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ABSTRACT This paper presents a fully risk-aware model predictive control (MPC) framework for chance-
constrained discrete-time linear control systems with process noise. Conditional value-at-risk (CVaR) as a
popular coherent risk measure is incorporated in both the constraints and the cost function of the MPC
framework. This allows the system to navigate the entire spectrum of risk assessments, from worst-case
to risk-neutral scenarios, ensuring both constraint satisfaction and performance optimization in stochastic
environments. The recursive feasibility and risk-aware exponential stability of the resulting risk-aware
MPC are demonstrated through rigorous theoretical analysis by considering the disturbance feedback policy
parameterization. In the end, two numerical examples are given to elucidate the efficacy of the proposed

method.

INDEX TERMS Chance constraints, conditional value at risk, distributionally robust optimization, risk -

aware MPC.

I. INTRODUCTION

Model Predictive Control (MPC) is a highly effective control
strategy extensively applied in various industries, including
automotive, energy, chemical, robotics, and aerospace [1],
[2]. This approach excels in managing complex, multivariable
control challenges and adhering to system constraints. How-
ever, effective implementation of MPC requires accounting
for uncertainties and disturbances in system dynamics. Strate-
gies that are developed to tackle these issues include robust
MPC, which optimizes for the worst disturbances [3]; tube-
based MPC, which accounts for uncertainty through invariant
sets [4], [5]; and stochastic MPC, which treats uncertainty
as noise and minimizes the expected value of the cost func-
tion [6], [7].

Despite the advantages that these methods add to the MPC,
they still suffer from some shortcomings. Robust MPC can
be overly conservative, focusing on rare, extreme scenarios,
which may hinder overall performance [8]. Stochastic MPC
typically considers only the expected cost value, overlooking
the informative potential of the full cost distribution. This

can lead to fluctuations in performance, particularly in low-
probability, high-impact scenarios [9]. To address these issues,
risk-aware optimal control strategies have been developed,
aiming to minimize both the expected value and the variance
of the cost function for more predictable outcomes. This ap-
proach balances the conservatism of robust MPC with the risk
neutrality of stochastic MPC [10].

In stochastic optimal control, the use of risk measures such
as Conditional Value-at-Risk (CVaR) in the objective function
offers a flexible approach that bridges the gap between worst-
case and expectation-based (risk-neutral) formulations [11].
By incorporating CVaR, our framework not only aims to min-
imize the expected or mean cost but also reduces the variance,
thereby leading to more predictable and stable outcomes. This
risk-aware approach provides a balanced solution that miti-
gates the overly conservative nature of min-max strategies and
purely expectation-based methods [9].

Even though the integration of various risk-aware optimiza-
tion criteria into the MPC framework has been considered in
the literature [11], [12], [13], these adaptations have taken into
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account either the cost function’s risk or the safety constraints’
risk, but not both simultaneously. This paper introduces a
multi-stage risk approach in the MPC framework, embed-
ding risk considerations in both the constraints and the cost
function. This holistic approach enables comprehensive risk
assessments, from worst-case to risk-neutral scenarios, ensur-
ing optimal performance and constraint satisfaction.

However, challenges persist, especially when the noise dis-
tribution is unknown, making standard risk-aware methods
ineffective. Distributionally robust MPC offers a solution, ac-
commodating a range of uncertainty distributions [14]. This
concept is intrinsically linked to risk measures, providing a
comprehensive approach to dealing with uncertainty in con-
trol design [15].

The main contributions of this paper are twofold. First, a
fully risk-aware MPC is developed in which risk considera-
tions are embedded in both constraints and cost function. This
is in sharp contrast to existing risk-aware MPC [14], [16], [17]
that accounts for the risk of either the cost or the constraints.
By applying the concept of CVaR, a popular coherent risk
measure, in both the performance function and constraints,
the closed-loop system can explore the full range of risk as-
sessments. These assessments range from worst-case to risk-
neutral scenarios, affecting both constraint satisfaction and
performance. Second, rigorous theoretical properties such as
risk-aware exponential stability [18], which is absent in [16],
and recursive feasibility are provided for the presented MPC
by considering the disturbance feedback policy parameteriza-
tion [19]. In contrast to the approach in [17], our proposed
method introduces critical enhancements that significantly
broaden the applicability and robustness of distributionally
robust MPC. Notably, we incorporate risk considerations di-
rectly into the cost function, which is crucial for addressing
rare but severe outcomes in the loss function’s distribution
tail. Additionally, our model adopts more flexible ellipsoidal
state constraints, unlike the affine, polyhedral state constraints
used in [17], allowing for the handling of more complex sce-
narios. Setting aside the consideration of soft input constraints
in [17], our framework can be seen as an extension of [17].

The presented risk-aware MPC offers three key advantages:
1) It is computationally tractable, as it can be reduced to a
semi-definite programming (SDP) optimization problem. 2)
The risk measure can be manually adjusted in terms of both
performance and constraint satisfaction to adapt to various
control applications, allowing for customized control strate-
gies. 3) Beyond the need for second-moment information, this
method does not require specific noise information. 4) By
satisfying certain conditions, risk-aware exponential stability
and recursive feasibility are guaranteed, which are crucial for
ensuring reliable performance in real-world applications.

A. ORGANIZATION AND NOTATIONS

The following notations will be used throughout this paper.
lx]|> denotes the Euclidean (spectral) /,-norm of vector (ma-
trix) x. Consider the matrices (or vectors) X, Y, and the cone
K. The notation X <x Y (X >, Y) implies that ¥ — X €
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K (X —Y € K). In cases where K is positive semi-definite
matrices, we utilize the designated symbol < (>). The dual
cone K* is defined as K* := {A e R"| A*. A > 0, VA* € K}

. _ Vec(X)
(X,Y) is defined as (X,Y) = [Vec(y)

the vectorization of matrix A. (.)™ means (.)* = max(0, .).
Amin(A) denotes the minimum eigenvalue of A. We use the
notation N to represent the set of natural numbers and R (R;.)
to represent the set of real (nonnegative) numbers. S; refers
to the set of d x d symmetric matrices, while S:ir+ (or S:lr)
represents the set of positive definite (or positive semidefi-
nite) matrices. w,.;, denotes the sequence of {w;};en,,, Where
Ngp ={a,...,b}. Ny denotes as Nyg:=1{0,1,...}. Tr(A)
represents the trace of matrix A. [y denotes N x N identity
matrix. R : R U {400} U {—oo} denotes the set of extended
real numbers. Let diag(A, B) be a block diagonal matrix where
A and B are matrices with compatible dimensions.

