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Reinforcement Learning for Partially Observable Linear Gaussian
Systems Using Batch Dynamics of Noisy Observations

Farnaz Adib Yaghmaie

Abstract—Reinforcement learning algorithms are commonly
used to control dynamical systems with measurable state vari-
ables. If the dynamical system is partially observable, reinforce-
ment learning algorithms are modified to compensate for the effect
of partial observability. One common approach is to feed a finite
history of input—output data instead of the state variable. In this
article, we study and quantify the effect of this approach in linear
Gaussian systems with quadratic costs. We coin the concept of
L-Extra-Sampled-dynamics to formalize the idea of using a finite
history of input-output data instead of state and show that this
approach increases the average cost.

Index Terms—Linear quadratic Gaussian, partiially observable
dynamical systems, reinforcement learning.

|. INTRODUCTION

Reinforcement learning (RL) is one of the main branches of machine
learning where a decision-making center, (the agent) tries to find an
optimal policy through interaction with the environment. One possible
way to categorize RL agents is based on the function they are approxi-
mating [1], [2], given in the following:

1) dynamic programming-based solutions: approximate the value
functions by minimizing the Bellman error [3] in the femporal
difference learning context;

2) policy search solutions: directly optimize the performance index
by learning a parametric policy [4], [5], [6];

3) model-building solutions: estimate a model of the environment [7],
[8] and then solve the optimal control problem for the estimated
model.

This concept is known as adaptive control [9], and there is vast
literature around it. It is worth noting that these categories are not
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mutually exclusive, and many modern RL algorithms combine multiple
approaches to leverage their respective advantages.

In a typical RL setting, the environment is represented by a Markov
decision process (MDP) with unknown dynamics. In practice, the
measurement of the state variable might be noisy [10], [11] or the
sensor data might not contain all information about the state variable.
A valid representation for the environment, in this case, is a partially
observable MDP or partially observable dynamical systems. There are
a number of ways to tackle the problem of partial observability in RL
frameworks, all centering around how to use the past data to extract
information about the dynamics, state, and noise. One possibility is to
use recurrent structures, such as long short term memory units, and
integrate arbitrary long histories of data [12], [13], [14]. The Lth-order
history approach [4] is an another way of handling partial observability
where the idea is to feed a finite history of input—output data to the RL
algorithm. To study the effect of such approaches, one needs to consider
a simplified setup where analytical analysis is possible.

The linear quadratic (LQ) problem is a good benchmark as it is pos-
sible to solve the problem analytically. In an LQ problem, a dynamical
system is linear and the state variable is only partially observable and
noisy. The performance index to be minimized in the LQ problem is
quadratic. In [15] and [16], input—output data history is used to estimate
the Markov parameters of linear dynamics with stochastic or adversarial
noises, and the controller is parameterized based on the denoised
observations. For deterministic systems with unmeasured states and
measured outputs, a long history of input—output data is used in [17] to
learn the value function. However, learning input—output-based control
policies for stochastic systems with dynamics and measurement noises
is unsettled and requires new developments to account for noises.

In this article, we consider linear Gaussian dynamical systems in
which the state variable is only partially observable and noisy. We
assume that the dynamics of the system is unknown. Since the system
is corrupted by both process and observation noise, it is imperative to
account for the effect of using a finite history of corrupted input—output
data on the average cost without resorting to filtering when learning an
optimal controller using data. This is a common practice in complex
environments where building a model of the environment and estimat-
ing the state are difficult tasks. To formalize learning an optimal con-
troller under noisy data, we introduce the concept of L-Extra-Sampled
(Les)-dynamics for stochastic systems. Based on Les-dynamics, we
show that one can define a point estimator of the state variable using
the history of input—output data and leverage it to design model-free
RL algorithms. In addition, we study the statistic of the estimations.
Note that we neither favor the approach of feeding a finite history of
input—output data for partially observable dynamical systems, nor do
we deny its importance. We aim to quantify the effect of this approach,
and this is the contribution ofthis article. Compared with [17], first
we consider stochastic systems and take into account the process and
observation noises and second, study and quantify the effect of noise
on the average cost when a batch of input—output data is utilized.
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II. LQ PROBLEM

