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Abstract

Brace roots (roots developing from aerial stem nodes) are a type of adventitious root that develop from above-
ground stem nodes in many monocots. Brace roots may remain aerial or penetrate the soil as they perform root
functions such as anchorage and resource acquisition. Although brace root development in soil or aerial environ-
ments influences function, a lot is still unknown about how their anatomy, architecture and development contrib-
utes to their function. This article summarizes the current state of knowledge on brace roots.

Introduction

TR

Figure 1| Two types of brace roots as shown in maize.
Thanduanlung Kamei, CC-BY-SA 4.0

Roots may develop from the embryo (contained in a
seed) or post-embryonically (after germination).™ In
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young plants, root functions such as anchorage and re-
source acquisition (finding and taking up water and nu-
trients) are carried out by embryonic roots. Embryonic
roots include primary roots and in some plants, seminal
roots.l2I314] In eudicot species (plants that have their
embryo enclosed in two seed leaves), older plants con-
tinue to rely on a primary tap root for root functions
with contribution from post-embryonic lateral roots. In
contrast, monocot root functions are mostly carried out
by post-embryonic nodal roots. Nodal roots
are adventitious roots (roots originating from non-root
tissues) that develop from stem nodes below (called
crown roots) or above (called brace roots) the
soil.I5] Although many adventitious roots develop in re-
sponse to stress conditions such as flooding or wound-
ing, some adventitious roots develop as a normal (i.e.,
constitutive) part of the plant life cycle.'! A specialized
type of constitutive adventitious root that originates
from aboveground nodes in monocots such
as maize, sorghum, setaria and sugar cane, is called a
brace root.[®

The term "brace root” has been inconsistently used. In
some contexts, the term is used for only aboveground
nodal roots that remain aerial and could provide sup-
port after tipping./” This notion dates back to the work
of Martin and Hershey in 1935® and was further ex-
pounded by Hoppe et al. 1986.5! However, over time,
the term has evolved to encompass all aboveground
nodal roots or sometimes only those that enter the
soil [

Brace roots develop starting from the lowest stem node
(node closest to the soil), where multiple roots emerge
arranged in a whorl around the stem (Figure 1). De-
pending on the plant and the environment, brace root
whorls may develop from two, three, or more nodes up
the stem. Due to the subsequent nature of brace root


https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://en.m.wikiversity.org/wiki/WikiJournal_of_Science/Brace_Roots#cite_note-4
https://en.m.wikiversity.org/wiki/WikiJournal_of_Science/Brace_Roots#cite_note-5
https://en.m.wikiversity.org/wiki/WikiJournal_of_Science/Brace_Roots#cite_note-:0-6
https://en.m.wikiversity.org/wiki/WikiJournal_of_Science/Brace_Roots#cite_note-:1-7
https://en.wikipedia.org/wiki/Monocot
https://en.wikipedia.org/wiki/Plant_development#Adventitious_structures
https://en.m.wikiversity.org/wiki/WikiJournal_of_Science/Brace_Roots#cite_note-8
https://en.m.wikiversity.org/wiki/WikiJournal_of_Science/Brace_Roots#cite_note-:1-7
https://en.wikipedia.org/wiki/Maize
https://en.wikipedia.org/wiki/Sorghum
https://en.wikipedia.org/wiki/Setaria
https://en.wikipedia.org/wiki/Sugar_cane
https://en.m.wikiversity.org/wiki/WikiJournal_of_Science/Brace_Roots#cite_note-:2-9
https://en.m.wikiversity.org/wiki/WikiJournal_of_Science/Brace_Roots#cite_note-:3-10
https://en.m.wikiversity.org/wiki/WikiJournal_of_Science/Brace_Roots#cite_note-11
https://en.m.wikiversity.org/wiki/WikiJournal_of_Science/Brace_Roots#cite_note-:4-12
https://en.m.wikiversity.org/wiki/WikiJournal_of_Science/Brace_Roots#cite_note-:5-13
https://en.m.wikiversity.org/wiki/File:Brace_Roots.jpg
https://creativecommons.org/licenses/by/4.0/

©

development, the brace root whorls that develop from
higher stem nodes may remain aerial throughout the
plant lifespan and are referred to as aerial brace roots
while the brace root whorls closest to the ground pene-
trate the soil and are referred to as soil brace roots (Fig-
ure 1).

