

Survey of Whistler-mode Wave Amplitudes and Frequency Spectra in Jupiter's Magnetosphere

Q. Ma^{1,2}, W. Li², X.-J. Zhang³, N. Kang¹, J. Bortnik¹, M. Qin², X.-C. Shen², C. J. Meyer-Reed², A. V. Artemyev⁴, W. S. Kurth⁵, G. B. Hospodarsky⁵, J. D. Menietti⁵, and S. J. Bolton⁶

6 ¹Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles,
7 California, USA.

⁸ ²Center for Space Physics, Boston University, Boston, Massachusetts, USA.

⁹ ³Department of Physics, University of Texas at Dallas, Richardson, Texas, USA.

10 ⁴Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, CA,
11 USA

¹² ⁵Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa, USA.

13 ⁶Southwest Research Institute, San Antonio, Texas, USA.

14 Corresponding author: Qianli Ma (qianlima@ucla.edu)

Key Points:

- Intense chorus waves at 0.05-1 equatorial electron gyrofrequencies ($f_{ce,eq}$) are observed at $5.5 < M < 13$ within 20° magnetic latitudes
- Hiss waves from 50 Hz to 0.05 $f_{ce,eq}$ have extended latitudinal coverage up to 50° and exhibit propagation effects
- High latitude ($>50^\circ$) whistler-mode waves at 0.05-1 $f_{ce,eq}$ are observed in two groups due to different sources

22 **Abstract**

23 We present statistical distributions of whistler-mode chorus and hiss waves at frequencies
 24 ranging from the local proton gyrofrequency to the equatorial electron gyrofrequency ($f_{ce,eq}$) in
 25 Jupiter's magnetosphere based on Juno measurements. The chorus wave power spectral densities
 26 usually follow the $f_{ce,eq}$ variation with major wave power concentrated in the $0.05f_{ce,eq}$ – $f_{ce,eq}$
 27 frequency range. The hiss wave frequencies are less dependent on $f_{ce,eq}$ variation than chorus
 28 with major power concentrated below $0.05f_{ce,eq}$, showing a separation from chorus at $M < 10$. Our
 29 survey indicates that chorus waves are mainly observed at $5.5 < M < 13$ from the magnetic equator
 30 to 20° latitude, consistent with local wave generation near the equator and damping effects. The
 31 hiss wave powers extend to 50° latitude, suggesting longer wave propagation paths without
 32 attenuation. Our survey also includes the whistler-mode waves at high latitudes which may
 33 originate from the Io footprint, auroral hiss, or propagating hiss waves reflected to high M shells.

34 **Plain Language Summary**

35 Whistler-mode chorus and hiss waves in Jupiter's magnetosphere are major plasma wave modes,
 36 characterized by perturbations in electric and magnetic fields at frequencies from the proton
 37 gyrofrequency to the electron gyrofrequency. Chorus waves are typically observed at $0.05f_{ce,eq}$ –
 38 $f_{ce,eq}$ frequencies ($f_{ce,eq}$ is the electron gyrofrequency at the equator) with coherent wave structures.
 39 Chorus waves, generated by hot electrons, could cause electron precipitation into the atmosphere
 40 and acceleration in the radiation belt. In contrast, hiss waves are usually incoherent with wave
 41 frequencies less dependent on $f_{ce,eq}$ than chorus. Hiss waves have mixed sources and mainly drive
 42 energetic electron loss. Using Juno satellite measurements, we analyze the statistical distribution
 43 of chorus and hiss waves in Jupiter's magnetosphere. Our survey reveals different latitudinal
 44 coverages and statistical properties of chorus and hiss waves, suggesting their different sources
 45 and damping effects. Additionally, our survey includes whistler-mode waves at high latitudes,
 46 potentially originating from various sources such as the Io footprint at the ionosphere, auroral
 47 hiss, or reflection of hiss waves at high M shells. The whistler-mode wave distributions from our
 48 study provide valuable insights for future modeling of whistler-mode wave sources and energetic
 49 electron dynamics in Jupiter's magnetosphere.

50 **1. Introduction**

51 Whistler-mode waves in Jupiter's magnetosphere have recently garnered increased
 52 attention due to their pivotal role in shaping energetic electron dynamics in the radiation belts
 53 (Horne et al., 2008; Menietti et al., 2023; Woodfield et al., 2014). For comparison, in the Earth's
 54 magnetosphere, whistler-mode chorus waves are typically observed over 0.05 – $0.5f_{ce,eq}$ and
 55 0.5 – $1 f_{ce,eq}$ frequencies outside the plasmapause (Li et al., 2009, 2016; Meredith et al., 2012),
 56 where $f_{ce,eq}$ is the electron gyrofrequency at the magnetic equator; hiss waves are observed at 20
 57 Hz – 4 kHz frequencies in the plasmasphere and plumes (Li et al., 2015; Ma et al., 2023). Chorus
 58 waves typically exhibit discrete and coherent wave structures (Li et al., 2011; Santolík et al.,
 59 2003), and cause plasma sheet electron scattering loss and precipitation and radiation belt electron
 60 acceleration (Agapitov et al., 2013; Blum et al., 2020; Lorentzen et al., 2001; Thorne et al., 2010,
 61 2013). Hiss waves usually have a broadband and incoherent frequency spectrum and cause
 62 energetic electron flux decay in the outer radiation belt (Ma et al., 2016). Whistler-mode waves
 63 are suggested to play similar roles in Jupiter's middle magnetosphere (Bhattacharya et al., 2005;

64 Li et al., 2021; Ma et al., 2020; Shprits et al., 2012; Woodfield et al., 2013), potentially having a
 65 significant impact on electron precipitation and acceleration between the orbits of Io and
 66 Ganymede. Global wave distributions and detailed wave properties of chorus and hiss are
 67 required to evaluate the electron dynamics due to whistler-mode waves in Jupiter's
 68 magnetosphere, and model the multi-MeV electron distributions in the radiation belts (e.g., Ma et
 69 al., 2021), but the large volume of observations needed to create such global distributions has not
 70 been available until recently.

71 The Juno spacecraft (Bagenal et al., 2017; Bolton et al., 2010) arrived at Jupiter's
 72 magnetosphere in July 2016, and has been sampling the low-latitude region at M shells below 15
 73 since May 2019. The M shell is the jovicentric radial distance of the field line at the magnetic
 74 equator normalized to the Jupiter's radius ($R_J \sim 71,492$ km). Previous studies have revealed that
 75 whistler-mode waves are commonly observed over $6 < M < 15$ from the equator to 50°
 76 magnetic latitudes (Li et al., 2020; Menietti et al., 2016, 2020, 2021, 2023). The detailed wave
 77 frequency spectrum, which determines the energy of electron precipitation and acceleration,
 78 requires further investigation. The power of chorus and hiss waves is typically characterized by
 79 higher and lower frequency ranges normalized to the equatorial electron gyrofrequency (f /
 80 $f_{ce,eq}$), respectively. Energetic electron injections may provide free energy for local chorus wave
 81 generation in Jupiter's magnetosphere (Xiao et al., 2003; Ma et al., 2024a). Wang et al. (2008)
 82 suggested that hiss waves at frequencies below 1 kHz originate from chorus waves at higher M
 83 shells, considering the fact that the cyclotron resonance energy for hiss is above 1 MeV. The
 84 most recent Juno measurements provide data near the magnetic equator over $M > 5$, fully
 85 covering the critical region of major whistler-mode wave activity. In this paper, we present the
 86 statistics of whistler-mode wave spectra at different M shells and magnetic latitudes (MagLat)
 87 and reveal the distribution and properties of chorus and hiss separately. Our findings provide
 88 valuable insights into the generation source, propagation, and damping processes of whistler-
 89 mode waves in Jupiter on a global scale.

90 2. Whistler-mode Wave Observations by the Juno Satellite

91 We analyze Juno measurements of whistler-mode waves during its first 57 orbits from
 92 July 2016 to December 2023. We use the 1-s resolution magnetometer (MAG) data to obtain the
 93 background magnetic fields (Connerney et al., 2017) and calculate the local gyrofrequencies of
 94 protons ($f_{cp,local}$) and electrons ($f_{ce,local}$). The Waves instrument provides the wave magnetic (B_w)
 95 and electric (E_w) power spectral densities at 50 Hz - 20 kHz frequencies and 50 Hz - 40 MHz
 96 frequencies, respectively, with a time resolution of 1 s (Kurth et al., 2017). Jupiter's internal
 97 magnetic field model JRM-33 (Connerney et al., 2022a) and external current sheet model CON-
 98 2020 (Connerney et al., 2020) are used to calculate the M shell and map the measured local
 99 magnetic field to the magnetic equator. The $f_{ce,eq}$ is calculated using the ratio of equatorial to
 100 local magnetic fields and the observed $f_{ce,local}$.

101 Figure 1 shows typical whistler-mode wave observations at different regions in Jupiter's
 102 magnetosphere. The root-mean-square (RMS) amplitude of wave magnetic field collected at
 103 frequencies $f_{cp,local} < f < f_{ce,eq}$ is shown in Figure 1m, over-plotted by the Juno trajectories
 104 during different events shown in Figures 1a-l. Within 10° of the magnetic equator (Figure 1a),
 105 bursts of whistler-mode waves were observed at frequencies both above and below $0.05f_{ce,eq}$
 106 (white line with black dots). The two-band whistler-mode waves with a gap at $\sim 0.05f_{ce,eq}$ were

107 most evident when Juno was at $M < 7.6$ after 1600 UT. The frequency spectra of the higher
 108 frequency band ($f > 0.05f_{ce,eq}$) follow the variation of $f_{ce,eq}$, while the lower frequency band
 109 ($f < 0.05f_{ce,eq}$) wave powers remain in a stable frequency range below ~ 1 kHz. Hereafter,
 110 based on these consistent morphological differences, we categorize the waves at $0.05f_{ce,eq} <$
 111 $f < f_{ce,eq}$ frequencies as chorus and the waves at $f_{cp,local} < f < 0.05f_{ce,eq}$ as hiss waves. The
 112 chorus waves could have discrete elements as shown by Ma et al. (2024a). In addition to the
 113 evidence of the wave power gap at $\sim 0.05f_{ce,eq}$, this categorization aligns with the facts that the
 114 waves at higher $f/f_{ce,eq}$ could be locally generated and the lower frequency hiss waves may
 115 originate by propagation from a remote source (Wang et al., 2008), and is consistent with the fact
 116 that the chorus waves in the Earth's radiation belts are mainly observed at frequencies above
 117 $0.05f_{ce,eq}$ (Li et al., 2016). The different properties of chorus and hiss waves are also supported
 118 by the analysis of wave burst mode data (Supporting Information Figures S1-S5).

119 Over MagLat $\sim 10^\circ$ – 20° (Figure 1c), Juno also observed chorus and hiss waves with a
 120 wave power minimum at $\sim 0.05f_{ce,eq}$ frequency at $M < 9.9$. Compared to the whistler-mode
 121 waves observed near the equator (Figure 1a), the wave power spectrograms appear less bursty at
 122 higher magnetic latitudes (Figure 1c). Over MagLat $\sim 30^\circ$ – 40° (Figure 1e), the chorus wave
 123 powers are significantly reduced compared to the lower latitude measurements, while the hiss
 124 wave power intensities are moderate with the majority of power observed between $f_{cp,local}$ and
 125 $0.05f_{ce,eq}$.

126 The whistler-mode wave power spectrogram at MagLat $> 50^\circ$ shows a different feature
 127 compared to those observed at lower magnetic latitudes. At MagLat $> 50^\circ$ and $M > 12.9$ (Figure
 128 1g), a band of whistler-mode waves was observed with a lower cutoff frequency slightly below
 129 $f_{cp,local}$. Juno also observed intense auroral hiss waves (Elliott et al., 2020; Santolík & Gurnett,
 130 2002; Sulaiman et al., 2022) after traveling to the polar region at 0730 UT, where $f_{cp,local} >$
 131 $f_{ce,eq}$. The waves observed before 0730 UT may originate either from the auroral hiss waves
 132 propagating obliquely across magnetic field lines to lower M shells, or from hiss wave
 133 originating from low-latitudes reflected at MagLat $\sim 50^\circ$ away from Jupiter towards higher M
 134 shells. The auroral hiss waves are generated by the electron beams in Jupiter's polar region
 135 (Elliott et al., 2020), while the hiss waves from the low latitudes may be amplified by anisotropic
 136 electrons (Chen et al., 2012) or originate from chorus waves at higher M shells (Wang et al.,
 137 2008). The wave burst data analysis suggests that the Poynting flux direction is away from
 138 Jupiter (Supporting Information Figure S4). The full wave polarization properties may be helpful
 139 to identify the source of whistler-mode waves at MagLat $> 50^\circ$ (as shown in Figure 1g), which
 140 cannot be determined from the one-component measurements of wave electric and magnetic
 141 fields.

