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ABSTRACT This paper presents a fully risk-aware model predictive control (MPC) framework for chance-

constrained discrete-time linear control systems with process noise. Conditional value-at-risk (CVaR) as a

popular coherent risk measure is incorporated in both the constraints and the cost function of the MPC

framework. This allows the system to navigate the entire spectrum of risk assessments, from worst-case

to risk-neutral scenarios, ensuring both constraint satisfaction and performance optimization in stochastic

environments. The recursive feasibility and risk-aware exponential stability of the resulting risk-aware

MPC are demonstrated through rigorous theoretical analysis by considering the disturbance feedback policy

parameterization. In the end, two numerical examples are given to elucidate the efficacy of the proposed

method.

INDEX TERMS Chance constraints, conditional value at risk, distributionally robust optimization, risk -

aware MPC.

I. INTRODUCTION

Model Predictive Control (MPC) is a highly effective control

strategy extensively applied in various industries, including

automotive, energy, chemical, robotics, and aerospace [1],

[2]. This approach excels in managing complex, multivariable

control challenges and adhering to system constraints. How-

ever, effective implementation of MPC requires accounting

for uncertainties and disturbances in system dynamics. Strate-

gies that are developed to tackle these issues include robust

MPC, which optimizes for the worst disturbances [3]; tube-

based MPC, which accounts for uncertainty through invariant

sets [4], [5]; and stochastic MPC, which treats uncertainty

as noise and minimizes the expected value of the cost func-

tion [6], [7].

Despite the advantages that these methods add to the MPC,

they still suffer from some shortcomings. Robust MPC can

be overly conservative, focusing on rare, extreme scenarios,

which may hinder overall performance [8]. Stochastic MPC

typically considers only the expected cost value, overlooking

the informative potential of the full cost distribution. This

can lead to fluctuations in performance, particularly in low-

probability, high-impact scenarios [9]. To address these issues,

risk-aware optimal control strategies have been developed,

aiming to minimize both the expected value and the variance

of the cost function for more predictable outcomes. This ap-

proach balances the conservatism of robust MPC with the risk

neutrality of stochastic MPC [10].

In stochastic optimal control, the use of risk measures such

as Conditional Value-at-Risk (CVaR) in the objective function

offers a flexible approach that bridges the gap between worst-

case and expectation-based (risk-neutral) formulations [11].

By incorporating CVaR, our framework not only aims to min-

imize the expected or mean cost but also reduces the variance,

thereby leading to more predictable and stable outcomes. This

risk-aware approach provides a balanced solution that miti-

gates the overly conservative nature of min-max strategies and

purely expectation-based methods [9].

Even though the integration of various risk-aware optimiza-

tion criteria into the MPC framework has been considered in

the literature [11], [12], [13], these adaptations have taken into
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account either the cost function’s risk or the safety constraints’

risk, but not both simultaneously. This paper introduces a

multi-stage risk approach in the MPC framework, embed-

ding risk considerations in both the constraints and the cost

function. This holistic approach enables comprehensive risk

assessments, from worst-case to risk-neutral scenarios, ensur-

ing optimal performance and constraint satisfaction.

However, challenges persist, especially when the noise dis-

tribution is unknown, making standard risk-aware methods

ineffective. Distributionally robust MPC offers a solution, ac-

commodating a range of uncertainty distributions [14]. This

concept is intrinsically linked to risk measures, providing a

comprehensive approach to dealing with uncertainty in con-

trol design [15].

The main contributions of this paper are twofold. First, a

fully risk-aware MPC is developed in which risk considera-

tions are embedded in both constraints and cost function. This

is in sharp contrast to existing risk-aware MPC [14], [16], [17]

that accounts for the risk of either the cost or the constraints.

By applying the concept of CVaR, a popular coherent risk

measure, in both the performance function and constraints,

the closed-loop system can explore the full range of risk as-

sessments. These assessments range from worst-case to risk-

neutral scenarios, affecting both constraint satisfaction and

performance. Second, rigorous theoretical properties such as

risk-aware exponential stability [18], which is absent in [16],

and recursive feasibility are provided for the presented MPC

by considering the disturbance feedback policy parameteriza-

tion [19]. In contrast to the approach in [17], our proposed

method introduces critical enhancements that significantly

broaden the applicability and robustness of distributionally

robust MPC. Notably, we incorporate risk considerations di-

rectly into the cost function, which is crucial for addressing

rare but severe outcomes in the loss function’s distribution

tail. Additionally, our model adopts more flexible ellipsoidal

state constraints, unlike the affine, polyhedral state constraints

used in [17], allowing for the handling of more complex sce-

narios. Setting aside the consideration of soft input constraints

in [17], our framework can be seen as an extension of [17].

The presented risk-aware MPC offers three key advantages:

1) It is computationally tractable, as it can be reduced to a

semi-definite programming (SDP) optimization problem. 2)

The risk measure can be manually adjusted in terms of both

performance and constraint satisfaction to adapt to various

control applications, allowing for customized control strate-

gies. 3) Beyond the need for second-moment information, this

method does not require specific noise information. 4) By

satisfying certain conditions, risk-aware exponential stability

and recursive feasibility are guaranteed, which are crucial for

ensuring reliable performance in real-world applications.

A. ORGANIZATION AND NOTATIONS

The following notations will be used throughout this paper.

‖x‖2 denotes the Euclidean (spectral) l2-norm of vector (ma-

trix) x. Consider the matrices (or vectors) X , Y , and the cone

K. The notation X fK Y (X gK Y ) implies that Y − X ∈

K (X − Y ∈ K). In cases where K is positive semi-definite

matrices, we utilize the designated symbol f (g). The dual

cone K∗ is defined as K∗ := {λ ∈ R
n| λ∗. λ g 0, ∀λ∗ ∈ K}.

(X,Y ) is defined as (X,Y ) =
[

Vec(X )

Vec(Y )

]

, where Vec(A) means

the vectorization of matrix A. (.)+ means (.)+ = max(0, .).

λmin(A) denotes the minimum eigenvalue of A. We use the

notation N to represent the set of natural numbers and R (R+)

to represent the set of real (nonnegative) numbers. Sd refers

to the set of d × d symmetric matrices, while S
++
d

(or S
+
d

)

represents the set of positive definite (or positive semidefi-

nite) matrices. wwwa:b denotes the sequence of {ωi}i∈Na:b
, where

Na:b = {a, . . . , b}. N0 denotes as N0 := {0, 1, . . . }. Tr(A)

represents the trace of matrix A. IN denotes N × N identity

matrix. R̄ : R ∪ {+∞} ∪ {−∞} denotes the set of extended

real numbers. Let diag(A, B) be a block diagonal matrix where

A and B are matrices with compatible dimensions.

Define the probability space (Rn,B(Rn),P∗
x ), where the

sample space is defined as R
n with its associated Borel σ -

algebra B for the random vector xxx ∈ R
n. P∗

x ∈ P0 denotes

the true probability measure, where P0 denotes the space

of all probability measures defined on the measurable space

(Rn,B(Rn)).

II. PRELIMINARIES

The requirement to constrain the random vector xxx within the

set Xx with high probability can be expressed using the con-

cept of chance constraint [20], as follows:

P
∗
x (xxx ∈ Xx ) g 1 − εx (1)

where 0 < εx f 1 is a confidence level to control the accept-

able level of constraint violation.