Define the probability space (R”, B(R"), P;), where the
sample space is defined as R" with its associated Borel o-
algebra B for the random vector x € R". P} € Py denotes
the true probability measure, where Py denotes the space
of all probability measures defined on the measurable space
R, B(R")).

], where Vec(A) means

Il. PRELIMINARIES

The requirement to constrain the random vector x within the
set X, with high probability can be expressed using the con-
cept of chance constraint [20], as follows:

PixeXy) >1—¢ (1)

where 0 < €, < 1 is a confidence level to control the accept-
able level of constraint violation.

Chance constraints are an efficient tool for softening con-
straints on uncertain variables. However, verifying the fea-
sibility of these constraints usually leads to a non-convex
problem, which can make computations intractable. To ad-
dress this issue, CVaR as an effective tool is introduced as
follows.

Definition 1 (Conditional Value-at-Risk [21]): For a given
measurable loss function Z : Z — R as a function of random
vector x € R" distributed with the probability measure P,
and tolerance ¢, € (0, 1], the CVaR of loss function Z at level
€, with respect to the probability distribution P is defined as

" 1
CVaRL: (Z(x)) = ﬁi,réfR{ﬂ’ + G—]EP;* [(Z(x) - ﬂ/)+] } (2)

Fig. 1 depicts the comparison among the mean, VaR,, and
CVaR., for a given confidence level €, € (0, 1], where VaR,,
denotes the ey-quantile value of the loss function Z and is
defined as VaR. (Z) :=inf{z| P}(Z <z) > 1 — &} [21].

CVaR is a coherent risk measure defined as follows [22].

Definition 2 (Coherent Risk Measures [22]): The risk mea-
sure p : Z — R is coherent if it satisfies the following axioms:

1) Convexity: p(aZi+(1 —a)Zy) <ap(Z))+ (1 —a)p

(£2),VZ1,Zp € Z,and a € [0, 1].
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Probability
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Mean CVaRem

Z(x)

FIGURE 1. Comparison of the mean, VaR., and CVaR,, for a given
confidence level ¢, € (0, 1]. The yellow shaded area denotes the %e, of the
area under P(Z). Setting ¢, = 0 represents the worst-case scenario, while
&x = 1 corresponds to the expectation value.

2) Monotonicity: If Zy,Z, € Z and Z) > Z,, then p(Z;) >

p(Z2).

3) Translation equivariance: If a € R and Z € Z, then

p(Z+a)=pZ)+a.

4) Positive homogeneity: Ift > 0and Z € Z, then p(tZ) =

tp(Z2).

The following lemma states that every coherent risk mea-
sure can be represented as an optimization problem in the dual
form.

Lemma 1 ([23]): The risk measure p : Z — R is coherent
if and only if p(Z) can be represented in the following form:

p(Z) := supEp[Z] 3)
PeA
where A C R is called an ambiguity set, which is a convex,
non-empty, and closed set.
Define X, as X, = {x € R"|Z(x) < 0}. According to [24],
CVaR provides a convex (upper) approximation of the chance
constraint (1).

CVaRl (Z(x) <0 = PixeX)>1—¢ @

As can be seen from (4), the true probability measure P} is
required. However, obtaining P} may not be feasible in real-
world scenarios. Typically, only a limited understanding of P}
is accessible. This constrained knowledge is encapsulated by
an ambiguity set .A,, which includes a range of probability
measures within which the chance constraint (4) holds true.
Consequently, to ensure the resilience of the chance constraint
against all probability measures within the ambiguity set A,,
the following distributionally robust chance constraint is in-
troduced.

inf PxeX,)>1—¢ < PkxeX,)
PeAy
>1—¢,VPe A, )

In [25], an upper convex approximation is given for the
non-convex distributionally robust chance constraint (5) using
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CVaR as follows

sup CVaR? (Z(x)) <0 = inf PxeX,)>1—¢, (6)
PeA, ! PeA

Assume only the first- and second-order moments of the
random vector x are available. As a result, the following am-
biguity set is defined as

A= {PlEp [ (1,6T)] = M| )
where M, = [Ml zf; ;ﬁ]' iy and X, > 0 are the mean and

covariance of the random variable x, respectively.

In the following theorem, a tractable semidefinite program
(SDP) solution is given to the distributionally robust CVaR (6)
using the defined ambiguity set (7).

Theorem 1 ([26]): Assume the ambiguity set is defined as
(7), and Z(x) = xT Ex + 2F Tx + G’, where E > 0. Then, the
distributionally robust CVaR (6) is equivalent to the following
SDP

sup CVaR? (Z(x)) =
PeA, * B'e

U ’ T
v [G —p F ] o
F E

The following Lemmas are extensively used throughout the
remainder of the paper.

Lemma 2 (S-Lemma [27]): Let Py and P; be symmetric
matrices of equal size. Then, the following statements are
equivalent: i) For any vector x, if xTPix < 0, then xTPox <0.
ii) There exists A, > 0 such that Py < 1 ,P;.

Lemma 3 ([18]): Forany M € S,, y € R", and z € R", the
following relation is true for every € € (0, 00)

1
inf g+ —Tr(M,X) (8a)
R, X>0 €x

(8b)

1
O+ MGy+z)<A+e)y My + (1 + g> Mz (9)

Lemma 4 (Schur Complement Lemma [28]): Let S be a
symmetric matrix defined as

o_|A B
BT |’

where A is a symmetric and square matrix, and C is a symmet-
ric positive definite matrix. Then, the following statements are
equivalent:

® S is positive semi-definite.

e The matrix A — BC~'BT is positive semi-definite.

(10)

lIl. PROBLEM FORMULATION
A. SYSTEM DESCRIPTION AND PROBLEM DEFINITION
Consider the following constrained discrete-time linear

stochastic control system as
Xt4+1 :Axt +But +D(l)t, (11)

where x;, € X C R™ and u, € U, C R™ are the state of the
system and control input, respectively. The input and state
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constraints U, and X are defined as
Uy:={ue Rnu| ICuull2 < tmax},
¢(x) <0},

where ¢(x) = x" Gx 4+ 2 g'x + y, umax is a positive design
parameter, and G > 0. Moreover, w; € R"» represents the
system noise with a true but unknown probability measure P*
satisfying the following assumption.