142 Juno observed whistler-mode waves in the vicinity of perijove at MagLat $> 50^\circ$. Figure 1i
 143 shows the wave observation when Juno was close to the Io footprint at the radial distance
 144 $R < 1.5$. The variations of plasma waves and particles during this event were analyzed in
 145 previous studies (Clark et al., 2020, 2023; Sulaiman et al., 2020; Szalay et al., 2020). At ~ 0921
 146 UT, Juno observed kinetic Alfvén waves at < 800 Hz frequencies, electromagnetic ion cyclotron
 147 (EMIC) waves at 800 Hz $- f_{cp,local}$ frequencies, and whistler-mode waves with the majority of
 148 power at $f_{cp,local} - f_{ce,eq}$ frequencies. The whistler-mode waves related to the Io footprint have a
 149 broader spatial extent than the EMIC or kinetic Alfvén waves. When Juno was not in conjunction

150 with the Io footprint at $R > 1.5$ (Figure 1k), whistler-mode waves with reduced intensities are
 151 observed, comprised of a branch with maximum power at $M \sim 6$ and ~ 10 kHz frequency, and
 152 another branch over $M > 7$ at frequencies just above $f_{cp,local}$ and below $f_{ce,eq}$.

153 For the purpose of statistical analysis, we select the whistler-mode waves at $f_{cp,local} < f < f_{ce,eq}$ frequencies by requiring the wave magnetic power spectral density to be at least 3
 154 times higher than the background noise level to ensure a real wave observation. The background
 155 noise power at each frequency is obtained as the 20% lowest power on each day. Using this
 156 criterion, the selected whistler-mode waves are shown on the bottom panels of each event. By
 157 setting $f < f_{ce,eq}$, our method selects the whistler-mode waves originated at the magnetic
 158 equator (Figures 1a-f). The EMIC and kinetic Alfvén waves are excluded from our database
 159 (Figures 1i-l). The Z-mode waves at $M > 5.5$ are excluded because they are mainly observed at
 160 high latitudes (Menietti et al., 2020, 2021, 2023) with frequencies higher than $f_{ce,eq}$. The main
 161 powers of auroral hiss at the polar region are also excluded where $f_{ce,eq} < f_{cp,local}$ (Figures 1g-
 162 h). Since the waves at $>50^\circ$ magnetic latitudes and $R > 2.5$ may be not confined within
 163 $f_{cp,local} - f_{ce,eq}$ frequencies (Figures 1g-h), their powers may be slightly underestimated.
 164 However, these waves exist in a small spatial region (Figure 1m) and may have a different
 165 source from the lower latitude whistler-mode waves.
 166

167 3. Statistical Distribution of Whistler-mode Chorus and Hiss Waves

168 We average the selected wave powers in every 0.2 wide M shell bin, in every 2° MagLat,
 169 and at each frequency channel of Waves survey mode data. If whistler-mode waves are not
 170 observed, the wave power spectral densities are recorded as 0 and included in averaging. The
 171 period of Juno's flyby of Ganymede during PJ-34 is excluded from our dataset, because the
 172 magnetic field lines are strongly affected by Ganymede's internal magnetic field and the
 173 calculated $f_{ce,eq}$ is not accurate. During the first ~ 7 years, the Juno Waves instrument collected
 174 sufficient number of data samples at 1-s cadence especially at $M < 20$ or $|MagLat| < 40^\circ$,
 175 except for the lack of data at $M < 5$ and $|MagLat| < 20^\circ$ (Figure 2c).

176 Figure 2a shows the wave spectra at different M shells for all magnetic latitudes, and
 177 Figure 2b shows the root-mean-square (RMS) wave amplitude distribution as a function of M
 178 shell and $|MagLat|$. At $|MagLat| < 25^\circ$, whistler-mode waves at $f_{cp,local} < f < f_{ce,eq}$
 179 frequencies are mainly observed at $5.5 < M < 15$. The M shell range of whistler-mode waves
 180 may correspond to the region where energetic electron injections provide anisotropic fluxes
 181 needed for local wave generation (Mauk et al., 1999; Tomás et al., 2004; Ma et al., 2021). The
 182 cutoff of whistler-mode wave power at $M \sim 5.5$ corresponds to the large gradient of total electron
 183 density as a function of M shell. The density is higher than 1000 cm^{-3} at the center of the Io
 184 plasma torus (Dougherty et al., 2017), but at $M < 5.5$ the density is much lower and $f_{pe}/f_{ce} < 1$.

185 The whistler-mode waves at high latitudes are roughly separated at $R = 2.5$ (magenta
 186 dashed line in Figure 2b). At $R > 2.5$, the significant wave power extends to $15 < M < 30$ at
 187 $|MagLat| \sim 45^\circ - 60^\circ$. At $R < 2.5$, the whistler-mode waves have high power near Io's orbit ($M \sim 6$)
 188 and the major power shifts to higher latitudes with increasing M shell up to $M \sim 13$. It is worth
 189 noting that the spatial extent of high-latitude waves is much smaller than the waves at low
 190 latitudes due to converging magnetic field lines.

191 The detailed wave spectra at different magnetic latitudes are presented in Figures 2d-f. At
 192 $|MagLat| < 25^\circ$ (Figure 2d), the statistical wave spectrum shows a separation between chorus
 193 ($f > 0.05f_{ce,eq}$) and hiss ($f < 0.05f_{ce,eq}$) with a wave power minimum at $0.05f_{ce,eq}$ at $M < 10$.
 194 The chorus and hiss wave powers merge at $M > 10$. At $25^\circ < |MagLat| < 50^\circ$ (Figure 2e), the
 195 hiss wave powers are comparable to the power near the equator, while the chorus wave powers
 196 are significantly reduced. A group of whistler-mode waves are also observed at frequencies
 197 below $f_{ce,eq}$ at $M > 18$, which are probably the extension of the waves at higher latitudes. At
 198 $50^\circ < |MagLat| < 70^\circ$ (Figure 2f), the whistler-mode waves at frequencies above 1 kHz at
 199 $M < 10$ are related to the waves produced near the Io footprint. The whistler-mode waves
 200 observed at lower frequencies (<1 kHz) may have a similar frequency range to the hiss waves
 201 originating from the equator at $M < 10$ or auroral hiss waves at the polar region. The wave
 202 powers are low at $f < 0.05f_{ce,eq}$ frequencies, as $f_{cp,local}$ becomes comparable or higher than
 203 $0.05f_{ce,eq}$ (Figure 1g).

204 Figures 1 and 2 suggest that the three major types of whistler-mode waves at $f_{cp,local} < f < f_{ce,eq}$ could be separated by spatial region and wave frequency. Hiss waves originating from
 205 the equator are mainly observed at $f < 0.05f_{ce,eq}$ frequencies over $|MagLat| \sim 0^\circ - 50^\circ$. Chorus
 206 waves are mainly observed at $0.05f_{ce,eq} < f < f_{ce,eq}$ frequencies over $|MagLat| \sim 0^\circ - 20^\circ$. High-
 207 latitude whistler-mode waves are mainly observed at $0.05f_{ce,eq} < f < f_{ce,eq}$ frequencies over
 208 $|MagLat| \sim 30^\circ - 70^\circ$, and are further divided into two groups at $R = 2.5$ due to their apparently
 209 different sources. The distributions and properties for each wave type are presented in Figures 3
 210 and 4.

212 The distributions of hiss wave frequency spectra for different M shells (Figure 3a)
 213 suggest that the hiss waves are mainly observed at frequencies below 1 kHz, with the majority of
 214 wave power located at 100-500 Hz frequencies. The RMS wave amplitude distribution (Figure
 215 3b) suggests that the hiss waves are observed over $5.5 < M < 15$ and the average wave
 216 amplitude has a weak latitudinal dependence from 0° to 50° . The $E_w/(cB_w)$ ratio (Figure 3c) is
 217 calculated using the RMS wave magnetic and electric field amplitudes considering the effective
 218 antenna length (~ 2.41 m) of the Waves instrument (Kurth et al., 2017), where c is the speed of
 219 light. Although the ratio between plasma frequency and electron gyrofrequency (f_{pe}/f_{ce})
 220 changes with latitude and M shell, we adopt the $E_w/(cB_w)$ ratio as a qualitative estimate of the
 221 wave normal angle variation (Stix, 1992). The $E_w/(cB_w)$ ratio is low ($\lesssim 0.5$) at $M > 10$ and
 222 $|MagLat| < 20^\circ$, suggesting predominantly parallel propagating waves and hence the possible
 223 local wave generation source. The $E_w/(cB_w)$ ratio is lower at low latitudes than high latitudes.
 224 Although it is expected that $E_w/(cB_w)$ increases as the waves propagate to higher latitudes due to
 225 the lower f_{pe}/f_{ce} ratio, the trend of $E_w/(cB_w)$ in Figure 3c is still consistent with the scenario of
 226 wave amplification near the equator and subsequent wave propagation to high latitudes. The
 227 $E_w/(cB_w)$ ratio is lower at high M shells than those at low M shells, suggesting that the hiss waves
 228 at $M < 10$ may originate from the remote source of whistler-mode waves at $M > 10$.

229 The chorus wave frequency (Figure 3d) increases more rapidly with decreasing M shell
 230 than hiss, and the frequency of wave power spectral density follows the $f_{ce,eq}$ variation. The
 231 chorus waves are mainly observed at $5.5 < M < 13$ and $|MagLat| < 20^\circ$, with high RMS wave
 232 amplitudes at $8 < M < 11$ and $|MagLat| \sim 5^\circ - 15^\circ$ (Figure 3e). The latitudinal distribution
 233 suggests a wave amplification process as the generated waves propagate and intensify from the

234 equator to $|\text{MagLat}| \sim 10^\circ$, and subsequently decrease in amplitude due to a wave damping process
 235 occurring at $|\text{MagLat}| > 20^\circ$. The suggestion of local wave generation process is supported by
 236 the statistically low $E_w/(cB_w)$ ratios ($\lesssim 0.5$) of chorus waves near the equator (Figure 3f).

237 The distributions and properties of high-latitude whistler-mode waves are shown in
 238 Figures 3g-i. A group of whistler-mode waves are observed at $f > 1$ kHz frequencies over the
 239 region of $R < 2.5$ and $5.5 < M < 10$. These waves are probably generated near the Io footprint
 240 and propagate with an oblique wave normal angle within the high-density region. Another group
 241 of whistler-mode waves are observed at $f < 1$ kHz frequencies over the region of $R > 2.5$ and
 242 $M > 5.5$, with major power located at $10 < M < 25$. These waves may be not locally generated
 243 but have a remote source from propagation. The main power of auroral hiss waves at high M
 244 shells ($M > 20$) and high latitudes ($> 60^\circ$) are not included in our survey due to $f_{cp,local} > f_{ce,eq}$.
 245 The $E_w/(cB_w)$ ratio is high ($\gtrsim 1$) for both groups of high-latitude whistler-mode waves.

246 Figure 4 shows the spatial distributions of wave occurrence rates for different wave
 247 amplitudes of hiss, chorus, and high-latitude whistler-mode waves. The hiss wave occurrence
 248 rates with 20-50 pT amplitudes (Figure 4a) are $> 10\%$ over a broad region, and become higher at
 249 higher latitudes or near $M = 6$ possibly because of the wave power focusing into a small spatial
 250 region after propagating from the equatorial source. The occurrence rates for higher amplitude
 251 waves are significantly reduced at high latitudes (Figures 4b-c), and the waves with > 100 pT
 252 amplitudes are observed mainly within 20° of the equator (Figure 4c). The chorus wave
 253 occurrence rates (Figures 4d-f) are comparable to those of hiss at $|\text{MagLat}| < 20^\circ$. Chorus
 254 waves with > 100 pT amplitudes are mostly observed in the region of $8 < M < 12$ and
 255 $|\text{MagLat}| < 16^\circ$ (Figure 4f). The distributions of large amplitude waves suggest that the energy
 256 source of chorus and hiss from energetic electrons is within 20° from the equator. Figure 4g
 257 shows that the peak occurrence rates of the two high-latitude wave groups with 20-50 pT are
 258 higher than 10%. The wave occurrence rates with > 50 pT amplitude are much lower than those
 259 of chorus or hiss (Figure 4h), and the waves with > 100 pT amplitude are rarely observed (Figure
 260 4i).

261 4. Conclusions and Discussions

262 We conducted a statistical survey of the whistler-mode wave amplitude distributions and
 263 frequency spectra for the waves at $f_{cp,local} < f < f_{ce,eq}$ frequencies using the Juno Waves data
 264 from 2016 to 2023. The electromagnetic waves in this frequency range include chorus and hiss
 265 waves observed at 0° - 50° latitudes which originate from the magnetic equator, and high-latitude
 266 ($> 50^\circ$) whistler-mode waves, which may have multiple possible sources. Our paper presents the
 267 first study on the distributions and properties of these waves separately in Jupiter's
 268 magnetosphere. The main results are summarized below.

