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Key Points:

e Our statistical survey indicates that interchange events occur over L (or M)-shells~6-26 at
Jupiter with a peak occurrence rate at M~17.

¢ During interchange events, various types of plasma waves are intensified, each exhibiting
a distinct preferential location.

e The duration and the corresponding spatial extent of interchange events are analyzed for
multiple events.

Abstract

Interchange instability is known to drive fast radial transport of electrons and ions in
Jupiter’s inner and middle magnetosphere. In this study, we conduct a statistical survey to
evaluate the properties of energetic particles and plasma waves during interchange events using
Juno data from 2016 to 2023. We present representative examples of interchange events
followed by a statistical analysis of the spatial distribution, duration and spatial extent. Our
survey indicates that interchange instability is predominant at M-shells from 6 to 26, peaking
near 17 with an average duration of minutes and a corresponding M-shell width of <~0.05.
During interchange events, the associated plasma waves, such as whistler-mode, Z-mode, and
electron cyclotron harmonic waves exhibit a distinct preferential location. These findings provide
valuable insights into particle transport and the source region of plasma waves in the Jovian
magnetosphere, as well as in other magnetized planets within and beyond our solar system.

Plain Language Summary

The radial transport of plasma around a magnetized planet is crucial for understanding
the underlying magnetospheric dynamics. Jupiter’s magnetospheric dynamics are primarily
dominated by the rapid rotation and plasma source from lo. This rapid rotation drives the
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interchange instability, where hot, low-density plasma is moved towards the inner
magnetosphere. During this process, the inward moving flux tube builds up magnetic pressure,
potentially leading to the trapping of particles alongside plasma waves. In this study, we present
several typical examples of interchange events, and conduct a statistical analysis to explore their
spatial distribution, duration and spatial extent, as well as the typical features of the associated
plasma waves. This survey provides insights into mass transport, the source of these plasma
waves in Jupiter’s magnetosphere, with potential implications for other magnetized planets
within and beyond our solar system.

1 Introduction

Interchange instability can occur through a local gradient in flux tube content, driven by
centrifugal force from a rapidly rotating magnetosphere (Southwood & Kivelson 1987, 1989;
Thomsen, 2013). This instability plays an important role in mass and plasma transport in
Jupiter’s magnetosphere, driving magnetic flux tubes containing cold dense plasma in the inner
magnetosphere to interchange with more distant flux tubes of hot tenuous plasma (Bagenal et al.,
2011; Dumont et al., 2014). Modeling demonstrates that this instability influences the radial
transport of plasma from 10-20 R; (Jupiter Radii) and affects the magnetopause standoff distance
(Feng et al., 2023; Tanaka et al., 2023). This instability also occurs at Saturn and has the
potential to occur in planetary systems beyond our solar system (Tilley et al., 2016). Interchange
“injections” can be distinguished from large-scale transport related to reconnection processes in
the magnetotail based on event location or the instability’s driving mechanism (Mitchell et al.,
2015; Azari, 2020).

The Galileo spacecraft first observed interchange at Jupiter in 1997. The spacecraft
detected flux tubes characterized by low mass content, whistler-mode wave intensification, a
rapid increase in magnetic field strength, and an enhancement of electron flux from 15 to 300
keV (Bolton et al., 1997; Kivelson et al., 1997; Thorne et al., 1997). Sharp gradients in magnetic
field strength at the edge of the flux tube are associated with variations in plasma pressure and
are expected to influence local energetic particle drifts (André et al., 2005, 2007; Lai et al.,
2016). The drifts of these bouncing particles can be used to estimate the age, speed, and source
region of interchange events (Burch et al., 2005; Hill et al., 2005; Paranicas et al., 2020; Rymer
et al., 2009; Yin et al., 2023).

