(t − N + L) y(t − N + L + 1) . . . y(t )

⎤
⎥⎥⎥⎥⎥⎦

(27)

Although the disturbance sequence V t from (25) at time step
t is unknown, we make the following assumptions about its
properties.

Assumption 2 (Disturbance bound): The disturbance sam-
ples as shown in (25) are assumed to be from the following set

V :=
{

V t :

[
I

V t�

]�
On

[
I

V t�

]
� 0

}
(28)

where On ∈ R
p+N−L+1
s is a known partitioned matrix as

On :=
[

An Bn

� Cn

]
. (29)

In matrix On, one has An ∈ R
p
s , Bn ∈ R

p×(N−L+1), and Cn ∈
R

N−L+1
s . In order for the set to be nonempty, we take An ≺ 0

and On | Cn � 0.
Remark 4: Assumption 2 provides a unified framework for

capturing various types of disturbance encountered in prac-
tical scenarios, as discussed in [40]. In our formulation, the
disturbance—whether due to measurement errors, lineariza-
tion inaccuracies, or modeling discrepancies—is assumed to
be bounded. Depending on the specific characteristics of the
disturbance, the following cases can be represented:
� Exact Measurements: By setting An = 0, Bn = 0, and

Cn = −I , we obtain V t = 0, which corresponds to the
ideal case of disturbance-free measurements.

� Instantaneous Bounds: If each disturbance sample satis-
fies ‖v(t )‖2 ≤ εv , this case can be modeled by choosing
Cn = −I , Bn = 0, and An = εv (N − L + 1)I , thereby
enforcing a per-sample disturbance bound.

� Energy-Bounded Disturbance: When the cumulative
disturbance energy over the measurement interval, ex-
pressed as

∑
i v(i)v(i)� = V tV t�, is bounded by εv , the

disturbance can be captured by setting Cn = −I , Bn = 0,
and An = εv .

Assumption 2 is sufficiently general to capture disturbance
arising from nonlinearities or modeling errors across all these
scenarios. However, if the disturbance characteristics are un-
known and no bound is available, it becomes impossible to
construct a compact set for the collected data.

Under Assumption 2, we define the set of systems, denoted
by their physical coefficients R̃, that is conformed with the
noisy input-output data. This is because, when defining a set
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for the disturbance samples, the systems conforming to the
data are no longer a singleton but rather a set.

Take (26), one can write the following for the unknown
physical coefficients R̃[

I
V t�

]
=
[

I Ht
2(w)

0 Ht
1(w)

]� [ I
R̃�

]
, (30)

then, one can define the set of systems conformed with data
at time step t with a window of N ≥ L using (28) as the
following

E t
data :=

{
R̃ : θ = R̃,

[
I

θ�

]�
Ot

data

[
I

θ�

]
:= F t

data(θ ) � 0

}
(31)

where

Ot
data :=

[
I Ht

2(w)
0 Ht

1(w)

]
On

[
I Ht

2(w)
0 Ht

1(w)

]�
.

Remark 5: Since the data is collected from the actual
system via (34), the quadratic set of data defined in (31)
is nonempty and contains the actual system coefficient
matrices R̃�.

V. STABILITY CONDITIONS AND TOOLS
To address the challenge of establishing a stability condition,
we lay the groundwork for both stability analysis and stabiliz-
ing controller design by employing quadratic difference forms
(QDFs) as Lyapunov functions within an input-output frame-
work. We then examine the connection between QDFs and
stability from a behavioral perspective. Finally, by exploiting
the inherent compatibility of ARX models with the behavioral
framework, we derive a specific stability condition for ARX
models.

A. QDFS AS LYAPUNOV FUNCTIONS
We introduce the necessary definitions and preliminaries of
QDFs in this subsection for completeness. However, for a
more comprehensive treatment, we refer to [22], [23], [24],
[25].

Definition 3: The quadratic difference form (QDF) is a
quadratic form of a variable � ∈ R

q and its shifts, namely

Q�(�)(t ) :=
ρ∑

i=0

ρ∑
j=0

��(t + i)�i, j�(t + j), (32)

where q, ρ ∈ N, �i, j ∈ R
q
s . Take �i, j as a symmetric poly-

nomial matrix, meaning �i, j = ��
i, j ∀ i, j = 0, . . . , ρ. Also,

denote the collection of the coefficient matrices �i, j as the
following

�̃ :=

⎡
⎢⎢⎢⎣

�0,0 �0,1 . . . �0,ρ

�1,0 �1,1 . . . �1,ρ

...
...