- 269 • Chorus waves at $0.05f_{ce,eq} < f < f_{ce,eq}$ are observed mainly over $5.5 < M < 13$ and 0° - 20°
 270 latitudes, and high-amplitude (> 50 pT) waves are observed over $8 < M < 12$ and 4° - 16°
 271 latitudes. Their wave normal angles are seen to be mainly field-aligned. The statistical
 272 distributions suggest that chorus waves may be generated from anisotropic electrons near the
 273 equator, amplified while propagating a few degrees away from the equator, and damped at
 274 $> 20^\circ$ latitudes.
- 275 • Hiss waves at $f_{cp,local} < f < 0.05f_{ce,eq}$ are observed over $5.5 < M < 15$ and 0° - 50°
 276 latitudes. While the waves with modest amplitudes (< 50 pT) have higher occurrence rates at

277 higher latitudes, the large amplitude (>100 pT) waves are observed only within 20° of the
 278 equator. The $E_w/(cB_w)$ ratio is lower at lower latitudes compared to that at higher latitudes,
 279 and lower at higher M shell than that at lower M shell. Hiss waves at high M shells near the
 280 equator may be locally generated or amplified by anisotropic energetic electrons. The
 281 generated chorus and hiss waves may propagate to lower altitudes and contribute to the hiss
 282 wave power at low M shells or high latitudes.

- 283 • High-latitude whistler-mode waves are mostly observed at $0.05f_{ce,eq} < f < f_{ce,eq}$
 284 frequencies and 30° - 70° latitudes with wave amplitudes below 50 pT. The high-latitude
 285 whistler-mode waves are comprised of two groups: one with frequencies above 1 kHz over
 286 the region of $R < 2.5$ and $5.5 < M < 10$, and another with frequencies below 1 kHz over the
 287 region of $R > 2.5$ and $M > 10$. The waves at $R < 2.5$ may be generated near the Io footprint,
 288 and the waves at $R > 2.5$ may have a source from the propagation effects. Both wave groups
 289 may propagate from their source with oblique wave normal angles.

290 Although the chorus and hiss waves are observed in similar regions in Jupiter's
 291 magnetosphere, their statistical distributions and properties need to be resolved separately
 292 because of the different roles they play in radiation belt electron acceleration and precipitation
 293 (Ma et al., 2020; Ni et al., 2018). Both typical wave events and statistical distributions
 294 demonstrate that the chorus and hiss have different spatial coverage and propagation properties,
 295 suggesting their different sources. The wave power separation between chorus and hiss at
 296 $0.05f_{ce,eq}$ is evident at $M < 10$. Due to their different wave frequencies, the wave phase
 297 velocities of chorus and hiss are different, which determines the energy of electron precipitation
 298 and acceleration during resonant wave-particle interactions. Our dataset also reveals the
 299 distributions of two groups of high-latitude whistler-mode waves which may cause additional
 300 electron precipitation. The Landau resonance of electrons by oblique waves at high latitudes may
 301 contribute to the <10 keV electron precipitation, in addition to the higher energy electron
 302 scattering by whistler-mode waves near the equator as reported by Li et al. (2021). In addition,
 303 the local field-aligned density ducts could provide an efficient channel for energetic electron
 304 precipitation (e.g., Kang et al., 2024). The statistical distributions of whistler-mode waves in our
 305 study could be valuable for future modeling of energetic electron flux distribution and dynamic
 306 evolution of Jupiter's outer radiation belt.

307 Acknowledgments

308 We would like to acknowledge the NASA subcontract 699046X to UCLA and subcontract
 309 Q99064JAR to Boston University under prime contract ZZM06AA75C. This work was
 310 supported by the NASA grants 80NSSC20K0196, 80NSSC20K0557, and 80NSSC24K0572, and
 311 the NSF grants AGS-2225445 and AGS-2402179. The research conducted at the University of
 312 Iowa was supported by NASA through contract 699041X with the Southwest Research Institute.
 313 WSK acknowledges the use of the Space Physics Data Repository at the University of Iowa
 314 supported by the Roy J. Carver Charitable Trust.

315 Open Research

316 The Juno data are retrieved from NASA Planetary Data System (<https://pds-ppi.igpp.ucla.edu/mission/JUNO>). This study uses the Juno Waves survey mode data (*Kurth and*

318 *Piker*, 2022). The survey results in this study are available at the data repository (*Ma et al.*,
319 2024b).

320 References

321 Agapitov, O., A. Artemyev, V. Krasnoselskikh, Y. V. Khotyaintsev, D. Mourenas, H. Breuillard,
322 M. Balikhin, and G. Rolland (2013), Statistics of whistler-mode waves in the outer
323 radiation belt: Cluster STAFF-SA measurements, *J. Geophys. Res. Space Physics*, 118,
324 3407–3420, doi:10.1002/jgra.50312.

325 Bagenal, F., A. Adriani, F. Allegrini, S. J. Bolton, B. Bonfond, E. J. Bunce, J. E. P. Connerney,
326 S. W. H. Cowley, R. W. Ebert, G. R. Gladstone, C. J. Hansen, W. S. Kurth, S. M. Levin,
327 B. H. Mauk, D. J. McComas, C. P. Paranicas, D. Santos-Costa, R. M. Thorne, P. Valek,
328 J. H. Waite, and P. Zarka (2017), Magnetospheric Science Objectives of the Juno
329 Mission, *Space Sci. Rev.*, 213, 219–287, doi:10.1007/s11214-014-0036-8.

330 Bhattacharya, B., Thorne, R. M., Williams, D. J., Khurana, K. K., & Gurnett, D. A. (2005).
331 Diffuse auroral precipitation in the Jovian upper atmosphere and magnetospheric electron
332 flux variability. *Icarus*, 178(2), 406–416. <https://doi.org/10.1016/j.icarus.2005.06.013>

333 Blum, L., & Breneman, A. (2020). Observations of radiation belt losses due to cyclotron wave-
334 particle interactions. In *The dynamic loss of Earth's radiation belts* (pp. 49–98). Elsevier.
335 <https://doi.org/10.1016/B978-0-12-813371-2.00003-2>

336 Bolton, S. J., and Juno Science Team (2010), The Juno mission, *Proc. Int. Astron. Union*, 6
337 (S269), doi:10.1017/S1743921310007313.

338 Chen, L., W. Li, J. Bortnik, and R. M. Thorne (2012), Amplification of whistler-mode hiss inside
339 the plasmasphere, *Geophys. Res. Lett.*, 39, L08111, doi:10.1029/2012GL051488.

340 Clark, G., Mauk, B. H., Kollmann, P., Szalay, J. R., Sulaiman, A. H., Gershman, D. J., et al.
341 (2020). Energetic proton acceleration associated with Io's footprint tail. *Geophys. Res.
342 Lett.* 47 (24), e2020GL090839. doi:10.1029/2020gl090839

343 Clark, G., J. R. Szalay, A. H. Sulaiman, J. Saur, P. Kollmann, B. H. Mauk, C. Paranicas, V. Hue,
344 T. Greathouse, F. Allegrini, A. Glocer, K. Garcia-Sage, and S. Bolton (2023), Energetic
345 proton acceleration by EMIC waves in Io's footprint tail, *Front. Astron. Space Sci.*,
346 10:1016345, doi:10.3389/fspas.2023.1016345.

347 Connerney, J. E. P., M. Benn, J. B. Bjarno, et al. (2017), The Juno Magnetic Field Investigation.
348 *Space Sci Rev* 213, 39–138, <https://doi.org/10.1007/s11214-017-0334-z>.

349 Connerney, J. E. P., Timmins, S., Herceg, M., & Joergensen, J. L. (2020). A Jovian magnetodisc
350 model for the Juno era. *Journal of Geophysical Research: Space Physics*, 125,
351 e2020JA028138. <https://doi.org/10.1029/2020JA028138>

352 Connerney, J. E. P., Timmins, S., Oliversen, R. J., Espley, J. R., Joergensen, J. L., Kotsiaros, S.,
353 et al. (2022a). A new model of Jupiter's magnetic field at the completion of Juno's Prime
354 Mission. *Journal of Geophysical Research: Planets*, 127, e2021JE007055.
355 <https://doi.org/10.1029/2021JE007055>

356 Connerney, J. E. P. (2022b), Juno MAG CALIBRATED DATA J V1.0, JNO-J-3-FGM-CAL-
357 V1.0 [Dataset], NASA Planetary Data System, <https://doi.org/10.17189/1519711>.

358 Dougherty, L. P., Bodisch, K. M., and Bagenal, F. (2017), Survey of Voyager plasma science
359 ions at Jupiter: 2. Heavy ions, *J. Geophys. Res. Space Physics*, 122, 8257- 8276,
360 doi:10.1002/2017JA024053.

361 Elliott, S. S., Gurnett, D. A., Yoon, P. H., Kurth, W. S., Mauk, B. H., Ebert, R. W., et al. (2020).
362 The generation of upward-propagating whistler mode waves by electron beams in the
363 Jovian polar regions. *Journal of Geophysical Research: Space Physics*, 125,
364 e2020JA027868. <https://doi.org/10.1029/2020JA027868>.

365 Horne, R. B., R. M. Thorne, S. A. Glauert, J. D. Menietti, Y. Y. Shprits, and D. A. Gurnett
366 (2008), Gyro-resonant electron acceleration at Jupiter, *Nature Physics*, 4, 301-304,
367 doi:10.1038/nphys897.

368 Kang, N., Artemyev, A. V., Bortnik, J., Zhang, X.-J., & Angelopoulos, V. (2024). The Principal
369 role of chorus ducting for night-side relativistic electron precipitation. *Geophysical
370 Research Letters*, 51, e2024GL110365. <https://doi.org/10.1029/2024GL110365>

371 Kurth, W. S., G. B. Hospodarsky, D. L. Kirchner, B. T. Mokrzycki, T. F. Averkamp, W. T.
372 Robison, C. W. Piker, M. Sampl, and P. Zarka (2017), The Juno Waves Investigation,
373 *Space Sci. Rev.*, 213, 1-4, 347-392, doi:10.1007/s11214-017-0396-y.

374 Kurth, W. S., and Piker C. W. (2022), JUNO E/J/S/SS WAVES CALIBRATED SURVEY
375 FULL RESOLUTION V2.0, JNO-E/J/SS-WAV-3-CDR-SRVFULL-V2.0 [Dataset],
376 NASA Planetary Data System, doi:10.17189/1520498.

377 Li, W., R. M. Thorne, V. Angelopoulos, J. Bortnik, C. M. Cully, B. Ni, O. LeContel, A. Roux,
378 U. Auster, and W. Magnes (2009), Global distribution of whistler-mode chorus waves
379 observed on the THEMIS spacecraft, *Geophys. Res. Lett.*, 36, L09104,
380 doi:10.1029/2009GL037595.

381 Li, W., R. M. Thorne, J. Bortnik, Y. Y. Shprits, Y. Nishimura, V. Angelopoulos, C. Chaston, O.
382 Le Contel, and J. W. Bonnell (2011), Typical properties of rising and falling tone chorus
383 waves, *Geophys. Res. Lett.*, 38, L14103, doi:10.1029/2011GL047925.

384 Li, W., Q. Ma, R. M. Thorne, J. Bortnik, C. A. Kletzing, W. S. Kurth, G. B. Hospodarsky, and
385 Y. Nishimura (2015), Statistical properties of plasmaspheric hiss derived from Van Allen
386 Probes data and their effects on radiation belt electron dynamics. *J. Geophys. Res. Space
387 Physics*, 120, 3393-3405. doi: 10.1002/2015JA021048.

388 Li, W., O. Santolík, J. Bortnik, R. M. Thorne, C. A. Kletzing, W. S. Kurth, and G. B.
389 Hospodarsky (2016), New chorus wave properties near the equator from Van Allen
390 Probes wave observations, *Geophys. Res. Lett.*, 43, 4725-4735,
391 doi:10.1002/2016GL068780.

392 Li, W., Shen, X.-C., Menietti, J. D., Ma, Q., Zhang, X.-J., Kurth, W. S., & Hospodarsky, G. B.
393 (2020). Global Distribution of Whistler Mode Waves in Jovian Inner Magnetosphere.
394 *Geophysical Research Letters*, 47, e2020GL088198.
395 <https://doi.org/10.1029/2020GL088198>.

396 Li, W., Ma, Q., Shen, X.-C., Zhang, X.-J., Mauk, B. H., Clark, G., et al. (2021). Quantification
397 of diffuse auroral electron precipitation driven by whistler mode waves at Jupiter.
398 *Geophysical Research Letters*, 48, e2021GL095457.
399 <https://doi.org/10.1029/2021GL095457>.

400 Lorentzen, K. R., J. B. Blake, U. S. Inan, and J. Bortnik (2001), Observations of relativistic
401 electron microbursts in association with VLF chorus, *J. Geophys. Res.*, 106(A4), 6017–
402 6027, doi:10.1029/2000JA003018.