This review covers the current state of knowledge
about brace root anatomy, architecture, and develop-
ment in plant survival and fitness.

Brace root anatomy

In maize, aerial brace roots, soil brace roots, and crown
roots exhibit distinctive phenotypic traits. Anatomical
differences start as early as the primordium (immature
organ), where the shape of the root cap within primor-
dia differs between belowground crown roots and
aboveground brace roots. The crown root primordia
has a conical root cap similar to the primary root,
whereas the brace root primordia has a flattened root
cap that extends further along the primordia
length.B3I As brace roots penetrate the soil, the root cap
gradually resembles that of crown roots.™!

In general, the aerial portion of brace roots is different
from the soil portion of brace roots, with the soil portion
more closely resembling the crown roots. For example,
the aerial segments of brace roots are green or purple
in color and become colorless when the roots penetrate
the soil. In addition, the aerial segments of brace roots
have an epidermis (outermost cell layer) that is re-
ported to die; and a thickened hypodermis (layer of cell
beneath the epidermis) and outer cortex (tissue layer
located between the epidermis and the vascular tis-
sues).ll When brace roots penetrate the soil, these phe-
notypes again become similar to crown roots. Thus,
suggesting that the aerial versus soil environment plays
an important role in shaping brace root anatomy.

Anatomical differences in brace roots have also been
used to predict their function. For example, the number
and size of differentiated late metaxylem vessels,
which are utilized in water and nutrient transport, are
much larger compared to those in the primary
root.t*l Indeed, brace roots from whorls high on the
stem contain up to 41 times more metaxylem vessels
than primary roots.[®! Another anatomical feature that
influences brace root resource acquisition is the pres-
ence of root cortical aerenchyma. Root cortical
aerenchyma are enlarged air spaces in root cortices that
enhance oxygen transport, which is essential to nutri-
ent uptake during respiration. Although these air
spaces do not occur in the aerial portion of brace roots,
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root cortical aerenchyma are observed in brace roots
penetrating the soil.[*?]

Brace root architecture and function

Figure 2 | The maize plant with marker 5" (left) is anchored
to the soil by brace roots whereas the maize plant with
marker “4" (right) lacks brace roots and is lodged.

Irene lkiriko, CC-BY-SA 4.0

The function of roots is partially determined by the or-
ganization, shape, and size of individual roots, which is
collectively called root system architecture. However,
this term generally considers only the roots within the
soil. Brace roots have a unique architecture that ex-
pands beyond the soil-based definition of root system
architecture to include aerial environments. These dif-
ferent environments impact the function of brace roots
for anchorage, water, and nutrient acquisition.

Brace roots were historically named for their perceived
role in anchorage. Anchorage failure (termed root lodg-
ing in agricultural contexts) hinders plant growth, de-
velopment, and productivity.3! In Zea mays (maize or
corn), soil brace roots limit root lodging by stabilizing
the stem (Figure 2)04IsIi8lwith more brace root
whorls in the soil and greater brace root density within
whorls correlating with better anchorage.I5I7] Each
whorl, however, contributes differently to anchorage
with the lowest whorl (closest to the soil) contributing
the most and subsequent whorls contributing
less.[*4] Soil brace roots may generate a branched archi-
tecture by developing lateral roots, which theoretically
increases anchorage.*®! The aerial brace roots do not
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directly contribute to anchorage but typically prevent
lodged plants from remaining on the ground. 7181