...
�ρ,0 �ρ,1 . . . �ρ,ρ

⎤
⎥⎥⎥⎦ ∈ R

(ρ+1)q
s . (33)

One can establish a one-to-one correspondence between a
QDF Q�(�)(t ) and a symmetric two-variable polynomial ma-
trix, where ζ and λ correspond to the shifts on ��(t ) and �(t ),
respectively, as follows

�(ζ , λ) :=
ρ∑

i=0

ρ∑
j=0

�i, jζ
iλ j ∈ R

q
s [ζ , λ]. (34)

Remark 6: The degree D of a symmetric polynomial matrix
�i, j is defined as the maximum i for which there exists a
positive j such that the coefficient matrix �i, j �= 0 and �i, j =
��

i, j . Thus, one can define a QDF in the form of (32) with
any ρ ≤ D, and consequently, the coefficient matrices �i, j

might not be unique. Conversely, one can collect the found
coefficient matrices in matrix �̃ ∈ R

(D+1)q
s . This is useful in

defining the dimension of �̃ in stability analysis and control
design in the subsequent sections.

Remark 7: Some properties of the QDFs as in (32) are as
follows
� if Q�(�) ≥ 0 for all � ∈ R

q, then, Q�(�) is called non-
negative,

� if Q�(�) > 0 for all � ∈ R
q except for � = 0, then,

Q�(�) is called positive,
� the negative and nonpositive QDFs Q�(�) are defined in

the same manner.
Since � ∈ R

q, we have �̃ � 0 in all cases.
Definition 4: Let us define ∇Q�(�)(t ) := Q�(�)(t + 1) −

Q�(�)(t ), ∀t ∈ Z+, as the incremental change of Q�(�)(t ).
Based on (34), we define ∇�(ζ , λ) := ζλ�(ζ , λ) − �(ζ , λ).
Then, ∇Q�(�)(t ) can be equivalently described by a QDF
Q∇�(�)(t ), ∀t ∈ Z+.

B. CONNECTION TO BEHAVIOR THEORY AND ARX MODEL
Take the manifest variable w(t ) = [

u(t )� y(t )�
]�

as vari-
able �(t ) in (32). Then, equivalent to (32), one has

Q�(w)(t ) :=

⎡
⎢⎢⎢⎣

w(t )
w(t + 1)

...
w(t + D)

⎤
⎥⎥⎥⎦

�

�̃

⎡
⎢⎢⎢⎣

w(t )
w(t + 1)

...
w(t + D)

⎤
⎥⎥⎥⎦ (35)

Let B̄(R) be the behavior of the deterministic system (kernel
representation) R(σ )w = 0. All the definitions of QDFs and
their properties carry over for the behavior of the system B̄(R)
for all the manifest variables w ∈ B̄(R) and one can use (35)
as the candidate Lyapunov function to study stability. Based
on Remark 6, one can have two B̄(R)-equivalent QDFs with
different collections of coefficient matrices (33), such as �̃1

and �̃2, if these QDFs coincide on solutions of R(σ )w =
0, meaning that for all w ∈ B̄(R), we have Q�̃1

(w)(t ) =
Q�̃2

(w)(t ). This property is useful when it turns out that any
QDF of the system is equivalent to a QDF whose degree is
at most the order of the system minus one, i.e., (L − 1). This
statement holds for both autonomous and controlled systems.
To prove some properties of the developed theorems, we take
advantage of the following lemmas.
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Lemma 3: [Lemma 5, [19]] For any QDF Q�′ (y), there
exists an equivalent QDF Q�(y) with respect to the behavior
B(P), such that the degree of Q�(y) is at most L − 1, where
L is the order of the system. Moreover, if Q�′ (y) ≥ 0 for all
y ∈ B(P), then, Q�(y) ≥ 0 for all y ∈ B(P) as well, which is
equivalent to �̃ � 0.

Let us consider the QDF Q� as a Lyapunov function. Then,
the following lemma establishes a connection between the sta-
bility of the autonomous system as in (3) and the existence of
a QDF Q� with a degree at most L − 1 as shown in Lemma 3.