403 Ma, Q., et al. (2016), Characteristic energy range of electron scattering due to plasmaspheric
404 hiss, *J. Geophys. Res. Space Physics*, 121, 11,737–11,749, doi:10.1002/2016JA023311.

405 Ma, Q., Li, W., Zhang, X.-J., Bagenal, F. (2020). Energetic electron scattering due to whistler
406 mode chorus waves using realistic magnetic field and density models in Jupiter's
407 magnetosphere. *Journal of Geophysical Research: Space Physics*, 125, e2020JA027968.
408 <https://doi.org/10.1029/2020JA027968>

409 Ma, Q., Li, W., Zhang, X.-J., Shen, X.-C., Daly, A., Bortnik, J., et al. (2021). Energetic electron
410 distributions near the magnetic equator in the Jovian plasma sheet and outer radiation belt
411 using Juno observations. *Geophysical Research Letters*, 48, e2021GL095833.
412 <https://doi.org/10.1029/2021GL095833>

413 Ma, Q., X. Chu, D. Ma, S. Huang, W. Li, J. Bortnik, and X.-C. Shen (2023), Evaluating the
414 performance of empirical models of total electron density and whistler-mode wave
415 amplitude in the Earth's inner magnetosphere, *Front. Astron. Space Sci.*, 10:1232702,
416 doi: 10.3389/fspas.2023.1232702.

417 Ma, Q., Li, W., Zhang, X.-J., Bortnik, J., Shen, X.-C., Daly, A., et al. (2024a). Generation and
418 impacts of whistler-mode waves during energetic electron injections in Jupiter's outer
419 radiation belt. *Journal of Geophysical Research: Space Physics*, 129, e2024JA032624.
420 <https://doi.org/10.1029/2024JA032624>

421 Ma, Q., W. Li, X.-J. Zhang, N. Kang, J. Bortnik, M. Qin, et al. (2024b), Dataset for "Survey of
422 Whistler-mode Wave Amplitudes and Frequency Spectra in Jupiter's Magnetosphere".
423 [Dataset], figshare, <https://doi.org/10.6084/m9.figshare.26198681>.

424 Mauk, B. H., Williams, D. J., McEntire, R. W., Khurana, K. K., and Roederer, J. G. (1999),
425 Storm-like dynamics of Jupiter's inner and middle magnetosphere, *J. Geophys. Res.*,
426 104(A10), 22759– 22778, doi:10.1029/1999JA900097.

427 Menietti, J. D., Groene, J. B., Averkamp, T. F., Horne, R. B., Woodfield, E. E., Shprits, Y. Y., de
428 Soria-Santacruz Pich, M., and Gurnett, D. A. (2016), Survey of whistler mode chorus
429 intensity at Jupiter, *J. Geophys. Res. Space Physics*, 121, 9758– 9770,
430 doi:10.1002/2016JA022969.

431 Menietti, J. D., Averkamp, T. F., Imai, M., Kurth, W. S., Clark, G. B., Allegrini, F., et al. (2020).
432 Low-latitude whistler-mode and higher-latitude Z-mode emission at Jupiter observed by
433 Juno. *Journal of Geophysical Research: Space Physics*, 126, e2020JA028742.
434 <https://doi.org/10.1029/2020JA028742>

435 Menietti, J. D., Averkamp, T. F., Kurth, W. S., Imai, M., Faden, J. B., Hospodarsky, G. B., et al.
436 (2021). Analysis of whistler-mode and Z-mode emission in the Juno primary mission.
437 *Journal of Geophysical Research: Space Physics*, 126, e2021JA029885.
438 <https://doi.org/10.1029/2021JA029885>

439 Menietti, J. D., Averkamp, T. F., Kurth, W. S., Faden, J. B., & Bolton, S. J. (2023). Survey and
440 analysis of whistler- and Z-mode emission in the Juno extended mission. *Journal of*

441 Geophysical Research: Space Physics, 128, e2023JA032037.
442 <https://doi.org/10.1029/2023JA032037>

443 Meredith, N. P., R. B. Horne, A. Sicard-Piet, D. Boscher, K. H. Yearby, W. Li, and R. M.
444 Thorne (2012), Global model of lower band and upper band chorus from multiple
445 satellite observations, *J. Geophys. Res.*, 117, A10225, doi:10.1029/2012JA017978.

446 Ni, B. B., Huang, J., Ge, Y. S., Cui, J., Wei, Y., Gu, X. D., Fu, S., Xiang, Z., and Zhao, Z. Y.
447 (2018). Radiation belt electron scattering by whistler-mode chorus in the Jovian
448 magnetosphere: Importance of ambient and wave parameters. *Earth Planet. Phys.*, 2, 1–
449 14. <http://doi.org/10.26464/epp2018001>

450 Santolík, O., D. A. Gurnett (2002), Propagation of auroral hiss at high altitudes, *Geophys. Res.*
451 Lett., 29(10), doi:10.1029/2001GL013666.

452 Santolík, O., D. A. Gurnett, J. S. Pickett, M. Parrot, and N. Cornilleau-Wehrlin (2003), Spatio-
453 temporal structure of storm-time chorus, *J. Geophys. Res.*, 108, 1278,
454 doi:10.1029/2002JA009791, A7.

455 Shprits, Y. Y., Menietti, J. D., Gu, X., Kim, K. C., and Horne, R. B. (2012), Gyroresonant
456 interactions between the radiation belt electrons and whistler mode chorus waves in the
457 radiation environments of Earth, Jupiter, and Saturn: A comparative study, *J. Geophys.*
458 Res., 117, A11216, doi:10.1029/2012JA018031.

459 Stix, T. H. (1992). Waves in plasmas, American Institute of Physics, ISBN 0883188597

460 Sulaiman, A. H., Hospodarsky, G. B., Elliott, S. S., Kurth, W. S., Gurnett, D. A., Imai, M., et al.
461 (2020). Wave-particle interactions associated with Io's auroral footprint: Evidence of
462 Alfvén, ion cyclotron, and whistler modes. *Geophys. Res. Lett.* 47, e2020GL088432.
463 doi:10.1029/2020gl088432

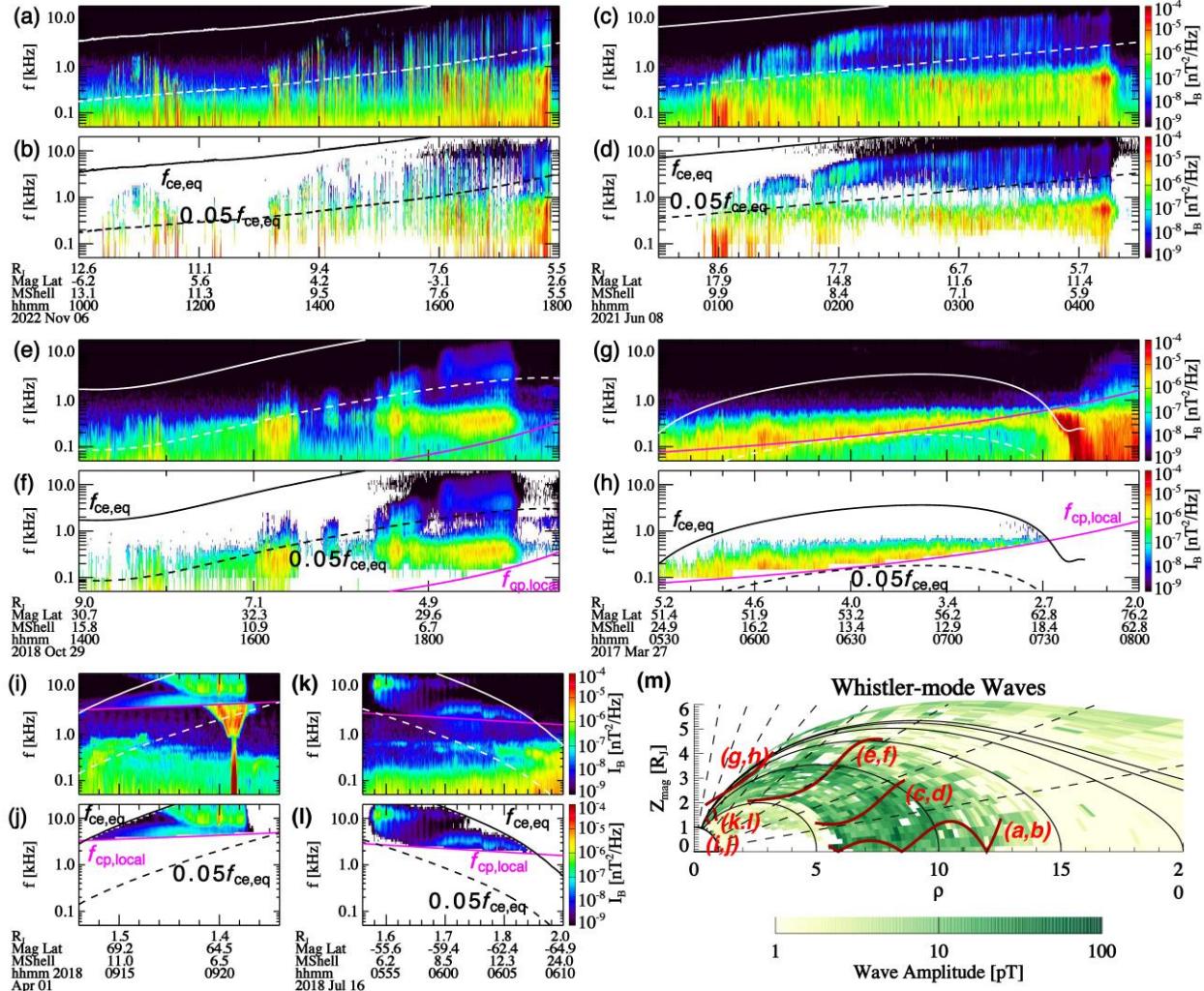
464 Sulaiman, A. H., Mauk, B. H., Szalay, J. R., Allegrini, F., Clark, G., Gladstone, G. R., et al.
465 (2022). Jupiter's low-altitude auroral zones: Fields, particles, plasma waves, and density
466 depletions. *Journal of Geophysical Research: Space Physics*, 127, e2022JA030334.
467 <https://doi.org/10.1029/2022JA030334>

468 Szalay, J. R., Allegrini, F., Bagenal, F., Bolton, S. J., Bonfond, B., Clark, G., et al. (2020). A new
469 framework to explain changes in Io's footprint tail electron fluxes. *Geophys. Res. Lett.* 47
470 (18), e2020GL089267. doi:10.1029/2020gl089267

471 Thorne, R. M., B. Ni, X. Tao, R. B. Horne, and N. P. Meredith (2010), Scattering by chorus
472 waves as the dominant cause of diffuse auroral precipitation, *Nature*, 467, 943–946,
473 doi:10.1038/nature09467.

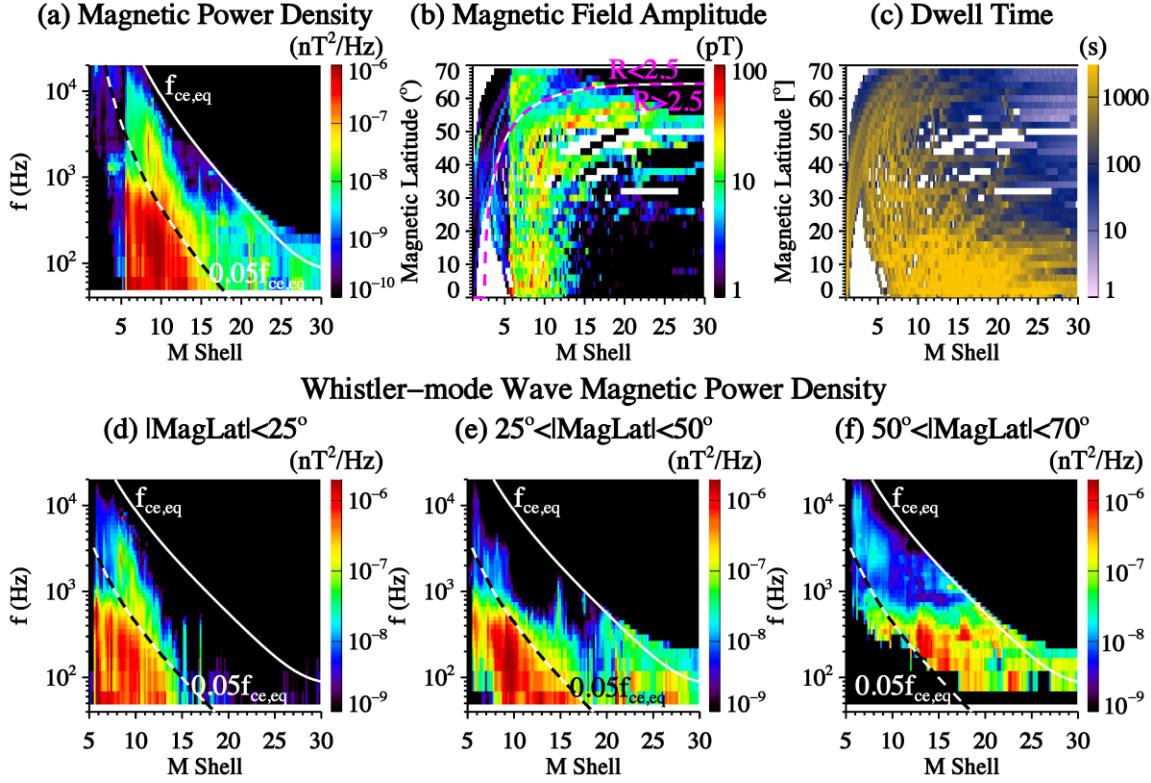
474 Thorne, R. M., W. Li, B. Ni, Q. Ma, J. Bortnik, L. Chen, D. N. Baker, H. E. Spence, G. D.
475 Reeves, M. G. Henderson, C. A. Kletzing, W. S. Kurth, G. B. Hospodarsky, J. B. Blake,
476 J. F. Fennell, S. G. Claudepierre, and S. G. Kanekal (2013), Rapid local acceleration of
477 relativistic radiation-belt electrons by magnetospheric chorus, *Nature*, 504, 411-414,
478 doi:10.1038/nature12889.