Recent studies at Jupiter identified interchange injections associated with Electron
Cyclotron Harmonic (ECH), whistler-mode, and Z-mode waves (Daly et al., 2023; Kurth et al.,
2023). ECH waves are observed between the harmonics of the electron gyrofrequency (fc), with
their excitation mechanism attributed to the loss-cone instability of hot plasmas in the presence
of cold background plasmas, often satisfied in injection regions (Ashour-Abdalla & Kennel,
1978; Horne et al., 2003; Kennel et al., 1970; Zhang & Angelopoulos, 2014). Joseph et al. (2023)
found that ECH waves occur near the lo torus (associated with interchange injections) or the
equatorial region of the middle magnetosphere. Whistler-mode waves are electromagnetic
emissions between the electron and proton gyrofrequencies, generated near the equator from an
anisotropic distribution of plasma sheet electrons (Hospodarsky et al., 2012; Kennel, 1966; Li et
al., 2008). These waves have been observed from the equator to high magnetic latitudes over M-
shells of 6-13 (Li et al., 2020; Menietti et al., 2021), where M-shell is defined as the radial
distance from the equatorial crossing of a magnetic field line to the center of Jupiter in Jovian
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radii. Z-mode waves are electromagnetic emissions confined between the left-hand cutoff
frequency and the upper hybrid frequency, likely generated through the electron cyclotron maser
instability (Wu & Lee, 1979; Yoon et al., 1998). Z-mode waves are typically observed near the
polar region (Kasier et al., 1993) and at middle latitudes at M-shell<~10 (Menietti et al., 2021),
with a possible source near the outer and inner edges of the lo torus (Menietti et al., 2023).
During interchange events, the modified distributions of electrons are highly anisotropic, thus are
conductive to wave growth (Daly et al., 2023). Such wave growth can induce electron pitch
angle scattering and precipitation through resonant interactions (e.g., Bhattacharya et al., 2005;
Horne & Thorne, 1998; Li et al., 2021, 2023; Ni et al., 2012; Xiao et al., 2003).

While individual interchange events have been reported at Jupiter, a systematic survey on
their occurrence and associated wave and particle properties remains limited. In the present
study, we conduct a statistical analysis of interchange events using Juno data (Bolton, 2010) to
determine their occurrence rate, spatial location, duration, instability source region, and
properties of associated plasma waves, including ECH, whistler-mode, and Z-mode waves.

2 Juno Data and Event Selection

Juno’s instruments, which measure particles, plasma waves, and magnetic fields, are
crucial for analyzing the characteristics of energetic particles and plasma waves during
interchange events. We use data from the Waves instrument (Kurth et al., 2017) to analyze
plasma wave properties. To identify relevant wave modes, cyclotron frequencies are calculated
based on in situ magnetic field measurements from the Magnetic Field Investigation instrument
(Connerney et al., 2017). Particle data are collected by the Jovian Auroral Distributions
Experiment (JADE) instrument (McComas et al., 2017) for ~50 eV-100 keV electrons and the
Jupiter Energetic Particle Detector Instrument (JEDI) for ~25 keV—1 MeV electrons (Mauk et al.,
2017).

Interchange events are identified based on electron fluxes measured by JADE and JEDI
and magnetic field measurements at 3<M<30. Detailed identification methods are presented in
Supporting Information Text S1. These criteria identified 87 clear interchange events. It is worth
noting that conditions for magnetically depressed flux tubes were also explored, but no clear
events were identified, in contrast to findings at Saturn (Lai et al., 2016). To enrich the dataset
and identify potential events that may have been missed due to possibly restrictive criteria, we
developed a deep neural network classifier (detailed in Text S2). The 87 events were used to
create training, test, and validation datasets for a fully connected neural network model which
learns the patterns in the events and identifies interchange events beyond those described in Text
S1. By using this approach, 20 additional events were identified. The analysis presented in this
study includes all 107 interchange events. This dataset is not unique or complete and depends on
the model and the original 87 events used for training.