Chance constraints are an efficient tool for softening con-

straints on uncertain variables. However, verifying the fea-

sibility of these constraints usually leads to a non-convex

problem, which can make computations intractable. To ad-

dress this issue, CVaR as an effective tool is introduced as

follows.

Definition 1 (Conditional Value-at-Risk [21]): For a given

measurable loss function Z : Z → R as a function of random

vector xxx ∈ R
n distributed with the probability measure P∗

x ,

and tolerance εx ∈ (0, 1], the CVaR of loss function Z at level

εx with respect to the probability distribution P∗
x is defined as

CVaR
P∗

x
εx

(Z (xxx)) = inf
β ′∈R

{

β ′ +
1

εx

EP∗
x

[

(

Z (xxx) − β ′
)+
]

}

(2)

Fig. 1 depicts the comparison among the mean, VaRεx and

CVaRεx for a given confidence level εx ∈ (0, 1], where VaRεx

denotes the εx-quantile value of the loss function Z and is

defined as VaRεx (Z ) := inf{z| P∗
x (Z f z) g 1 − εx} [21].

CVaR is a coherent risk measure defined as follows [22].

Definition 2 (Coherent Risk Measures [22]): The risk mea-

sure ρ : Z → R̄ is coherent if it satisfies the following axioms:

1) Convexity: ρ(aZ1+(1 − a)Z2) f aρ(Z1) + (1 − a)ρ

(Z2), ∀Z1, Z2 ∈ Z, and a ∈ [0, 1].
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FIGURE 1. Comparison of the mean, VaRεx
and CVaRεx

for a given
confidence level εx ∈ (0, 1]. The yellow shaded area denotes the %εx of the
area under P (Z ). Setting εx = 0 represents the worst-case scenario, while
εx = 1 corresponds to the expectation value.

2) Monotonicity: If Z1, Z2 ∈ Z and Z1 g Z2, then ρ(Z1) g

ρ(Z2).

3) Translation equivariance: If a ∈ R and Z ∈ Z, then

ρ(Z + a) = ρ(Z ) + a.

4) Positive homogeneity: If t > 0 and Z ∈ Z, then ρ(tZ ) =

tρ(Z ).

The following lemma states that every coherent risk mea-

sure can be represented as an optimization problem in the dual

form.

Lemma 1 ([23]): The risk measure ρ : Z → R̄ is coherent

if and only if ρ(Z ) can be represented in the following form:

ρ(Z ) := sup
P∈A

EP [Z] (3)

where A ⊆ R is called an ambiguity set, which is a convex,

non-empty, and closed set.

Define Xx as Xx = {xxx ∈ R
n|Z (xxx) f 0}. According to [24],

CVaR provides a convex (upper) approximation of the chance

constraint (1).

CVaR
P∗

x
εx

(Z (xxx)) f 0 =⇒ P
∗
x (xxx ∈ Xx ) g 1 − εx (4)

As can be seen from (4), the true probability measure P∗
x is

required. However, obtaining P∗
x may not be feasible in real-

world scenarios. Typically, only a limited understanding of P∗
x

is accessible. This constrained knowledge is encapsulated by

an ambiguity set Ax, which includes a range of probability

measures within which the chance constraint (4) holds true.

Consequently, to ensure the resilience of the chance constraint

against all probability measures within the ambiguity set Ax,

the following distributionally robust chance constraint is in-

troduced.

inf
P∈Ax

P (xxx ∈ Xx ) g 1 − εx ⇐⇒ P (xxx ∈ Xx )

g 1 − εx,∀P ∈ Ax (5)

In [25], an upper convex approximation is given for the

non-convex distributionally robust chance constraint (5) using

CVaR as follows

sup
P∈Ax

CVaRP
εx

(Z (xxx)) f 0 =⇒ inf
P∈Ax

P (xxx ∈ Xx ) g 1 − εx (6)

Assume only the first- and second-order moments of the

random vector xxx are available. As a result, the following am-

biguity set is defined as

Ax =
{

P

∣

∣

∣
EP

[

(1,xxxT )T (1,xxxT )
]

= Mx

}

(7)

where Mx =
[

1 μT
x

μx �x + μxμ
T
x

]

. μx and �x > 0 are the mean and

covariance of the random variable xxx, respectively.

In the following theorem, a tractable semidefinite program

(SDP) solution is given to the distributionally robust CVaR (6)

using the defined ambiguity set (7).

Theorem 1 ([26]): Assume the ambiguity set is defined as

(7), and Z (xxx) = xxxT Exxx + 2F T xxx + G′, where E g 0. Then, the

distributionally robust CVaR (6) is equivalent to the following

SDP

sup
P∈Ax

CVaRP
εx

(Z (xxx)) = inf
β ′∈R, Xg0

β ′ +
1

εx

Tr(MxX ) (8a)

X −

[

G′ − β ′ F T

F E

]

g 0 (8b)

The following Lemmas are extensively used throughout the

remainder of the paper.

Lemma 2 (S-Lemma [27]): Let P0 and P1 be symmetric

matrices of equal size. Then, the following statements are

equivalent: i) For any vector x, if xT P1x f 0, then xT P0x f 0.

ii) There exists λp g 0 such that P0 f λpP1.

Lemma 3 ([18]): For any M ∈ Sn, y ∈ R
n, and z ∈ R

n, the

following relation is true for every ε ∈ (0,∞)

(y + z)T M (y + z) f (1 + ε) yT My +

(

1 +
1

ε

)

zT Mz (9)

Lemma 4 (Schur Complement Lemma [28]): Let S be a

symmetric matrix defined as

S =

[

A B

BT C

]

, (10)

where A is a symmetric and square matrix, and C is a symmet-

ric positive definite matrix. Then, the following statements are

equivalent:
� S is positive semi-definite.
� The matrix A − BC−1BT is positive semi-definite.

III. PROBLEM FORMULATION

A. SYSTEM DESCRIPTION AND PROBLEM DEFINITION

Consider the following constrained discrete-time linear

stochastic control system as

xt+1 = Axt + But + Dωt , (11)

where xt ∈ X ⊂ R
nx and ut ∈ Uu ⊆ R

nu are the state of the

system and control input, respectively. The input and state

284 VOLUME 3, 2024



constraints Uu and X are defined as

Uu := {u ∈ R
nu | ‖Cuu‖2 f umax},

X := {x ∈ R
nx
∣

∣φ(x) f 0},

where φ(x) = xT Gx + 2 gT x + ³ , umax is a positive design

parameter, and G g 0. Moreover, ωt ∈ R
nw represents the

system noise with a true but unknown probability measure P∗

satisfying the following assumption.

Assumption 1: The system noise ωt is assumed to be a

wide sense stationary (W.S.S.) white noise process with the

covariance matrix �ωt := �w for all t ∈ N0.