The branched architecture of soil brace roots that is ad-
vantageous for anchorage also increases surface area,
which in turn impacts the efficiency of water and nutri-
ent acquisition.[s129! Aerial brace roots, on the other
hand, are rigid, unbranched, and covered by a gelati-
nous substance called mucilage, which prevents dehy-
dration. According to a study on the ancient Sierra
Mixe maize variety, this mucilage can also harbour ni-
trogen-fixing microbes that contribute to nitrogen ac-
quisition.° When considering modern maize lines, one
study revealed that while mucilage secretion is com-
mon, only a few lines have retained nitrogen-fixing
traits similar to that of ancient maize.? Moreover, ge-
netic mapping studies identified subtilin3 (SBT3) as a
negative regulator of mucilage secretion in maize. In-
deed, knockout of SBT3 in a low-mucilage-producing
line increased mucilage secretion without impacting
the number of brace root whorls, the number of brace
roots per whorl, or the diameter of the brace roots.
Thus, highlighting the future of engineering mucilage
production to facilitate association with nitrogen-fixing
bacteria.>

In addition to nitrogen acquisition, brace roots that en-
ter the soil during tasselling (the stage at which maize
plants develop the male reproductive structure called
tassel) have been shown to take up phosphorus.? It re-
mains unknown if this is specific to the tasselling stage
or if brace roots provide an important role in phospho-
rus acquisition at other stages as well.

Furthermore, characterization of root architectural
traits within and among maize genotypes showed that
node position impacts the growth patterns and charac-
teristics of nodal roots; with size-related traits (e.g.,
stem width, number of roots per whorl, and nodal root
diameter) showing significant sensitivity to node posi-
tion.3lIn contrast, traits such as root growth angle
showed little variation across whorls or genotypes.
However, both the root growth angle and the number
of roots per whorl are impacted by the availability of soil
nitrogen, suggesting that root traits are not
purely allometric (related to plant size) but also envi-
ronmentally dependent.[?3]

There may be other ways brace root anatomy and ar-
chitecture influence root function, including how and
when these features develop, thus, a clear understand-
ing of brace root development is required to fully grasp
the function of these specialized roots. This under-
standing will prove vital in maximizing brace root func-
tion through selective breeding.B!
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Brace root development

Brace root development has been proposed to be a ju-
venile trait4 because brace root emergence is halted
once the plant reaches maturity.[®251 As plants transi-
tion from juvenile to adult, the adult nodes favour the
development of reproductive structures like ears, over
brace roots. The relationship between juvenile-to-adult
transition and brace root development means that the
two phenotypes are closely linked. This has made it dif-
ficult to separate genes directly involved in juvenile-to-
adult transition from those involved in brace root devel-
opment.

Signals that influence the development of brace roots
are both internal and external. Internal signals include
transcription factors, phytohormones, and small RNAs;
external environmental signals include the availability
of water, nutrients, light and humidity. Although envi-
ronmental factors can influence the outcome of brace
root development, it is, however, the internal genetic
and cellular molecular regulation that determines the
cell fate (in our context), to form brace roots.

Internal genetic and molecular regulation
of brace root development

Brace root development can be summarized into four
main stages based on anatomy and/or gene expression.
These stages have been best defined in maize and are
summarized below.

Stage 1: Induction

Induoon [

Figure 3| Three stages of brace root development.
Thanduanlung Kameij, CC-BY-SA 4.0
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The induction stage is anatomically indistinguishable
from the rest of the stem (Figure 3). In this stage, a
group of cortical cells receives a signal to become
founder cells.!! Founder cell establishment is the first
step towards new organ formation and founder cells are
defined by their ability to divide within a fully mature
tissue. Signals to establish founder cells could be tran-
scription factors, phytohormones, and/or small RNAs,
but these signals are yet to be defined in the context of
brace root development.