Lemma 4: [Lemma 8, [19]] Let P(ξ ) be a polynomial
matrix for the system (3). The corresponding deterministic
autonomous system P(σ )y = 0 of order L is stable if and
only if there exists a QDF Q�(y) with a degree at most L − 1
satisfying the following conditions
� Q�(y) ≥ 0 for all y ∈ B̄(P),
� Q∇�(y) < 0 for all y ∈ B̄(P), where Q∇�(y)(t ) =

Q�(y)(t + 1) − Q�(y)(t ) from Definition 4.
For stability analysis of a deterministic autonomous system

P(σ )y = 0, we first establish the existence of a QDF Q�

that serves as a Lyapunov function. The following theorem
provides the foundational result for the deterministic scenario,
and later, we leverage the S-procedure to generalize this con-
cept to a set of systems conformed with both data and prior
knowledge. For the sake of completeness, we also bring our
version of the proof of this theorem.

Theorem 1: [25] For the deterministic autonomous sys-
tem P(σ )y = 0 and physical coefficients defined as P̃ :=
[P0 P1 . . . PL−1], this system is stable if and only if there
exists a � ∈ R

pL
s such that � � 0 and the following matrix

inequality is satisfied

[
I

−P̃

]� ([0p 0
0 �

]
−
[
� 0
0 0p

])[
I

−P̃

]
≺ 0. (36)

Any such � defines a QDF Q� that serves as a Lyapunov
function, certifying the stability of the autonomous system.

Proof: Since � is nonnegative, then, Qπ is nonnegative
due to the properties of QDF in Remark 7. Thus, based on
Lemma 4, if one shows that Q∇�(y)(t ) < 0 ∀ y ∈ B̄(P), then,
Q� is a candidate Lyapunov function. Based on Definition 4,
one has ∇�(ζ , λ) = ζλ�(ζ , λ) − �(ζ , λ). Based on (32),
(33), and P(σ )y = 0, one has

∑L−1
i, j=0 ζ iλ j�(ζ , ρ) = P̃��P̃.

To prove stability, one needs to show that Q∇�(y)(t ) <

0 ∀ y ∈ B̄(P),

Q∇�(y)(t ) =

⎡
⎢⎣

y(t )
...

y(t + L − 1)

⎤
⎥⎦

�

P̃��P̃

⎡
⎢⎣

y(t )
...

y(t + L − 1)

⎤
⎥⎦

−

⎡
⎢⎣

y(t )
...

y(t + L − 1)

⎤
⎥⎦

�

�

⎡
⎢⎣

y(t )
...

y(t + L − 1)

⎤
⎥⎦ ≺ 0. (37)

Note that one can write

P̃��P̃ − � =
[

I
−P̃

]� ([0p 0
0 �

]
−
[
� 0
0 0p

])[
I

−P̃

]
.

Based on the aforementioned equation, Q∇�(y)(t ) ≤ 0, ∀ t =
1, 2, . . . and Q∇�(y)(t ) = 0 if and only if y(t ) = 0 which re-
sults in Q∇�(y)(t ) < 0 ∀ y ∈ B̄. Thus, the proof is complete,
and Q� is a candidate Lyapunov function. �

VI. MAIN RESULTS
The main results focus on stability analysis of (3) and de-
signing a stabilizing controller for (1) by combining prior
knowledge and noisy input-output data in an online manner.
The actual system lies within E t

PDCS , ensuring the validity of
the stability condition and controller. E t

pk is compact under
Assumption 1, but E t

data may not compact be due to limited
data. The goal is to determine the stability of an autonomous
system and then, stabilize an unstable system using limited
data and update prior knowledge based on the data.

A. ONLINE PRIOR-KNOWLEDGE-BASED DATA-DRIVEN
STABILITY ANALYSIS FOR AUTOREGRESSIVE
AUTONOMOUS SYSTEM MODELS
This subsection provides details for determining the stability
of an autonomous system (3) by combining prior knowledge
of the system matrices and collected data. In autonomous
systems, the modified Hankel matrix (27) only contains the
output y as the manifest variable w at time step t as

Ht (y) :=⎡
⎢⎢⎢⎢⎢⎣

y(t − N ) y(t − N + 1) . . . y(t − L)
y(t − N + 1) y(t − N + 2) . . . y(t − L + 1)

...
...

...
y(t − N + L − 1) y(t − N + L) . . . y(t − 1)

y(t − N + L) y(t − N + L + 1) . . . y(t )

⎤
⎥⎥⎥⎥⎥⎦

(38)

where Ht
1(y) consists of the initial pL rows, while Ht

2(y) com-
prises the final p rows. The data-conformity set (31) is also for
this special case modified by modifying Odata to the following

Ot
y,data :=

[
I Ht

2(y)
0 Ht

1(y)

]
On

[
I Ht

2(y)
0 Ht

1(y)

]�

where On is given in (29).
In the derivation of information sets (21) and (31), R̃� or

P̃� are used for autonomous systems. However, the stability
condition in Theorem 1 is derived for P̃. We restate Theorem 1
using P̃�.

