
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 9, SEPTEMBER 2024 6397

Reinforcement Learning for Partially Observable Linear Gaussian
Systems Using Batch Dynamics of Noisy Observations

Farnaz Adib Yaghmaie , Hamidreza Modares , and Fredrik Gustafsson , Fellow, IEEE

Abstract—Reinforcement learning algorithms are commonly
used to control dynamical systems with measurable state vari-
ables. If the dynamical system is partially observable, reinforce-
ment learning algorithms are modified to compensate for the effect
of partial observability. One common approach is to feed a finite
history of input–output data instead of the state variable. In this
article, we study and quantify the effect of this approach in linear
Gaussian systems with quadratic costs. We coin the concept of
L-Extra-Sampled-dynamics to formalize the idea of using a finite
history of input–output data instead of state and show that this
approach increases the average cost.

Index Terms—Linear quadratic Gaussian, partiially observable
dynamical systems, reinforcement learning.

I. INTRODUCTION

Reinforcement learning (RL) is one of the main branches of machine

learning where a decision-making center, (the agent) tries to find an

optimal policy through interaction with the environment. One possible

way to categorize RL agents is based on the function they are approxi-

mating [1], [2], given in the following:

1) dynamic programming-based solutions: approximate the value

functions by minimizing the Bellman error [3] in the temporal

difference learning context;

2) policy search solutions: directly optimize the performance index

by learning a parametric policy [4], [5], [6];

3) model-building solutions: estimate a model of the environment [7],

[8] and then solve the optimal control problem for the estimated

model.

This concept is known as adaptive control [9], and there is vast

literature around it. It is worth noting that these categories are not

Manuscript received 15 August 2023; revised 21 August 2023 and 5
February 2024; accepted 25 March 2024. Date of publication 5 April
2024; date of current version 29 August 2024. This work was supported
in part by the Wallenberg AI, Autonomous Systems and Software Pro-
gram (WASP) through the Knut and Alice Wallenberg Foundation. The
work of Farnaz Adib Yaghmaie was supported in part by the ZENITH,
Excellence Center at Linköping–Lund in Information Technology (EL-
LIIT), in part by the Sensor informatics and Decision-making for the
Digital Transformation (SEDDIT), and in part by the Wallenberg AI,
Autonomous Systems and Software Program (WASP) through the Knut
and Alice Wallenberg Foundation. The work of Hamidreza Modares
was supported by the National Science Foundation under grant ECCS-
2227311. The work of Fredrik Gustafsson was supported by the Vinnova
Competence Center LINK-SIC and the Scalable Kalman Filters project
through the Swedish Research Council. Recommended by Associate
Editor F. Zhang. (Corresponding author: Hamidreza Modares.)

Farnaz Adib Yaghmaie and Fredrik Gustafsson are with the Faculty of
Electrical Engineering, Linköping University, 58183 Linköping, Sweden
(e-mail: farnaz.adib.yaghmaie@liu.se; fredrik.gustafsson@liu.se).

Hamidreza Modares is with the College of Engineering, Michi-
gan State University, East Lansing, MI 48824 USA (e-mail:
modaresh@msu.edu).

Digital Object Identifier 10.1109/TAC.2024.3385680

mutually exclusive, and many modern RL algorithms combine multiple

approaches to leverage their respective advantages.

In a typical RL setting, the environment is represented by a Markov

decision process (MDP) with unknown dynamics. In practice, the

measurement of the state variable might be noisy [10], [11] or the

sensor data might not contain all information about the state variable.

A valid representation for the environment, in this case, is a partially

observable MDP or partially observable dynamical systems. There are

a number of ways to tackle the problem of partial observability in RL

frameworks, all centering around how to use the past data to extract

information about the dynamics, state, and noise. One possibility is to

use recurrent structures, such as long short term memory units, and

integrate arbitrary long histories of data [12], [13], [14]. The Lth-order

history approach [4] is an another way of handling partial observability

where the idea is to feed a finite history of input–output data to the RL

algorithm. To study the effect of such approaches, one needs to consider

a simplified setup where analytical analysis is possible.

The linear quadratic (LQ) problem is a good benchmark as it is pos-

sible to solve the problem analytically. In an LQ problem, a dynamical

system is linear and the state variable is only partially observable and

noisy. The performance index to be minimized in the LQ problem is

quadratic. In [15] and [16], input–output data history is used to estimate

the Markov parameters of linear dynamics with stochastic or adversarial

noises, and the controller is parameterized based on the denoised

observations. For deterministic systems with unmeasured states and

measured outputs, a long history of input–output data is used in [17] to

learn the value function. However, learning input–output-based control

policies for stochastic systems with dynamics and measurement noises

is unsettled and requires new developments to account for noises.

In this article, we consider linear Gaussian dynamical systems in

which the state variable is only partially observable and noisy. We

assume that the dynamics of the system is unknown. Since the system

is corrupted by both process and observation noise, it is imperative to

account for the effect of using a finite history of corrupted input–output

data on the average cost without resorting to filtering when learning an

optimal controller using data. This is a common practice in complex

environments where building a model of the environment and estimat-

ing the state are difficult tasks. To formalize learning an optimal con-

troller under noisy data, we introduce the concept of L-Extra-Sampled

(Les)-dynamics for stochastic systems. Based on Les-dynamics, we

show that one can define a point estimator of the state variable using

the history of input–output data and leverage it to design model-free

RL algorithms. In addition, we study the statistic of the estimations.