Notations: Let R™*™ denote the set of real n x m matrices. 0
denotes a matrix with appropriate dimensions and zero entries. For
A e R™™, p(A)and Tr(A) denote the spectral radius and the trace
of A, respectively. A (semi)positive definite matrix A is denoted by
A >0 (A>0). Let A denote a matrix. Then, Diag; {A} builds a
block diagonal matrix where the matrix A is repeated L times on
the diagonal blocks. Let a;, denote a vector at time k. Define ay.r :=

T
T T T
[ak At ak:+L—1:| :

A. Linear Gaussian Dynamical System

Consider a linear Gaussian dynamical system
Tpy1 = Az, + Buy + Gy,
yr = Cap + vk (D

where z;, € R™, u, € R™, and y, € RP are the state, the input, and
the output vectors, respectively. w; € R? and v, € RP denote the pro-
cess and observation noises drawn independent identically distributed
from Gaussian distributions wy, ~ N (0, W,,), vy ~ N (0, W,), and
E[wkv;fr] = 0. Since the state variable x}, is not directly measurable,
we assume that an estimator exists and returns the following estimation:

.fk =T + Ny (2)

where ny ~ N(0,W,,) denotes the noise in the estimation. &) can be
any unbiased estimator of x.

Assumption 1: The pair (A, B) is controllable and the pair (A, C)
is observable.

Assumption 2: ny, is independent of the wy; that is, Elwynl] =
0 but can be correlated with vy, wy_;, vp—j, j=1,...,k—1. An
important implication of this assumption is that E[zznl] = W,, # 0
in general.

This assumption can be made without loss of generality. Indeed, if the
state variable is known exactly n, = 0, and we can set the covariance
matrices related to n, equal to zero.

Using the estimated state variable (2), we are interested in designing
a state feedback for the system in (1)

up = Ki, = K(zp, + ny,) (3)

where K is a stabilizing controller gain, p(A + BK) < 1, and can be
designed optimally.

Letzg ~ N (0, Xo) and zo. — N (M, X ) denote the initial and
the stationary state distribution, respectively. If K is stabilizing, it
is easy to verify that m., = 0. Using (3) in (1), one can obtain the
stationary distribution of xy,

Elzxi171,1] = (A+ BK)E[zyz{](A+ BK)" + GW,G"
+ BKW, K"B" + (A + BK) Elzyw{] G*
——
=0
+ GE[wpzf](A+ BK)T
=0
+ (A + BK)E[z;nf | KT BT
+ BKE[nyzf](A+ BK)" + GE[lwenl ] KT BT
N e’
=0
+ BK E[n,wf]G7.
N——

=0

Using Elzg12], ] = Elzpa]] = X, we get
X, =(A+ BK)X.(A+ BK)"
+GW,,GT + BKW, K" B
+ (A4 BK)W,,,KTBT + BKWX (A+ BK)T. 4

B. Average Cost
Define a quadratic running cost for (1)
7 (Yr, ur) = Y Ryyn + ug Ruuy (5)

where R, > 0 and R,, > 0. In this article, we consider an average cost
as the performance index

L1 E
A= }Lrglo ;E [Z rt(yt,ut):| . (6)
t=1

Lemma 1: Consider the dynamical system in (1) and let Assump-
tions 1 and 2 hold. Assume that the gain K is stabilizing. The average
cost associated with the policy in (3) is

MEK)=Ti(CTR,CX . + KTR,KX.) + Tr(R,W,)
+ Tr(KT R, KW,,) 4+ 2Tr(KT R, KW,,,). (7
Proof: See Appendix A. |

C. Optimal and Nonoptimal Average Costs

Problem 1 (Linear quadratic Gaussian (LQG) problem [9], [18],
[19]): Consider the dynamical system in (1) and assume that (A, B, C'),
and W, and W, are known. Design the observer Z;, and the controller
gain K* such that u, = K*; minimizes the average cost (7).

