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Key Points: 16 

 Our statistical survey indicates that interchange events occur over L (or M)-shells~6-26 at 17 
Jupiter with a peak occurrence rate at M~17. 18 

 During interchange events, various types of plasma waves are intensified, each exhibiting 19 
a distinct preferential location.  20 

 The duration and the corresponding spatial extent of interchange events are analyzed for 21 
multiple events. 22 

Abstract 23 

Interchange instability is known to drive fast radial transport of electrons and ions in 24 
Jupiter’s inner and middle magnetosphere. In this study, we conduct a statistical survey to 25 
evaluate the properties of energetic particles and plasma waves during interchange events using 26 
Juno data from 2016 to 2023. We present representative examples of interchange events 27 
followed by a statistical analysis of the spatial distribution, duration and spatial extent. Our 28 
survey indicates that interchange instability is predominant at M-shells from 6 to 26, peaking 29 
near 17 with an average duration of minutes and a corresponding M-shell width of <~0.05. 30 
During interchange events, the associated plasma waves, such as whistler-mode, Z-mode, and 31 
electron cyclotron harmonic waves exhibit a distinct preferential location. These findings provide 32 
valuable insights into particle transport and the source region of plasma waves in the Jovian 33 
magnetosphere, as well as in other magnetized planets within and beyond our solar system. 34 

Plain Language Summary 35 

The radial transport of plasma around a magnetized planet is crucial for understanding 36 
the underlying magnetospheric dynamics. Jupiter’s magnetospheric dynamics are primarily 37 
dominated by the rapid rotation and plasma source from Io. This rapid rotation drives the 38 
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interchange instability, where hot, low-density plasma is moved towards the inner 39 
magnetosphere. During this process, the inward moving flux tube builds up magnetic pressure, 40 
potentially leading to the trapping of particles alongside plasma waves. In this study, we present 41 
several typical examples of interchange events, and conduct a statistical analysis to explore their 42 
spatial distribution, duration and spatial extent, as well as the typical features of the associated 43 
plasma waves.  This survey provides insights into mass transport, the source of these plasma 44 
waves in Jupiter’s magnetosphere, with potential implications for other magnetized planets 45 
within and beyond our solar system.  46 

1 Introduction 47 

Interchange instability can occur through a local gradient in flux tube content, driven by 48 
centrifugal force from a rapidly rotating magnetosphere (Southwood & Kivelson 1987, 1989; 49 
Thomsen, 2013). This instability plays an important role in mass and plasma transport in 50 
Jupiter’s magnetosphere, driving magnetic flux tubes containing cold dense plasma in the inner 51 
magnetosphere to interchange with more distant flux tubes of hot tenuous plasma (Bagenal et al., 52 
2011; Dumont et al., 2014). Modeling demonstrates that this instability influences the radial 53 
transport of plasma from 10-20 RJ (Jupiter Radii) and affects the magnetopause standoff distance 54 
(Feng et al., 2023; Tanaka et al., 2023). This instability also occurs at Saturn and has the 55 
potential to occur in planetary systems beyond our solar system (Tilley et al., 2016). Interchange 56 
“injections” can be distinguished from large-scale transport related to reconnection processes in 57 
the magnetotail based on event location or the instability’s driving mechanism (Mitchell et al., 58 
2015; Azari, 2020).  59 

The Galileo spacecraft first observed interchange at Jupiter in 1997. The spacecraft 60 
detected flux tubes characterized by low mass content, whistler-mode wave intensification, a 61 
rapid increase in magnetic field strength, and an enhancement of electron flux from 15 to 300 62 
keV (Bolton et al., 1997; Kivelson et al., 1997; Thorne et al., 1997). Sharp gradients in magnetic 63 
field strength at the edge of the flux tube are associated with variations in plasma pressure and 64 
are expected to influence local energetic particle drifts (André et al., 2005, 2007; Lai et al., 65 
2016). The drifts of these bouncing particles can be used to estimate the age, speed, and source 66 
region of interchange events (Burch et al., 2005; Hill et al., 2005; Paranicas et al., 2020; Rymer 67 
et al., 2009; Yin et al., 2023).  68 