3 Statistical Results
3.1 Juno Observation of Interchange Events

Figure 1 illustrates three examples of interchange events, each associated with a different
type of plasma wave. Particle and wave measurements were recorded for the first event on 06
September 2018 (perijove 15 or PJ-15), revealing two events over 19:10:20-19:11:13 UT and
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19:13:27-19:14:22 UT, referred to as interval 1 and interval 2 henceforth. Both events were
observed alongside Z-mode wave intensification at M-shell~9.6, magnetic latitude (MLat)~20.8°,
and magnetic local time (MLT) of 1.6h. Interval 1 includes two closely spaced events, indicated
by changes in magnetic field strength and electron flux (Figures la, b), which are treated as a
single event due to their proximity. During these events, the magnetometer detected rapid
changes in magnetic field strength (dB/dt) of 0.94 and 0.75 nT/s at the start of the first and
second intervals, and -1.0 and -0.80 nT/s at the end of each interval (Figure la). The JEDI
instrument observed a rapid increase in electron flux along with a slight energy dispersion likely
due to gradient and curvature drifts (Figure 1b). The JADE instrument also detected variations in
electron flux (Figure 1c¢), albeit less prominently compared to the JEDI measurements, possibly
owing to the lower time resolution of the instrument during this interval. The JEDI instrument
revealed increases in electron flux at 33 keV (Figure 1e) while the change is unclear from JADE
at 90 eV (Figures 1d). During both events, electric wave emissions, identified as Z-mode waves,
were detected with the lower cutoff at the left-hand cutoff frequency (f o) and the upper cutoff
below the plasma frequency (f,.), as expected for left-hand polarized Z-mode waves (Figures 1f,
g). The modeled plasma frequency (fpe m), derived from the empirical 2D density model
(Dougherty et al., 2017), is included for intervals outside the event. Intensifications outside of the
event between f.. and 2f.. are likely ECH waves (Figure 1f), which disappeared inside of the
event, possibly due to changes in hot and cold electron density (Ashour-Abdalla and Kennel,

1978; Joseph et al., 2023). Based on fp. = 8980 \/n, Hz, the density (#.) inside intervals 1 and

2 is approximately 1.15 cm™, compared to the modeled density outside the event (~15 cm™),
indicative of an inward moving flux tube (Bolton et al., 1997).

The second example of two interchange events is associated with whistler-mode wave
intensifications. These events were recorded on 16 October 2021 (PJ-37), spanning 02:27:27-
02:30:05 and 02:30:59-02:33:20 UT. These events occurred at M~16.7, MLat~-10°, and
MLT~1.4h. Within these events, the JEDI instrument detected a rapid increase in electron flux
(Figure 1i), while the JADE instrument revealed a rapid decrease in electron flux (Figure 1j).
The pitch angle distribution of both high and low energy electrons appears nearly isotropic both
inside and outside the event (Figure 1k, 1). The intensification of wave electric spectral density
below f.. is likely attributed to oblique whistler-mode chorus waves (Figure Im), as no
appreciable wave power was detected in the magnetic spectral density (Figure 1n).

The final interchange event example is associated with ECH waves. This period also
reveals two close interchange events on 15 April 2021 (PJ-33) at M~15.2, MLat~-1°, and
MLT~21.4h, occurring over 08:18:05-08:19:25 and 08:20:09-08:21:22 UT. Similar to previous
examples, high-energy electrons exhibit a slight enhancement in flux (Figure 1p), while the low-
energy electrons demonstrate a rapid dropout in flux (Figure 1q). The resultant pitch angle
distribution of electrons at 33 keV is primarily field aligned (Figure 1s), while the 45 eV
electrons are nearly isotropic (Figure Ir). While there is no noticeable wave magnetic
intensification (Figure 1u), ECH waves are intensified within the interchange events (Figure 1t).
The first interval exhibits intensifications in the first three harmonics of f.., while the second
interval primarily shows an intensification in the first harmonic.

Each of these interchange events are indicative of inward radial transport, which is
suggested by the total electron density decrease inferred from the f;. during the Z-mode event or
calculated from the JADE flux during the whistler-mode and ECH associated events. Additional
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interchange events detected by Juno can be found in Daly et al. (2023), Kurth et al. (2023), or in
the data availability statement.