The LQG Problem 1 is to estimate the state variable via a Kalman
filter and use the estimated state as if it were the actual state in the
controller. The solution to Problem 1 exists under Assumption 1 and is
given by ([91, [181], [19])

U = K*‘ik‘k
Tpp1jpt1Y = A& + Bug + F*(ypp1 — C(AZyp + Buy)) (8)

where 2,5, is a posteriori state estimation at time k given observations
(Y1, ..., yr), F’* is the observer gain

AM AT — M — AMCT(CM T + W) to M AT
+GW,GT =0
F*=-MCT(W,+CM*CT)™! Q)

and K is the controller gain derived from the algebraic Riccati equation
(ARE)

ATP*A— P -~ ATP*B(B"P'B+ R,) 'BTP*A

+CTR,C =0 (10)
K*=—(R,+BTP*'B) 'BTP*A. (1D
The ARE in (10) can also be written as
(A+ BK")"P*(A+ BK") - P+ K'TR,K*
+CTR,C =0. (12)

The optimal average cost for the LQG can be divided into two parts,
(see [18, section 9.3.2] or [20, section 5.2] for similar discussions)

A= )\]qr + )"esl (13)
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original dynamics — (k=5 wves Ui—2) Wie—1 i 0 0 0 T
Les-dynamics —» C
CB 0 CA
uk,—Lm k=2 Uk D, = CAB , CL _
State: xk—L] xk—L+1I xk—z] xk—l] Xk J‘k+1] ) CAL-1
Observation: yy_; ¥ Yi_p41 V-2 Vie-1 Vi Yies1 : CB 0 CAL
_C’AL*IB CAB C(CB]
Fig. 1. Les-dynamics. -~ _
0 0 0
where the following holds. cG 0
1) Ay is the cost if we knew the state. To obtain A, use K* in (7) H, = CAG . WL War 0
and set W,, = 0and W,,, =0 0 Wor
A Tr(CTR,CX, KTR,K*X Tr(R, W, : ¢o 0
lgr — l”( Y o T+ U OO) + 1"( Y U) _CAL—IG CAG CG_
=Tr(P*X, — (A+ BK")TP(A+ BK*) X, .
( ( ) ( ) Xoc) Cov(w;—1) = Wy, = [Diag, {Wy}]
+ Tr(R,W,) using (12) .
(Ry W) £ Cov(v;—1) = W, = [Diag;  {W,}] (18)
_ * T :
=Tr(P"GW,,G") + Tr(R,W,,) using (4). (14) P
2) Xest 18 the cost of estimating the state Up—1 1= Uk—L:Ls Yi-1 ‘= Yk—L:L+1
hest = Tr((CT R, C — P*)X) + Tr(AT P*AY) Wi—1 := Wg-L:L, V-1 = Vg—L:L+1- (19)
. . - . Proof: See Appendix B. |
=Tr(A"P*B(BTP'B+R,) 'BTP*AX. 15
r( ( + Ru) ) (15 Assumption 3: Define Cy := C, and assume that L, > 0 is the small-
where est integer such that C', in (18) has full column rank. Note that L exists
under Assumption 1.
Y =M -MCct(COMCT +W,)tCM* (16)

and M* is given in (9).

The average cost given in (13) is the minimum average cost for
the dynamical system (1). Any other controller gain K # K* or other
means of estimating x;, will result in an increase in the average cost
A(K) > A*. An example is when a finite history of the input—output
data is fed instead of the state variable. In the next section, we show
that using a finite history of input—output data, we can define a point
estimator for the state variable. Since this estimator is not a Kalman
filter (and as such, not an optimal estimator), this approach results in
more average cost.

lll. LEs-DyNAMICS

In this article, we coin the new concept of Les-dynamics, which is an
equivalent representation of the original dynamics (1) by collecting L
extra samplings and captures the dynamics of the system over L steps;
see Fig. 1. Note that it is not required to sample faster; we only need
to collect L samples at the normal sampling rate of the system. Using
Les-dynamics, we can define an estimator for z;, based on the past
inputs and outputs and show that , = x + ny in (2) holds.