Given the W.S.S. Assumption 1, only available information

about the system noise ωt is its auto-correlation Rww(t ) =

EP∗{ωiω
T
i−t }, where Rww(0) = �w and Rww(t ) = 000nω×nω ,

otherwise. Therefore, the true probability measure P∗ be-

longs to the following ambiguity set using W.S.S. given in

Assumption 1

A =
{

P ∈ P0

∣

∣

∣
EP

{

(ωT
i , 1)T (ωT

j , 1)
}

=

[

�w´i j 000nω×1

000T
nω×1 1

]

, i, j ∈ N0

}

(12)

We adopt a risk-aware approach to optimizing a cost

function while satisfying the system’s constraints. Therefore,

rather than the satisfaction of state constraints in expecta-

tion, a distributionally robust chance constraint is formalized

to penalize the anticipated violation at the ε-quantile. This

modification allows for a more nuanced handling of the state

constraint and performance in a stochastic setting.

The following risk-aware MPC is now formalized for the

linear system described by (11) as

V ∗(xt ) = min
uuut ∈Uu

sup
P∈A

CVaRP
ε1

[

N−1
∑

k=0

r(xk|t , uk|t ) + rN (xN |t )

]

(13a)

s.t. xk+1|t = Axk|t + Buk|t + Dωk|t , k ∈ N0:N−1 (13b)

inf
P∈A

P
[

xk|t ∈ X
]

g 1 − ε2, k ∈ N1:N−1 (13c)

xN |t ∈ O∞ (13d)

where x0|t = xt , uuut =
[

uT
0|t , . . . , uT

N−1|t

]T

, r(xk|t , uk|t ) :=

xT
k|t Qxk|t + uT

k|t Ruk|t , rN (P) := xT
N |t PxN |t , where Q > 0, R >

0, and P > 0. The terminal set O∞(P, ³ w

p ) is given by

O∞

(

P, ³ w

p

)

=
{

x ∈ R
nx | xT Px f ³ w

p

}

, (14)

where ³ w

p = ³p − bw and bw = 1
ε∞

(1 + 1
ε

)Tr[DT D�] with

³p > 0, ε > 0, and 0 < ε∞ f 1. Hence, the MPC controller

can be obtained as uMPC (xt ) = u∗
0|t . As will be detailed in Sec-

tion V, the terminal set (14) is proposed to bring the recursive

feasibility and stability to the closed-loop system.

Remark 1: Incorporating the CVaR into the MPC cost func-

tion (13a) enables us to capture extreme outcomes in the

right tail of the cost distribution, as illustrated in Fig. 1. This

approach contrasts with the methods given in [14], [17], which

focus solely on the mean (expected value) of the cost func-

tion. Our presented risk-aware method offers a comprehensive

spectrum of risk assessments. It ranges from a risk-neutral

scenario—achieved by setting ε1 = 1, thereby converting the

CVaR to an expectation—to a worst-case scenario.

It is worth mentioning that although the system dynamics

considered here are linear, the closed-loop system under the

presented MPC controller is nonlinear. Even so, a sub-optimal

linear feedback controller with a closed-loop analysis is ob-

tained for the CVR cost function in [29]; their controller

suffers from two limitations. First, as mentioned in [29], the

solution is sub-optimal, i.e., the performance under the pro-

posed linear controller is not optimal. Second, using the linear

controller for a constrained system results in a small feasible

region, i.e., a region where, for every initial state, the system

satisfies the state and input constraints at all time steps. Ac-

cording to [30], nonlinear controllers can indeed offer a larger

feasible set for systems with nonlinear constraints compared

to linear controllers.

IV. SOLUTION ALGORITHMS

A. CONTROLLER PARAMETRIZATION

Inspired by the affine disturbance feedback policy [14], a

control policy in the following form will be leveraged in

the subsequent sections to find a solution to the optimization

problem (13).

uuut = Utω̄ωω
t
N (15)

where ω̄ωωt
N = [1, ωT

0|t , . . . , ω
T
N−1|t ]

T and Ut ∈ U, where U is

defined as

U :=

⎧

⎪

⎪

⎪

⎪

«

⎪

⎪

⎪

⎪

¬

U ∈ R
Nnu×Nnw+1

∣

∣

∣
U =

£

¤

¤

¤

¤

¥

∗ 0 0 0 0

∗ ∗ 0 0 0
...

...
. . .

...
...

∗ ∗ . . . ∗ 0

¦

§

§

§

§

¨

«

⎪

⎪

⎪

⎪

¬

⎪

⎪

⎪

⎪

­

(16)

By using (15), the system trajectory can be rewritten in terms

of the past disturbances as

xxxN |t = (BBBUt + DDD)ω̄ωωt
N (17)

where xxxN |t = [xT
0|t , . . . , xT

N |t ]
T ,

BBB =

£

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¥

B0

B1

B2

...

...

BN

¦

§

§

§

§

§

§

§

§

§

§

¨

=

£

¤

¤

¤

¤

¤

¤

¤

¤

¤

¤

¥

0

B 0

AB B 0
...

. . .
. . .

... B 0

AN−1B AN−2B . . . AB B

¦

§

§

§

§

§

§

§

§

§

§

¨

,
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and

DDD =

£

¤

¤

¤

¤

¤

¤

¥

D0

D1

D2

...

DN

¦

§

§

§

§

§

§

¨

=

£

¤

¤

¤

¤

¤

¤

¥

x0|t

Ax0|t D

A2x0|t AD D

...
. . .

. . .

AN x0|t AN−1D . . . AD D

¦

§

§

§

§

§

§

¨

.

In this section, we aim at solving the following problem.

Problem 1: Finding an equivalent SDP optimization for the

proposed MPC algorithm (13) by considering the disturbance

feedback policy (15).

The following subsections are given to find equivalent

SDPs for the CVaR cost function (13a) and chance constraints

(13c)-(13d).

B. DISTRIBUTIONALLY ROBUST CVAR COST FUNCTION

By using (17), the cost function (13a) can be rewritten as

min
uuut ∈Uu

sup
P∈A

CVaRP
ε1

[ N−1
∑

k=0

r(xk|t , uk|t ) + rN (xN |t )

]

= min
Ut ∈Fu

sup
P∈A

CVaRP
ε1

[

(ω̄ωωt
N )T Fwω̄ωωt

N

]

(18)

where Fw = U T
t (RRR + BBBT QQQBBB)Ut + 2DDDT QQQBBBUt + DDDT QQQDDD, QQQ =

diag(Q, . . . , Q, P), RRR = diag(R, . . . , R), and Fu is obtained

as follows based on the input constraint Uu, controller param-

eterization (15), and using Schur complement Lemma 4 as

Fu =

{

U ∈ U
∣

∣

[

SSSu U T CT
u

CuU I

]

g 0

}

(19)

where SSSu = diag(u2
max,000Nnw×Nnw

).

Remark 2: The proposed risk-aware objective function

(18) does not depend explicitly on noise realizations. This

independence arises because, according to Theorem 1 and

Assumption 1, the expression sup
P∈A

CVaRP
ε1

[(ω̄t
N )T Fwω̄

t
N ] de-

pends solely on the initial condition x0, Ut , and the constant

parameters �ω, ε1, Q, R, N , A, B, and D. Additionally, by

considering causal policies (16), the feedback policy ut pre-

sented in (15) is Fω
t -measurable, according to [14] and [31,

Sec. 14.4.2].