Lemma 5: Define a matrix Ĩ := [
0p(L−1)×p Ip(L−1)

] ∈
R

p(L−1)×pL and matrix � = �−1. Then, if � satisfies the
following inequality

� −
[

Ĩ
−P̃

]
�

[
Ĩ

−P̃

]�
� 0, �−1 � 0 (39)
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then, � satisfies [
Ĩ

−P̃

]�
�

[
Ĩ

−P̃

]
− � ≺ 0. (40)

Proof: One can derive (40) from (39) by applying the Schur
complement twice. �

Remark 8: The standard Lyapunov stability inequality in
(40) can be derived from (36) by inspection. Furthermore, if
� � 0 satisfies (36), then, both (40) and (39) hold.

Lemma 6: The MQF of the Lyapunov inequality (39) can
be written as

FL(ϑ ) := ϑCLϑ� + ϑB�
L + BLϑ� + AL � 0 (41)

with

ϑ := P̃

[
0

−Ip

]
(42)

and

AL :=
[
� −

[
Ĩ
0

]
�

[
Ĩ
0

]�]
, BL := −

[
Ĩ
0

]
�, CL := −�.

(43)

Proof: If one takes[
Ĩ

−P̃

]
=
[

Ĩ
0

]
+
[

0
−P̃

]
(44)

and rewrites (39), then, the following is resulted[
� −

[
Ĩ
0

]
�

[
Ĩ
0

]�]
︸ ︷︷ ︸

AL

+
[

0
−P̃

]
︸ ︷︷ ︸

ϑ

(
−
[

Ĩ
0

]
�

)�

︸ ︷︷ ︸
B�

L

+
(

−
[

Ĩ
0

]
�

)
︸ ︷︷ ︸

BL

[
0

−P̃

]�

︸ ︷︷ ︸
ϑ�

+
[

0
−P̃

]
︸ ︷︷ ︸

ϑ

(−�)︸ ︷︷ ︸
CL

[
0

−P̃

]�

︸ ︷︷ ︸
ϑ�

�0. (45)

�
To apply the strict lossy S-procedure, the same variable

must be used in all MQFs (41), (21), and (31). If ϑ is chosen
as the variable, where ϑ = θ

[
0 −Ip

]
, then, the information

sets (21) and (31) need to be projected accordingly. The new
set of parameters is as follows

Ōt
pk :=

[[
0 −Ip

]
0

0 IpL

]�
Ot

pk

[[
0 −Ip

]
0

0 IpL

]
. (46)

The projected data conformity set of parameters Ōt
data is pro-

jected similarly. With the new variable, one can redefine the
MQFs for prior knowledge F t

pk (ϑ ) and data F t
d (ϑ ) as well.

Then, the overlap of the two sets is defined as


̄t := {ϑ : F t
d (ϑ ) � 0,F t

pk (ϑ ) � 0}. (47)

The following theorem addresses Problem 1.
Theorem 2: Consider the stochastic uncertain autonomous

system (3). Let Assumptions 1 and 2 hold. Then, all systems
(3) that conform to the combined information set E t

PDCS (47)

at time step t are stable if there exists � ∈ R
pL
s such that � �

0 and the following inequality holds for a scalar 0 ≤ τ ≤ 1[
AL B�

L
� CL

]
− τ Ōt

data − (1 − τ )Ōt
pk � 0, (48)

where AL, BL and CL are defined in (43).
Proof: Define scalars such that τd , τpk ≥ 0. Using the strict

lossy S-procedure from Lemma 1, the preceding inequality
(48) indicates the matrix quadratic function FL (ϑ ) � 0 in
(41) for all ϑ ∈ 
̄t as defined in (47) as the following for
τd , τpk ≥ 0 [

AL BL

� CL

]
− τd Ōt

data − τpkŌt
pk � 0. (49)

Inequality (48) is derived by scaling (49) with τ = τd
τd +τpk

.