Theorem 1: Let Assumption 1 be satisfied. By collecting L extra
samples, the linear model (1) is equivalent to the Les-dynamics

Ty =ALZTi1 + Bruy_1 + G
Yi-1 = Crxi1 +Dptyy + Hpwyy + 01 (17)
where

AL =[AY), Bp = [AHB AB B]

Gy = [AHG AG G}

A. Point Estimator of the Current State x;,

Using the concept of Les-dynamics, we define a point estimator of
the state xj, in Theorem 2. Let

Y i=ALCfH, —GL =1V, Y, eR™, t=1,... L

Z:=ACf =2, Z, eR™?, t=1,...,L,L+1 (20)
where
Cf = (CIW i C)y ' CTw !
HT
Wer = [Hy T Wo | 7 | e
Tiri1yp

Note that C’Z“ is a left inverse of Cp; i.e., CITCL =1I,.

Theorem 2: Consider the dynamical system in (1) and the Les-
dynamics in (17). Let Assumptions 1 and 3 hold. There exists a
maximum likelihood estimator of xj, such that z;, = x;, + n;, where
2y, 1s given by

& =ArCly-1 + (Br — ALCEDL)'L_LZ—I

=Tlg, w]" 22)

and n, is the noise in the estimation
n =YWy + 20 (23)
E[ngnf] = W, = Cov(ir) = YWy YT + ZW, . Z7. (24
Proof: See Appendix C. |

B. Properties of the Point Estimator of x;, in (22)

Theorem 3: Consider the dynamical system in (1) and the Les-
dynamics in (17). Let Assumptions 1 and 3 hold. Let 2|, and

Authorized licensed use limited to: Michigan State University. Downloaded on July 23,2025 at 17:54:43 UTC from |IEEE Xplore. Restrictions apply.



6400

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 9, SEPTEMBER 2024

Cov(&y)|r denote the estimate of xy, and the covariance of estimation
using data of length L, respectively. For L; > L, where L satisfies
Assumption 3

£k|L1 :£k|L7 COV(CZ’]C)‘LI = COV(SEk)|L. (25)

Proof: See Appendix D. |

Remark 1: By Theorem 3, using a longer history of data does not
help us to have a better estimation of the current state x. As a result, it
is better to keep the history length to the minimum where C', has full
column rank.

The noise ny, in (23) is correlated with the state x; because it depends
onwy_;, ¢ < k,and wy_,; contributes to x),. We quantify the correlation
in the next lemma.

Lemma 2: Consider (1), and let Assumptions 1 and 3 hold. Assume
that the policy ur, = K2 = K(xp + ny) in (3) is used to control
the system, where &, and n; are given in (22) and (23). Then, for
k>L+1

L— L
Z (A+ BK)"~ 1BKZJYHJW v,F

t=1

Elzyni] =

L— L—j+1
ZA+BKJ 'BK > Ziy W,z

t=1

+(A+BK)'BKZ W, ZT

L
+Y (A+BE)"7Gw,Y].

j=1

(20)

Note that Y; and Z; are defined in (20).
Proof: See Appendix E. |
Remark 2: One can use history of input—output data to define state
estimator &, in (22). The average cost associated with selecting the
controller as ux, = K&y is given by (7), where W,, and W,,,, are given
in (24) and (26), respectively, while the optimal average cost is obtained
by using a Kalman filter in the LQG controller and it is specified in (13).

C. Incorporating Estimator in RL Framework

The estimator in (22) depends on the system dynamics yet our first
assumption in RL is that the dynamics is unknown. However, we can
push the estimator I to the structure that is learned.