Lemma 5: Suppose Assumption 1 is true and the control

input ut is parameterized as (15). Then, the distributionally

robust CVaR MPC cost function (18) is equivalent to the

following SDP optimization problem:

min
Ut ∈Fu, β∈R, M∈S+

Nnω+1

β +
1

ε1
Tr(�M ) (20a)

[

M ′ − 2DDDT QQQBBBUt − DDDT QQQDDD U T
t (RRR + BBBT QQQBBB)1/2

(RRR + BBBT QQQBBB)1/2Ut INnu

]

g 0

(20b)

where M ′ = M + diag(β,000) and � = diag(1, IN ⊗ �ω ).

Proof: By holding Assumption 1 in which the noise pro-

cess ωt is assumed to be W.S.S., one has EP∗ (ω̄ωωt
N (ω̄ωωt

N )T ) = �.

As a result, by applying Theorem 1, one obtains the cost

function (20a). By following [26, Theorem 2.1 and Lemma

A.1], with a slight modification, one can rewrite (8b) as

(ω̄ωωt
N )T

(

M ′ − Fw

)

ω̄ωωt
N g 0 ⇐⇒ M ′ − Fw g 0 (21)

By applying Schur complement (Lemma 4) into (21) and

using the definition of Fw, (20b) is obtained. �

C. DISTRIBUTIONALLY ROBUST CHANCE CONSTRAINT

Lemma 6: Suppose Assumption 1 is true and the control input

ut is parameterized as (15). Then, the distributionally robust

chance constraint (13c) is true if there exist βk ∈ R, Mk g 0,

and Zk g 0 such that the following linear matrix inequalities

(LMIs) hold:

βk +
1

ε2
Tr(�′Mk ) f 0 (22a)

Mk −

[

Zk (BkUt + Dk )T g

gT (BkUt + Dk ) ³ − βk

]

g 0 (22b)

[

Zk (BkUt + Dk )T G
1
2

G
1
2 (BkUt + Dk ) Inx

]

g 0 (22c)

where �′ = diag(1, IN ⊗ �ω, 1) and k = 1, . . . , N − 1.

Proof: According to (6), one has the following statement

for the distributionally robust chance constraint (13c) as

sup
P∈A

CVaRP
ε2

(φ(xk|t )) f 0 =⇒ inf
P∈A

P (xk|t ∈ X) g 1 − ε2,

with k =1, . . ., N −1. As a result, if supP∈A CVaRP
ε2

(φ

(xk|t )) f 0 is true, then the distributionally robust chance

constraint (13c) is satisfied as well. By following controller

parametrization (15) and considering (17), one has

φ(xk|t ) =

[

ω̄ωωt
N

1

]T [

(BkUt + Dk )T G(BkUt + Dk ) (BkUt + Dk )T g

gT (BkUt + Dk ) ³

]

×

[

ω̄ωωt
N

1

]

(23)

By considering �′ =EP∗

[[

ω̄ωωt
N

1

]

[

(ω̄ωωt
N )T 1

]

]

= diag(1,

IN ⊗ �ω, 1), using Assumption 1 in which the noise process

ωt is assumed to be W.S.S., following [26, Lemma A.1 and

Theorem 2.1], using (2), and applying Schur complement

Lemma 4, one can obtain (22). �

Regarding the terminal constraint (13d), the following

lemma is given to find an equivalent LMI solution.

Lemma 7: If Assumption 1 is true, and the control input ut

is parametrized as (15), then the terminal constraint (13d) is
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equivalent to solving the following LMI:
[

diag(³ w

p , 0) (BNUt + DN )T P
1
2

P
1
2 (BNUt + DN ) Inx

]

g 0 (24)

Proof: The terminal constraint (13d) is translated into the

following inequality

(

ω̄ωωt
N

)T
(

(BNUt + DN )T P (BNUt + DN ) − diag
(

³ w

p , 0
))

× ω̄ωωt
N f 0 (25)

By applying Schur complement (Lemma 4), one has (24). �

V. CLOSED-LOOP ANALYSIS

In this section, conditions for recursive feasibility and risk-

informed exponential stability are provided, followed by their

definitions.

Definition 3 (Recursive Feasibility): Define XN to be the

set of initial states for which the robust CVaR MPC (13) is

feasible. Assume xt ∈ XN , and the control input is defined

as uMPC (xt ) = u∗
0|t . The MPC optimization (13) is recursively

feasible if xt+1 ∈ XN almost surely.

Definition 4 (Risk-aware exponential stability [18]): For

a given risk functional ρ : Z → R̄, a subset S ⊆ R
nx , and a

state energy function ψ (x), which is Borel-measurable, non-

negative, and ψ (x) = 0 if and only if x = 0nx , the system (11)

is risk-aware exponentially stable with an offset with respect

to ρ in the region S if there exist parameters λs ∈ [0, 1),

a ∈ [0,∞), and b ∈ R such that for every time t ∈ N, and

ψ (xt ) ∈ Z, one has

ρ(ψ (xt )) f aλt
sψ (x0) + b, ∀x0 ∈ S. (26)

Problem 2: Consider the risk-aware MPC (13), design the

terminal cost matrix P∗ > 0 and terminal set O∞ such that:

1) The MPC problem (13) is recursive feasible according

to Definition 3.

2) By applying uMPC (xt ), and considering ρ :=

sup
P∈A

CVaRP
ε1

(.) as a risk assessment in (26), the

closed-loop system (11) is risk-aware exponential

stable according to Definition 4.

The following subsections are given to solve Problem 2.

A. RECURSIVE FEASIBILITY

To guarantee the recursive feasibility of the proposed MPC

controller (13), the terminal set O∞ is required to be a dis-

tributionally robust CVaR positively invariant set (as will be

shown later in Theorem 3), which is defined as follows.

Definition 5 (Distributionally robust CVaR positively in-

variant set): The ellipsoidal set O∞ is a distributional ro-

bust CVaR positively invariant set with certainty level 0 <

ε∞ f 1 if for any state xt ∈ O∞(P, ³ w

p ), then inf
P∈A

P (xt+1 ∈

O∞(P, ³p)|xt ) g 1 − ε∞.

Theorem 2: Given the closed-loop system (11) consisting

the state-feedback controller ut = Fxt . The ellipsoidal set

O∞, defined as (14), is a distributional robust CVaR positively

invariant set with certainty level 0 < ε∞ f 1 if

(1 + ε)AT
c PAc − P + (Q + F T RF ) f 0 (27)

where ε > 0 and Ac = A + BF .

Proof: See Appendix A. �

To find P and F satisfying (27) in Theorem 2, the following

lemma is given.

Lemma 8 ([32], [33]): The inequality (27) is equivalent to

solving the following LMI

min
X>0,Zg0,L

tr(Z ) (28a)

£

¤

¤

¤

¥

X XAT + LT BT XQ1/2 LT

AX + BL 1
1+ε

X 0 0

Q1/2X 0 I 0

L 0 0 R−1

¦

§

§

§

¨

g 0 (28b)

[

Z I

I X

]

g 0 (28c)

Given the X ∗ and L∗ as the LMI optimal solutions, P∗ and F∗

can be obtained as P∗ = (X ∗)−1 and F∗ = L∗P∗.

The following Lemma is given to find the largest ³p such

that the input and state constraints Uu and X are satisfied.