Note that we neither favor the approach of feeding a finite history of

input–output data for partially observable dynamical systems, nor do

we deny its importance. We aim to quantify the effect of this approach,

and this is the contribution ofthis article. Compared with [17], first

we consider stochastic systems and take into account the process and

observation noises and second, study and quantify the effect of noise

on the average cost when a batch of input–output data is utilized.

1558-2523 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Michigan State University. Downloaded on July 23,2025 at 17:54:43 UTC from IEEE Xplore. Restrictions apply.

6398 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 9, SEPTEMBER 2024

II. LQ PROBLEM

Notations: Let R
n×m denote the set of real n×m matrices. 0

denotes a matrix with appropriate dimensions and zero entries. For

A ∈ R
n×n, ρ(A) and Tr(A) denote the spectral radius and the trace

of A, respectively. A (semi)positive definite matrix A is denoted by

A > 0 (A ≥ 0). Let A denote a matrix. Then, DiagL{A} builds a

block diagonal matrix where the matrix A is repeated L times on

the diagonal blocks. Let ak denote a vector at time k. Define ak:L :=
[

aT
k aT

k+1 . . . aT
k+L−1

]T

.

A. Linear Gaussian Dynamical System

Consider a linear Gaussian dynamical system

xk+1 = Axk +Buk +Gwk

yk = Cxk + vk (1)

where xk ∈ R
n, uk ∈ R

m, and yk ∈ R
p are the state, the input, and

the output vectors, respectively. wk ∈ R
q and vk ∈ R

p denote the pro-

cess and observation noises drawn independent identically distributed

from Gaussian distributions wk ∼ N (0,Ww), vk ∼ N (0,Wv), and

E[wkv
T
j] = 0. Since the state variable xk is not directly measurable,

we assume that an estimator exists and returns the following estimation:

x̂k = xk + nk (2)

where nk ∼ N (0,Wn) denotes the noise in the estimation. x̂k can be

any unbiased estimator of xk.

Assumption 1: The pair (A,B) is controllable and the pair (A,C)
is observable.

Assumption 2: nk is independent of the wk; that is, E[wkn
T
k] =

0 but can be correlated with vk, wk−j , vk−j , j = 1, . . ., k − 1. An

important implication of this assumption is that E[xkn
T
k] = Wxn �= 0

in general.

This assumption can be made without loss of generality. Indeed, if the

state variable is known exactly nk ≡ 0, and we can set the covariance

matrices related to nk equal to zero.

Using the estimated state variable (2), we are interested in designing

a state feedback for the system in (1)

uk = Kx̂k = K(xk + nk) (3)

where K is a stabilizing controller gain, ρ(A+BK) < 1, and can be

designed optimally.

Let x0 ∼ N (0, X0) and x∞ → N (m∞,X∞) denote the initial and

the stationary state distribution, respectively. If K is stabilizing, it

is easy to verify that m∞ = 0. Using (3) in (1), one can obtain the

stationary distribution of xk

E[xk+1x
T
k+1] = (A+BK)E[xkx

T
k](A+BK)T +GWwG

T

+BKWnK
TBT + (A+BK)E[xkw

T
k]

︸ ︷︷ ︸

=0

GT

+GE[wkx
T
k]

︸ ︷︷ ︸

=0

(A+BK)T

+ (A+BK)E[xkn
T
k]K

TBT

+BKE[nkx
T
k](A+BK)T +GE[wkn

T
k]

︸ ︷︷ ︸

=0

KTBT

+BK E[nkw
T
k]

︸ ︷︷ ︸

=0

GT .

Using E[xk+1x
T
k+1] = E[xkx

T
k] = X∞, we get

X∞ = (A+BK)X∞(A+BK)T

+GWwG
T +BKWnK

TBT

+ (A+BK)WxnK
TBT +BKWT

xn(A+BK)T . (4)

B. Average Cost

Define a quadratic running cost for (1)

rk(yk, uk) = yT
k Ryyk + uT

k Ruuk (5)

where Ry ≥ 0 and Ru > 0. In this article, we consider an average cost

as the performance index

λ = lim
τ→∞

1

τ
E

[
τ∑

t=1

rt(yt, ut)

]

. (6)

Lemma 1: Consider the dynamical system in (1) and let Assump-

tions 1 and 2 hold. Assume that the gain K is stabilizing. The average

cost associated with the policy in (3) is

λ(K) = Tr(CTRyCX∞ +KTRuKX∞) + Tr(RyWv)

+ Tr(KTRuKWn) + 2Tr(KTRuKWxn). (7)

Proof: See Appendix A. �

C. Optimal and Nonoptimal Average Costs

Problem 1 (Linear quadratic Gaussian (LQG) problem [9], [18],

[19]): Consider the dynamical system in (1) and assume that (A,B,C),
and Ww and Wv are known. Design the observer x̂k and the controller

gain K∗ such that uk = K∗x̂k minimizes the average cost (7).