Learning the policy: In policy search algorithms, a policy is
learned directly. When the state variable is not available and we feed
[gf,, uF]Ttoa policy search algorithm, we can write the controller
asu= KI[gF,, uF ,]7 and the algorithm will learn KT

Learning value function: In dynamic programming-based algo-
rithms, a value function is learned. The state—value function associated
with the policy ur = Kx is defined as

+o0
> (e - /\(K))|xk] :

t=k

V(e K) = E @7

It has been shown in [10] and [21] that the value function is quadratic
in xy, V(zy) = o Pxy, and the dynamic programming-based algo-
rithms learn the kernel P. When the state variable is not available, we

can write
Yi-1
Up—1

As a result, the algorithm will learn I'T PT. Extensions to the Q-
function and advantage function are similar.

V(i, K) = j:ngk = [yl 1 ﬂ;{1] rrpr

IV. SIMULATION RESULTS

Consider the following problem setup:

0
Tpyr = Tk + 1 u +wi, xo ~N(0,1)

0 1
0.45 —0.4

Yk [1 0] Tk + Vg

Wy=1, W,=1, R, =1, R, =
For L =1, C, in (18) has full column rank meaning that x; can be
estimated from [y, Yx—1, ur—1] in each time-step.

A. Optimal Solution Using Full Information of the Dynamics

Our baseline for comparison is the optimal analytical solution,
discussed in Section II-C, assuming that the dynamics (A, B, C) is
exactly known. The solutions to (9)—(11) are

11120 —0.1246
P = K= [—0.2485 0.2770]
~0.1246  1.2381
2. 0. .
ye_ 23051 —060as) o [o06975 ]
—0.6045  1.4159 —0.1829

Then, by (13)-(15), Aigr = 3.35017 and Ay = 0.37730. The optimal
average costis 1™ = digr + Aeg = 3.72747.

B. Evaluated Algorithms

We select the algorithms from the dynamic programming-based,
policy search, and model building approaches. The initial controller
for all algorithms is selected as K[y, yx_1,ur_1]T where the entries
of K are selected from a standard distribution and multiplied by 0.01
to be near zero since A is stable.

1) Dynamic Programming-Based RL: Each algorithm iter-
ates ng, times and in each iteration, a rollout of length 7" is collected.

Off-policy learning [10]: The behavioral policy is selected as uy =
K'[yk, yr-1, ur-1]" + nk, where n ~ N(0,1).

Q-learning [22]: The behavioral policy is selected as wuy =
K'yk, yk-1, ug-1]" + nk, where n, ~ N(0, 1).

Average off-policy learning [11]: We set 7/ = T and select 77 = 0.
The behavioral policy is selected as ur, = K*[yr, yx_1, uk_1]7 + Mk,
where 7, ~ N(0,1).

2) Stochastic Policy Gradient [1]: The algorithm iterates 7,
times and in each iteration, npye, mini-batches of length Ti,., are
collected. The probability density function of the probabilistic policy
is assumed to be Gaussian N (K [yx, yx_1, ur_1]T,0.0113). We use
Adam optimizer to update the controller gain with 0.1 as the learning
rate and default values for other hyperparameters.

3) Model-Building RL: We collect Ty, input—output samples by
applying ug = K°[yp, yr_1,us_1]7 on the system. We use subspace
methods to estimate the dynamics (4, B, C), see [7, Section 7.3]. We
use the estimated dynamics (A B C) in (9)—(11), and the controller
gain K, and the Kalman filter gain F,, accordingly. The controller
ur = KnpZ g, where 2y, is the state estimation by the Kalman filer
in (8) is applied to the original system for the evaluation.

C. Performance Evaluation

We evaluate the performance of the algorithms against the number
of samples. We set the algorithms’ parameters including the num-
ber of iterations, rollout length, and batch length such that all algo-
rithms have the same sample budget. For the dynamic programming-
based algorithms, we set ng, = 3 and change the rollout length
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as 7= [100, 500, 1000, 15000]. In the policy gradient, we set
Thoaech = 10, npgen = 6, and change the number of iterations as n,, =
(1ap/ (ThachMaten) ) T~ In the model-building approach Thy, = ng, T =
[300, 1500, 3000, 45 000]. We run each algorithm 50 times.