479 Tomás, A. T., J. Woch, N. Krupp, A. Lagg, K.-H. Glassmeier, and W. S. Kurth (2004), Energetic
480 electrons in the inner part of the Jovian magnetosphere and their relation to auroral
481 emissions, *J. Geophys. Res.*, 109, A06203, doi:10.1029/2004JA010405.


482 Wang, K., R. M. Thorne, and R. B. Horne (2008), Origin of Jovian hiss in the extended Io torus,
483 *Geophys. Res. Lett.*, 35, L16105, doi:10.1029/2008GL034636.

484 Woodfield, E. E., R. B. Horne, S. A. Glauert, J.D. Menietti, and Y. Y. Shprits (2013), Electron
485 acceleration at Jupiter: input from cyclotron-resonant interaction with whistler-mode
486 chorus waves, *Ann. Geophys.*, 31, 1619-1630, doi:10.5194/angeo-31-1619-2013.

487 Woodfield, E. E., Horne, R. B., Glauert, S. A., Menietti, J. D., and Shprits, Y. Y. (2014), The
488 origin of Jupiter's outer radiation belt, *J. Geophys. Res. Space Physics*, 119, 3490- 3502,
489 doi:10.1002/2014JA019891.


490 Xiao, F., Thorne, R. M., Gurnett, D. A., and Williams, D. J. (2003), Whistler-mode excitation
491 and electron scattering during an interchange event near Io, *Geophys. Res. Lett.*, 30,
492 1749, doi:10.1029/2003GL017123, 14.