The LQG Problem 1 is to estimate the state variable via a Kalman

filter and use the estimated state as if it were the actual state in the

controller. The solution to Problem 1 exists under Assumption 1 and is

given by ([9], [18], [19])

uk = K∗x̂k|k

x̂k+1|k+1Y = Ax̂k|k +Buk + F ∗(yk+1 − C(Ax̂k|k +Buk)) (8)

where x̂k|k is a posteriori state estimation at time k given observations

(y1, . . ., yk), F
∗ is the observer gain

AM ∗AT −M ∗ −AM ∗CT (CM ∗CT +Wv)
−1CM ∗AT

+GWwG
T = 0

F ∗ = −M ∗CT (Wv + CM ∗CT)−1 (9)

andK∗ is the controller gain derived from the algebraic Riccati equation

(ARE)

ATP ∗A− P ∗ −ATP ∗B(BTP ∗B +Ru)
−1BTP ∗A

+ CTRyC = 0 (10)

K∗ = −(Ru +BTP ∗B)−1BTP ∗A. (11)

The ARE in (10) can also be written as

(A+BK∗)TP ∗(A+BK∗)− P ∗ +K∗TRuK
∗

+ CTRyC = 0. (12)

The optimal average cost for the LQG can be divided into two parts,

(see [18, section 9.3.2] or [20, section 5.2] for similar discussions)

λ
∗ = λlqr + λest (13)

Authorized licensed use limited to: Michigan State University. Downloaded on July 23,2025 at 17:54:43 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 9, SEPTEMBER 2024 6399

Fig. 1. Les-dynamics.

where the following holds.

1) λlqr is the cost if we knew the state. To obtain λlqr, use K∗ in (7)

and set Wn = 0 and Wxn = 0

λlqr = Tr(CTRyCX∞ +K∗TRuK
∗X∞) + Tr(RyWv)

= Tr(P ∗X∞ − (A+BK∗)TP ∗(A+BK∗)X∞)

+ Tr(RyWv) using (12)

= Tr(P ∗GWwG
T) + Tr(RyWv) using (4). (14)

2) λest is the cost of estimating the state

λest = Tr((CTRyC − P ∗)Σ) + Tr(ATP ∗AΣ)

= Tr(ATP ∗B(BTP ∗B +Ru)
−1BTP ∗AΣ) (15)

where

Σ = M ∗ −M ∗CT (CM ∗CT +Wv)
−1CM ∗ (16)

and M ∗ is given in (9).

The average cost given in (13) is the minimum average cost for

the dynamical system (1). Any other controller gain K �= K∗ or other

means of estimating xk will result in an increase in the average cost

λ(K) > λ
∗. An example is when a finite history of the input–output

data is fed instead of the state variable. In the next section, we show

that using a finite history of input–output data, we can define a point

estimator for the state variable. Since this estimator is not a Kalman

filter (and as such, not an optimal estimator), this approach results in

more average cost.

III. LES-DYNAMICS

In this article, we coin the new concept of Les-dynamics, which is an

equivalent representation of the original dynamics (1) by collecting L

extra samplings and captures the dynamics of the system over L steps;

see Fig. 1. Note that it is not required to sample faster; we only need

to collect L samples at the normal sampling rate of the system. Using

Les-dynamics, we can define an estimator for xk based on the past

inputs and outputs and show that x̂k = xk + nk in (2) holds.

Theorem 1: Let Assumption 1 be satisfied. By collecting L extra

samples, the linear model (1) is equivalent to the Les-dynamics

x̄l = ALx̄l−1 +BLūl−1 +GLw̄l−1

ȳl−1 = CLx̄l−1 +DLūl−1 +HLw̄l−1 + v̄l−1 (17)

where

AL = [AL], BL =
[

AL−1B . . . AB B
]

GL =
[

AL−1G . . . AG G
]

DL =

£

¤
¤
¤
¤
¤
¤
¤
¤
¤
¥

0 0 . . . 0

CB 0 . . .
...

CAB
. . .

... CB 0

CAL−1B . . . CAB CB

¦

§
§
§
§
§
§
§
§
§
¨

, CL =

£

¤
¤
¤
¤
¤
¤
¤
¥

C

CA

...

CAL−1

CAL

¦

§
§
§
§
§
§
§
¨

HL =

£

¤
¤
¤
¤
¤
¤
¤
¤
¤
¥

0 0 . . . 0

CG 0 . . .
...

CAG
. . .

... CG 0

CAL−1G . . . CAG CG

¦

§
§
§
§
§
§
§
§
§
¨

, WL =

[

WwL 0

0 WvL

]

Cov(wl−1) = WwL = [DiagL{Ww}]

Cov(vl−1) = WvL = [DiagL+1{Wv}] (18)

x̄l−1 := xk−L, x̄l := xk

ūl−1 := uk−L:L, ȳl−1 := yk−L:L+1

w̄l−1 := wk−L:L, v̄l−1 := vk−L:L+1. (19)

Proof: See Appendix B. �

Assumption 3: DefineC0 := C, and assume thatL ≥ 0 is the small-

est integer such that CL in (18) has full column rank. Note that L exists

under Assumption 1.

A. Point Estimator of the Current State xk

Using the concept of Les-dynamics, we define a point estimator of

the state xk in Theorem 2. Let

Y := ALC
+
LHL −GL = [Yt], Yt ∈ R

n×q, t = 1, . . ., L

Z := ALC
+
L = [Zt], Zt ∈ R

n×p, t = 1, . . ., L, L+ 1 (20)

where

C+
L = (CT

LW−1
eLCL)

−1CT
LW−1

eL

WeL =
[

HL I(L+1)p

]

WL

[

HT
L

I(L+1)p

]

. (21)

Note that C+
L is a left inverse of CL; i.e., C+

LCL = In.