Recent studies at Jupiter identified interchange injections associated with Electron 69 
Cyclotron Harmonic (ECH), whistler-mode, and Z-mode waves (Daly et al., 2023; Kurth et al., 70 
2023). ECH waves are observed between the harmonics of the electron gyrofrequency (fce), with 71 
their excitation mechanism attributed to the loss-cone instability of hot plasmas in the presence 72 
of cold background plasmas, often satisfied in injection regions (Ashour-Abdalla & Kennel, 73 
1978; Horne et al., 2003; Kennel et al., 1970; Zhang & Angelopoulos, 2014). Joseph et al. (2023) 74 
found that ECH waves occur near the Io torus (associated with interchange injections) or the 75 
equatorial region of the middle magnetosphere. Whistler-mode waves are electromagnetic 76 
emissions between the electron and proton gyrofrequencies, generated near the equator from an 77 
anisotropic distribution of plasma sheet electrons (Hospodarsky et al., 2012; Kennel, 1966; Li et 78 
al., 2008). These waves have been observed from the equator to high magnetic latitudes over M-79 
shells of 6-13 (Li et al., 2020; Menietti et al., 2021), where M-shell is defined as the radial 80 
distance from the equatorial crossing of a magnetic field line to the center of Jupiter in Jovian 81 
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radii. Z-mode waves are electromagnetic emissions confined between the left-hand cutoff 82 
frequency and the upper hybrid frequency, likely generated through the electron cyclotron maser 83 
instability (Wu & Lee, 1979; Yoon et al., 1998). Z-mode waves are typically observed near the 84 
polar region (Kasier et al., 1993) and at middle latitudes at M-shell<~10 (Menietti et al., 2021), 85 
with a possible source near the outer and inner edges of the Io torus (Menietti et al., 2023). 86 
During interchange events, the modified distributions of electrons are highly anisotropic, thus are 87 
conductive to wave growth (Daly et al., 2023). Such wave growth can induce electron pitch 88 
angle scattering and precipitation through resonant interactions (e.g., Bhattacharya et al., 2005; 89 
Horne & Thorne, 1998; Li et al., 2021, 2023; Ni et al., 2012; Xiao et al., 2003).  90 

While individual interchange events have been reported at Jupiter, a systematic survey on 91 
their occurrence and associated wave and particle properties remains limited. In the present 92 
study, we conduct a statistical analysis of interchange events using Juno data (Bolton, 2010) to 93 
determine their occurrence rate, spatial location, duration, instability source region, and 94 
properties of associated plasma waves, including ECH, whistler-mode, and Z-mode waves.  95 

2 Juno Data and Event Selection 96 

Juno’s instruments, which measure particles, plasma waves, and magnetic fields, are 97 
crucial for analyzing the characteristics of energetic particles and plasma waves during 98 
interchange events. We use data from the Waves instrument (Kurth et al., 2017) to analyze 99 
plasma wave properties. To identify relevant wave modes, cyclotron frequencies are calculated 100 
based on in situ magnetic field measurements from the Magnetic Field Investigation instrument 101 
(Connerney et al., 2017). Particle data are collected by the Jovian Auroral Distributions 102 
Experiment (JADE) instrument (McComas et al., 2017) for ~50 eV–100 keV electrons and the 103 
Jupiter Energetic Particle Detector Instrument (JEDI) for ~25 keV–1 MeV electrons (Mauk et al., 104 
2017).  105 

Interchange events are identified based on electron fluxes measured by JADE and JEDI 106 
and magnetic field measurements at 3<M<30. Detailed identification methods are presented in 107 
Supporting Information Text S1. These criteria identified 87 clear interchange events. It is worth 108 
noting that conditions for magnetically depressed flux tubes were also explored, but no clear 109 
events were identified, in contrast to findings at Saturn (Lai et al., 2016). To enrich the dataset 110 
and identify potential events that may have been missed due to possibly restrictive criteria, we 111 
developed a deep neural network classifier (detailed in Text S2). The 87 events were used to 112 
create training, test, and validation datasets for a fully connected neural network model which 113 
learns the patterns in the events and identifies interchange events beyond those described in Text 114 
S1. By using this approach, 20 additional events were identified. The analysis presented in this 115 
study includes all 107 interchange events. This dataset is not unique or complete and depends on 116 
the model and the original 87 events used for training. 117 
 118 