493

Figures and Captions

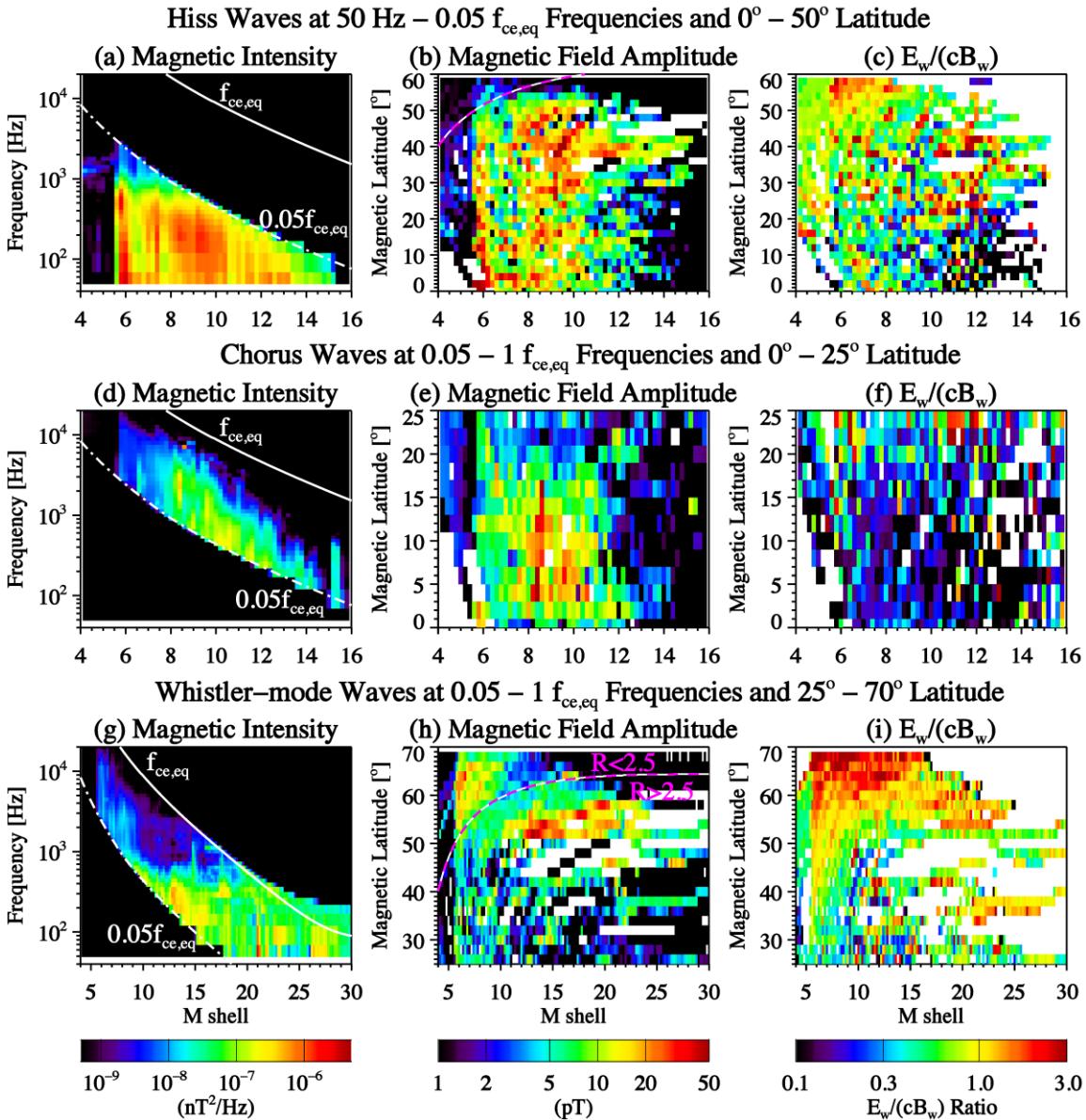
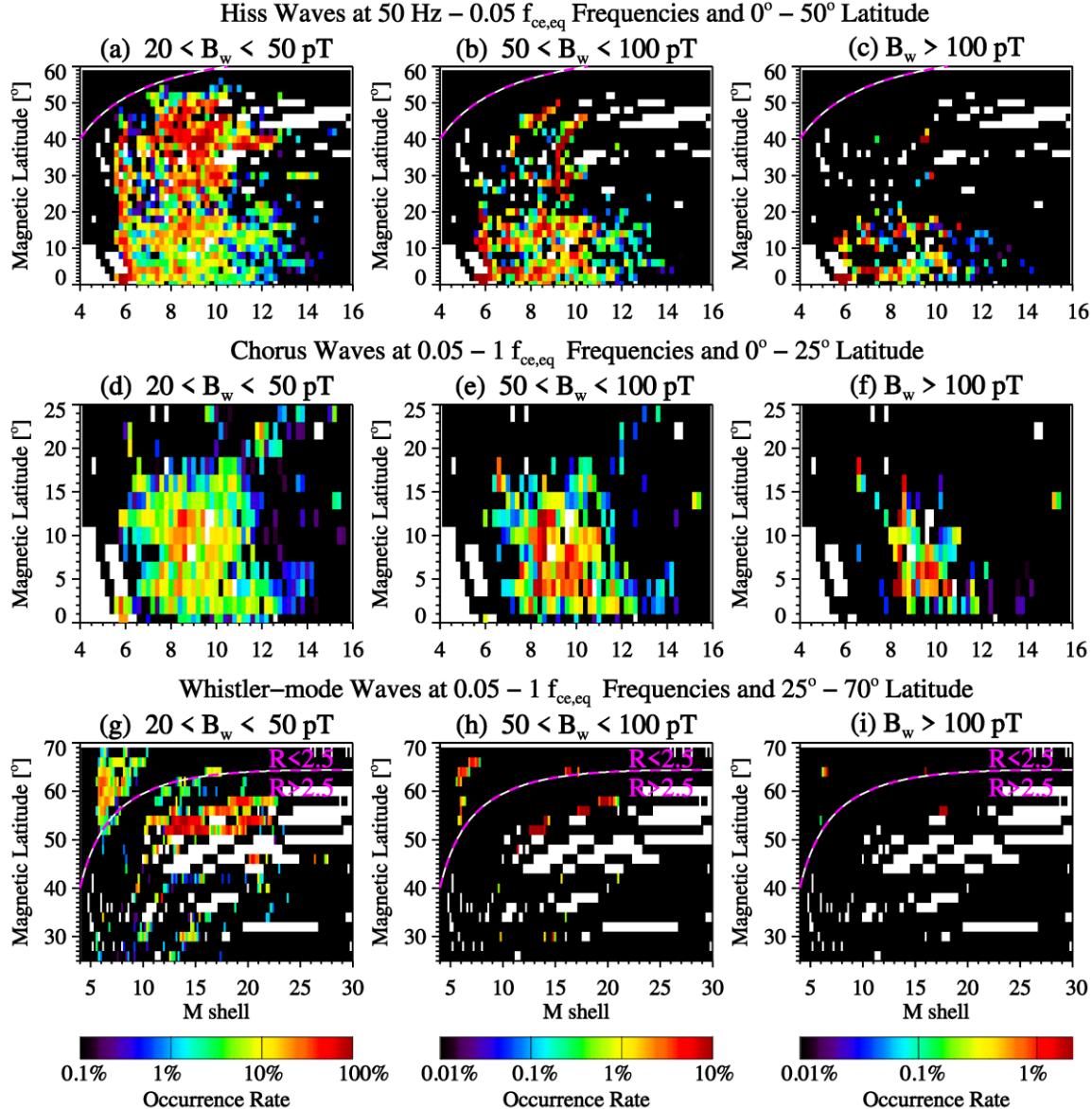
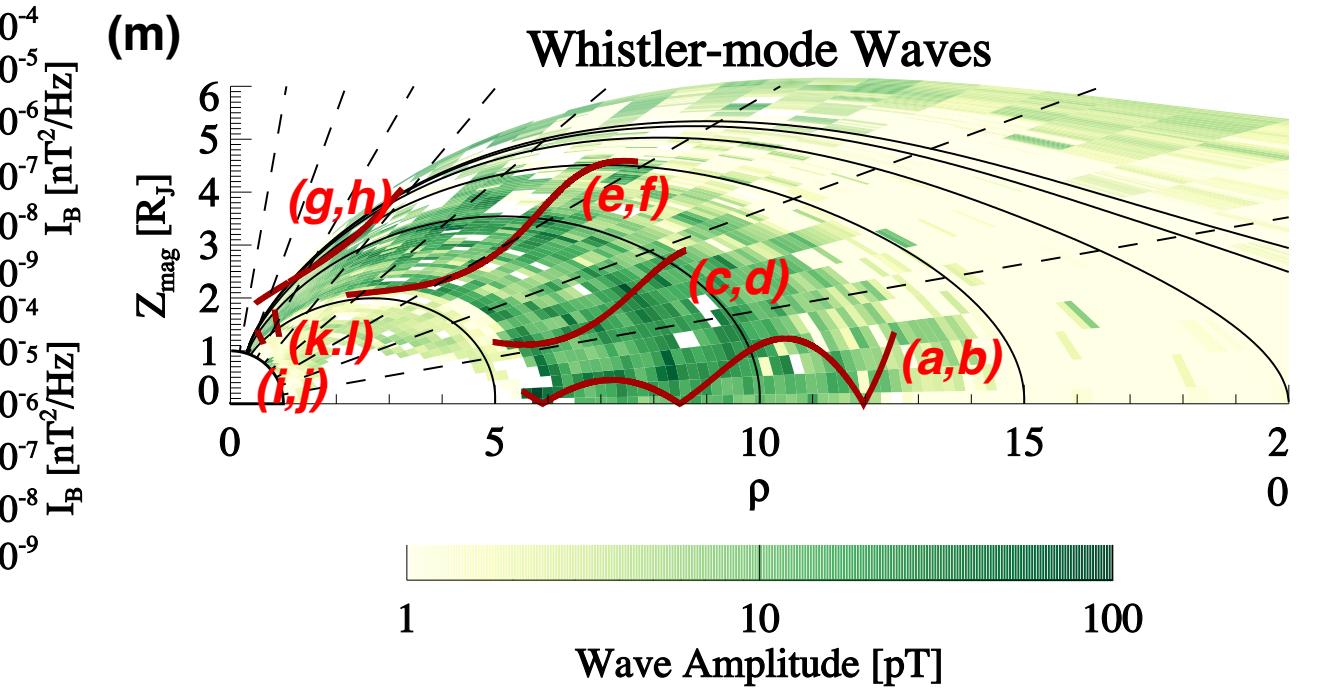
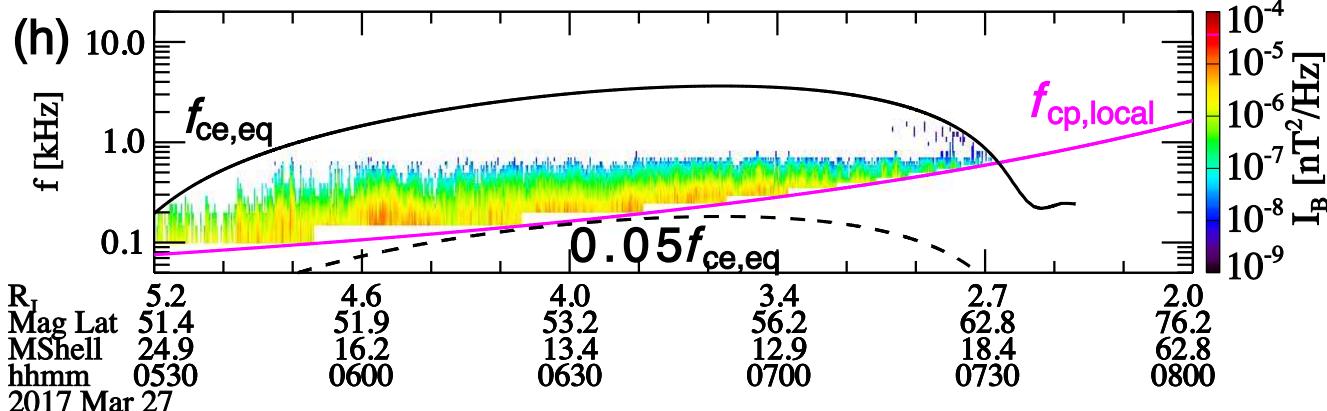
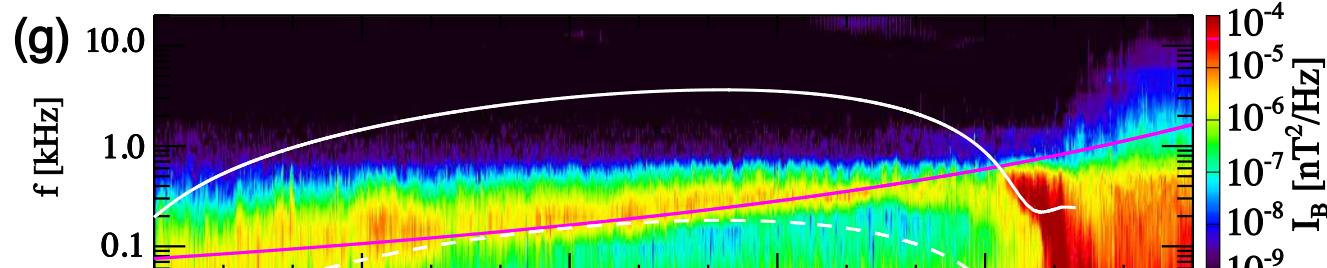
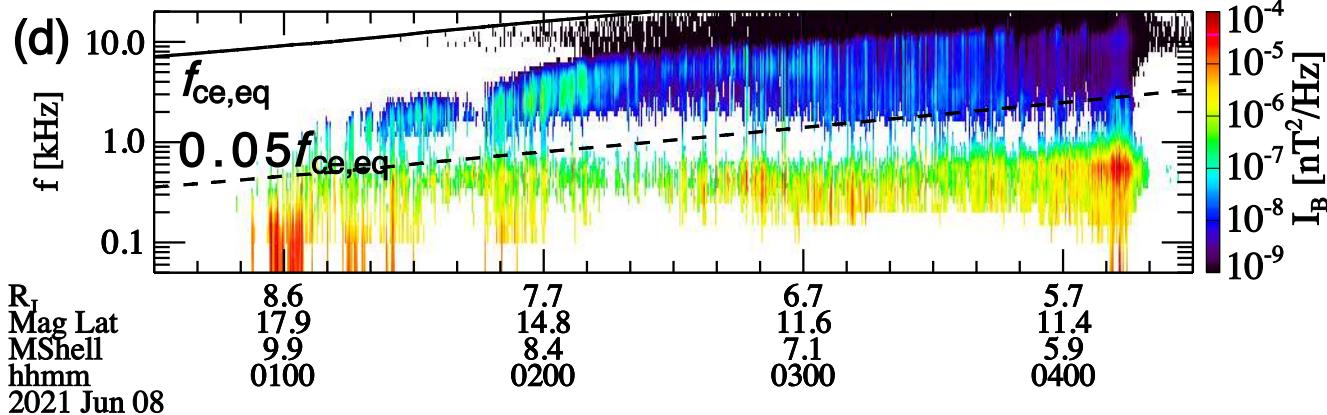
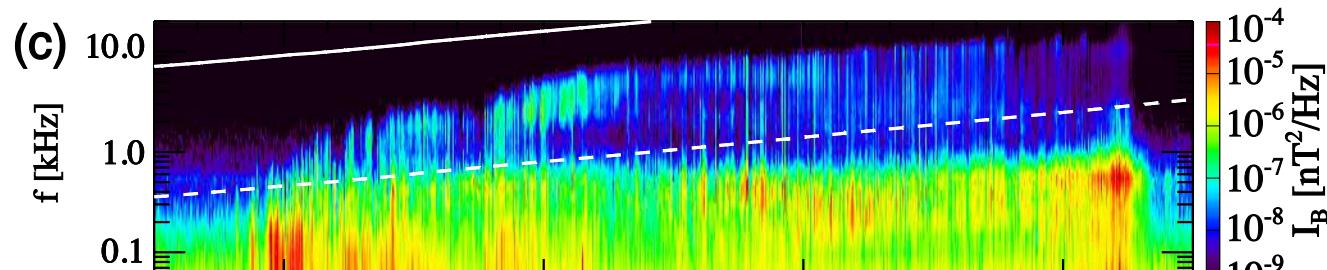
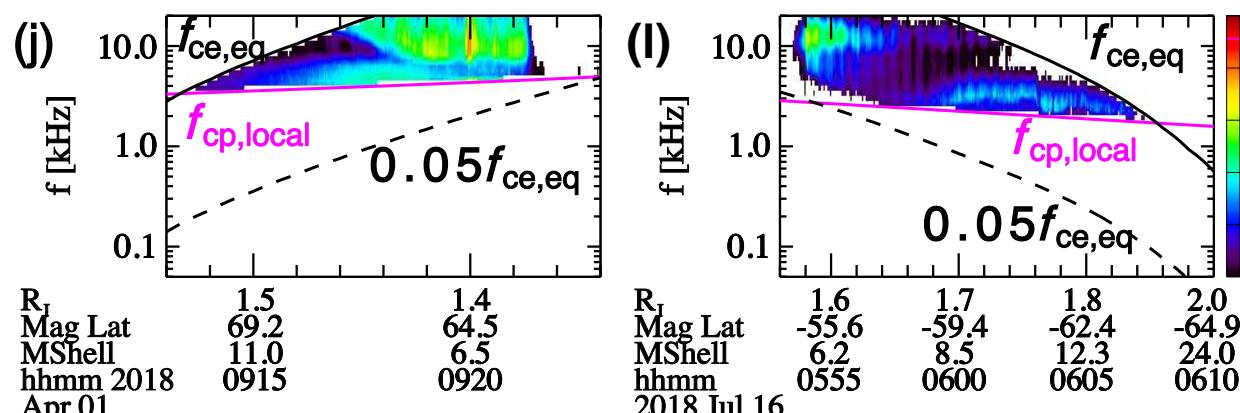
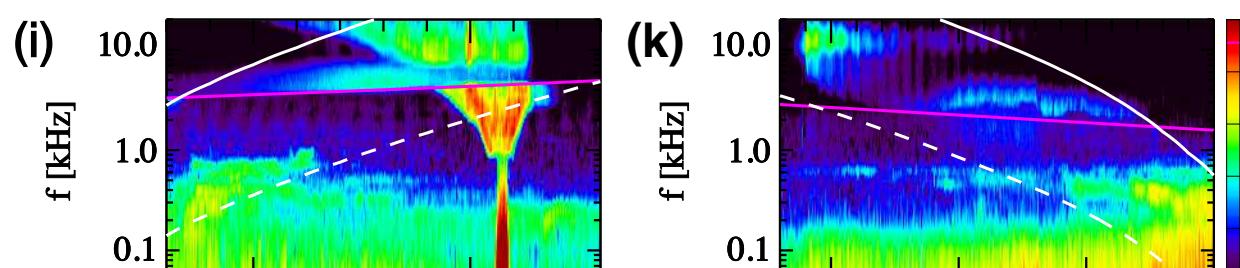
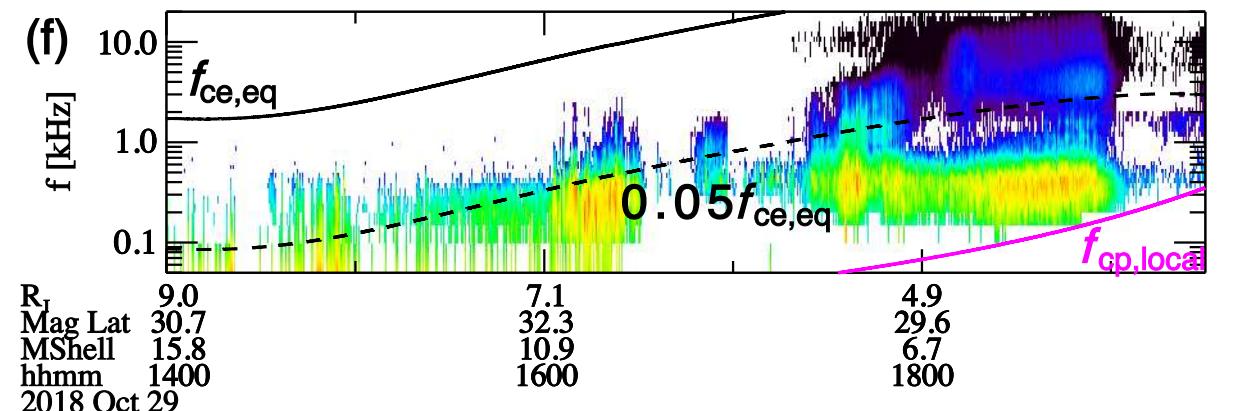
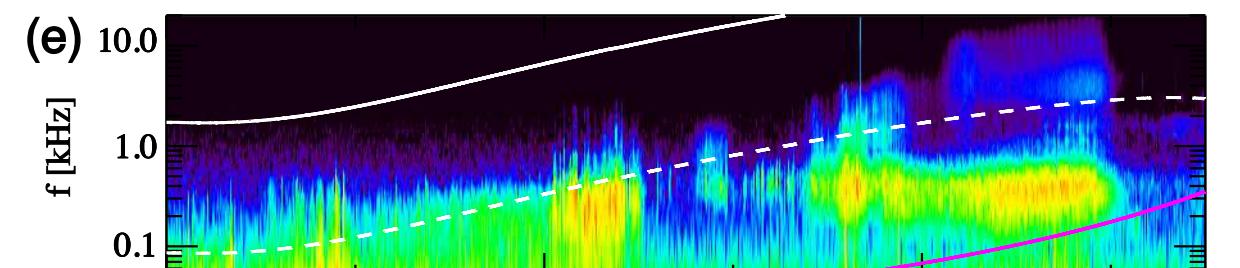
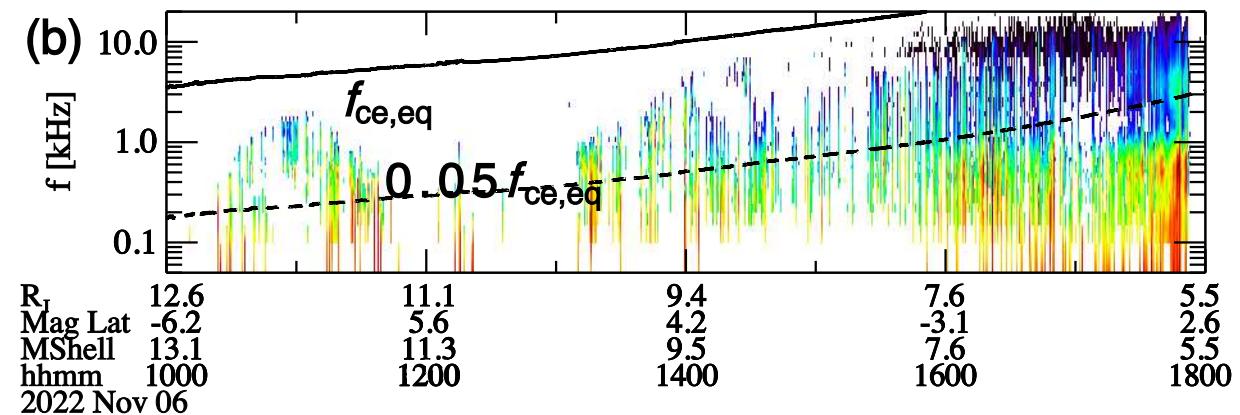
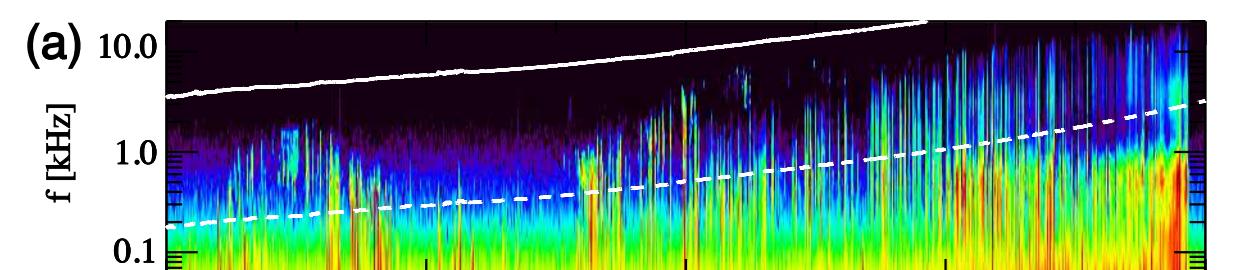