Given that τd , τpk ≥ 0, it follows that 0 ≤ τ ≤ 1, ensuring
that this transformation preserves the inequality. Since the
actual system P̃� ∈ E t

PDCS , then, the QDF Q� with the found
solution � := �−1 is also a Lyapunov function for the actual
system. Thus, the proof is concluded. �

B. ONLINE PRIOR-KNOWLEDGE-BASED DATA-DRIVEN
DYNAMIC STABILIZING CONTROL SYNTHESIS FOR
AUTOREGRESSIVE EXOGENOUS SYSTEM MODELS
This subsection aims to synthesize a stabilizing dynamic feed-
back controller for the system (1) that stabilizes all systems
conformed with E t

PDOS . The controller is defined to have
the same dynamical structure as the plant, with the leading
coefficient of D(ξ ) set to Im×m and E (ξ ) to 0m×p for strict
properness. The closed-loop system is defined by intercon-
necting the system and controller dynamics with the shift
operator σ as[

D(σ ) −E (σ )
−Q(σ ) P(σ )

] [
u
y

]
=
[

0
Ip

]
v, (50)

where

F (σ ) := [
D(σ ) −E (σ )

] [u
y

]
= 0, (51)

is the dynamics of the controller. Its physical coefficients are
defined as

D(ξ ) = IξL + DL−1ξ
L−1 + · · · + D1ξ + D0,

E (ξ ) = EL−1ξ
L−1 + · · · + E1ξ + E0.

One has the collected physical coefficients of the controller
dynamics as

F̃ := [
D0 −E0 D1 −E1 . . . DL−1 −EL−1

]
, (52)

where Ek ∈ R
m×p and Dk ∈ R

m
s for k = 1, 2, . . . , L − 1. Sta-

bilizing the closed-loop system can be considered analogous
to determining the stability of an autonomous system. Take
the interconnected system coefficient as

P̃cl :=
[

F̃
R̃

]
, (53)
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then, the results presented previously hold for the closed-loop
system (50).

Theorem 3: For the deterministic closed-loop system ((50)
with v = 0) with physical coefficients defined as (53), this
system is stable if and only if there exists a � ∈ R

qL
s

such that � � 0 and the following matrix inequality is
satisfied[

I
−P̃cl

]� ([0q 0
0 �

]
−
[
� 0
0 0q

])[
I

−P̃cl

]
≺ 0. (54)

Any such � defines a QDF Q� that serves as a Lyapunov
function, certifying the stability of the autonomous system.

Proof: The proof is similar to the one of Theorem 1. �
From (54), it follows that the closed-loop system coeffi-

cients P̃cl satisfy a Lyapunov stability inequality similar to
(40). To this end, one can define the following

Ĩcl := [
0q(L−1)×q Iq(L−1)

]
.

If � � 0 ∈ R
qL
s satisfies (54) then, one can see by inspection

that it satisfies the following standard Lyapunov inequality for
� � 0 [

Ĩcl

−P̃cl

]�
�

[
Ĩcl

−P̃cl

]
− � ≺ 0. (55)

and also using Lemma 5, for � = �−1 one has the following
from

� −
[

Ĩcl

−P̃cl

]
�

[
Ĩcl

−P̃cl

]�
� 0. (56)

The above inequity (56) resolves the problem of having the
information sets in terms of R̃� and (55) in terms of R̃.

Lemma 7: The Lyapunov inequality (56) is equivalent to
the following MQF

Fcl (ϑcl ) := ϑclCclϑ
�
cl + ϑcl B

�
cl + Bclϑ

�
cl + Acl � 0 (57)

with

ϑcl := R̃

⎡
⎣ 0

0
−Ip

⎤
⎦ , G := −F̃� (58)

and

Acl := � −
⎡
⎣Ĩcl�

G
0

⎤
⎦�−1

⎡
⎣Ĩcl�

G
0

⎤
⎦�

, (59)

Bcl := −
⎡
⎣Ĩcl�

G
0

⎤
⎦ , Ccl := −�. (60)

Proof: One has[
Ĩcl

−P̃cl

]
=
⎡
⎣ Ĩcl

−F̃
−R̃

⎤
⎦ =

⎡
⎣ Ĩcl

−F̃
0

⎤
⎦+

⎡
⎣ 0

0
−R̃

⎤
⎦ . (61)

To derive the results from (56), we introduce the change of
variable G := −F̃� and apply the Schur complement. This
approach is analogous to the proof of Lemma 6. �

To use the strict lossy S-procedure, all MQFs (57), (21), and
(31) must have the same variable. If we choose ϑcl as the vari-
able, since ϑcl = θ

[
0 0 −Ip

]
, we need to project the prior-

knowledge set (21) and the data-conformity set (31) to match
the new variable ϑcl . The new set of parameters is given by

Ôt
pk :=

[[
0 0 −Ip

]
0

0 IqL

]�
Ot

pk

[[
0 0 −Ip

]
0

0 IqL

]
.