3 Statistical Results 119 

3.1 Juno Observation of Interchange Events 120 

Figure 1 illustrates three examples of interchange events, each associated with a different 121 
type of plasma wave. Particle and wave measurements were recorded for the first event on 06 122 
September 2018 (perijove 15 or PJ-15), revealing two events over 19:10:20-19:11:13 UT and 123 
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19:13:27-19:14:22 UT, referred to as interval 1 and interval 2 henceforth. Both events were 124 
observed alongside Z-mode wave intensification at M-shell~9.6, magnetic latitude (MLat)~20.8°, 125 
and magnetic local time (MLT) of 1.6h. Interval 1 includes two closely spaced events, indicated 126 
by changes in magnetic field strength and electron flux (Figures 1a, b), which are treated as a 127 
single event due to their proximity. During these events, the magnetometer detected rapid 128 
changes in magnetic field strength (dB/dt) of 0.94 and 0.75 nT/s at the start of the first and 129 
second intervals, and -1.0 and -0.80 nT/s at the end of each interval (Figure 1a). The JEDI 130 
instrument observed a rapid increase in electron flux along with a slight energy dispersion likely 131 
due to gradient and curvature drifts (Figure 1b). The JADE instrument also detected variations in 132 
electron flux (Figure 1c), albeit less prominently compared to the JEDI measurements, possibly 133 
owing to the lower time resolution of the instrument during this interval. The JEDI instrument 134 
revealed increases in electron flux at 33 keV (Figure 1e) while the change is unclear from JADE 135 
at 90 eV (Figures 1d). During both events, electric wave emissions, identified as Z-mode waves, 136 
were detected with the lower cutoff at the left-hand cutoff frequency (fL=0) and the upper cutoff 137 
below the plasma frequency (fpe), as expected for left-hand polarized Z-mode waves (Figures 1f, 138 
g). The modeled plasma frequency (fpe_m), derived from the empirical 2D density model 139 
(Dougherty et al., 2017), is included for intervals outside the event. Intensifications outside of the 140 
event between fce and 2fce are likely ECH waves (Figure 1f), which disappeared inside of the 141 
event, possibly due to changes in hot and cold electron density (Ashour-Abdalla and Kennel, 142 
1978; Joseph et al., 2023). Based on 𝒇𝐩𝐞 ≈ 𝟖𝟗𝟖𝟎 √𝒏𝒆 Hz, the density (ne) inside intervals 1 and 143 
2 is approximately 1.15 cm-3, compared to the modeled density outside the event (~15 cm-3), 144 
indicative of an inward moving flux tube (Bolton et al., 1997).  145 

The second example of two interchange events is associated with whistler-mode wave 146 
intensifications. These events were recorded on 16 October 2021 (PJ-37), spanning 02:27:27-147 
02:30:05 and 02:30:59-02:33:20 UT. These events occurred at M~16.7, MLat~-10°, and 148 
MLT~1.4h. Within these events, the JEDI instrument detected a rapid increase in electron flux 149 
(Figure 1i), while the JADE instrument revealed a rapid decrease in electron flux (Figure 1j). 150 
The pitch angle distribution of both high and low energy electrons appears nearly isotropic both 151 
inside and outside the event (Figure 1k, l). The intensification of wave electric spectral density 152 
below fce is likely attributed to oblique whistler-mode chorus waves (Figure 1m), as no 153 
appreciable wave power was detected in the magnetic spectral density (Figure 1n).  154 