Stage 2: Initiation

In the initiation stage, founder cells rapidly divide to
form primordia and are anatomically distinct (Figure 3).
Similarly, at the molecular level, gene expression also
changes. One of the changes in gene expression in-
cludes rootless concerning crown and seminal roots
(RTCS). RTCS is an auxin (phytohormone) responsive
gene encoding a lateral organ boundary (LOB) domain
transcription factor and is expressed in many types of
root primordia including brace roots.?® RTCS interacts
with auxin response factor34 (ARF34) to induce other
downstream auxin-responsive genes.[?”? This induces a
cascade of signalling that results in a series of cell divi-
sions that form primordia. Therefore, a loss of func-
tion rtcs mutant lacks brace roots, seminal roots, and
crown roots.8

Another proposed regulator of brace root initiation is
RHCP1. RCHP1 is a RING-HC protein, a member of the
RING zinc finger protein family. Zinc finger protein fam-
ily members are known for their requlatory role in gene
transcription either by direct binding to DNA or inter-
acting with other proteins. Although RHCPz1 is ex-
pressed in many tissues (e.g., root, leaf, stem, seedling,
immature ear, and tassel), the mRNA preferentially ac-
cumulates in brace root primordia. In addition, rhcpa is
responsive to abiotic stresses such as cold, heat,
drought, and salt.?9) RHCP1 has been proposed to link
brace root development to environmental stressors.
However, it is unknown whether a rhcpz mutant affects
brace root development or the mechanism of how
RHCP1 regulates brace root development.

Stage 3: Emergence

In the emergence stage, brace roots emerge from
aboveground stem nodes (Figure 3). The phytohor-
mone ethylene has been shown to regulate emer-
gence. Reducing ethylene responses by overexpress-
ing ARGOSS8 inhibits brace root emergence. In addi-
tion, external application of an ethylene precursor, 1-
aminocyclopropane-1-carboxylic acid (ACC), to stem
nodes induces the outgrowth of brace roots.5"]
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Stage 4: Elongation

In this stage, emerged brace roots continue growing to-
wards the soil (gravitropic growth). This gravitropic
growth was recently reported to be controlled by two
genes, yuccaz (YUC2) and yuccag (YUCs). Both YUC2
and YUCy are preferentially expressed in brace root
tips, and their proteins are localized in the cytoplasm
and endoplasmic reticulum respectively. The sin-
gle yuc4 and double yuc2;yucs mutants showed en-
larged brace root angles as a result of impaired accumu-
lation and redistribution of auxin in the brace root tips.
In addition, both yuc4 and yuc2;4 displayed enhanced
resistance to root lodging.3

RTCS-like (RTCL) is another auxin-responsive gene.
RTCL is a paralog of RTCS, but unlike the rtcs mutant
which does not initiate roots, the rtc/ mutant shows a
defect in nodal root elongation. RTCL interacts with a
stress-responsive protein (STR) exclusively in the cyto-
sol suggesting its involvement in brace root stress re-
sponse.32

Stage Unknown

In addition to the genes highlighted above, which have
been placed at specific stages of brace root develop-
ment, there are additional genes that affect brace root
development but have not yet been associated with any
specific stages. A set of these genes results in fewer
brace root whorls when mutated. This includes: related
to apetala2.7 (RAP2.7),B33rootless1 (RTa),3455! early
phase  change  (EPQ)3%and  big  embryo:
(BIGE1).B7! Conversely, other genes result in more brace
root whorls when mutated. These include the overex-
pression of mir156, which reduces squamosa promoter
binding protein (SBP) transcription factor expres-
sion, > mutants of teopodi, teopod2 and teopod3
(TP1, TP2 and TP3),13%139 co, constans, co-like and tim-
ing of caba (CCT1o0),%°! dwarf1, dwarf3 and dwarfs (D1,
D3 and Ds),[“Y anther eara (AN1),14" teosinte glume ar-
chitecture1 (TGA1),%* and vivaparous8 (VP8).[3] A de-
tailed review of these genes can be found in Hostetler
etal. 2022.1%

This list of genes is likely to grow significantly as re-
search continues. Indeed, transcriptome profiling of
early brace root development identified 307 up-reqgu-
lated and 372 down-regulated genes, % the majority of
which have yet to be further investigated.
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External environmental factors af-
fecting brace roots development

As previously highlighted, brace root development is
determined by a combination of internal genetic com-
ponents and external environmental factors. There is
currently a lack of studies directly testing the influence
of environmental factors on brace root development,
however, some studies have shown that the availabil-
ity of water, nutrients, light, and humidity influences
nodal root development.