(62)

The projected data-conformity set Ôt
data is computed

similarly. With the new variable, the MQFs for prior
knowledge F t

pk (ϑcl ) and data F t
d (ϑcl ) can be redefined.

The overlap of the two sets is


̂t := {ϑcl : F t
d (ϑcl ) � 0,F t

pk (ϑcl ) � 0}. (63)

Theorem 4: Consider the stochastic uncertain system (1).
Let Assumptions 1 and 2 hold. If there exist � ∈ R

qL
s such

that � � 0 and F̃ = −G�−1 ∈ R
m×qL and also, the LMI (64)

shown at the bottom of this page, holds for a scalar 0 ≤ τ ≤ 1,
then, the dynamic controller with the coefficient matrix F̃
stabilizes all systems (1) that conform to the combined infor-
mation set E t

PDOS (63) at time step t .
Proof: Define scalars such that τd , τpk ≥ 0. Applying the

strict lossy S-procedure from Lemma 1, the LMI (64) im-
plies that the matrix quadratic function Fcl (ϑcl ) � 0 for all
ϑcl ∈ 
̂t , as defined in (63) as the following for τd , τpk ≥ 0[

Acl Bcl

� Ccl

]
− τd Ōt

data − τpkŌt
pk � 0. (65)

Inequality (64) is derived by scaling (65) by τ = τd
τd+τpk

.

Given that τd , τpk ≥ 0, it follows that 0 ≤ τ ≤ 1, ensuring that
this transformation preserves the inequality. Since the actual
system R̃� ∈ E t

PDOS , the QDF Q� with the found solution
� := �−1 is also a Lyapunov function for the actual system.
Consequently, the controller with coefficient matrix F̃ stabi-
lizes the actual system as well. This concludes the proof. �

Remark 9: When an initial prior knowledge set E0
pk is avail-

able, the collected system data (see (27) or (38)) need not be
full-rank for (64) and (48) to admit a solution; that is, the
online data is not required to satisfy excitation conditions.

⎡
⎢⎢⎢⎢⎣

� −
⎡
⎣Ĩcl�

G
0

⎤
⎦

⎡
⎣Ĩcl�

G
0

⎤
⎦

� −� 0
� � �

⎤
⎥⎥⎥⎥⎦− τ

[
Ôt

data 0
� 0qL

]
− (1 − τ )

[
Ôt

pk 0
� 0qL

]
� 0 (64)
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This is because even if the set conformed with the data itself is
noncompact (as defined in Definition 2), its intersection with
the initial prior knowledge set (21) can be over-approximated
by a compact set leveraging the lossy S-procedure, as shown
in Fig. 2. In contrast, without an initial prior knowledge set,
the data matrices (27) or (38) must be full-rank in the first
computation round. The PE condition is typically required in
the literature to ensure the compactness of the set of models
conformed with collected data [35]. Once the prior knowledge
set is formed using Lemma 8, however, the compactness of
the collected data is no longer necessary—a consequence of
the properties of the lossy S-procedure [29].

Remark 10: Theorem 2 and Theorem 4 provide sufficient
conditions for stability analysis and control synthesis, respec-
tively, by integrating data with prior knowledge. For specific
values of μd , μpk ∈ R, the LMIs (48) and (64) become nec-
essary and sufficient if [2]

μd Ot
data + μpkOt

pk � 0, (66a)

Fpk (θ̄ ) � 0, Fd (θ̄ ) � 0. (66b)

These constraints guarantee the existence of a matrix θ̄ ∈
E t

data ∩ E t
pk for which both F t

pk (θ̄ ) and F t
d (θ̄ ) are nonsingular

if (66a) holds. In particular, constraint (66b), which serves as
a Slater-type condition, is satisfied by virtue of Assumption 1
and Remark 5.

C. REFINING THE PRIOR KNOWLEDGE SET
Let E t

PDOS denote the set of systems for which controllers are
designed at time t . A significant challenge lies in preventing
this set from expanding or fluctuating unpredictably over time,
as such changes can adversely affect controller behavior. A
visual depiction is provided in Fig. 2.