3.2 Distribution of interchange events in M, MLat, and MLT

We evaluated the distribution of interchange events from PJ 01 to PJ 51 spanning July
2016 to May 2023. Figure 2 shows the distributions of these events in M-shell, MLat, and MLT,
along with associated plasma waves within the events. In Figure 2a, we examine the interchange
events in M-shell versus MLat domain, where events associated with Z-mode waves are marked
as orange triangles, whistler-mode waves as red squares, ECH waves as green diamonds, and
events with no plasma waves as open black circles. The count rate or the number of identified
interchange events is shown for both M-shell (bin size of 2) over 6<M<26, and MLat (bin size of
5°) over -20°<MLat<45°. Our observations include 107 distinct interchange events, with a peak
count rate occurring near M~17.5 within 5° of the magnetic equator. These observations align
with previous models (e.g., Tanaka et al., 2023) at Jupiter, where interchange instabilities
dominate over 15-20 R; and also play a role over 10-15 R;. Further information regarding the
occurrence rate of these interchange events is provided in Supporting Information Figure S1.

Z-mode wave-associated interchange events were observed as two groups across M-shells
ranging from 6.6-25.7 in the mid-latitudes (MLats of 17.1-42°), as illustrated in Figure 2a. The
first group occurred within 6<M<10, consistent with the inferred source region of Z-mode waves
being the outer edge of the o torus, as well as observations of Z-mode waves above 20° beyond
6 R; (Menietti et al., 2023). It is noteworthy that the second group of Z-mode wave associated
interchange events is distributed across M-shells of 18 to 26 at higher latitudes (>30°).

Whistler-mode wave-associated interchange events are observed across M~8.7-22.4 and
MLats of -15.8-17.1°. These observations agree with previous surveys on whistler-mode waves,
which indicate their preferential occurrence at [MLat|<50° across M-shells of 6 to 20, particularly
for whistler-mode chorus waves within |[MLat|<30° (Li et al., 2020; Menietti et al., 2023). The
source region of these waves is believed to be outside Io’s orbit and near the magnetic equator
(Menietti et al., 2023).

The interchange events associated with ECH waves are observed across M-shells from
8.7 to 17.3 and MLats from -3.8 to 15.3°. The majority of these ECH waves are distributed near
the equatorial region ([MLat|<5°), while some ECH waves are distributed at higher latitudes
(>10°). This distribution pattern agrees with recent observations of ECH waves at Jupiter (Joseph
et al., 2023), where ECH waves were intensified near the lo torus associated with interchange
injections, characterized by f,c>f.., and also observed alongside the magnetic equator in the
middle magnetosphere.

It is notable that in some interchange events, no plasma wave intensification is observed,
likely due to unfavorable plasma conditions inhibiting wave growth. The distribution of such
interchange events without changes in plasma waves ranges from M-shells of 8.7-22.5 and
[MLat| up to 20°, as marked by black circles in Figure 2a.

Figure 2b shows the M-MLT distribution of the corresponding interchange events by
merging events from all magnetic latitudes. Juno provided good coverage over the nightside
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from 2016 to 2023, while dayside coverage was limited. Z-mode wave-associated interchange
events preferentially occur in the postmidnight sector, while ECH wave-associated interchange
events tend to occur in the premidnight sector. However, whistler wave-associated events occur
in both the premidnight and postmidnight sectors. It is noteworthy that the MLT-dependence of
these events remains inconclusive due to the limited coverage and the limited number of events
in each MLT sector.

3.3 Duration and Spatial Extent

We analyze the duration of the interchange events and the corresponding widths in M-
shell (AM) of the spacecraft crossing the interchanged flux tube. The duration and AM of the first
interchange intervals are indicated as blue text on the top panel of Figure 1 for the three
examples. The reported values for the duration and AM may represent the minimum estimates,
due to the challenge of precise measurements from a moving spacecraft.