The response of nodal root development to withhold-
ing water has been assessed in maize, sorghum,
setaria, switchgrass, brachypodium,

and teosinte.45! Withholding water resulted in nodal
(crown) root arrest after emergence and inhibition of
entry into the elongation stage. There were also more
emerged roots in water-stressed plants than in well-
watered plants, suggesting withholding water may in-
duce early stages of nodal root development. The
mechanism of crown and brace root response to water
stress is likely similar but there are currently no studies
that report the effect of water stress on brace roots.

Similar to water availability, nitrogen stress can have
adverse effects on nodal root development. In some
maize genotypes, nitrogen deficiency reduces the num-
ber of emerged roots per whorl,“® although crown ver-
sus brace root whorls were not distinguished. In a sepa-
rate study, nitrogen deficiency was shown to induce
steeper brace root angles, 4! which is an outcome of al-
tering the gravitropic response in the elongation stage.

Other environmental factors that may influence brace
root development are light and humidity. It has been
observed that plastic mulching at the base of maize
plants induces more brace roots and accelerates brace
root growth.“8 This may be due to increased humidity
and decreased light availability, which promotes eth-
ylene production and retention. Additional support for
light availability influencing the brace root develop-
ment is when a maize plant is laid horizontally over a
moisture-free surface with a light source at go® above,
there is increased brace root emergence on the lower
shaded side.1°I However, the latter may also be due to
gravity perception.

Another factor to consider is the planting depth. Plant-
ing depth affects the germination rate and seminal root
development, however, it might not impact brace root
development.l“9! The crown, a highly compressed set of
underground stem nodes, where crown roots develop,
maintains a consistent depth regardless of planting
depth.B5° This consistency in the crown position is de-
termined by a change in the red-to-far-red light ratio
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near the soil surface as the seedling emerges. When
the coleoptile reaches the soil surface, the change in
light ratio alters the hormone supply, halt-
ing mesocotyl elongation.5* As a result, the crown
depth remains nearly the same (1/2 to 3/4 inch) for seed-
ing depths of one inch or greater. Since brace roots
form after the crown depth is established, they should
not be directly affected by the planting depth, however,
this has not been tested.

Whether for anchorage or water and nutrient uptake,
the anatomy, architecture, and function of brace roots
are environmentally influenced.[51152153154] Qverall, the
environmental impact on brace root development pro-
vides a valuable opportunity to investigate, identify,
and enhance beneficial root traits. However, these ex-
ternal environmental factors are understudied and
poorly defined. Thus, more studies are required to uti-
lize environmental cue perception and response in
brace root development to maximize their function in
plant survival and fitness.

Conclusion

Anchorage, water and nutrient acquisition are the most
important functions of roots. Thus, plants develop roots
that maximize these functions for productivity and sur-
vival. In cereals such as maize, brace roots are one of the
roots that contribute to these important functions.
Brace roots develop constitutively in whorls from stem
nodes, with the lowest whorl being the first to develop,
enter the soil, branch out, and contribute the most to
anchorage. Subsequent whorls may enter the soil and
contribute to anchorage and resource acquisition, but
they may also remain aerial. While these aerial roots do
not contribute as much to anchorage, they could con-
tribute in other ways such as forming an association
with nitrogen-fixing bacteria.

The physiology of brace roots is directly linked to their
anatomy, architecture, and development. The dynamic
interplay of internal regulators such as transcription
factors, miRNAs, and phytohormones, lay the founda-
tion for brace root development. Once brace roots
emerge from stem nodes, the influence of external fac-
tors such as the availability of water, nutrients, light and
humidity become prominent. Therefore, a combination
of internal and external factors determines the overall
organization, shape, and size of individual roots (root
system architecture) and, as a result, root function.
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3. Measurement of water uptake (by crown root
and lateral roots) using neutron radiography
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