Assumption 1: The system noise w; is assumed to be a
wide sense stationary (W.S.S.) white noise process with the
covariance matrix X, = X, for allt € Ny.

Given the W.S.S. Assumption 1, only available information
about the system noise w; is its auto-correlation Ry, (t) =
Ep+{wio! ,}, where Ry (0) = 2y, and Ry (1) = Oy, xn,
otherwise. Therefore, the true probability measure P* be-
longs to the following ambiguity set using W.S.S. given in
Assumption 1

X :={x e R™

A= P ePo[Ep @] D @] 1)

wbij Opyx1| . .
= |:0T 1 s 1, ] S N()

N X 1

(12)

We adopt a risk-aware approach to optimizing a cost
function while satisfying the system’s constraints. Therefore,
rather than the satisfaction of state constraints in expecta-
tion, a distributionally robust chance constraint is formalized
to penalize the anticipated violation at the e-quantile. This
modification allows for a more nuanced handling of the state
constraint and performance in a stochastic setting.

The following risk-aware MPC is now formalized for the
linear system described by (11) as

N—1
V*(x;) = min supCVaRz |:Z 7 (Xkr Uppr) + rN(xN|,):|

ur €Uy peg k=0

(13a)

.t Xgy1r = Axgr + Bugys + Doy, k € Noy—1 (13b)
inf Plxy, € X[ >1—¢, ke Niy_ 13¢
PeA[klt ]_ 2 LN—1 (13¢)
XNt € @oo (]3d)

T T g
where xo; =X, u = I:MOII, R uN—llt:I o (X s Upp) =

kathxk“ + u,{ltRuk‘t, ry(P) = x,{,llPxN‘t, where O > 0, R >
0, and P > 0. The terminal set O (P, y,;” ) is given by
Ooo (P, y;”) = {x e R™| xTPx < y;;’} .4
where v}’ =y, — by and b, = é(l + Hrr[DTDX] with
¥p>0,€>0,and 0 < e, < 1. Hence, the MPC controller
can be obtained as uMFC (x,;) = ual. As will be detailed in Sec-
tion V, the terminal set (14) is proposed to bring the recursive
feasibility and stability to the closed-loop system.
Remark 1: Incorporating the CVaR into the MPC cost func-
tion (13a) enables us to capture extreme outcomes in the
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right tail of the cost distribution, as illustrated in Fig. 1. This
approach contrasts with the methods given in [14], [17], which
focus solely on the mean (expected value) of the cost func-
tion. Our presented risk-aware method offers a comprehensive
spectrum of risk assessments. It ranges from a risk-neutral
scenario—achieved by setting €; = 1, thereby converting the
CVaR to an expectation—to a worst-case scenario.

It is worth mentioning that although the system dynamics
considered here are linear, the closed-loop system under the
presented MPC controller is nonlinear. Even so, a sub-optimal
linear feedback controller with a closed-loop analysis is ob-
tained for the CVR cost function in [29]; their controller
suffers from two limitations. First, as mentioned in [29], the
solution is sub-optimal, i.e., the performance under the pro-
posed linear controller is not optimal. Second, using the linear
controller for a constrained system results in a small feasible
region, i.e., a region where, for every initial state, the system
satisfies the state and input constraints at all time steps. Ac-
cording to [30], nonlinear controllers can indeed offer a larger
feasible set for systems with nonlinear constraints compared
to linear controllers.

IV. SOLUTION ALGORITHMS

A. CONTROLLER PARAMETRIZATION

Inspired by the affine disturbance feedback policy [14], a
control policy in the following form will be leveraged in

the subsequent sections to find a solution to the optimization
problem (13).

U = U[(D;V (15)
where @), = [1, “’0T|w e a){,_llt]T and U, € U, where U is
defined as

* 0 0 00
U:= U e RNm,Xan+l U = 0 00
* ok * 0

(16)

By using (15), the system trajectory can be rewritten in terms
of the past disturbances as

XNt = (BU; +D)@§v (17)
where xy|; = [xglt, . ,xIClt]T,

_BO_ o _

B B 0

B, AB B 0

B = = y
: : B 0

| By | [AY'B ANT?B AB B |
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and
Do Xojr
D Axoys D
D=|Dy|=|AX; AD D

AVxop  ANTID AD D
In this section, we aim at solving the following problem.
Problem 1: Finding an equivalent SDP optimization for the
proposed MPC algorithm (13) by considering the disturbance
feedback policy (15).
The following subsections are given to find equivalent
SDPs for the CVaR cost function (13a) and chance constraints
(13c)-(13d).

B. DISTRIBUTIONALLY ROBUST CVAR COST FUNCTION
By using (17), the cost function (13a) can be rewritten as

N—1
min sup CVaRZ |: Z 7 (Xgs > Uppr) + rN(let):|
u; €Uy PeA k=0

= min supCVaR! [(@})" Fu@)]

(18)
UreFu peg

where F,, = U (R + BTQB)U; + 2DT QBU, + DTQD, Q =
diag(Q, ..., Q,P), R=diag(R,...,R), and F, is obtained
as follows based on the input constraint U,,, controller param-
eterization (15), and using Schur complement Lemma 4 as

T T
UeU||:S” v C”}zo}

F, =
! cU 1

(19)

where S, = diag(urznax, Onny, <Ny )-

Remark 2: The proposed risk-aware objective function
(18) does not depend explicitly on noise realizations. This
independence arises because, according to Theorem 1 and
Assumption 1, the expression sup CVaRf1 [((I)ﬁv)TFw&)N] de-
pends solely on the initial con(ﬁfién xo, U;, and the constant

parameters X, €1, O, R, N, A, B, and D. Additionally, by
considering causal policies (16), the feedback policy u, pre-
sented in (15) is F;”-measurable, according to [14] and [31,
Sec. 14.4.2].