Lemma 9: Given the optimal terminal cost P∗ and con-

troller gain F∗, if the optimization problem (29) yields a

feasible solution, then for all x ∈ O∞(P∗, ³ w

p ), both the state

constraint X and the input constraint Uu are satisfied.

max
λg0,³p>0

³p (29a)

P∗ − ³p

(

F∗T CT
u Cu

u2
max

F∗

)

g 0, (29b)

[

λP∗ − G −g

−gT −λ³p − ³

]

g 0. (29c)

Proof: See Appendix B. �

The optimization problem (29) is bilinear in terms of de-

cision variables λ and ³p in (29c), which can be solved

efficiently by using iterative methods [34] or by applying

McCormick envelopes, as proposed in [35], to transform the

nonconvex bilinear constraint in (29c) into a tractable convex

constraint.

To solve (29) efficiently, one can assume either G = 0 or

g = 0 to simplify (29c) as follows
� If g = 0, then (29c) is equivalent to P∗ + ³p( G

³
) f 0.

� If G = 0, then (29c) is equivalent to ‖2P∗1/2g‖2
2³p f ³ 2

[36].

As a result, by assuming either g = 0 or G = 0, (29) sim-

plifies to a linear programming problem.

Until now, we could find a CVaR terminal invariant set

O∞(P∗, ³ w

p ) satisfying both input and state constraints, where

P∗ and ³ ∗
p

w = ³ ∗
p − bw are obtained from LMI (28) and (29),

respectively.
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Theorem 3 (Recursive Feasibility): Let ���N
t (xt ,A) repre-

sent the feasible set of (13) for the given ambiguity set A

and the initial condition xt . If the following Assumptions are

satisfied:

1) There exists a feasible optimal control policy uuu∗
t =

[

u∗
0|t

T , . . . , u∗
N−1|t

T
]T

, i.e., uuu∗
t ∈ ���N

t (xt ,A).

2) P, F and ³p are the feasible solutions of (28) and (29).

then, the presented MPC (13) with the parameterized con-

trol policy (15) is recursive feasible according to Definition 3.

Proof: See Appendix D. �

B. RISK-AWARE EXPONENTIAL STABILITY

The following Lemma provides a sufficient condition for sys-

tem (11) to be risk-aware local exponential stable (RLES).

Lemma 10 (Sufficient condition for being RLES): Consider

the closed-loop system (11), and the given state energy func-

tion ψ (x). The closed-loop system (11) is RLES with an offset

b′ g 0 with respect to a coherent risk-function ρ if there exist

a function V (x) : Rnx → R and scalars c3 g 0, c1, c2, c4 > 0,

such that ∀xt ∈ R
nx , the following conditions are satisfied

c1ψ (xt ) f V (xt ) f c2ψ (xt ) + c3 (30)

ρ(V (xt+1)) − V (xt ) f −c4ψ (xt ) + b′ (31)

for every time t ∈ N.

Proof: See Appendix C. �

Theorem 4: Let XN be the set of initial states for which

MPC (13) is feasible. The control policy u∗
t = u∗

0|t obtained

from the MPC problem (13) makes the closed-loop system

(11) locally exponentially stable with domain XN if (27) is

satisfied.

Proof: See Appendix E. �

C. CVAR MPC ALGORITHM

By using the previous subsections, the proposed CVaR MPC

(13) is cast into the following SDP optimization

min
Ut ∈U, β∈R, Mg0
βk∈R, Mkg0, Zkg0

k=1,...,N−1

β +
1

ε1
Tr(�M )

s.t. (19), (20b), (22), (24), x0|t = xt (32)

Algorithm 1 is provided to show the implementation of the

proposed risk-aware MPC (13).

VI. SIMULATION RESULTS

In this section, we first evaluate and compare the per-

formance of the proposed risk-aware MPC Algorithm 1,

with several state-of-the-art MPC methods. These methods

include the Chebyshev–Cantelli stochastic MPC (SMPC) ap-

proach [37], [38], Robust MPC (RMPC) [4], and the recent

Distributionally Robust MPC (DRMPC) [17]. Our evalua-

tion focuses on a practical application involving a DC-DC

converter and the lateral control of autonomous vehicles to

demonstrate the efficacy of the proposed method.

Algorithm 1: Risk-Aware MPC with Distributionally Ro-

bust Chance Constraints.

1: Input: system matrices A, B and D, initial condition

x0, performance indices Q > 0 and R > 0, state

constraint matrices G g 0, g, and ³ , input constraint

parameters umax > 0 and Cu, CVaR cost and

constraint tolerances 0 < ε1 f 1 and 0 < ε2 f 1,

second noise moment �w.

2: Output: uMPC (xt ) = u∗
0|t

3: Obtain the CVaR Invariant Set O∞(P∗, ³ ∗
p ):

Solve LMI (28) for P∗ and F∗, then solve (29) for

³ ∗
p .

4: for t = t0 to Tf do

5: Set x0|t = xt and solve the LMI (32) for Ut . Set

uMPC
t = f t

11.

6: Apply uMPC
t to system (11) and obtain xt+1.

7: end for

A. EXAMPLE 1: VOLTAGE CONTROL FOR A

DC-DC CONVERTER

To evaluate the performance and feasibility of the proposed

method, we consider a real-world example, voltage control for

a DC-DC converter, which was originally introduced in [39]

to test the effectiveness of the nonlinear MPC method. This

example is adapted from [17], [40]. Accordingly, A, B, and D

in (11) are considered as

A =

[

1 0.0075

−0.143 0.996

]

, B =

[

4.798

0.115

]

, D =

[

1 0

0 1

]

.

The main goal is to regulate the DC-DC converter sys-

tem [17] using the proposed risk-aware MPC (13) in the

presence of unknown non-Gaussian disturbances. The state

and input constraints X and Uu are considered as

Uu := {u ∈ R| ‖u‖2 f 1},

X := {x ∈ R
2
∣

∣x1 − 3 f 0}.

The chance constraint parameter ε2 in (13c) is set as ε2 =

0.2 similar to the settings given in [17]. The risk-aware param-

eter ε1 is also set as ε1 = 0.1. The performance parameters

Q and R are defined as Q = diag(1, 10) and R = 1. Similar

to [17], the non-Gaussian distribution considered here is ap-

proximated with the Gaussian mixture model [41], where the

PDF of ωt is considered as [17]

f (ωi ) =

2
∑

l=1

λl

πσ 2
l

exp

{

−
ω2

t

σ 2
l

}

, i = 1, 2 (33)

with σ 2
1 = 0.1, λ1 = 0.4, σ 2

2 = 0.15, and λ2 = 0.6. The

prediction horizon is set as N = 10, and the initial condi-

tion is considered as x0 = [2.5 2.8]T . By setting ε = 1,

one can find P =
[

1.30 −1.54

−1.54 18.96

]

satisfying (28).The terminal

constraint is considered as O∞ = {x ∈ R
2|xT Px f ³p − bω},
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TABLE 1 The average optimal value functions.

FIGURE 2. The mean trajectories.

TABLE 2 The number of constraint violations.

where ε∞ = 0.99 and ³p = 6.9 satisfying (29). The system is

simulated for Tf = 20 time-steps.