In Fig. 2, we plot the median of the relative error between the learned
controller gain by the algorithms and the optimal analytical gain. Note
that since the evaluated algorithms use [yg, yr_1, ug_1] and learn
KT, we need to compare with K*I'. The controller gain by the policy
gradient is far away from the analytical optimal gain because the policy
gradient algorithm tries to directly optimize the performance index and
as such, it is sensitive to observation noise. The controller gains by the
dynamic-programming algorithms become closer to K *I" as the number
of data increases. The controller by the model-building approach is the
closest to the optimal solution.

We use the generated controller gains by the algorithms to run
the linear Gaussian system for 5000 steps and compute the average
cost empirically. In Fig. 3, we report the mean of the relative av-
erage cost w, where A* = 3.72747 is the optimal analytical
average cost using the full knowledge of the dynamics discussed in
Section IV-A, and A(K) is the average cost when the controller is de-
signed by one of the aforementioned RL algorithms. The performance
of the stochastic policy gradient algorithm is OFF from the optimal
behavior. The reason is that policy search algorithms are sensitive to
noise and the estimator noise ny in (23) degenerates the performance
of the stochastic policy gradient algorithm during sampling actions
and calculating the performance gradient. The average cost by the
model-building approach is close to the analytical optimal average
cost, and it is superb as it gets a good performance by only using 300
data points. Dynamic programming-based algorithms have also good

performances, and they are close to the analytical optimal average cost
without knowing the dynamics.

Remark 3: The effects of the process and observation noises in
the estimation of the value functions have been extensively studied
in [10] and [21]. Given a good estimation of the value function, the
convergence of the policy iteration algorithms is discussed in [10] and
[23]. The convergence of policy gradient algorithms for linear systems
with process noise is studied in [5] and [24], and the effect of observation
noise on the convergence has been numerically shown in [10].

V. CONCLUSION

In this article, we have considered linear Gaussian dynamical sys-
tems where the state variable is only partially observable and noisy. We
have assumed that there exists a state estimator that returns unbiased
but noisy estimations of the state vector. We have quantified the effect
of using estimation of the state in the average cost. We have further
discussed that the minimum average cost can be achieved if a Kalman
filter, which is the optimal state estimator, is used. Later, we have intro-
duced the new concept of Les-dynamics and defined a Les-dynamics
state estimator: the idea is to batch the dynamics of the system and
use a finite history of the input—output data to define the state estimator.
There are pros and cons with a Les-dynamics estimator: a Les-dynamics
estimator is not optimal (because it is not a Kalman filter) and as such,
it results in a higher average cost; however, the advantage is that the
structure of the Les-dynamics estimator can be incorporated into the
RL framework. We have also shown that it is better to keep the history
length to a minimum to avoid unnecessary parameter estimation.

If the dynamic is unknown, one can follow two alternative paths.
1) To estimate the dynamics and then use a Kalman filter as the state
estimator using the estimated dynamics. This approach is called “model
building” in the simulation results. 2) To use a finite history of input—
output data in model-free RL approaches. None of these approaches
return the optimal average cost. In the model-building approach, the
dynamic is estimated and is not exact. So, the analytical optimal average
cost cannot be achieved. The state estimate by a finite history of input—
output data will never be as good as using a Kalman filter with exact
knowledge of the dynamics.

We have shown in our empirical evaluation that the average costs
of the model-building approach and dynamic-programming based RL
algorithms are close to each other and also close to the optimal analytical
average cost. This shows that using a finite history of input—output data
is a powerful approach in dynamic programming-based and model-
building RL approaches. However, using a finite history of input—output
data does not produce good results in the policy gradient algorithm
because policy search algorithms are sensitive to noise. The statistics
of the presented state estimator and its effect on the cost are provided,
which opens up a future research direction to design rick-informed
controllers that not only account for the average cost but also its
variance.