Lemma 5: Suppose Assumption 1 is true and the control
input u, is parameterized as (15). Then, the distributionally
robust CVaR MPC cost function (18) is equivalent to the
following SDP optimization problem:

1
min B+ —Tr(QM)

Us€Fu, BeR, MeSY, | €1

(20a)

(R +BT0B)!/?U,

|:M’ —2DTQBU, —-D"QD U! R —|—BTQB)1/2} o
I[Nnu B

(20b)
where M’ = M + diag(8,0) and Q = diag(1, Iy ® X,).
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Proof: By holding Assumption 1 in which the noise pro-
cess wy is assumed to be W.S.S., one has Ep« ((I)f\,(&)ﬁ\,)T) = Q.
As a result, by applying Theorem 1, one obtains the cost
function (20a). By following [26, Theorem 2.1 and Lemma
A.1], with a slight modification, one can rewrite (8b) as

@) (M —F,) &y >0 =M —F, >0 (1)
By applying Schur complement (Lemma 4) into (21) and
using the definition of F,,, (20b) is obtained. |

C. DISTRIBUTIONALLY ROBUST CHANCE CONSTRAINT

Lemma 6: Suppose Assumption 1 is true and the control input
u; is parameterized as (15). Then, the distributionally robust
chance constraint (13c) is true if there exist 8, € R, M > 0,

and Z; > 0 such that the following linear matrix inequalities
(LMIs) hold:

1
Br + —Tr(2'M;) <0 (22a)
)
T
M- Z BU; +Di)” g =0 (22b)
g (BU; + Dy) Y — Bk
T ~1
G Bl +D7 62 (22¢)
G2 (ByU; + Dy) I,

where Q' = diag(1,Iy ® =, )andk =1,...,N — 1.
Proof: According to (6), one has the following statement
for the distributionally robust chance constraint (13c) as

sup CVaR? (¢(x)) < 0= inf Py, € X) = 1 — €3,
PeA PeA

with k=1,...,N—1. As a result, if supPeACVaRZ(qb
(xxr)) <0 is true, then the distributionally robust chance
constraint (13c) is satisfied as well. By following controller
parametrization (15) and considering (17), one has

¢ Cxxy) =
o] [(BuU, + DOTGBU, + D) (Bl + D) g
1 g (ByU, + Dy) 14

(23)

]
1

By considering Q' =Ep« [[“’IIN] [@i)" 1]] = diag(1,
Iy ® 24, 1), using Assumption 1 in which the noise process
wy 1s assumed to be W.S.S., following [26, Lemma A.l and
Theorem 2.1], using (2), and applying Schur complement
Lemma 4, one can obtain (22). |

Regarding the terminal constraint (13d), the following
lemma is given to find an equivalent LMI solution.

Lemma 7: If Assumption 1 is true, and the control input u;
is parametrized as (15), then the terminal constraint (13d) is
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equivalent to solving the following LMI:

[ diag(y?,0)  (ByU + Dy)' P?

| >0 (24)
P2 (ByU; + D) L, i|

Proof: The terminal constraint (13d) is translated into the
following inequality

(@4)" ((BU, + D) P(ByU; + Dy) — diag (1, 0) )

x @ <0 (25)

By applying Schur complement (Lemma 4), one has (24). W

V. CLOSED-LOOP ANALYSIS

In this section, conditions for recursive feasibility and risk-
informed exponential stability are provided, followed by their
definitions.

Definition 3 (Recursive Feasibility): Define Xy to be the
set of initial states for which the robust CVaR MPC (13) is
feasible. Assume x; € Xy, and the control input is defined
as uMPC (x,) = "‘3\;' The MPC optimization (13) is recursively
feasible if x;+; € Xy almost surely.

Definition 4 (Risk-aware exponential stability [18]): For
a given risk functional p : Z — R, a subset S € R™, and a
state energy function v (x), which is Borel-measurable, non-
negative, and ¥ (x) = 0 if and only if x = 0,,_, the system (11)
is risk-aware exponentially stable with an offset with respect
to p in the region S if there exist parameters A; € [0, 1),
a € [0,00), and b € R such that for every time ¢ € N, and
Y (x;) € Z, one has

p(W(x)) < aryy(xo) +b, Vxo € S. (26)

Problem 2: Consider the risk-aware MPC (13), design the
terminal cost matrix P* > 0 and terminal set O, such that:
1) The MPC problem (13) is recursive feasible according
to Definition 3.
2) By applying uMP€(x;), and considering p :=
sup CVaRZ)1 (.) as a risk assessment in (26), the

PeA
closed-loop system (11) is risk-aware exponential

stable according to Definition 4.
The following subsections are given to solve Problem 2.

A. RECURSIVE FEASIBILITY
To guarantee the recursive feasibility of the proposed MPC
controller (13), the terminal set Oy, is required to be a dis-
tributionally robust CVaR positively invariant set (as will be
shown later in Theorem 3), which is defined as follows.
Definition 5 (Distributionally robust CVaR positively in-
variant set): The ellipsoidal set Oy is a distributional ro-
bust CVaR positively invariant set with certainty level 0 <
€00 < 1 if for any state x;, € Oy (P, ylg” ), then 7i)relf4p(xl+1 €

O (P, vp)lx) > 1 — €co.

Theorem 2: Given the closed-loop system (11) consisting
the state-feedback controller u; = Fx;. The ellipsoidal set
O, defined as (14), is a distributional robust CVaR positively
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invariant set with certainty level 0 < €5, < 1 if

(1+e)ATPA. — P+ (Q+FTRF)<0 (27)

where ¢ > 0and A, = A + BF.

Proof: See Appendix A. |

To find P and F satisfying (27) in Theorem 2, the following
lemma is given.

Lemma 8 ([32], [33]): The inequality (27) is equivalent to
solving the following LMI

X>{)nzi20 L tr(2) (282)
X XAT +LTBT xQ'2 LT
1
AX + BL =X 0 >0 (@8b)
0'2x 0 I 0 |~
| L 0 0 R!
[z 1
; x} >0 (28¢)

Given the X* and L* as the LMI optimal solutions, P* and F'*
can be obtained as P* = (X*)~! and F* = L*P*.

The following Lemma is given to find the largest y, such
that the input and state constraints U, and X are satisfied.

Lemma 9: Given the optimal terminal cost P* and con-
troller gain F*, if the optimization problem (29) yields a
feasible solution, then for all x € Oy (P*, ypw), both the state
constraint X and the input constraint U,, are satisfied.