Theorem 2: Consider the dynamical system in (1) and the Les-

dynamics in (17). Let Assumptions 1 and 3 hold. There exists a

maximum likelihood estimator of xk such that x̂k = xk + nk, where

x̂k is given by

x̂k = ALC
+
L ȳl−1 + (BL −ALC

+
LDL)ūl−1

= Γ[ȳT
l−1, ū

T
l−1]

T (22)

and nk is the noise in the estimation

nk = Y w̄l−1 + Zv̄l−1 (23)

E[nkn
T
k] = Wn = Cov(x̂k) = YWwLY

T + ZWvLZ
T . (24)

Proof: See Appendix C. �

B. Properties of the Point Estimator of xk in (22)

Theorem 3: Consider the dynamical system in (1) and the Les-

dynamics in (17). Let Assumptions 1 and 3 hold. Let x̂k|L and

Authorized licensed use limited to: Michigan State University. Downloaded on July 23,2025 at 17:54:43 UTC from IEEE Xplore. Restrictions apply.

6400 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 9, SEPTEMBER 2024

Cov(x̂k)|L denote the estimate of xk and the covariance of estimation

using data of length L, respectively. For L1 > L, where L satisfies

Assumption 3

x̂k|L1
= x̂k|L, Cov(x̂k)|L1

= Cov(x̂k)|L. (25)

Proof: See Appendix D. �

Remark 1: By Theorem 3, using a longer history of data does not

help us to have a better estimation of the current state xk. As a result, it

is better to keep the history length to the minimum where CL has full

column rank.

The noisenk in (23) is correlated with the statexk because it depends

onwk−i, i < k, andwk−i contributes toxk. We quantify the correlation

in the next lemma.

Lemma 2: Consider (1), and let Assumptions 1 and 3 hold. Assume

that the policy uk = Kx̂k = K(xk + nk) in (3) is used to control

the system, where x̂k and nk are given in (22) and (23). Then, for

k ≥ L+ 1

E[xkn
T
k] = Wxn =

L−1∑

j=1

(A+BK)j−1BK

L−j∑

t=1

Yt+jWwY
T
t

+
L−1∑

j=1

(A+BK)j−1BK

L−j+1∑

t=1

Zt+jWvZ
T
t

+ (A+BK)L−1BKZLWvZ
T
1

+
L∑

j=1

(A+BK)L−jGWwY
T
j . (26)

Note that Yt and Zt are defined in (20).

Proof: See Appendix E. �

Remark 2: One can use history of input–output data to define state

estimator x̂k in (22). The average cost associated with selecting the

controller as uk = Kx̂k is given by (7), where Wn and Wxn are given

in (24) and (26), respectively, while the optimal average cost is obtained

by using a Kalman filter in the LQG controller and it is specified in (13).

C. Incorporating Estimator in RL Framework

The estimator in (22) depends on the system dynamics yet our first

assumption in RL is that the dynamics is unknown. However, we can

push the estimator Γ to the structure that is learned.

Learning the policy: In policy search algorithms, a policy is

learned directly. When the state variable is not available and we feed

[ȳT
l−1, ū

T
l−1]

T to a policy search algorithm, we can write the controller

as u = KΓ[ȳT
l−1, ū

T
l−1]

T and the algorithm will learn KΓ.

Learning value function: In dynamic programming-based algo-

rithms, a value function is learned. The state–value function associated

with the policy uk = Kxk is defined as

V (xk,K) = E

[
+∞∑

t=k

(rk − λ(K))|xk

]

. (27)

It has been shown in [10] and [21] that the value function is quadratic

in xk, V (xk) = xT
k Pxk, and the dynamic programming-based algo-

rithms learn the kernel P . When the state variable is not available, we

can write

V (x̂k,K) = x̂T
k P x̂k =

[

ȳT
l−1 ūT

l−1

]

ΓTPΓ

[

ȳl−1

ūl−1

]

.

As a result, the algorithm will learn ΓTPΓ. Extensions to the Q-

function and advantage function are similar.

IV. SIMULATION RESULTS

Consider the following problem setup:

xk+1 =

[

0 1

0.45 −0.4

]

xk +

[

0

1

]

uk + wk, x0 ∼ N (0, I2)

yk =
[

1 0
]

xk + vk

Ww = I2, Wv = 1, Ry = 1, Ru = 1.

For L = 1, CL in (18) has full column rank meaning that xk can be

estimated from [yk, yk−1, uk−1] in each time-step.

A. Optimal Solution Using Full Information of the Dynamics

Our baseline for comparison is the optimal analytical solution,

discussed in Section II-C, assuming that the dynamics (A,B,C) is

exactly known. The solutions to (9)–(11) are

P ∗ =

[

1.1120 −0.1246

−0.1246 1.2381

]

, K∗ =
[

−0.2485 0.2770
]

M ∗ =

[

2.3054 −0.6045

−0.6045 1.4159

]

, F ∗ =

[

0.6975

−0.1829

]

.

Then, by (13)–(15), λlqr = 3.35017 and λest = 0.37730. The optimal

average cost is λ
∗ = λlqr + λest = 3.72747.

B. Evaluated Algorithms

We select the algorithms from the dynamic programming-based,

policy search, and model building approaches. The initial controller

for all algorithms is selected as K0[yk, yk−1, uk−1]
T where the entries

of K0 are selected from a standard distribution and multiplied by 0.01

to be near zero since A is stable.

1) Dynamic Programming-Based RL: Each algorithm iter-

ates ndp times and in each iteration, a rollout of length T is collected.