The final interchange event example is associated with ECH waves. This period also 155 
reveals two close interchange events on 15 April 2021 (PJ-33) at M~15.2, MLat~-1°, and 156 
MLT~21.4h, occurring over 08:18:05-08:19:25 and 08:20:09-08:21:22 UT. Similar to previous 157 
examples, high-energy electrons exhibit a slight enhancement in flux (Figure 1p), while the low-158 
energy electrons demonstrate a rapid dropout in flux (Figure 1q). The resultant pitch angle 159 
distribution of electrons at 33 keV is primarily field aligned (Figure 1s), while the 45 eV 160 
electrons are nearly isotropic (Figure 1r). While there is no noticeable wave magnetic 161 
intensification (Figure 1u), ECH waves are intensified within the interchange events (Figure 1t). 162 
The first interval exhibits intensifications in the first three harmonics of fce, while the second 163 
interval primarily shows an intensification in the first harmonic.  164 

Each of these interchange events are indicative of inward radial transport, which is 165 
suggested by the total electron density decrease inferred from the fpe during the Z-mode event or 166 
calculated from the JADE flux during the whistler-mode and ECH associated events. Additional 167 
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interchange events detected by Juno can be found in Daly et al. (2023), Kurth et al. (2023), or in 168 
the data availability statement.  169 

3.2 Distribution of interchange events in M, MLat, and MLT 170 

We evaluated the distribution of interchange events from PJ 01 to PJ 51 spanning July 171 
2016 to May 2023. Figure 2 shows the distributions of these events in M-shell, MLat, and MLT, 172 
along with associated plasma waves within the events. In Figure 2a, we examine the interchange 173 
events in M-shell versus MLat domain, where events associated with Z-mode waves are marked 174 
as orange triangles, whistler-mode waves as red squares, ECH waves as green diamonds, and 175 
events with no plasma waves as open black circles. The count rate or the number of identified 176 
interchange events is shown for both M-shell (bin size of 2) over 6<M<26, and MLat (bin size of 177 
5°) over -20°<MLat<45°. Our observations include 107 distinct interchange events, with a peak 178 
count rate occurring near M~17.5 within 5° of the magnetic equator. These observations align 179 
with previous models (e.g., Tanaka et al., 2023) at Jupiter, where interchange instabilities 180 
dominate over 15-20 RJ and also play a role over 10-15 RJ. Further information regarding the 181 
occurrence rate of these interchange events is provided in Supporting Information Figure S1.  182 

Z-mode wave-associated interchange events were observed as two groups across M-shells 183 
ranging from 6.6-25.7 in the mid-latitudes (MLats of 17.1-42°), as illustrated in Figure 2a. The 184 
first group occurred within 6<M<10, consistent with the inferred source region of Z-mode waves 185 
being the outer edge of the Io torus, as well as observations of Z-mode waves above 20° beyond 186 
6 RJ (Menietti et al., 2023). It is noteworthy that the second group of Z-mode wave associated 187 
interchange events is distributed across M-shells of 18 to 26 at higher latitudes (>30°).   188 

Whistler-mode wave-associated interchange events are observed across M~8.7-22.4 and 189 
MLats of -15.8-17.1°. These observations agree with previous surveys on whistler-mode waves, 190 
which indicate their preferential occurrence at |MLat|<50° across M-shells of 6 to 20, particularly 191 
for whistler-mode chorus waves within |MLat|<30° (Li et al., 2020; Menietti et al., 2023). The 192 
source region of these waves is believed to be outside Io’s orbit and near the magnetic equator 193 
(Menietti et al., 2023).  194 

The interchange events associated with ECH waves are observed across M-shells from 195 
8.7 to 17.3 and MLats from -3.8 to 15.3°. The majority of these ECH waves are distributed near 196 
the equatorial region (|MLat|<5°), while some ECH waves are distributed at higher latitudes 197 
(>10°). This distribution pattern agrees with recent observations of ECH waves at Jupiter (Joseph 198 
et al., 2023), where ECH waves were intensified near the Io torus associated with interchange 199 
injections, characterized by fpe>fce, and also observed alongside the magnetic equator in the 200 
middle magnetosphere.  201 

It is notable that in some interchange events, no plasma wave intensification is observed, 202 
likely due to unfavorable plasma conditions inhibiting wave growth. The distribution of such 203 
interchange events without changes in plasma waves ranges from M-shells of 8.7-22.5 and 204 
|MLat| up to 20°, as marked by black circles in Figure 2a.  205 