Angg;() Yp (29a)
* *T CMTCM *
max
AP* — G -
., & 1= (29¢)
-8 —AYp =V

Proof: See Appendix B. ]

The optimization problem (29) is bilinear in terms of de-
cision variables A and y, in (29c), which can be solved
efficiently by using iterative methods [34] or by applying
McCormick envelopes, as proposed in [35], to transform the
nonconvex bilinear constraint in (29¢) into a tractable convex
constraint.

To solve (29) efficiently, one can assume either G = 0 or
g = 0 to simplify (29c¢) as follows

e [If ¢ =0, then (29¢) is equivalent to P* + y,,(g) <0.

e If G = 0, then (29c¢) is equivalent to ||2P*1/2g||%yp <y?
[36].

As a result, by assuming either g = 0 or G = 0, (29) sim-
plifies to a linear programming problem.

Until now, we could find a CVaR terminal invariant set
O (P*, y[ﬁ”) satisfying both input and state constraints, where
P* and y;w =y, — by are obtained from LMI (28) and (29),
respectively.
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Theorem 3 (Recursive Feasibility): Let 1'[5v (x¢, A) repre-
sent the feasible set of (13) for the given ambiguity set A
and the initial condition x;. If the following Assumptions are
satisfied:

1) There exists a feasible optimal control policy u; =

T
I:MS\IT’ ey ”leuzT] e, ut e MV (x, A).

2) P, F and y, are the feasible solutions of (28) and (29).

then, the presented MPC (13) with the parameterized con-

trol policy (15) is recursive feasible according to Definition 3.
Proof: See Appendix D. |

B. RISK-AWARE EXPONENTIAL STABILITY
The following Lemma provides a sufficient condition for sys-
tem (11) to be risk-aware local exponential stable (RLES).
Lemma 10 (Sufficient condition for being RLES): Consider
the closed-loop system (11), and the given state energy func-
tion v (x). The closed-loop system (11) is RLES with an offset
b’ > 0 with respect to a coherent risk-function p if there exist
a function V(x) : R™ — R and scalars ¢3 > 0, ¢y, ¢, ¢4 > 0,
such that Vx;, € R, the following conditions are satisfied

cy(x) <Vx) < e (x) + c3
PV (xi+1)) = V(&) < —cayr () +

for every time t € N.

Proof: See Appendix C. |

Theorem 4: Let Xy be the set of initial states for which
MPC (13) is feasible. The control policy u; = ”3\; obtained
from the MPC problem (13) makes the closed-loop system
(11) locally exponentially stable with domain Xy if (27) is
satisfied.

Proof: See Appendix E. |

(30)
€2y

C. CVAR MPC ALGORITHM
By using the previous subsections, the proposed CVaR MPC
(13) is cast into the following SDP optimization

1
+ Tr QM
U, €U, ﬁe]R M=>0 '8 ( )
BreR, M;>0, Z;>0
k=1,...N—1

s.t. (19), (20b), (22), (24), xo = x; (32)

Algorithm 1 is provided to show the implementation of the
proposed risk-aware MPC (13).

VI. SIMULATION RESULTS

In this section, we first evaluate and compare the per-
formance of the proposed risk-aware MPC Algorithm 1,
with several state-of-the-art MPC methods. These methods
include the Chebyshev—Cantelli stochastic MPC (SMPC) ap-
proach [37], [38], Robust MPC (RMPC) [4], and the recent
Distributionally Robust MPC (DRMPC) [17]. Our evalua-
tion focuses on a practical application involving a DC-DC
converter and the lateral control of autonomous vehicles to
demonstrate the efficacy of the proposed method.
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Algorithm 1: Risk-Aware MPC with Distributionally Ro-
bust Chance Constraints.

1: Input: system matrices A, B and D, initial condition
X0, performance indices Q > 0 and R > 0, state
constraint matrices G > 0, g, and y, input constraint
parameters umax > 0 and C,,, CVaR cost and
constraint tolerances 0 < €; < land 0 < ¢ <1,
second noise moment X,,.

2: Output: uMPC(x,) = ug,

3. Obtain the CVaR Invariant Set O, (P*, y;):
Solve LMI (28) for P* and F'*, then solve (29) for

V;
4: fort =tgto Ty do
5: Set xo; = x; and solve the LMI (32) for U;. Set
MPC fl
6: Apply uy irht to system (11) and obtain x;1.
7: end for

A. EXAMPLE 1: VOLTAGE CONTROL FOR A

DC-DC CONVERTER

To evaluate the performance and feasibility of the proposed
method, we consider a real-world example, voltage control for
a DC-DC converter, which was originally introduced in [39]
to test the effectiveness of the nonlinear MPC method. This
example is adapted from [17], [40]. Accordingly, A, B, and D
in (11) are considered as

. 1 0.0075 B— 4.798 D— 1 0
~ | —0.143 0996 |°  |oa15| " |0 1|
The main goal is to regulate the DC-DC converter sys-
tem [17] using the proposed risk-aware MPC (13) in the

presence of unknown non-Gaussian disturbances. The state
and input constraints X and U, are considered as

U, = {u e Rl flull2 < 1},
X = {x e R*|x; —3 < 0}

The chance constraint parameter €, in (13c) is set as €3 =
0.2 similar to the settings given in [17]. The risk-aware param-
eter € is also set as € = 0.1. The performance parameters
Q and R are defined as Q = diag(1, 10) and R = 1. Similar
to [17], the non-Gaussian distribution considered here is ap-
proximated with the Gaussian mixture model [41], where the
PDF of w; is considered as [17]

(33)

with o2 =0.1, Ay =0.4, 07 =0.15, and A, =0.6. The
prediction horizon is set as N = 10, and the initial condi-
tion is considered as xo = [2.5 2.8]7. By setting € =1,

one can find P = [ 150 _]'54] satisfying (28).The terminal

—1.54  18.96
constraint is considered as O = {x € R?|xT Px < Yp — bw},
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TABLE 1 The average optimal value functions. 15
Risk-aware MPC RMPC SMPC DRMPC [17] 1r
=0.30
V(zo0) 281.2 282.4 275.4 276.3 2
05 | —¢,= 0.95
3 . === $(x)<=0
—&—RMPC ! S Or
—©— DRMPC [17] ! o
25F |=@=Risk-aware MPC !
= = = Hard constraint : -0.5
1
1
1 AT
1
xN 1
1 15+t
1
1 . .
1 0 0.2 0.4 0.6 0.8 1
1 xt(1)
1
1
1 FIGURE 3. State trajectories for different CVaR constraint levels e,.
1
1
3 3.5 4

FIGURE 2. The mean trajectories.