In Table 1, we present a comparison of the performance of

our proposed risk-aware MPC by evaluating 100 independent

experiments against that of DRMPC, SMPC, and RMPC. The

performance metrics for DRMPC, SMPC, and RMPC are

based on data adopted from [17]. Our method, which incor-

porates the CVaR operator into the cost function to account

for extreme outcomes in the distribution’s tail, manifests a

more conservative behavior as a trade-off for considering risk.

Notably, RMPC yields the worst performance, which can be

attributed to its conservative stance on worst-case disturbance

scenarios.

In Fig. 2, we present a comparison between RMPC,

DRMPC, and our risk-aware MPC method, focusing on the

mean trajectories. This illustration clearly demonstrates that

DRMPC, represented in red, exhibits the most unsafe behavior

in terms of constraint handling. In contrast, our risk-aware

MPC method demonstrates considerably safer constraint han-

dling. Table 2 lists the number of constraint violations for each

algorithm, including SMPC and DRMPC in different time

FIGURE 3. State trajectories for different CVaR constraint levels ε2.

steps. According to this table, the risk-aware MPC method

outperforms the others, notably outperforming SMPC, which

exhibits the highest number of constraint violations. It is im-

portant to note that the data for SMPC, RMPC, and DMPC

illustrated in both Fig. 2 and Table 2 are sourced from [17].

B. EXAMPLE 2: LATERAL CONTROL FOR AUTONOMOUS

CARS

In this section, the proposed MPC controller (13) is applied

to the discretized linear model of the steering system in au-

tonomous cars [29], [42], which is described as:

xt+1 =

[

1 0.20

0 1

]

xt +

[

0.06

0.20

]

ut +

[

0.10 0

0 0.10

]

ωt ,

(34)

where xt =
[

xt (1)

xt (2)

]

with xt (1) being the lateral position and

xt (2) being the heading angle. The unknown system noise is

considered as a Gaussian noise with zero mean and covariance

� =
[

0.1 0

0 0.05

]

. The initial condition is considered as x0 =

[1 1.5]T . The performance matrices are defined as Q = I2

and R = 2. By setting ε = 0.1, one can find P =
[

6.44 3.59

3.59 9.05

]

satisfying (28). Regarding the state and input constraints,

we impose a constraint on the heading angle as φ(xt ) =

−xt (2) − 0.6 f 0,∀t ∈ {1, . . . , t f }, and the input constraint is

considered as ‖ut‖2 f 15. The terminal constraint is consid-

ered as O∞ = {x ∈ R
2|xT Px f ³p − bω}, where ε∞ = 0.99

and ³p = 0.01 satisfying (29). The system is simulated for

Tf = 20 time-steps.

We investigate two experiments to assess the effect of the

CVaR parameters ε1 and ε2 on constraint satisfaction and

performance.

As illustrated in Fig. 3, evaluated by 20 independent

experiments with fixed ε1 = 0.1, two different constraint sat-

isfaction parameters ε2 are considered. The solid blue line
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FIGURE 4. Heading angle xt (2) versus t for different CVaR constraint
levels ε2.

FIGURE 5. Histograms of loss function for different risk levels ε1

represents the system trajectory when ε2 = 0.95, correspond-

ing to the imposition of an almost risk-neutral constraint. In

contrast, the solid black line illustrates the constraint satis-

faction under a risk-aware approach with ε2 = 0.3. As can

be seen from Fig. 3, by decreasing the probability level ε2,

FIGURE 6. Heading angle xt (2) versus t for different CVaR confidence
level ε1.

the number of trajectories violating the safe constraints is de-

creased. Shaded areas represent the 75% confidence bounds.

Additionally, Fig. 4 is plotted to show the dynamic evolution

of the second state for different CVaR constraint levels, cap-

turing the fact that reducing ε2 decreases safety violations.

To demonstrate the effect of ε1 on performance, two dif-

ferent situations are considered: the risk-neutral case, where

ε1 = 1, and a case with ε1 = 0.1 to capture the tail of the

loss function. Fig. 5 depicts the histogram of the loss function

evaluated by 100 independent experiments with a fixed safety

probability ε2 = 0.3. In comparing the two histograms, it is

evident that the risk-aware scenario (Fig. 5(b)) results in a

system that behaves more conservatively, as reflected by the

lower variance and higher mean cost. This increased average

cost represents the price of considering risks, showing that the

system is potentially foregoing lower costs in some instances

to avoid higher costs in others, which could be associated with

riskier outcomes.

Fig. 6 plots the evolution of the heading angle over time

for different CVaR confidence levels ε1. As observed in the

risk-aware scenario depicted with the black color, the system

inherently accounts for fluctuations and uncertainties within

its operating environment, leading to a more resilient perfor-

mance at the cost of incurring a higher average cost.

VII. CONCLUSION

In this paper, a distributionally robust MPC has been pre-

sented, incorporating the concept of multi-stage CVaR into

both the cost function and constraints. By employing CVaR

in both the cost function and constraints, the ability to cali-

brate risk assessment from worst-case scenarios to risk-neutral

positions has been achieved, based on specific control appli-

cations. Under certain conditions, it has been demonstrated

that the proposed MPC exhibits risk-aware exponential sta-

bility [18], and recursive feasibility, assuming the disturbance

feedback policy parameterization. Finally, a numerical exam-

ple was provided to underscore the efficacy of the proposed

method.
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APPENDIX

A. PROOF OF THEOREM 2

According to Definition 5, we need to show that under

condition (27), if xt ∈ O∞(P, ³ w

p ), then inf
P∈A

P (xt+1 ∈

O∞(P, ³p)|xt ) g 1 − ε∞. As can be seen in (6), it was shown

sup
P∈A

CVaRP
ε∞

(xT
t+1Pxt+1|xt ) f ³p ⇒ inf

P∈A
P (xt+1 ∈ O∞(P,

³p)|xt ) g 1 − ε∞. As a result, one needs to show that

sup
P∈A

CVaRP
ε∞

(xT
t+1Pxt+1|xt ) f ³p given xt ∈ O∞(P, ³ w

p ).

Hence, one has

xT Px + bω f ³p, ∀x ∈ O∞

(

P, ³ w

p

)

(35)

By applying (27), and using this fact xT (Q + F T RF )x g 0,

one can obtain

(1 + ε)xT AT
c PAcx + bω f ³p (36)

By using Lemma 3, considering [14, Corollary I.3], and

leveraging the monotonicity and translation equivariance

property of CVaR given in Definition 2, one has

sup
P∈A

CVaRP
ε∞

(xT
t+1Pxt+1|xt ) f (1 + ε)xT

t AT
c PAcxt + bw

(37)

As a result, by considering (36) and (37), we have

sup
P∈A

CVaRP
ε∞

(xT
t+1Pxt+1|xt ) f ³p (38)

which completes the proof.