APPENDIX A
PROOF OF LEMMA 1

We derive the average cost by directly inserting y, and u, = K2y =

AK) = lim 1g [Z(ach + 0 )R, (Cxy + vy)

T—00 T
t=1

-

Z(.’L't =+ nt)TKTRuK(a?t =+ nt)

t=1

1
+ lim —E

T—00 T
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1 T
= lim = Y E[z{ C"R,Cax, + 2v] R,Cx; + v{ Ryv,]
T—00 T
t=1

1
+ lim —

T—00 T

> Elz{ K"R,Kz, + 2n] K" R,Kx,]
t=1

1
+ lim —

T—00 T

> En{ K"R,Kn].
t=1
Using E[zTv;] = 0, Tr(AB) = Tr(BA)

ME) = lim % i[Tr(CTRyCE[xtxtT]) + Tr(R, E[v,0T])]

IR
+ lim — > [Te(K" R, KE[zx}])

t=1

+Tr(2 KT R, KE[z:n]])]

1 T
+ lim = " Tr(K" R, KE[n,n])).
t=1

T—00 T

Using  E[z2]] = X,
and E[n;nl] = W, one gets

Ewwl]] =W, Elzinl] = Wan,

1
lim =rTr(CTR,CX,, + KTR,KX,,)

T—00 T

AK) =

1
+ lim = [rTr(R,W,) + 7Tr(2 KT R, KW,,,)]

T—00 T

+ lim l7-Tr(KTRuKWn)

T—00 T
=Tr(CTR,CX, + KTR,KX..) + Tr(R,W,)
+2Tr(KT R, KW,,,) + Tr(KT R, KW,,).

APPENDIX B
PROOF OF THEOREM 1

Collecting one extra output sampling at k + 1 from the systemin (1)

Trr1 = Az + Buy + Gy,
Yk+1 = CAl'k + CB’U,k + Cka + Vk+41-

We can continue like this and collect L extra samples. By stacking
L + 1 adjacent measurements from y to yy, and building yy.r41,
we have

T = Apxp + Brug.p + Grw.p
Yrn+1 = Crxr + Dy, + Howg.p + Ve p41

where Ap, Br, Gr, Cp, Dr, and Hp, aredefined in (18). By shifting
the time index from k to k£ — L, the dynamics is defined over the horizon
[k - L7 k]

xp = Arr-r + Brug—r.p + GLwi—r.1

Ye-r:04+1 = Crxp_p + Dpus—r.p + Hpwi_p.p +Vk_r.n41-

LetZz; 1 :=xy_r, T; := xy, and (17) is concluded.

APPENDIX C
PROOF OF THEOREM 2

Since C', has full column rank by Assumption 3, there exists a matrix
Ny € R™EP such that A, = N,Cp and N = A C}. Then, we
have

Az = N Oy
=Np(§i-1 — Dptyy — Hpw—1 — Up-1)

where we have substituted C'1,Z; ; from the output equation in (17).
Substituting the above result in the state equationin (17), x,, = Z; reads

2 = Npgi1+ (B — NpDp)ta1 + (G — N Hp)w
— Npv;_1. (28)
Hence, the maximum likelihood estimation of Z; is given by (22), and
the noise ny in the estimation is given by (23).
APPENDIX D
PROOF OF THEOREM 3

For simplicity, we select Ly = L + 1. The proof can be extended
for general L; > L easily. Let Dy, represent the collection of input,
output, process, and observation noises over the interval [k — L, k)

Dy_r.r, = {t, i, Wi, Ui}

Let D,, = {tn, Yn, Wn, v,} denote the new data point, which has
happened before Dy._r,.1.. D—r—1.1+1 reads

Dk*L*lzL—O—l = {[UTH al*l]? [y'ru 27171]7 [wna u_)lfl]a
[Vn, D]}

According to (18), the following identities are concluded immediately:

Apor =AML B, = [ALB BL}  Grot = [ALG GL]

C 0 0
Crpr = , Dy =
CrA CrB Dp
0 0
Hpy = . (29)
CrG Hp
We can also show that Ny, = [0 ALCZ']. Let Ny =

[n1, N1]. According to the definition of Ny, in the proof of Theorem 2,
one has Ay 11 = Np11Cpr+1. Replacing Ay, and C, 14 from (29),
one have

AL+1 = [nl,NL] :1’L1C+NLCLA.