The following lemma proposes a dynamic update strategy
for the prior-knowledge set E t

pk to address this.
Lemma 8: Define the projected prior knowledge set’s pa-

rameter update rule at time t as

Ōt+1
pk := τ Ōt

data + (1 − τ )Ōt
pk (67)

for the stability test case and

Ôt+1
pk := τ Ôt

data + (1 − τ )Ôt
pk (68)

for the learning stabilizing controller case. Note that 0≤τ≤1
controls the rate at which prior knowledge and data confor-
mity sets are combined. τ is computed from (48) or (64) at
each step for the stability check or stabilizing controller design
cases, respectively. Then, using the refined prior knowledge
at each time step in (48) or (64) leads to behavior alteration
prevention.

Proof: The prior-knowledge set E0
pk is initially defined

based on the designer’s knowledge of the system, as described
by the uncertain set E0

pk := {R̃ : F0
pk (θ ) � 0}, where F0

pk (θ ) is
a quadratic representation of the prior knowledge set derived
from the system’s physical properties. In the first step, the
LMIs (48) or (64) are solved without using additional data, ad-
dressing either the stability test or stabilizing controller design

problems. After that, at each time t > L, as the system evolves
and new data becomes available, the data-conformity set E t

data
is defined based on collected data. To dynamically update
the prior-knowledge set, we compute the overlap between the
projected E t

pk and E t
data based on the strict lossy S-procedure’s

properties [2] as an outer-approximated ellipsoidal set. The
resulting set, which refines E t

pk , is given by E t+1
pk := E t

pk ∩
E t

data. By substituting the quadratic forms of E t
pk and E t

data
and projecting them based on the problem requirements, the
parameters of the updated projected prior-knowledge set are
obtained as (67) or (68). This concludes the proof. �

Remark 11: In Lemma 8, for each time step t > L, the
prior knowledge set is updated by recalculating the overlap
between E t

pk and E t
data. This process incorporates the informa-

tive data (present in the overlap set) into the prior knowledge
for subsequent steps while discarding non-informativeness, as
illustrated in Fig. 2, whether in the prior knowledge set or
data. This dynamic adjustment controls both the size and com-
position of E t

PDOS , mitigating behavioral deviations caused
by fluctuations in the overlap through an effective filtering
mechanism.

D. ONLINE PRIOR-DATA DRIVEN INPUT-OUTPUT
STABILIZING CONTROL ALGORITHM
Algorithm 1 outlines the procedure of designing an online
Prior Data-Driven (P-DD) input-output controller based on
Theorem 4 and Lemma 8. In this algorithm, the system in-
put is assigned a random value from the uniform distribution
U [U

¯
, Ū ] until the LMI (64) has a solution. This ensures per-

sistent excitation of the input signal, facilitating the collection
of informative data.

Additionally, at each step, if the updated prior knowledge
set is larger than the previous one, we discard it and continue
using the previous set to maintain consistent performance.

VII. SIMULATION RESULTS
This section presents case studies to validate the robust stabi-
lizing controller. First, an unstable scalar system is stabilized
using the dynamic feedback controller in an offline setting.
Next, a rotary inverted pendulum with uncertain parameters
is regulated by incorporating prior knowledge and data-driven
information sets to design a robust controller using the pro-
posed online method. In both cases, the matrices � � 0, G,
and the scalar 0 ≤ τ ≤ 1 are determined to satisfy the LMI
(64) using YALMIP and Mosek as the solver [42].1

A. UNSTABLE SCALAR SYSTEM:
This subsection serves two main purposes. First, it visually
illustrates the initial prior knowledge set, the data-conformity
set, and their overlap. Second, it constructs a dynamic feed-
back controller to stabilize an unstable scalar system. To
illustrate these concepts, consider the following scalar system

1https://github.com/NarimanNiknejad/Ph-Learning-ARX
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FIGURE 3. Overlap illustration for the scalar system (69). The initial prior
knowledge set E0

pk (blue), based on the designer’s estimate, and the
data-conformity set Edata (red), corresponding to the actual physical
coefficients R̃�, are shown. The updated prior knowledge set E1

pk (green) is
smaller than each of the individual sets, demonstrating the refinement
achieved by their intersection.

FIGURE 4. The closed-loop performance of the robust controller resulting
from (64) on the unstable scalar system (69).

with an order of L = 1

y(t + 1) + [−Q0 P0
]︸ ︷︷ ︸

R0

[
u(t )
y(t )

]
= v(t ). (69)

The actual system’s physical coefficients are taken as R�
0 =[−0.4 −1.035

]
leading to an unstable open-loop and the

nominal one is Rη
0 = [−0.3 −1.021

]
. Consequently, the

closeness value from (19) is set to ε = 0.12. The disturbance
energy is assumed to be bounded, corresponding to the third
instance of the disturbance description in Remark 4 with
εv = 0.01. The number of collected data points is N = 1
with a random input u ∼ U [−0.1, 0.1] in an open-loop way.
Fig. 3 illustrates that stabilizing the intersection of the in-
formation sets E t

PDOS is significantly less conservative than
stabilizing either Epk or Edata individually. Solving (64) for
these information sets yields a control dynamics with F̃ =[
0.4183 1.1340

]
. Starting the simulation from y(0) = 0.6,

the controller is activated at t = 16 to demonstrate its effec-
tiveness in stabilizing the actual system. As shown in Fig. 4,
the system is stabilized with a single data point.