Figure 3 illustrates the duration and AM for all identified interchange events. The
scatterplot in the M-shell versus MLat domain (Figure 3a) indicates that the average duration at
lower M-shells (<15) is relatively short, with an average value of ~1.1 minutes, while the average
duration at M-shells from 15 to 26 is ~2.1 minutes. These results imply that events beyond M=15
may last longer and/or have larger spatial extent, as estimated under the assumption of rigid
corotation. Similar observations of larger-scale interchange events at greater distances have been
reported at Saturn (Azari et al., 2018; Chen et al., 2010). The MLT dependence of the duration
(Figure 3b) is unclear, with the longest event observed over 3-6 MLT.

Figure 3¢ shows the histogram of duration, revealing that ~96% of observed events last
between 20 seconds and 4 minutes, with an additional outlier at 17 minutes. This distribution is
comparable to observations at Saturn (Azari et al., 2018), which showed interchange event
durations ranging from 2 to 34 minutes, with most lasting less than 10 minutes. It is also
consistent with recent observations at Jupiter, which indicated events on the order of one minute
with temporal spacings of ~15-40 minutes between different events (Kurth et al., 2023). The
corresponding M-shell width is typically small, with |[AM|<0.05, constituting 78% of events
(Figure 3d), while |AM] can reach up to 0.6 for the longest events.

3.4 Multi-Event analysis

A multi-event analysis of interchange events associated with plasma waves is shown in
Figure 4, sorted by increasing M-shell from top to bottom. The columns, labeled as (1) Z-mode,
(2) whistler-mode, and (3) ECH, are organized by plasma wave association. The solid (dotted)
vertical magenta line indicates the start (end) of each interchange event.

Z-mode waves (Figures 4.1a-e) are observed within f; - (black) and f;. (red). The plasma
frequency is estimated from fi-o and fe through f,, = \/ fr=0(f1=0 * fce) (Gumett &
Bhattacharjee, 2005), where f:. is depicted with the solid white line. Each of these Z-mode waves
is expected to be left-hand circularly polarized or a fast mode. The average frequency bandwidth
of all observed Z-mode waves is ~0.27 f.. for events at M<I10, broader than other observed
plasma waves near the same frequency.
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The middle column shows interchange events in association with whistler-mode waves.
Narrow-band chorus waves, either upper or lower band, are observed between the marked lines
of 0.5fc. (yellow) and fc. (white) or below 0.5/, respectively. The average bandwidth of the 13
observed whistler-mode chorus events (8 not shown) is ~0.22fc.. It is interesting to note that three
whistler-mode associated events are also linked with ECH waves (Figures 4.2a-b).

The final column shows interchange events associated with ECH waves, with f.. and 2f.
indicated by the solid and dashed white lines. The first harmonic is intensified in each of these
events, with an average peak intensity of 4.6x10° V/m during all observed events. Some events
exhibit an intensification at the 2™ and/or 3™ harmonics with varying durations in wave
intensification, possibly owing to modified particle distributions during different periods of the
event.

4 Summary and Conclusions

Using wave and particle data from the Juno satellite spanning 2016 to 2023, we
conducted a statistical survey of interchange events across a vast region of Jupiter’s
magnetosphere. The main findings are summarized below.

(1) Interchange events can extend to magnetic latitudes of ~40° and M-shells ranging from 6
to ~26, with a peak occurrence rate at M~17. While the magnetic local time coverage of
Juno measurements from low to middle magnetic latitudes is limited, statistical results
reveal that interchange events occur over the entire nightside.

(2) During interchange events, various types of plasma waves are intensified, including Z-
mode, whistler-mode, and ECH waves. Z-mode wave-associated interchange events are
observed in the mid latitude range (MLat~17.1°-42°) across M-shells of 6.6-25.7. In
contrast, whistler-mode wave-associated events tend to occur near the equator (MLat~-
15.8°-17°) across M-shells of 8.7-22.4. ECH wave-associated events are observed near
the equatorial plane (MLat~-3.8°-15.3°) across M-shells of 8.7-17.3.