Figure 2b shows the M-MLT distribution of the corresponding interchange events by 206 
merging events from all magnetic latitudes. Juno provided good coverage over the nightside 207 
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from 2016 to 2023, while dayside coverage was limited. Z-mode wave-associated interchange 208 
events preferentially occur in the postmidnight sector, while ECH wave-associated interchange 209 
events tend to occur in the premidnight sector. However, whistler wave-associated events occur 210 
in both the premidnight and postmidnight sectors. It is noteworthy that the MLT-dependence of 211 
these events remains inconclusive due to the limited coverage and the limited number of events 212 
in each MLT sector.  213 

3.3 Duration and Spatial Extent 214 

We analyze the duration of the interchange events and the corresponding widths in M-215 
shell (M) of the spacecraft crossing the interchanged flux tube. The duration and M of the first 216 
interchange intervals are indicated as blue text on the top panel of Figure 1 for the three 217 
examples. The reported values for the duration and M may represent the minimum estimates, 218 
due to the challenge of precise measurements from a moving spacecraft.  219 

Figure 3 illustrates the duration and M for all identified interchange events. The 220 
scatterplot in the M-shell versus MLat domain (Figure 3a) indicates that the average duration at 221 
lower M-shells (<15) is relatively short, with an average value of ~1.1 minutes, while the average 222 
duration at M-shells from 15 to 26 is ~2.1 minutes. These results imply that events beyond M=15 223 
may last longer and/or have larger spatial extent, as estimated under the assumption of rigid 224 
corotation. Similar observations of larger-scale interchange events at greater distances have been 225 
reported at Saturn (Azari et al., 2018; Chen et al., 2010). The MLT dependence of the duration 226 
(Figure 3b) is unclear, with the longest event observed over 3-6 MLT.  227 

Figure 3c shows the histogram of duration, revealing that ~96% of observed events last 228 
between 20 seconds and 4 minutes, with an additional outlier at 17 minutes. This distribution is 229 
comparable to observations at Saturn (Azari et al., 2018), which showed interchange event 230 
durations ranging from 2 to 34 minutes, with most lasting less than 10 minutes. It is also 231 
consistent with recent observations at Jupiter, which indicated events on the order of one minute 232 
with temporal spacings of ~15-40 minutes between different events (Kurth et al., 2023). The 233 
corresponding M-shell width is typically small, with |𝚫M|<0.05, constituting 78% of events 234 
(Figure 3d), while |𝚫M| can reach up to 0.6 for the longest events.  235 

3.4 Multi-Event analysis 236 

A multi-event analysis of interchange events associated with plasma waves is shown in 237 
Figure 4, sorted by increasing M-shell from top to bottom. The columns, labeled as (1) Z-mode, 238 
(2) whistler-mode, and (3) ECH, are organized by plasma wave association. The solid (dotted) 239 
vertical magenta line indicates the start (end) of each interchange event.  240 

Z-mode waves (Figures 4.1a-e) are observed within fL=0 (black) and fpe (red). The plasma 241 
frequency is estimated from fL=0 and fce through 𝒇𝒑𝒆 = √𝒇𝑳=𝟎(𝒇𝑳=𝟎 + 𝒇𝒄𝒆)  (Gurnett & 242 
Bhattacharjee, 2005), where fce is depicted with the solid white line. Each of these Z-mode waves 243 
is expected to be left-hand circularly polarized or a fast mode. The average frequency bandwidth 244 
of all observed Z-mode waves is ~0.27 fce for events at M<10, broader than other observed 245 
plasma waves near the same frequency.  246 
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The middle column shows interchange events in association with whistler-mode waves. 247 
Narrow-band chorus waves, either upper or lower band, are observed between the marked lines 248 
of 0.5fce (yellow) and fce (white) or below 0.5fce, respectively. The average bandwidth of the 13 249 
observed whistler-mode chorus events (8 not shown) is ~0.22fce. It is interesting to note that three 250 
whistler-mode associated events are also linked with ECH waves (Figures 4.2a-b).  251 