Algorithm 1: Online P-DD IO Control

In this example, we demonstrate that incorporating data
reduces the size of the prior knowledge set, as illustrated in
Fig. 3.

B. UNSTABLE HIGHER ORDER SYSTEM: (ROTARY
INVERTED PENDULUM)
In the online case study, the objective is to design a robust con-
troller for stabilizing the rotary inverted pendulum system (12)
using two distinct approaches. The first approach relies solely
on online data for controller design, following the method-
ology of [19] but applied in an online setting. The second
approach integrates both online data and initial prior sys-
tem knowledge to design the controller and updates the prior
knowledge set. Both simulations start at y(0) = [

0.1 0.1
]�

.
The nominal and actual parameter values for the physical
coefficients R̃η of the ARX system in (12) are provided in
Table 2. The discretization step size is set 
t = 0.01. The
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FIGURE 5. (a) and (b) show the response and control input of the rotary inverted pendulum under a dynamic controller designed solely based on data
collected throughout the experiment. The controller is found at step t = 23 of the simulation, using a window size encompassing the entire experiment
until then. The red vertical line indicates the point at which a stabilizing controller is achieved. In contrast, (c) and (d) present the online results with a
sliding window of N = 2 data points, incorporating refinement of the prior knowledge set.

TABLE 2. The nominal and actual parameter values in the rotary inverted
pendulum.

uncertainty range is set to ε = 0.007, and (19) verifies As-
sumption 1 by confirming that the computed ε exceeds the
distance between the nominal and actual systems.

For a fair comparison between the two approaches, the
window size in the first case is all the data that is collected
until the point of the simulation when a controller is feasible to
be designed, and the window size for the presented algorithm
in this paper is set to be N = 2. In both cases, the simulation
begins by inputting a random input u ∼ U [−1, 1] and then
trying to design a controller at each step with only all the
data until that point in the first case, and with a window of
N = 2 data and initial prior knowledge in the second case. The
assumption on energy-bounded disturbance is VV � ≤ εvI2,
where εv = 1e − 2 × 
t4. Fig. 5(a) and (b) show the behavior
of the system with online data and without refinement and
(c) and (d) show the behavior with refinement of the prior
knowledge set, leading to safe operation, less conservative
control, and faster convergence. In both cases, the system is
stabilized.

VIII. CONCLUSION
This paper presents necessary and sufficient conditions for
stability analysis and the synthesis of a stabilizing controller
in an online framework using an input-output ARX sys-
tem model with data and uncertain prior knowledge. The
parameters in this model are assumed to be uncertain. Stability

analysis shows that, with data collected from an autonomous
AR system and initial physical knowledge, the stability of the
system can be determined, and its certainty can be improved
by updating the prior knowledge set. For the closed-loop
system, a robust stabilizing controller is designed by com-
bining data from the actual system with uncertain physical
knowledge. The method demonstrates that stabilization is
achievable even with insufficient data for system identification
or stabilization, as waiting for additional data might lead to
irreversible states, as shown in the simulation study. The strict
lossy S-lemma proves that the designed feedback controller
stabilizes a set of parameters within the overlap set E t

PDOS ,
which dynamically updates as more data becomes available.
This framework departs from traditional input-state data-
driven control, enabling stabilization with limited data and im-
proving the resulting controller by managing the size of the in-
formation set. Simulations illustrate reduced conservatism in
controller design and demonstrate its applicability to nonlin-
ear real-world cases, achieving stabilization with limited data.

Future research will investigate how window size, conver-
gence speed, and system performance interrelate and extend
the algorithm’s applicability to parameter-varying systems us-
ing adaptive strategies. Moreover, exploring the potential for
transfer learning across systems with similar models presents
an exciting opportunity for further study. It will focus on inte-
grating performance criteria into our framework to bridge this
gap, as well as using other set representations, such as zono-
topes, for lossless prior knowledge set improvement design.
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