(3) The duration of interchange events measured by the Juno satellite is predominantly less
than 4 minutes, with the longest extending up to 17 minutes. Correspondingly, the M-
shell width ranges from 0.01 to 0.6, with the majority of interchange events having

IAM]<0.05.

(4) Each of these events indicates inward radial transport, characterized by a rapid increase
(decrease) in magnetic field strength at the onset (end), a rapid increase in hot electron
flux (1-100s of keV), a decrease in low-energy electron flux (<~100 eV), and a decrease
in total electron number density in association with plasma waves.

It is important to note that our statistical survey includes only fresh interchange events
characterized by abrupt changes in magnetic field intensity. Following the occurrence of these
fresh interchange events, the particles within the interchange flux tube undergo magnetic and
electric drift, leading to further evolution within the Jovian magnetosphere. Additionally, it may
be valuable to examine the electron flux at different energies with respect to pitch angle to
determine if trapping occurs at higher pitch angles within these flux tubes (Yin et al., 2023).
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However, there has been no clear evidence of this phenomenon occurring for electrons in this
study thus far. Moreover, it may be worthwhile to evaluate the characteristics of protons and
heavy ions during these events, as shown at Saturn (Thomsen et al., 2014).

Nonetheless, our analysis of the interchange instability and its association with electrons
and plasma waves reveals the primary locations of interchange events, the characteristics of
electrons and plasma waves, as well as the duration and spatial extent of these events. These
findings advance our understanding of interchange instability and its influence on electron
transport and plasma wave generation in the Jovian magnetosphere, as well as in other
magnetized planets within and beyond our solar system.
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Figure 1. Juno observations of energetic electrons and plasma waves for three interchange
events (marked by blue bars), where the associated plasma waves are Z-mode (left), whistler-
mode (middle), and ECH waves (right). (a) Magnetic field strength (black) and rate of change
(dB/dt, purple); (b) Energy spectrogram of electron flux from ~30 keV to ~1 MeV observed by
JEDI; (c) Energy spectrogram of electron flux from 100 eV to 30 keV observed by JADE; (d)
Pitch angle distribution of electron fluxes at 90 eV and (e) 33 keV; (f) Wave electric spectrogram
from 100 Hz-150 kHz, where the solid black line represents f; -, the solid red line is f;., the solid
orange line is the modeled plasma frequency (fpe m), the white solid line is f., and the white
dotted and dashed lines are 2f;. and 3f;..; (g) Wave magnetic spectrogram from 100 Hz-20 kHz.
(h)-(n) Similar format to panels (a)-(g) but for the whistler-mode wave event. (0)-(u) Similar
format to panels (a)-(g) but for the ECH wave event.
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Figure 2. Distribution of observed interchange events from July 2016 to May 2023. (a)
Distribution of events in M-shell and MLat. Interchange events are sorted by associated plasma
waves, with orange triangles representing Z-mode waves, red squares representing whistler-
mode waves, green diamonds representing ECH waves, and empty black circles representing no
detected plasma waves. The count rate of events is binned by M-shell width of 2 and MLat width
of 5°. (b) Distribution of events in M-shell and MLT, with binned count rate at every MLT hour.
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Figure 3. Duration of interchange events in M-shell-MLT-MLat coordinates. (a) Duration
distribution in M-shell and MLat; (b) duration distribution in M-shell and MLT; (c) histogram of
interchange event duration in minutes, with 11 bins of 30s width ranging from ~20 seconds to 6
minutes, with one outlier near 17 minutes (not shown); (d) similar format to panel (c) but shown
for the corresponding change in M-shell of the spacecraft during the interchanged flux tube
crossing (or the M-shell width of the interchange events).
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Figure 4. Multi-event analysis of plasma wave electric spectral density during interchange
events, categorized by (1) Z-mode, (2) whistler-mode, and (3) ECH waves. Zero epoch time
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Figure 2.
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Figure 3.
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Figure 4.
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