Off-policy learning [10]: The behavioral policy is selected as uk =
Ki[yk, yk−1, uk−1]

T + ηk, where ηk ∼ N (0, 1).
Q-learning [22]: The behavioral policy is selected as uk =

Ki[yk, yk−1, uk−1]
T + ηk, where ηk ∼ N (0, 1).

Average off-policy learning [11]: We set τ ′ = T and select τ ′′ = 0.

The behavioral policy is selected as uk = Ki[yk, yk−1, uk−1]
T + ηk,

where ηk ∼ N (0, 1).
2) Stochastic Policy Gradient [1]: The algorithm iterates npg

times and in each iteration, nbatch mini-batches of length Tbatch are

collected. The probability density function of the probabilistic policy

is assumed to be Gaussian N (Ki[yk, yk−1, uk−1]
T , 0.01I3). We use

Adam optimizer to update the controller gain with 0.1 as the learning

rate and default values for other hyperparameters.

3) Model-Building RL: We collectTmb input–output samples by

applying uk = K0[yk, yk−1, uk−1]
T on the system. We use subspace

methods to estimate the dynamics (A,B,C), see [7, Section 7.3]. We

use the estimated dynamics (Â, B̂, Ĉ) in (9)–(11), and the controller

gain Kmb and the Kalman filter gain Fmb accordingly. The controller

uk = Kmbx̂k|k, where x̂k|k is the state estimation by the Kalman filer

in (8) is applied to the original system for the evaluation.

C. Performance Evaluation

We evaluate the performance of the algorithms against the number

of samples. We set the algorithms’ parameters including the num-

ber of iterations, rollout length, and batch length such that all algo-

rithms have the same sample budget. For the dynamic programming-

based algorithms, we set ndp = 3 and change the rollout length

Authorized licensed use limited to: Michigan State University. Downloaded on July 23,2025 at 17:54:43 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 9, SEPTEMBER 2024 6401

Fig. 2. Median of error in the learned controller gains normalized with
K

∗
Γ.

Fig. 3. Mean of
|λ(K)−λ

∗ |
λ∗

, where K is the controller gain generated by
the algorithms. Shaded regions display quartiles.

as T = [100, 500, 1000, 15000]. In the policy gradient, we set

Tbatch = 10, nbatch = 6, and change the number of iterations as npg =
(ndp/(Tbatchnbatch))T . In the model-building approach Tmb = ndpT =
[300, 1500, 3000, 45 000]. We run each algorithm 50 times.

In Fig. 2, we plot the median of the relative error between the learned

controller gain by the algorithms and the optimal analytical gain. Note

that since the evaluated algorithms use [yk, yk−1, uk−1] and learn

KΓ, we need to compare with K∗Γ. The controller gain by the policy

gradient is far away from the analytical optimal gain because the policy

gradient algorithm tries to directly optimize the performance index and

as such, it is sensitive to observation noise. The controller gains by the

dynamic-programming algorithms become closer toK∗Γ as the number

of data increases. The controller by the model-building approach is the

closest to the optimal solution.

We use the generated controller gains by the algorithms to run

the linear Gaussian system for 5000 steps and compute the average

cost empirically. In Fig. 3, we report the mean of the relative av-

erage cost
|λ(K)−λ

∗ |
λ∗

, where λ
∗ = 3.72747 is the optimal analytical

average cost using the full knowledge of the dynamics discussed in

Section IV-A, and λ(K) is the average cost when the controller is de-

signed by one of the aforementioned RL algorithms. The performance

of the stochastic policy gradient algorithm is OFF from the optimal

behavior. The reason is that policy search algorithms are sensitive to

noise and the estimator noise nk in (23) degenerates the performance

of the stochastic policy gradient algorithm during sampling actions

and calculating the performance gradient. The average cost by the

model-building approach is close to the analytical optimal average

cost, and it is superb as it gets a good performance by only using 300

data points. Dynamic programming-based algorithms have also good

performances, and they are close to the analytical optimal average cost

without knowing the dynamics.

Remark 3: The effects of the process and observation noises in

the estimation of the value functions have been extensively studied

in [10] and [21]. Given a good estimation of the value function, the

convergence of the policy iteration algorithms is discussed in [10] and

[23]. The convergence of policy gradient algorithms for linear systems

with process noise is studied in [5] and [24], and the effect of observation

noise on the convergence has been numerically shown in [10].

V. CONCLUSION

In this article, we have considered linear Gaussian dynamical sys-

tems where the state variable is only partially observable and noisy. We

have assumed that there exists a state estimator that returns unbiased

but noisy estimations of the state vector. We have quantified the effect

of using estimation of the state in the average cost. We have further

discussed that the minimum average cost can be achieved if a Kalman

filter, which is the optimal state estimator, is used. Later, we have intro-

duced the new concept of Les-dynamics and defined a Les-dynamics

state estimator: the idea is to batch the dynamics of the system and

use a finite history of the input–output data to define the state estimator.

There are pros and cons with a Les-dynamics estimator: a Les-dynamics

estimator is not optimal (because it is not a Kalman filter) and as such,

it results in a higher average cost; however, the advantage is that the

structure of the Les-dynamics estimator can be incorporated into the

RL framework. We have also shown that it is better to keep the history

length to a minimum to avoid unnecessary parameter estimation.

If the dynamic is unknown, one can follow two alternative paths.

1) To estimate the dynamics and then use a Kalman filter as the state

estimator using the estimated dynamics. This approach is called “model

building” in the simulation results. 2) To use a finite history of input–

output data in model-free RL approaches. None of these approaches

return the optimal average cost. In the model-building approach, the

dynamic is estimated and is not exact. So, the analytical optimal average

cost cannot be achieved. The state estimate by a finite history of input–

output data will never be as good as using a Kalman filter with exact

knowledge of the dynamics.