494

Figure 1. Examples of different types of whistler-mode waves observed at different locations by Juno. (a) Wave magnetic field power spectrogram at 50 Hz – 20 kHz frequencies measured by the Waves instrument at $|\text{MagLat}| \sim 0^\circ\text{--}10^\circ$; (b) selected whistler-mode waves; (c-l) same as (a-b) but observed during the events at $\text{MagLat} \sim 10^\circ\text{--}20^\circ$, $\text{MagLat} \sim 20^\circ\text{--}40^\circ$, $\text{MagLat} > 50^\circ$ and $R > 2.5$, $\text{MagLat} > 50^\circ$ and $R < 1.5$, and $|\text{MagLat}| > 50^\circ$ and $1.5 < R < 2$, respectively. In the upper (or lower) panels of each event, the white (or black) solid, magenta solid, and white (or black) dashed lines are $f_{\text{ce,eq}}$, $f_{\text{cp,local}}$, and $0.05f_{\text{ce,eq}}$ frequencies, respectively. (m) RMS magnetic amplitudes of whistler-mode waves, overplotted with the Juno trajectories during the events displayed in panels (a-l).

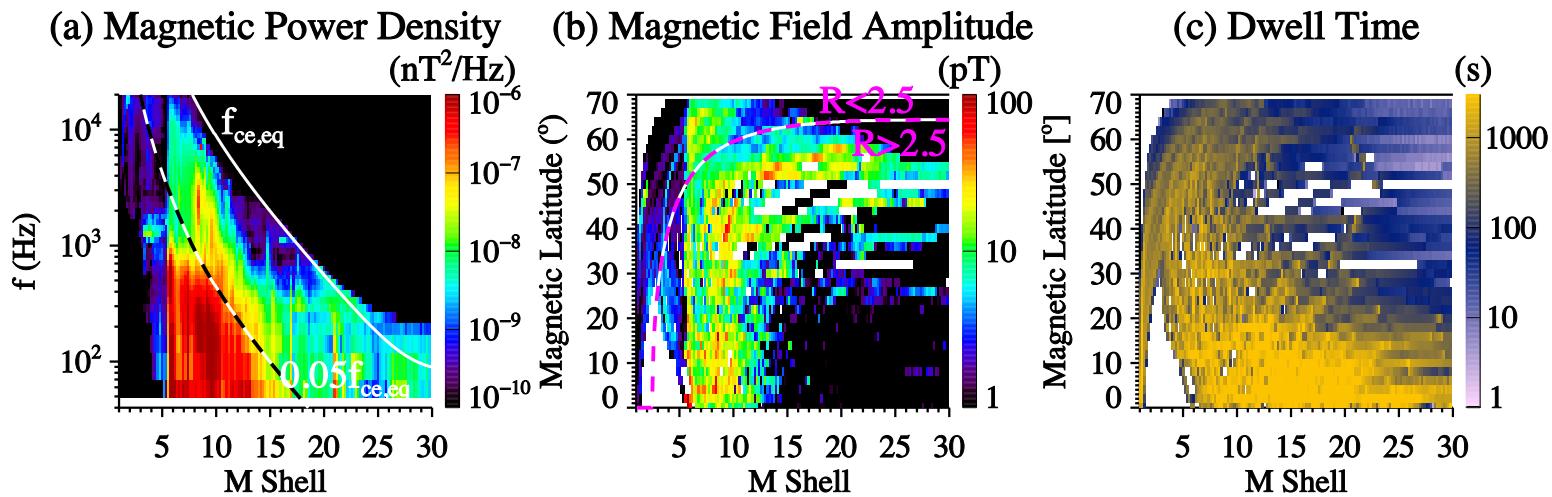


504

505 **Figure 2.** Statistical distribution of whistler-mode wave frequency spectra and wave amplitude
 506 distributions. (a) Average power spectral densities of whistler-mode waves at 50 Hz – 20 kHz
 507 frequencies at $M < 30$; (b) RMS wave amplitude distribution of whistler-mode waves over
 508 $f_{cp,local} < f < f_{ce,eq}$ frequencies as a function of M shell and $|\text{MagLat}|$; (c) data sampling
 509 distribution; (d-f) same as panel (a) but for different latitudinal ranges. The white solid and
 510 white-black dashed lines in (a, d, e, f) are $f_{ce,eq}$ and $0.05 f_{ce,eq}$ frequencies from JRM33 and
 511 CON2020 magnetic field models. The white-magenta dashed line in (b) is the $R = 2.5$ line.

513 **Figure 3.** Statistical distributions of hiss, chorus, and high-latitude whistler-mode wave
 514 frequency spectra and amplitudes. (a) Average wave power spectral densities as a function of
 515 frequency and M shell, (b) RMS wave amplitudes as a function of $|\text{MagLat}|$ and M shell, and (c)
 516 wave electric to magnetic field amplitude ratio (E_w/cB_w) of hiss waves at 50 Hz – $0.05f_{ce,eq}$
 517 frequencies and $|\text{MagLat}| \sim 0^\circ$ – 50° ; (d-f) same as (a-c) but for chorus waves at 0.05 – $0.5f_{ce,eq}$
 518 frequencies and $|\text{MagLat}| \sim 0^\circ$ – 25° ; (g-i) same as (a-c) but for high-latitude whistler-mode waves
 519 at $0.05f_{ce,eq}$ – $f_{ce,eq}$ frequencies.



521 **Figure 4.** Amplitude occurrence rate distributions of hiss, chorus, and high-latitude whistler-
 522 mode waves. (a-c) Occurrence rates of hiss waves with amplitudes of 20–50 pT, 50–100 pT, and
 523 >100 pT, respectively. (d-f) Same as (a-c) but for chorus waves. (g-i) Same as (a-c) but for high-
 524 latitude whistler-mode waves at $0.05 f_{ce,eq}$ – $1 f_{ce,eq}$ frequencies. The white-magenta dashed lines
 525 in the top and bottom rows represent $R = 2.5$.

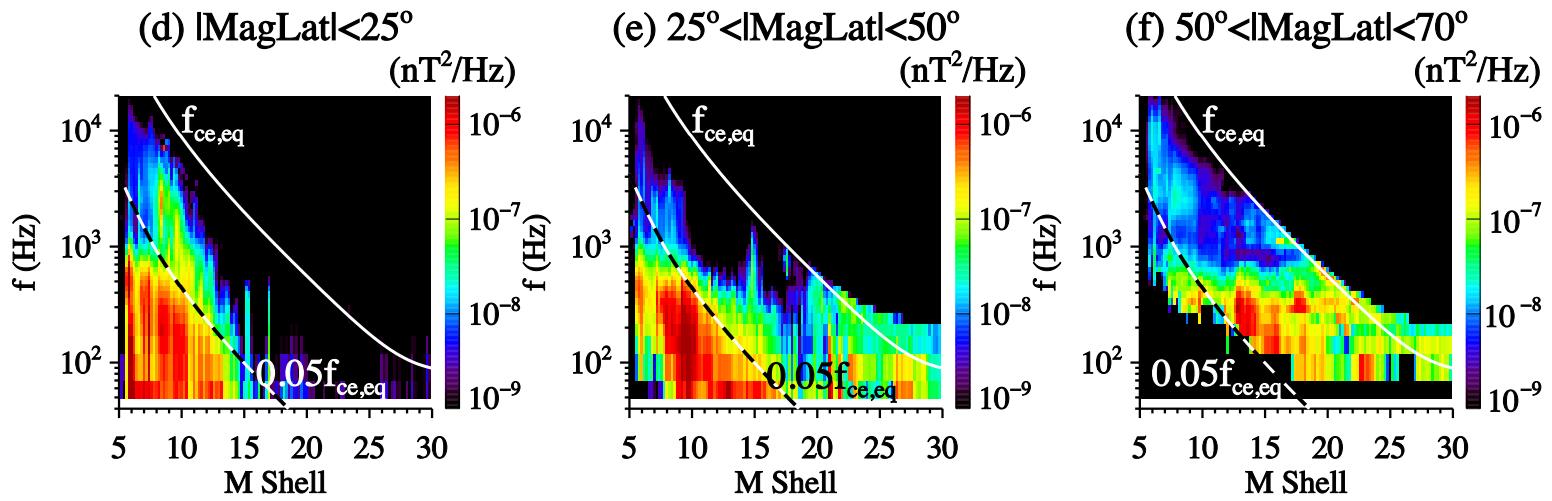
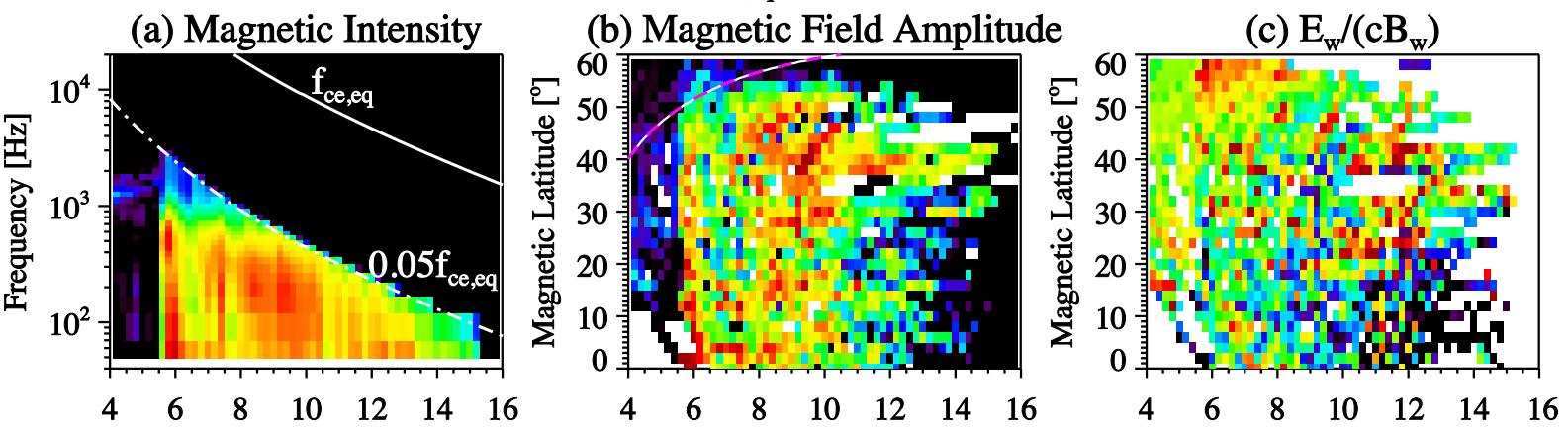

Figure 1.

Figure 2.