CLA

Since N.Cp, = Ap = AL, one gets AXT1 = n;C + AF*! and as
a result, one can select n; = 0. Now we prove the theorem. We first
show that Ci'k|L1 = fk'L

Yn
Yi-1

Uy,
+ (Br41 — AL41Cf 1 Drya) [ ]

. _ +
Bgl, = AL Cp

U1

n

- [0 ALCH Yi-1

Authorized licensed use limited to: Michigan State University. Downloaded on July 23,2025 at 17:54:43 UTC from |IEEE Xplore. Restrictions apply.



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 9, SEPTEMBER 2024 6403
0 o u [
+| [4*B B -0 ] " +E|S Zw w?
([ m]-fo w]| 0y o])] pICTNENE S
— L un =0
= Npyi—1+ [A B-N,C.,B By — NLDL] i rL+1 L41
-1
+E Z ZiVtik—j-L-1 Z Oinop 12
= ArClyi1 + (Br — ALCi Dr)ty-1 = &lr. Lt=1 t=1
t12

Second, we prove Cov(Zy)|r, = Cov(&y)|L. Let ng|, denote the
noise in the estimation using data of length L. We prove that ny|., =
nklr

w1

W,
ngle, = (AL Cr  Hop — Grya) {_ ]

T ALl 731;:]
(o |2y 2] fre )] ]

(ALC[JTHL — GL)lDl,l + ALCZF”DZ—l = Nkl

APPENDIX E
PROOF OF LEMMA 2

The solution to (1) using (3) reads

R‘

-1
(A+ BK)"'BKny_;

1

x, = (A4 BK)*zy +

<.
1

k-1
+Z A+ BK)Y 'Guwy,_j. (30)
j=1

Using w;_; and v;_; from (19) and Y and Z from (20) in ny in (23)

L1
ng = ZthH—k -1+ ZZtvt-Hc L1 (31
=1 =1

Using (30) and (31), E[zxn] ] reads

]E[xkng] =(A+ BK)’“ E[wonf]
———

=0

k-1
+ > (A+ BK) '(BK E[n_;ni] +GE[wi_;ni]).

=1
J ty to

Regarding the term ¢,, one can see that based on (31), E[ng_,;nf] =0
for j > L. For j < L, we have the following:

L L

T T
E Y;fwtjtkfjfolg Wiy 1Yy

t=1 t=1

tl = E[?’Lk,JTLg] =E

t11

L+1

§Y75wt+k]L1§ V12

Note that the second and third lines are zero because E[wkva} =0.
The terms ¢1; and ¢, read

tll— |: § thwt+k)jL1§ wt+kL1

t=j5+1

L-j L—j

T T

=E E Yt+jwt+k—L—1§ Wiyg 1Yy
t=1 t=1

L—
E Y Wy Y
L+1 L-j+1
tio =E E LtV k—j-L-1 E th+k 12,
t=j+1
L—j+1 L-j+1
T T
=K E Ly iV L1 E vt+k—L—1Zt
=1 t=1
L-j+1
Zyr iWo 2,
t=1

Forj=L,t;; =0and t1, = ZLWUZlT. Regarding the term ¢, it is
easy to verify thatto = 0 forj > L. Forj < L

L L+l
ty = ZE[wkfjwz;kafﬂYtT + ZE[wk*ijﬁ*ka—l] z
= - ——
=1 =1 ~
=W i1

By inserting ¢11, t12, t13, t14, and to into E[x;n]], we have

h

-1 L—j
(A+ BK)Y 'BK Y Yy W, Y,

1 t=1

<.
Il

L—j+1
Z Zy W 2T

L-1

+Y (A4 BK) 'BK
Jj=1

+ (A4 BK)"'BKZ, W, ZT

L
+) (A+ BK)*'\GWLY 4y

a=1

which is (26) after changing the index of the last summation.
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