We have shown in our empirical evaluation that the average costs

of the model-building approach and dynamic-programming based RL

algorithms are close to each other and also close to the optimal analytical

average cost. This shows that using a finite history of input–output data

is a powerful approach in dynamic programming-based and model-

building RL approaches. However, using a finite history of input–output

data does not produce good results in the policy gradient algorithm

because policy search algorithms are sensitive to noise. The statistics

of the presented state estimator and its effect on the cost are provided,

which opens up a future research direction to design rick-informed

controllers that not only account for the average cost but also its

variance.

APPENDIX A

PROOF OF LEMMA 1

We derive the average cost by directly inserting yk anduk = Kx̂k =
K(xk + nk) in (6)

λ(K) = lim
τ→∞

1

τ
E

[
τ∑

t=1

(xT
t C

T + vTt)Ry(Cxt + vt)

]

+ lim
τ→∞

1

τ
E

[
τ∑

t=1

(xt + nt)
TKTRuK(xt + nt)

]

Authorized licensed use limited to: Michigan State University. Downloaded on July 23,2025 at 17:54:43 UTC from IEEE Xplore. Restrictions apply.

6402 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 9, SEPTEMBER 2024

= lim
τ→∞

1

τ

τ∑

t=1

E[xT
t C

TRyCxt + 2vTt RyCxt + vTt Ryvt]

+ lim
τ→∞

1

τ

τ∑

t=1

E[xT
t K

TRuKxt + 2nT
t K

TRuKxt]

+ lim
τ→∞

1

τ

τ∑

t=1

E[nT
t K

TRuKnt].

Using E[xT
t vt] = 0, Tr(AB) = Tr(BA)

λ(K) = lim
τ→∞

1

τ

τ∑

t=1

[Tr(CTRyCE[xtx
T
t]) + Tr(RyE[vtv

T
t])]

+ lim
τ→∞

1

τ

τ∑

t=1

[Tr(KTRuKE[xtx
T
t])

+ Tr(2KTRuKE[xtn
T
t])]

+ lim
τ→∞

1

τ

τ∑

t=1

Tr(KTRuKE[ntn
T
t]).

Using E[xtx
T
t] = X∞, E[vtv

T
t]] = Wv, E[xtn

T
t] = Wxn,

and E[ntn
T
t] = Wn, one gets

λ(K) = lim
τ→∞

1

τ
τTr(CTRyCX∞ +KTRuKX∞)

+ lim
τ→∞

1

τ
[τTr(RyWv) + τTr(2KTRuKWxn)]

+ lim
τ→∞

1

τ
τTr(KTRuKWn)

= Tr(CTRyCX∞ +KTRuKX∞) + Tr(RyWv)

+ 2Tr(KTRuKWxn) + Tr(KTRuKWn).

APPENDIX B

PROOF OF THEOREM 1

Collecting one extra output sampling at k + 1 from the system in (1)

xk+1 = Axk +Buk +Gwk

yk+1 = CAxk + CBuk + CGwk + vk+1.

We can continue like this and collect L extra samples. By stacking

L+ 1 adjacent measurements from yk to yk+L and building yk:L+1,

we have

xk+L = ALxk +BLuk:L +GLwk:L

yk:L+1 = CLxk +DLuk:L +HLwk:L + vk:L+1

whereAL, BL, GL, CL, DL, and HL are defined in (18). By shifting

the time index fromk tok − L, the dynamics is defined over the horizon

[k − L, k]

xk = ALxk−L +BLuk−L:L +GLwk−L:L

yk−L:L+1 = CLxk−L +DLuk−L:L +HLwk−L:L + vk−L:L+1.

Let x̄l−1 := xk−L, x̄l := xk, and (17) is concluded.

APPENDIX C

PROOF OF THEOREM 2

SinceCL has full column rank by Assumption 3, there exists a matrix

NL ∈ R
n×Lp such that AL = NLCL and NL = ALC

+
L . Then, we

have

ALx̄l−1 = NLCLx̄l−1

= NL(ȳl−1 −DLūl−1 −HLw̄l−1 − v̄l−1)

where we have substituted CLx̄l−1 from the output equation in (17).

Substituting the above result in the state equation in (17), xk ≡ x̄l reads

xk = NLȳl−1 + (BL −NLDL)ūl−1 + (GL −NLHL)w̄l−1

−NLv̄l−1. (28)

Hence, the maximum likelihood estimation of x̄l is given by (22), and

the noise nk in the estimation is given by (23).

APPENDIX D

PROOF OF THEOREM 3

For simplicity, we select L1 = L+ 1. The proof can be extended

for general L1 > L easily. Let DL represent the collection of input,

output, process, and observation noises over the interval [k − L, k)

Dk−L:L = {ūl, ȳl, w̄l, v̄l}.

Let Dn = {un, yn, wn, vn} denote the new data point, which has

happened before Dk−L:L. Dk−L−1:L+1 reads

Dk−L−1:L+1 = {[un, ūl−1], [yn, ȳl−1], [wn, w̄l−1],

[vn, v̄l−1]}.