TABLE 2 The number of constraint violations.

Risk-aware MPC SMPC DRMPC [17]

t=1 0 0 0
t=2 2 4 2
t=3 0 4 1
t=4 0 4 2
t=5 0 4 2
t>6 0 0 0

where €5, = 0.99 and y, = 6.9 satisfying (29). The system is
simulated for 7y = 20 time-steps.

In Table 1, we present a comparison of the performance of
our proposed risk-aware MPC by evaluating 100 independent
experiments against that of DRMPC, SMPC, and RMPC. The
performance metrics for DRMPC, SMPC, and RMPC are
based on data adopted from [17]. Our method, which incor-
porates the CVaR operator into the cost function to account
for extreme outcomes in the distribution’s tail, manifests a
more conservative behavior as a trade-off for considering risk.
Notably, RMPC yields the worst performance, which can be
attributed to its conservative stance on worst-case disturbance
scenarios.

In Fig. 2, we present a comparison between RMPC,
DRMPC, and our risk-aware MPC method, focusing on the
mean trajectories. This illustration clearly demonstrates that
DRMPC, represented in red, exhibits the most unsafe behavior
in terms of constraint handling. In contrast, our risk-aware
MPC method demonstrates considerably safer constraint han-
dling. Table 2 lists the number of constraint violations for each
algorithm, including SMPC and DRMPC in different time
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steps. According to this table, the risk-aware MPC method
outperforms the others, notably outperforming SMPC, which
exhibits the highest number of constraint violations. It is im-
portant to note that the data for SMPC, RMPC, and DMPC
illustrated in both Fig. 2 and Table 2 are sourced from [17].

B. EXAMPLE 2: LATERAL CONTROL FOR AUTONOMOUS
CARS

In this section, the proposed MPC controller (13) is applied
to the discretized linear model of the steering system in au-
tonomous cars [29], [42], which is described as:

1020 - foos) o100
X, = X, u Wy,
=0 1 [T o20] 0o 0.10]"
(34)

where x; = B’g;

x;(2) being the heading angle. The unknown system noise is
considered as a Gaussian noise with zero mean and covariance

01 0 . e .
Y= [ o 0 05]. The initial condition is considered as xg =

[11.5]7. The performance matrices are defined as Q =1

and R = 2. By setting € = 0.1, one can find P = [ggg 2:(5)2]

satisfying (28). Regarding the state and input constraints,
we impose a constraint on the heading angle as ¢(x;) =
—x(2) —0.6 <0,Vr € {1,...,1r}, and the input constraint is
considered as |[u;||» < 15. The terminal constraint is consid-
ered as Oy = {x € R?|xT Px <y, — by}, where €5 = 0.99
and y, = 0.01 satisfying (29). The system is simulated for
Ty = 20 time-steps.

We investigate two experiments to assess the effect of the
CVaR parameters €; and €, on constraint satisfaction and
performance.

As illustrated in Fig. 3, evaluated by 20 independent
experiments with fixed €; = 0.1, two different constraint sat-
isfaction parameters €, are considered. The solid blue line

] with x;(1) being the lateral position and
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0.5

x(2)

-0.5 -

0 5 10 15 20
t

FIGURE 4. Heading angle x;(2) versus t for different CVaR constraint
levels ¢,.

69.08 69.1 69.12 69.14 69.16 69.18 69.2

(@e =1

0
7.9 78 781 782 783 784 785 786 78.7 788

(b) e =0.1

FIGURE 5. Histograms of loss function for different risk levels ¢,

represents the system trajectory when €, = 0.95, correspond-
ing to the imposition of an almost risk-neutral constraint. In
contrast, the solid black line illustrates the constraint satis-
faction under a risk-aware approach with e, = 0.3. As can
be seen from Fig. 3, by decreasing the probability level e,
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1.5

—_—c =1

—_— =0.1
—-—" $(x)<=0

x(2)

FIGURE 6. Heading angle x;(2) versus t for different CVaR confidence
level ¢;.

the number of trajectories violating the safe constraints is de-
creased. Shaded areas represent the 75% confidence bounds.
Additionally, Fig. 4 is plotted to show the dynamic evolution
of the second state for different CVaR constraint levels, cap-
turing the fact that reducing €, decreases safety violations.

To demonstrate the effect of €; on performance, two dif-
ferent situations are considered: the risk-neutral case, where
€1 =1, and a case with €] = 0.1 to capture the tail of the
loss function. Fig. 5 depicts the histogram of the loss function
evaluated by 100 independent experiments with a fixed safety
probability €, = 0.3. In comparing the two histograms, it is
evident that the risk-aware scenario (Fig. 5(b)) results in a
system that behaves more conservatively, as reflected by the
lower variance and higher mean cost. This increased average
cost represents the price of considering risks, showing that the
system is potentially foregoing lower costs in some instances
to avoid higher costs in others, which could be associated with
riskier outcomes.

Fig. 6 plots the evolution of the heading angle over time
for different CVaR confidence levels €;. As observed in the
risk-aware scenario depicted with the black color, the system
inherently accounts for fluctuations and uncertainties within
its operating environment, leading to a more resilient perfor-
mance at the cost of incurring a higher average cost.