B. PROOF OF LEMMA 9

According to Theorem 2, under the condition (27), if ut =

Fxt , ∀xt ∈ O∞(P∗, ³ w

p ) ⊂ O∞(P∗, ³p), is applied to the sys-

tem (11), then xt+1 ∈ O∞(P∗, ³p). As a result, by designing

a proper set level ³p, one can ensure that the trajecto-

ries starting from O∞(P∗, ³ w

p ) never leaves O∞(P∗, ³p)

while satisfying the input and state constraints. Satis-

fying control input constraint can be translated into if

x̄T
[

P∗ 0

0 −³p

]

x̄ f 0, then x̄T
[

F ∗T CT
u CuF ∗ 0

0 −u2
max

]

x̄ f 0, where

x̄ =
[

x

1

]

. As a result, by applying S-Lemma, one has
[

F ∗T CT
u CuF ∗ − λP∗ 0

0 −u2
max + λ³p

]

f 0, where λp g 0. By setting

λ³p = u2
max, one obtains the largest feasible set for λ³p. By

substituting λ³p, one has (29b). Equation (29c) also can be

shown in an identical fashion by using S-Lemma 2. It indi-

cates that if x ∈ O∞(P∗, ³ w

p ) ⊂ O∞(P∗, ³p), then x ∈ X, i.e.,

x̄T
[

P∗ 0

0 −³p

]

x̄ f 0 ⇒ x̄T
[

G g

gT ³

]

x̄ f 0.

C. PROOF OF LEMMA 10

By using the monotonicity property of the risk measures, and

considering (30) and (31), one has

ρ(c1ψ (xt+1)) f ρ(V (xt+1)) − V (xt ) + V (xt )

(31)
f −c4ψ (xt ) + V (xt ) + b′

(30)
f (c2 − c4)ψ (xt ) + (b′ + c3) (39)

We claim that c2 − c4 g 0. To show this, we use a proof

by contradiction in which we assume c4 > c2, and as a result,

there exists a time step t1 in which (c2 − c4)ψ (xt1 ) + (b′ +

c3) < 0 since ψ (·) is a strictly positive monotonic function

and b′ + c3 g 0. Thus, ρ(c1ψ (xt+1)) takes a negative value,

which is a contradiction since ρ(c1ψ (xt+1)) has a positive

value due to the monotonicity and positive homogeneity prop-

erties given in Definition 2. As a result, c2 should be greater

than or equal to c4, which implies 0 f (1 −
c4
c2

) < 1.

By using (39), one has

ρ(V (xt+1)) f −c4ψ (xt ) + V (xt ) + b′

(30)
f

(

1 −
c4

c2

)

V (xt ) +

(

b′ +
c3c4

c2

)

(40)

Then, by applying the risk measure ρ on both sides of the

above inequality, one has

ρ(V (xt+1)) f

(

1 −
c4

c2

)

ρ (V (xt )) +

(

b′ +
c3c4

c2

)

(41)

By recursion, the following results can be obtained:

ρ(V (xt+1)) f

(

1 −
c4

c2

)t

V (x0)

+

(

b′ +
c3c4

c2

) t−1
∑

i=0

(

1 −
c4

c2

)i

(42)

By using the geometric series formula, one has (b′ +
c3c4
c2

)
∑t−1

i=0 (1 −
c4
c2

)i f (b′ +
c3c4
c2

) c2
c4

. As a result, we have

ρ(ψ (xt+1)) f
c2

c1

(

1 −
c4

c2

)t

ψ (x0)

+
c3

c1

(

1 −
c4

c2

)t

+ (b′ +
c4c3

c2
)

c2

c1c4

f
c2

c1

(

1 −
c4

c2

)t

ψ (x0)

+

(

c3

c1
+

(

b′ +
c4c3

c2

)

c2

c1c4

)

(43)

By setting a =
c2
c1

, λ = (1 −
c4
c2

), and b = ( c3
c1

+ (b′ +
c4c3
c2

) c2
c1c4

), the proof is completed.

D. PROOF OF THEOREM 3

In this proof, we will show that if (13) is feasible for given xt

and A defined as (12), then it will also be feasible for the next

time step xt+1 by applying u∗
MPC = u∗

0|t to the system (11) for

any fixed ωt ∈ W.

Consider the optimal control policy uuu∗
t , to which we append

u∗
N |t = FxN |t , where F satisfies Lemma 8. Then, define the

shifted control policy uuu∗+
t as

uuu∗+
t =

[

u∗
1|t

T , . . . , u∗
N−1|t

T , u∗
N |t

T
]T

(44)
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Also, the shifted sequence of states x∗
0:N |t is defined as follows

by applying uuu∗
t and considering the parameterized control

policy (15).

x∗
0:N |t

+
=
[

x∗
1|t

T (ω0|t ,ωωω1:N |t ), . . . , x∗
N+1|t

T (ω0|t ,ωωω1:N |t )
]T

(45)

where ω0|t = ωt is fixed, and ωωω1:N |t is considered as a vari-

able. We assume the existence of uuu∗
t and x∗

0:N |t by satisfying

condition (1.

We claim that the shifted control policy uuu∗+
t and the shifted

states x∗
0:N |t

+ are feasible solutions at the time step t + 1.

To prove this claim, first, from Lemma 9, it was shown

that u∗
N |t = FxN |t ∈ Uu, where xN |t ∈ O∞ by holding 2. As

a result, the shifted control policy (44) satisfies the control

constraint, i.e., uuu∗+
t ∈ Uu. Also, by holding (2, if x∗

N |t ∈ O∞,

then x∗
N+1|t ∈ O∞ by applying u∗

N |t = FxN |t according to

Theorem 2. Consequently, the shifted states, as given by (45),

satisfy the terminal constraint (13d).

To show that the shifted sequence of states x∗
0:N |t

+ satisfies

the CVaR constraint (13c) given that x∗
0:N |t is feasible at t ,

the following steps are taken. First, by using (6), an upper-

approximate to (13c) is obtained. Then, by leveraging the

CVaR definition in (2), interchanging the sup and inf using the

stochastic saddle point theorem given in [43], and considering

(3), one has

sup
P∈A

CVaRP
ε2

[

φ(x∗
k|t )
]

= inf
β∈R

{

β +
1

ε2
ρA
(

φk|t

)

}

(46)

where φk|t := [φ(x∗
k|t ) − β]+. ρA(φk|t ) can be obtained using

Lemma 1 as

ρA
(

φk|t

)

= sup
P∈A

EP [φk|t ]

= sup
P∈A

{∫

Wk

φk|t (www0:k−1|t )dP (www0:k−1|t )

}

(47)

where (47) can be split up as

sup
P∈A

{∫

Wk

φk|t (www0:k−1|t )dP (www0:k−1|t )

}

= sup
P∈A

sup
ωωω0:k−2|t ∈W

k−1

H (ωωω0:k−2|t ) (48)

where H (ωωω0:k−2|t ) =
∫

W
φk|t (www0:k−1|t )dP (ωk−1) is a contin-

uous random variable W
k−1 → R.

By considering ω0|t as a fix (deterministic) value, one has

ρA
(

φk|t

)

g sup
P∈A

sup
ωωω1:k−2|t ∈W

k−2

H (ω0,ωωω1:k−2|t )

= sup
P∈A

{∫

Wk−1
φk|t (ω0,ωωω1:k−2|t )dP (www1:k−2|t )

}

(49)

By reverting (47)-(48), the right-hand side of the above in-

equality can be rewritten as follows

ρA
(

φk|t

)

g ρA
(

φk−1|t

)

(50)

where φk−1|t = [φ(x∗
k−1|t ) − β]+. By applying (46), and us-

ing the CVaR property given in Definition 2, one has

0 g sup
P∈A

CVaRP
ε2

[

φ(x∗
k|t )
]

g sup
P∈A

CVaRP
ε2

[

φ

(

x∗
k−1|t

+
)]

(51)

As a result, for k = 1 : N − 1, the aforementioned inequality

remains valid, leading to the conclusion that the shifted states

x∗
0:N−2|t

+ satisfy the CVaR constraint (13c).