Whistler-mode Wave Magnetic Power Density

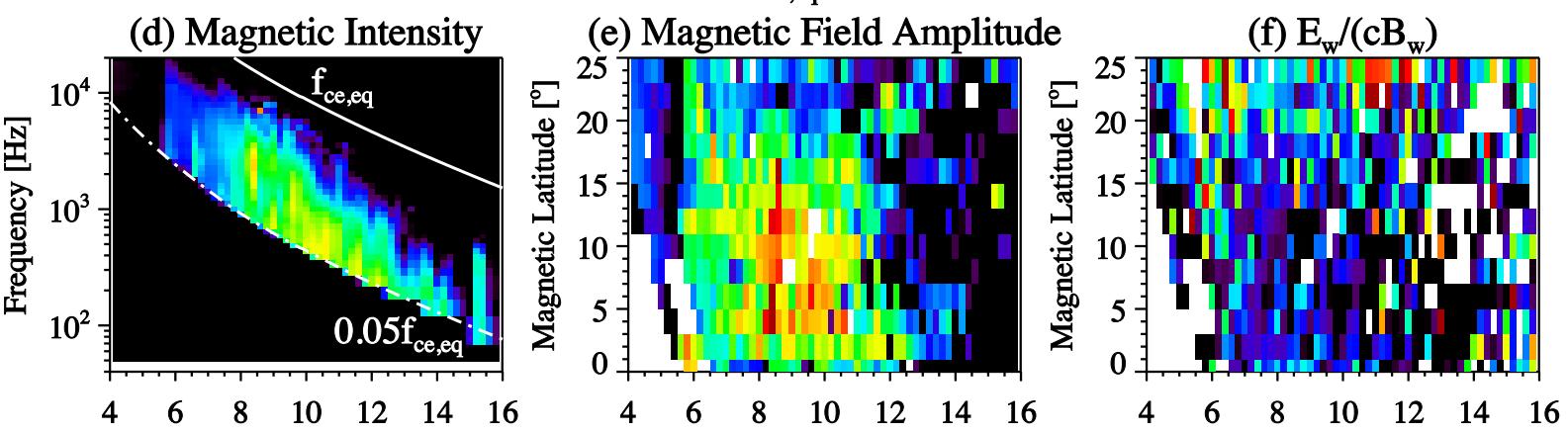
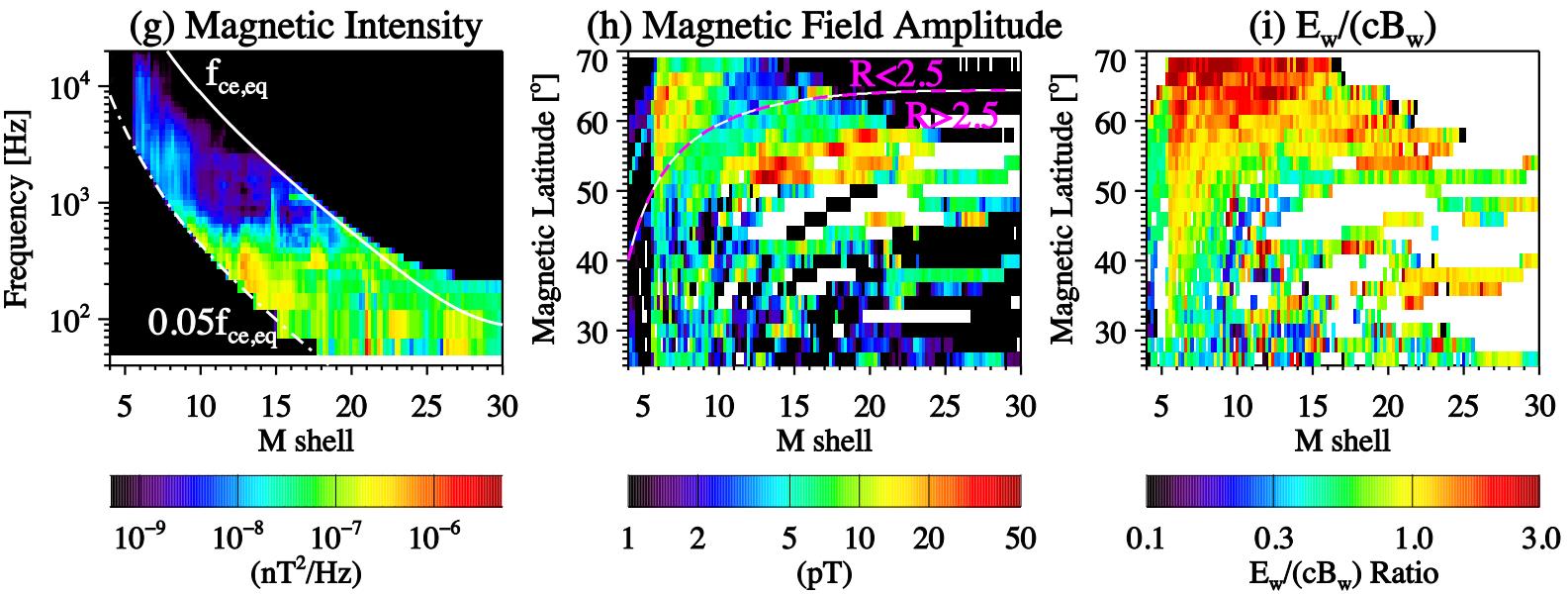
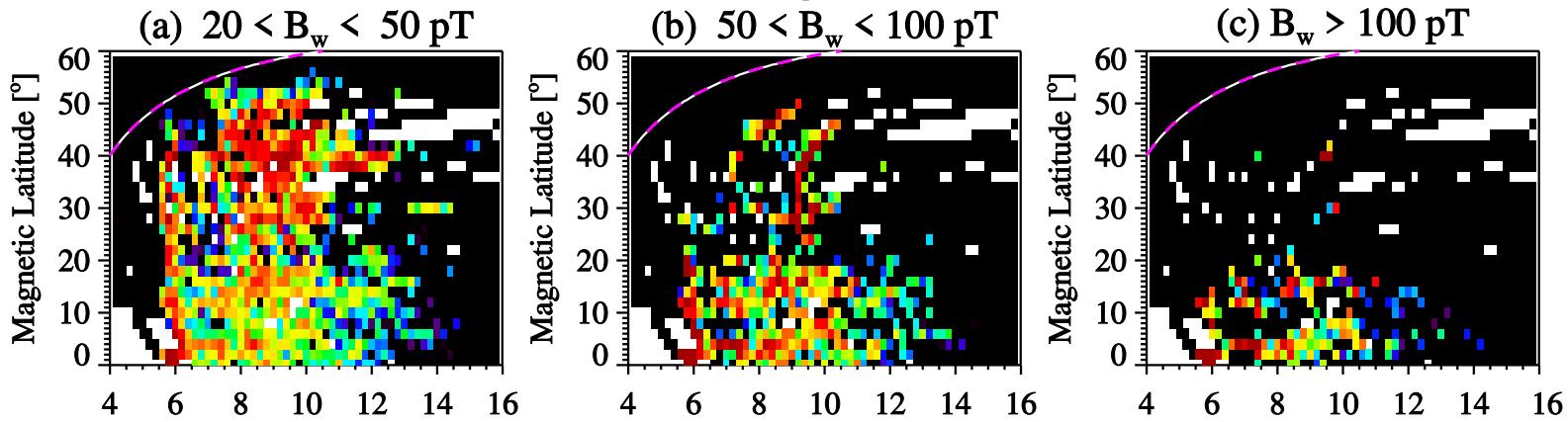


Figure 3.


Hiss Waves at 50 Hz – $0.05 f_{ce,eq}$ Frequencies and 0° – 50° Latitude

Chorus Waves at 0.05 – $1 f_{ce,eq}$ Frequencies and 0° – 25° Latitude



Whistler-mode Waves at 0.05 – $1 f_{ce,eq}$ Frequencies and 25° – 70° Latitude

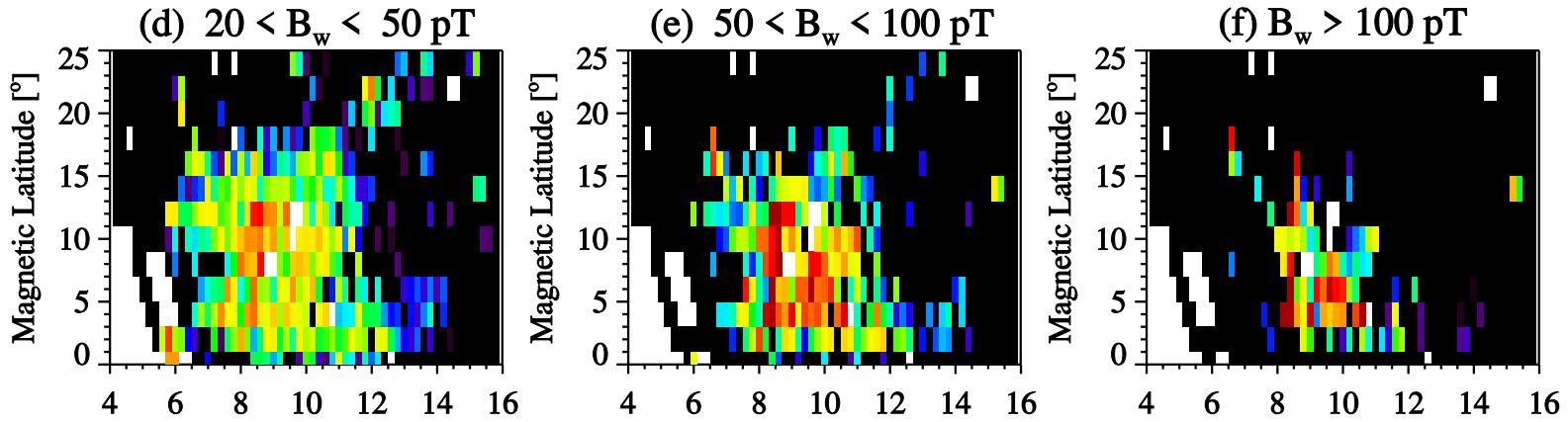
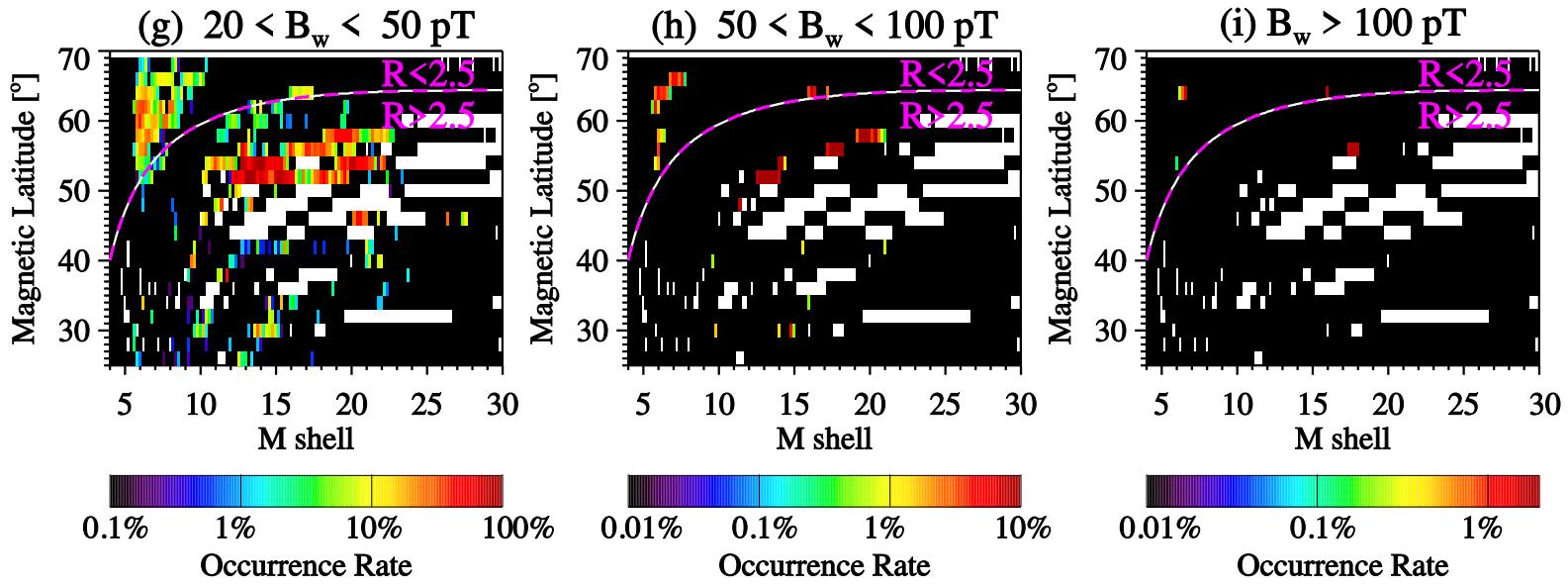


Figure 4.


Hiss Waves at 50 Hz – $0.05 f_{ce,eq}$ Frequencies and 0° – 50° Latitude

Chorus Waves at 0.05 – $1 f_{ce,eq}$ Frequencies and 0° – 25° Latitude

Whistler-mode Waves at 0.05 – $1 f_{ce,eq}$ Frequencies and 25° – 70° Latitude