According to (18), the following identities are concluded immediately:

AL+1 = AL+1, BL+1 =
[

ALB BL

]

, GL+1 =
[

ALG GL

]

CL+1 =

[

C

CLA

]

, DL+1 =

[

0 0

CLB DL

]

HL+1 =

[

0 0

CLG HL

]

. (29)

We can also show that NL+1 =
[

0 ALC
+
L

]

. Let NL+1 =

[n1, NL]. According to the definition of NL in the proof of Theorem 2,

one has AL+1 = NL+1CL+1. Replacing AL+1 and CL+1 from (29),

one have

AL+1 = [n1, NL]

[

C

CLA

]

= n1C +NLCLA.

Since NLCL = AL = AL, one gets AL+1 = n1C +AL+1 and as

a result, one can select n1 = 0. Now we prove the theorem. We first

show that x̂k|L1
= x̂k|L

x̂k|L1
= AL+1C

+
L+1

[

yn

ȳl−1

]

+ (BL+1 −AL+1C
+
L+1DL+1)

[

un

ūl−1

]

=
[

0 ALC
+
L

]
[

yn

ȳl−1

]

Authorized licensed use limited to: Michigan State University. Downloaded on July 23,2025 at 17:54:43 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 9, SEPTEMBER 2024 6403

+

(
[

ALB BL

]

−
[

0 NL

]
[

0 0

CLB DL

])[

un

ūl−1

]

= NLȳl−1 +
[

ALB −NLCLB BL −NLDL

]
[

un

ūl−1

]

= ALC
+
L ȳl−1 + (BL −ALC

+
LDL)ūl−1 = x̂k|L.

Second, we prove Cov(x̂k)|L1
= Cov(x̂k)|L. Let nk|L denote the

noise in the estimation using data of length L. We prove that nk|L1
≡

nk|L

nk|L1
= (AL+1C

+
L+1HL+1 −GL+1)

[

wn

w̄l−1

]

+AL+1C
+
L+1

[

vn

v̄l−1

]

=

(
[

0 NL

]
[

0 0

CLG HL

]

−
[

ALG GL

]
)[

wn

w̄l−1

]

+
[

0 NL

]
[

vn

v̄l−1

]

= (ALC
+
LHL −GL)w̄l−1 +ALC

+
L v̄l−1 = nk|L.

APPENDIX E

PROOF OF LEMMA 2

The solution to (1) using (3) reads

xk = (A+BK)kx0 +

k−1∑

j=1

(A+BK)j−1BKnk−j

+

k−1∑

j=1

(A+BK)j−1Gwk−j . (30)

Using w̄l−1 and v̄l−1 from (19) and Y and Z from (20) in nk in (23)

nk =
L∑

t=1

Ytwt+k−L−1 +

L+1∑

t=1

Ztvt+k−L−1. (31)

Using (30) and (31), E[xkn
T
k] reads

E[xkn
T
k] = (A+BK)k E[x0n

T
k]

︸ ︷︷ ︸

=0

+
k−1∑

j=1

(A+BK)j−1(BK E[nk−jn
T
k]

︸ ︷︷ ︸

t1

+GE[wk−jn
T
k]

︸ ︷︷ ︸

t2

).

Regarding the term t1, one can see that based on (31), E[nk−jn
T
k] = 0

for j > L. For j < L, we have the following:

t1 = E[nk−jn
T
k] = E

[
L∑

t=1

Ytwt+k−j−L−1

L∑

t=1

wT
t+k−L−1Y

T
t

]

︸ ︷︷ ︸

t11

+ E

[
L∑

t=1

Ytwt+k−j−L−1

L+1∑

t=1

vTt+k−L−1Z
T
t

]

︸ ︷︷ ︸

=0

+ E

[
L+1∑

t=1

Ztvt+k−j−L−1

L∑

t=1

wT
t+k−L−1Y

T
t

]

︸ ︷︷ ︸

=0

+ E

[
L+1∑

t=1

Ztvt+k−j−L−1

L+1∑

t=1

vTt+k−L−1Z
T
t

]

︸ ︷︷ ︸

t12

.

Note that the second and third lines are zero because E[wkv
T
j] = 0.

The terms t11 and t12 read

t11 = E

[
L∑

t=j+1

Ytwt+k−j−L−1

L−j∑

t=1

wT
t+k−L−1Y

T
t

]

= E

[
L−j∑

t=1

Yt+jwt+k−L−1

L−j∑

t=1

wT
t+k−L−1Y

T
t

]

=

L−j∑

t=1

Yt+jWwY
T
t

t12 = E

[
L+1∑

t=j+1

Ztvt+k−j−L−1

L−j+1∑

t=1

vwT
t+k−L−1Z

T
t

]

= E

[
L−j+1∑

t=1

Zt+jvt+k−L−1

L−j+1∑

t=1

vTt+k−L−1Z
T
t

]

=

L−j+1∑

t=1

Zt+jWvZ
T
t .

For j = L, t11 = 0 and t12 = ZLWvZ
T
1 . Regarding the term t2, it is

easy to verify that t2 = 0 for j > L. For j ≤ L

t2 =

L∑

t=1

E[wk−jw
T
t+k−L−1]Y

T
t +

L+1∑

t=1

E[wk−jv
T
t+k−L−1]

︸ ︷︷ ︸

=0

ZT
t

= WwY
T
L−j+1.

By inserting t11, t12, t13, t14, and t2 into E[xkn
T
k], we have

E[xkn
T
k] =

L−1∑

j=1

(A+BK)j−1BK

L−j∑

t=1

Yt+jWwY
T
t

+
L−1∑

j=1

(A+BK)j−1BK

L−j+1∑

t=1

Zt+jWvZ
T
t

+ (A+BK)L−1BKZLWvZ
T
1

+
L∑

a=1

(A+BK)a−1GWwY
T
L−a+1

which is (26) after changing the index of the last summation.