VII. CONCLUSION

In this paper, a distributionally robust MPC has been pre-
sented, incorporating the concept of multi-stage CVaR into
both the cost function and constraints. By employing CVaR
in both the cost function and constraints, the ability to cali-
brate risk assessment from worst-case scenarios to risk-neutral
positions has been achieved, based on specific control appli-
cations. Under certain conditions, it has been demonstrated
that the proposed MPC exhibits risk-aware exponential sta-
bility [18], and recursive feasibility, assuming the disturbance
feedback policy parameterization. Finally, a numerical exam-
ple was provided to underscore the efficacy of the proposed
method.
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APPENDIX

A. PROOF OF THEOREM 2

According to Definition 5, we need to show that under

condition (27), if x; € O (P, ¥, ), then %na Pxi+1 €
€

Ooo (P, ¥p)IX:) = 1 — €x0. As can be seen in (6), it was shown

supCVaR? (xI\Pxiy1lx) <y, = inf P(xi11 € Ouo(P,
PeA PeA
Yp)lx) = 1 —€x. As a result, one needs to show that

supCVaR? (xI \Pxiyilx) <y, given x € QOxo(P, V).
PeA
Hence, one has

T Px + by < yp, Va € One (P, y;’) (35)

By applying (27), and using this fact x” (Q + FTRF)x > 0,
one can obtain

(1+en"ATPAx + by, < v (36)

By using Lemma 3, considering [14, Corollary 1.3], and
leveraging the monotonicity and translation equivariance
property of CVaR given in Definition 2, one has

supCVaR (x,_HthJr] lx) < (1 + e)xt A PA x; + by,
PeA
(37)
As aresult, by considering (36) and (37), we have
supCVaRl (x]\ 1 Pxip11x) < vp (38)

PeA

which completes the proof.

B. PROOF OF LEMMA 9

According to Theorem 2, under the condition (27), if u; =
Fx;,Vx, € O (P*, y,;”) C Oso(P*, yp), is applied to the sys-
tem (11), then x;41 € Qo (P*, yp). As a result, by designing
a proper set level y,, one can ensure that the trajecto-
ries starting from Oy (P*, yw) never leaves Qs (P, ¥)p)
while satisfying the input and state constraints. Satis-
fying control input constraint can be translated into if

_r[P* 0 1- _r[F*Tcrc,F* 0
xT[ ]x <0, then xT[ u "
0 —¥p 0 —u

‘max

])E < 0, where

X = [)lc] As a result, by applying S-Lemma, one has

F*Tcrc, F* — \P* 0 .
[ 0 —Mfm.x+wp] <0, where A, > 0. By setting
AYp = umax, one obtains the largest feasible set for Ay,. By

substituting Ay,, one has (29b). Equation (29¢) also can be
shown in an identical fashion by using S-Lemma 2. It indi-
cates that if x € Qo (P*, yl‘,”) C O (P*, yp), thenx € X, ie.,

xT[”* 0 ]xgo:xT[gGT j]xso.

0 v

C. PROOF OF LEMMA 10
By using the monotonicity property of the risk measures, and
considering (30) and (31), one has

plery (1)) < p(V(x41)) = V() + V(xr)

€)Y
—ca(x) + V() + b
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(30) ,
< (2 —c)¥(x)+ D +c3) (39)

We claim that ¢ — ¢4 > 0. To show this, we use a proof
by contradiction in which we assume ¢4 > ¢3, and as a result,
there exists a time step #; in which (c2 — ca)¥(x,,) + (0" +
c3) < 0 since ¥ (+) is a strictly positive monotonic function
and b’ + c3 > 0. Thus, p(c1¥(x,11)) takes a negative value,
which is a contradiction since p(ci;¥ (x;4+1)) has a positive
value due to the monotonicity and positive homogeneity prop-
erties given in Definition 2. As a result, ¢, should be greater
than or equal to c4, which implies 0 < (1 — z—:) < 1.

By using (39), one has

PV (x41)) < —cayr(x) +V(x)+ b

30
(5)< E4>V(x,)+( +—24> (40)

Then, by applying the risk measure p on both sides of the
above inequality, one has

p(V(x11)) < ( - —) p(V(x)) + ( ¥ %) (41)

By recursion, the following results can be obtained:

PV (xr41)) < ( - —) Vi(xo)
2

t—1 i
Cc3C4 ca

)2 0-0)

By using the geometric series formula, one has b+
S o(1— % 1) < (' + 92)2. As aresult, we have

(42)

p(Y(xis1)) < z—f ( - —) Y (x0)

2
+ (5 + (b/ + —C4C3> =2 ) (43)
C1 2 Ci1C4

By setting a = C—f, r=(-— 6—4), and b= (E—f + @+
5 )CIL4 ), the proof is completed.
D. PROOF OF THEOREM 3
In this proof, we will show that if (13) is feasible for given x;
and A defined as (12), then it will also be feasible for the next
time step x;1 by applying uj,p- = ual to the system (11) for
any fixed w, € W.

Consider the optimal control policy u;, to which we append
uj{,lt = Fxyy, where F satisﬁes Lemma 8. Then, define the

shifted control policy u* , as
T
*+ * T * T x T
e L T (44)
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Also, the shifted sequence of states x;, n¢ 18 defined as follows
by applying u; and considering the parameterized control
policy (15).

T

XS;NVJF = [XT‘,T(CUOU, OIN), - - x7§7+1|,T(w0\z, wl:Nlt)]

(45)
where wo; = w; is fixed, and w.y|; is considered as a vari-
able. We assume the existence of u; and x(’;Nl, by satisfying
condition (1.

We claim that the shifted control policy u*;" and the shifted
states x(’)*:N‘tJr are feasible solutions at the time step ¢ + 1.
To prove this claim, first, from Lemma 9, it was shown
that ”7\/|z = Fxy), € Uy, where xy; € O by holding 2. As
a result, the shifted control policy (44) satisfies the control
constraint, i.e., u*f € U,. Also, by holding (2, if xj(,lt € O,
then x;‘\‘,HIt € O by applying u}‘;,lt = Fxy) according to
Theorem 2. Consequently, the shifted states, as given by (45),
satisfy the terminal constraint (13d).

To show that the shifted sequence of states x;, N|t+ satisfies
the CVaR constraint (13c) given that x(’)“:Nlt is feasible at t,
the following steps are taken. First, by using (6), an upper-
approximate to (13c) is obtained. Then, by leveraging the
CVaR definition in (2), interchanging the sup and inf using the
stochastic saddle point theorem given in [43], and considering
(3), one has

supCVaR?, [qs(x;g,, )]
PeA

= inf ! 46
= inf {,3 + gpA (k1) } (46)

Be
where ¢y = [¢(x,f|t) - B1t. 0.A4(¢y|;) can be obtained using
Lemma 1 as

oA (ry) = supEplo]
PeA

= sup {/ ¢k|z(w0:k—1|t)d7’(w0:k—1z)} (47)
PeA L JWkK

where (47) can be split up as

sup {/ ¢k|t(w0:k1|t)dp(w0:kl|z)}
PeA LWk

= sup sup (43)

PeA wp_p WK1

H(@o:k—2)1)

where H (@o.x—21) = [y k1 (Wo:k—1))dP(wy—1) is a contin-
uous random variable W¢—! — R.
By considering wo; as a fix (deterministic) value, one has

pA (Br) > sup sup  H(wo, ®1:4-2)1)

PeA @) o eWk2

= sup {f ¢kz(w0,w1;k2|z)d7’(w1:k2z)} (49)
PeA LJWk-1

By reverting (47)-(48), the right-hand side of the above in-
equality can be rewritten as follows

oA (Pxr) = pa (de1yr) (50)
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where @1, = [p(x}_; ) — B1+. By applying (46), and us-
ing the CVaR property given in Definition 2, one has
0= supCVak? ()] = supCVar?, [ (i, )]
PeA PeA
(51
As aresult, for k = 1 : N — 1, the aforementioned inequality

remains valid, leading to the conclusion that the shifted states
x5, N_2|t+ satisfy the CVaR constraint (13c).