E. PROOF OF THEOREM 4

By defining R(.) := sup
P∈A

CVaRP
ε1

(.), the optimal value func-

tion V ∗(xt ) in (13) can be rewritten as:

V ∗(xt ) = r
(

xt , u∗
0|t

)

+ R

(

N−1
∑

k=1

r
(

x∗
k|t , u∗

k|t

)

+ x∗T
N |t Px∗

N |t

)

(52)

Define ZN := x∗T
N |t (−P + Q + F T RF )x∗

N |t and ZN+1 :=

((A + BF )x∗
N |t + DωN |t )T P((A + BF )x∗

N |t + DωN |t ).

By applying Lemma 3, and using the properties of coherent

risk measures defined in Definition 2, one has

R(ZN+1)

f (1 + ε)R
(

x∗T
N |t (A + BF )T P(A + BF )x∗

N |t

)

+ bω

(53)

where bω = (1 + 1
ε

)λmax(DT PD)R(ωT
N |tωN |t ).

By using the definition of ZN , (52) can be rewritten as

V ∗(xt ) = r(xt , u∗
0|t )

+ R

(

N−1
∑

k=1

r
(

x∗
k|t , u∗

k|t

)

+ ‖x∗
N |t‖

2
Q + ‖x∗

N |t‖
2
F T RF

− ZN

)

(54)

By considering (53), adding and subtracting R(Zn+1) from

(52), the following inequality can be obtained

V ∗(xt ) g r(xt , u∗
0|t ) + R

(

N−1
∑

k=1

r(x∗
k|t , u∗

k|t ) + ‖x∗
N |t‖

2
Q

+ ‖x∗
N |t‖

2
F T RF

+ R(ZN+1) − ZN

−(1 + ε)R
(

x∗T
N |t (A + BF )T P(A + BF )x∗

N |t

)

− bω

)

(55)

Let’s claim that ZN + (1 + εp)R(x∗T
N |t (A + BF )T P(A +

BF )x∗
N |t ) f 0, which will be proved later. Thus, (55) becomes

V ∗(xt ) g r(xt , u∗
0|t ) + R

(

N−1
∑

k=1

r(x∗
k|t , u∗

k|t ) + ‖x∗
N |t‖

2
Q

+ ‖x∗
N |t‖

2
F T RF

+ R(ZN+1) − bω

)

g r(xt , u∗
0|t ) + R

(

V̄ (x∗
1|t )
)

− bω

g r(xt , u∗
0|t ) + R

(

V ∗(xt+1)
)

− bω
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g λmin(Q)‖xt‖
2 + R

(

V ∗(xt+1)
)

− bω (56)

Finally, we can get

R
(

V ∗(xt+1)
)

− V ∗(xt ) f −λmin(Q)‖xt‖
2 + bω (57)

By setting c = λmin(Q), ψ (xt ) = ‖xt‖
2, and b = bω, (57) re-

sembles the sufficient condition (31).

To show that the first condition (30) is satisfied as well, the

following procedures are taken.

The lower bound of V ∗(xt ) is easy to show according to:

V ∗(xt ) g xT
t Qxt g λmin(Q)‖xt‖

2 (58)

where λmin(Q) > 0 since Q > 0.

To analyze the upper bound of V ∗(xt ), consider the control

input u(xk|t ) = Fxk|t , k = 0, . . . , N − 1 is applied to the sys-

tem (11), where F satisfies (27). Since this control input is

feasible for all xk|t ∈ O∞ according to Theorem 3, as a result,

by defining θ = ‖Q + F T RF‖2, one has

V ∗(xt ) f θ‖xt‖
2 + R

(

θ

N−1
∑

k=1

‖xk|t‖
2 + ‖P‖2‖xN |t‖

2

)

(59)

By substituting xk|t = (A + BF )kxt +
∑k−1

j=0(A + BF )k− j−1

Dω j|t in the above equation, and applying Lemma 3, one can

get

V ∗(xt ) f a1‖xt‖
2 + b1, ∀xt ∈ O∞ (60)

where a1 = (θ (1 + 2
∑N−1

k=1 αk )+‖P‖2αN ), b1 =2θR(
∑N−1

k=1
∑k−1

j=0 ‖(A + BF )k− j−1‖2‖Dω j|t‖
2), and αk = ‖(A +

BF )k‖2.

However, the inequality (60) is true for all xt ∈ O∞ ⊆ XN .

Now, we want to obtain an upper bound for V ∗(xt ) with a

similar structure defined in (60) for all xt ∈ XN .

The feasible set XN is a closed set because the noise ωt

belongs to the compact set W, and according to the set closure

preservation property for the inverse of continuous functions,

one can easily show that the feasible set XN is closed. Also,

XN is bounded since it is necessarily a subset of the bounded

set X. Thus, XN is a compact set. Consequently, there exists a

positive constant JN such that V ∗(xt ) f JN for all xt ∈ XN .

By considering that the O∞ is a compact and non-empty

set, there exists d > 0 such that Od := {x ∈ R
nx |‖x‖2 f d} ⊂

O∞. Let βx := max{a1‖x‖2 + b1| ‖x‖2 f d}. As a result, one

has a1‖x‖2 + b1 > βx for all x ∈ XN \ Od , which results in

JN f
a1JN

βx
‖xt‖

2 +
b1JN

βx
for all xt ∈ XN . Finally, one has

V ∗(xt ) f
a1JN

βx

‖xt‖
2 +

b1JN

βx

, xt ∈ XN (61)

By setting c2 =
a1JN

βx
> 0, and c3 =

b1JN

βx
g 0, (61) resembles

the upper bound condition on V ∗(xt ) given in (30).

By utilizing (27), one can demonstrate that ZN + (1 +

εp)R(x∗T
N |t (A + BF )T P(A + BF )x∗

N |t ) f 0. To this end, we

rewrite (27) as follows:

0 f (1 + εp)
(

x∗T
N |t (A + BF )T P(A + BF )x∗

N |t

)

f −ZN

(62)

By using [44, Eq. 3.7] and [45, Eq.4], we obtain the following

inequality:

(1 + εp)EPN

(

x∗T
N |t (A + BF )T P(A + BF )x∗

N |t

)

f −ZN

(63)

Taking the supremum on the left side of the above inequality,

one has

(1 + εp) sup
PN ∈AN

EPN

(

x∗T
N |t (A + BF )T P(A + BF )x∗

N |t

)

f −ZN (64)

By applying Lemma 1, we can substitute the coherent risk

measure ρ as follows:

(1 + εp)ρAN

(

x∗T
N |t (A + BF )T P(A + BF )x∗

N |t

)

f −ZN

(65)

Using the fact that sup
PN ∈AN

CVaRPN

ε1
(.) is indeed a coherent risk

measure, we can conclude that ZN + (1 + εp)R(x∗T
N |t (A +

BF )T P(A + BF )x∗
N |t ) f 0, thereby completing the proof.
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