REFERENCES

[1] B. Recht, “A tour of reinforcement learning: The view from continuous
control,” Annu. Rev. Control Robot. Auton. Syst., vol. 2, pp. 253–279, 2019.

[2] F. A. Yaghmaie and L. Ljung, “A crash course on reinforcement learning,”
2021, arXiv:2103.04910.

[3] D. P. Bertsekas, Reinforcement Learn. and Optimal Control. Nashua, NH,
USA: Athena Scientific, 2019.

Authorized licensed use limited to: Michigan State University. Downloaded on July 23,2025 at 17:54:43 UTC from IEEE Xplore. Restrictions apply.

6404 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 9, SEPTEMBER 2024

[4] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
vol. 1, 2nd Ed., Cambridge, MA, USA: MIT Press, 2018. [Online].
Available: http://www.incompleteideas.net/book/the-book-2nd.html

[5] M. Fazel, R. Ge, S. M. Kakade, and M. Mesbahi, “Global convergence of
policy gradient methods for the linear quadratic regulator,” in Proc. Int.

Conf. Mach. Learn., 2018, pp. 1467–1476.
[6] F. A. Yaghmaie and H. Modares, “Online optimal tracking of linear systems

with adversarial disturbances,” Trans. Mach. Learn. Res., 2022.
[7] L. Ljung, System Identification - Theory the User, 2nd Ed., Hoboken, NJ,

USA: Prentice Hall, 1999.
[8] N. Niknejad, F. A. Yaghmaie, and H. Modares, “Online reference tracking

for linear systems with unknown dynamics and unknown disturbances,”
Trans. Mach. Learn. Res., 2023.

[9] K. J. Åström and B. Wittenmark, Adaptive Control, 2nd Ed., Hoboken,
NJ, USA: Prentice Hall, 1994.

[10] F. A. Yaghmaie, F. Gustafsson, and L. Ljung, “Linear quadratic control
using model-free reinforcement learning,” IEEE Trans. Autom. Control,
vol. 68, no. 2, pp. 737–752, Feb. 2023.

[11] F. A. Yaghmaie and F. Gustafsson, “Using reinforcement learning for
model-free linear quadratic control with process and measurement noises,”
in Proc. IEEE 58th Conf. Decis. Control, 2019, pp. 6510–6517.

[12] M. Hausknecht and P. Stone, “Deep recurrent Q-learning for partially
observable MDPs,” in Proc. AAAI Fall Symp. - Tech. Rep., vol. FS-15-06,
2015, pp. 29–37.

[13] J. N. Foerster, Y. M. Assael, N. de Freitas, and S. Whiteson, “Learning to
communicate with deep multi-agent reinforcement learning,” Adv. Neural

Inf. Process. Syst., pp. 2137–2145, 2016.
[14] P. Zhu, X. Li, P. Poupart, and G. Miao, “On improving deep reinforcement

learning for POMDPs,” 2018, arXiv:1804.06309.

[15] M. Simchowitz, “Making non-stochastic control (almost) as easy as
stochastic,” in Proc. Adv. Neural Inf. Process. Syst., 2020, Art. no. 1538.

[16] S. Lale, K. Azizzadenesheli, B. Hassibi, and A. Anandkumar,
“Logarithmic regret bound in partially observable linear dynam-
ical systems,” in Proc. Adv. Neural Inf. Process. Syst., 2020,
pp. 20876–20888.

[17] F. L. Lewis and K. G. Vamvoudakis, “Reinforcement learning for partially
observable dynamic processes: Adaptive dynamic programming using
measured output data,” IEEE Trans. Syst., Man, Cybern., Part B: Cybern.,
vol. 41, no. 1, pp. 14–25, Feb. 2011.

[18] F. L. Lewis, L. Xie, and D. Popa, Optimal and Robust Estimation: With An

Introduction to Stochastic Control Theory. Boca Raton, FL, USA: CRC
Press, 2017.

[19] T. Glad and L. Ljung, Control Theory. Boca Raton, FL, USA: CRC Press,
2018.

[20] D. Bertsekas, Dynamic Programming and Optimal Control, Vol. I: Bell-
mont, MA, USA: Athena Scientific, 2012.

[21] Y. Abbasi-Yadkori, N. Lazic, and C. Szepesvari, “Model-free linear
quadratic control via reduction to expert prediction,” in Proc. 22nd Int.

Conf. Artif. Intell. Statist., 2019, pp. 3108–3117.
[22] S. Tu and B. Recht, “Least-squares temporal difference learning for

the linear quadratic regulator,” in Proc. Int. Conf. Mach. Learn., 2018,
pp. 5005–5014.

[23] G. A. Hewer, “An iterative technique for the computation of the steady
state gains for the discrete optimal regulator,” IEEE Trans. Autom. Control,
vol. AC-16, no. 4, pp. 382–384, Aug. 1971.

[24] B. Hambly, R. Xu, and H. Yang, “Policy gradient methods for the noisy
linear quadratic regulator over a finite horizon,” SIAM J. Control Optim.,
vol. 59, no. 5, pp. 3359–3391, 2021.

Authorized licensed use limited to: Michigan State University. Downloaded on July 23,2025 at 17:54:43 UTC from IEEE Xplore. Restrictions apply.