E. PROOF OF THEOREM 4

By defining R(.) := supCVaRZD1 (.), the optimal value func-
PeA
tion V*(x;) in (13) can be rewritten as:

N—1
V*(xt) =r ()Ct, Mélt) + R (Z r <.x;€k|t, uzl[) + x*]T\}lthXllt>
k=1
(52)
Define Zy :=x*,(—P + Q+ FTRF)x*y, and Zy4i :=
((A + BF)x}y;, + Dwny)" P((A + BF)xy,, + D).
By applying Lemma 3, and using the properties of coherent
risk measures defined in Definition 2, one has

R(ZNn+1)

<(+eR <x*,TV|,(A +BF) P(A + BF)x;“Vl,) + by,
(53)
where b, = (14 )Amax (D" PDYR(w) ,onpp)-
By using the definition of Zy, (52) can be rewritten as

V() = rx, ufy,)

N—1
+ R (Z (e 45 ) + IR I+ 1k I — ZN)
k=1

(54)

By considering (53), adding and subtracting R(Z,+1) from
(52), the following inequality can be obtained

N—-1

V() = r(x, ufy,) + R (Z r(e ui) + Iy 1%
k=1

+ ”x;;”l”%TRF + R(ZN+1) - ZN
~(1+ R (¥} (A + BFY PG + BF)xy, ) = bo) (55)

Let’s claim that Zy + (1 + ep)R(x*{,l,(A + BF)TP(A +
BF )x}{,lt) < 0, which will be proved later. Thus, (55) becomes

N—1

V) > r( ufy) + R (Z PO i) + 1 15
k=1

1y 12 g + R(EN41) — bw)

> r(x, uélt) +R (V(XT\;)) — by,
> r(x;, ”az) +R (V*(xt+1)) — b,
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> Amin(Q)x 17 + R (V¥ (541)) — bw (56)
Finally, we can get
R (V*(xi41)) = V() < —dmin(DlIxe 1> + b (57)

By setting ¢ = Amin(Q), ¥(x;) = [|x[|*, and b = b,,, (57) re-
sembles the sufficient condition (31).

To show that the first condition (30) is satisfied as well, the
following procedures are taken.

The lower bound of V*(x;) is easy to show according to:

V*(x) = x 0% > Amin(Q)]|2 || (58)

where Anin(Q) > 0 since Q > 0.

To analyze the upper bound of V*(x;), consider the control
input u(xy ) = Fxg, k=0, ..., N — 1is applied to the sys-
tem (11), where F satisfies (27). Since this control input is
feasible for all x;; € O according to Theorem 3, as a result,
by defining 0 = ||Q + FTRF||», one has

N-1
V) < Ox >+ R0 el + 1Pl w112
k=1

(59)

By substituting xx; =(A + BF)kxt"‘Z];:o(A + BF)k—i-1
Dwj), in the above equation, and applying Lemma 3, one can
get

V() < arllx|* + b1, Var € O (60)

where a;=(O(1 +2 Y0} o)+ IPlhan), by =20R(Y>p-,
Y A20 164 + BE I Y21Dwjy |12), o = [[(A+
BF)!|1>.

However, the inequality (60) is true for all x;, € O, C Xy.
Now, we want to obtain an upper bound for V*(x;) with a
similar structure defined in (60) for all x; € Xy.

The feasible set Xy is a closed set because the noise w;
belongs to the compact set W, and according to the set closure
preservation property for the inverse of continuous functions,
one can easily show that the feasible set Xy is closed. Also,
Xy is bounded since it is necessarily a subset of the bounded
set X. Thus, X is a compact set. Consequently, there exists a
positive constant Jy such that V*(x;) < Jy for all x; € Xy.
By considering that the Oy is a compact and non-empty
set, there exists d > 0 such that O, := {x € R™|||x|, <d} C
Oso. Let By := max{ay | x||> + b1| ||Ix|l2 < d}. As aresult, one
has ay|lx||®> + by > B for all x € Xy \ Oy, which results in
Inv < % llx 1% + % for all x; € X. Finally, one has

and

DI 2 4 20
Bx B
By setting ¢; = “}gﬁ” > 0,and c3 = ’% > 0, (61) resembles

the upper bound condition on V*(x;) given in (30).

By utilizing (27), one can demonstrate that Zy + (1 +
€p)R(* 1, (A + BF)TP(A + BF)x}y,) < 0. To this end, we
rewrite (27) as follows:

V*(x) <

, X € Xy (61)

0<(+ep) (x*]TVIt(A 1+ BF)'P(A + BF)x;(,I,) <_Zy
(62)
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By using [44, Eq. 3.7] and [45, Eq.4], we obtain the following
inequality:

(1+ ) Epy (x5, (A + BF) P(A + BF)x, ) < —Zy
(63)
Taking the supremum on the left side of the above inequality,
one has

(1) sup Epy (x*ITVV(A + BFY'P(A + BF)x,*Vl,)
€

< -2y (64)

By applying Lemma 1, we can substitute the coherent risk
measure o as follows:

(1 +ep)on (x*f,l,(A +BF) P(A + BF)x;*Vl,) < -2y
(65)
Using the fact that sup CVaRle (.) is indeed a coherent risk
PNeAN
measure, we can conclude that Zy + (1 + e,,)R(x*K,‘t(A +
BF)TP(A + BF )xy;;) < O, thereby completing the proof.
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