The final column shows interchange events associated with ECH waves, with fce and 2fce 252 
indicated by the solid and dashed white lines. The first harmonic is intensified in each of these 253 
events, with an average peak intensity of 4.6x10-6 V/m during all observed events. Some events 254 
exhibit an intensification at the 2nd and/or 3rd harmonics with varying durations in wave 255 
intensification, possibly owing to modified particle distributions during different periods of the 256 
event.  257 

4 Summary and Conclusions 258 

Using wave and particle data from the Juno satellite spanning 2016 to 2023, we 259 
conducted a statistical survey of interchange events across a vast region of Jupiter’s 260 
magnetosphere. The main findings are summarized below.  261 

(1) Interchange events can extend to magnetic latitudes of ~40° and M-shells ranging from 6 262 
to ~26, with a peak occurrence rate at M~17. While the magnetic local time coverage of 263 
Juno measurements from low to middle magnetic latitudes is limited, statistical results 264 
reveal that interchange events occur over the entire nightside.  265 

(2) During interchange events, various types of plasma waves are intensified, including Z-266 
mode, whistler-mode, and ECH waves. Z-mode wave-associated interchange events are 267 
observed in the mid latitude range (MLat~17.1°-42°) across M-shells of 6.6-25.7. In 268 
contrast, whistler-mode wave-associated events tend to occur near the equator (MLat~-269 
15.8°-17°) across M-shells of 8.7-22.4. ECH wave-associated events are observed near 270 
the equatorial plane (MLat~-3.8°-15.3°) across M-shells of 8.7-17.3.  271 

(3) The duration of interchange events measured by the Juno satellite is predominantly less 272 
than 4 minutes, with the longest extending up to 17 minutes. Correspondingly, the M-273 
shell width ranges from 0.01 to 0.6, with the majority of interchange events having 274 
|𝚫M|<0.05.  275 

(4) Each of these events indicates inward radial transport, characterized by a rapid increase 276 
(decrease) in magnetic field strength at the onset (end), a rapid increase in hot electron 277 
flux (1-100s of keV), a decrease in low-energy electron flux (<~100 eV), and a decrease 278 
in total electron number density in association with plasma waves.   279 

It is important to note that our statistical survey includes only fresh interchange events 280 
characterized by abrupt changes in magnetic field intensity. Following the occurrence of these 281 
fresh interchange events, the particles within the interchange flux tube undergo magnetic and 282 
electric drift, leading to further evolution within the Jovian magnetosphere. Additionally, it may 283 
be valuable to examine the electron flux at different energies with respect to pitch angle to 284 
determine if trapping occurs at higher pitch angles within these flux tubes (Yin et al., 2023). 285 
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However, there has been no clear evidence of this phenomenon occurring for electrons in this 286 
study thus far. Moreover, it may be worthwhile to evaluate the characteristics of protons and 287 
heavy ions during these events, as shown at Saturn (Thomsen et al., 2014). 288 

Nonetheless, our analysis of the interchange instability and its association with electrons 289 
and plasma waves reveals the primary locations of interchange events, the characteristics of 290 
electrons and plasma waves, as well as the duration and spatial extent of these events. These 291 
findings advance our understanding of interchange instability and its influence on electron 292 
transport and plasma wave generation in the Jovian magnetosphere, as well as in other 293 
magnetized planets within and beyond our solar system.  294 
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Figures.  511 

 512 

Figure 1. Juno observations of energetic electrons and plasma waves for three interchange 513 
events (marked by blue bars), where the associated plasma waves are Z-mode (left), whistler-514 
mode (middle), and ECH waves (right). (a) Magnetic field strength (black) and rate of change 515 
(dB/dt, purple); (b) Energy spectrogram of electron flux from ~30 keV to ~1 MeV observed by 516 
JEDI; (c) Energy spectrogram of electron flux from 100 eV to 30 keV observed by JADE; (d) 517 
Pitch angle distribution of electron fluxes at 90 eV and (e) 33 keV; (f) Wave electric spectrogram 518 
from 100 Hz-150 kHz, where the solid black line represents fL=0, the solid red line is fpe, the solid 519 
orange line is the modeled plasma frequency (fpe_m), the white solid line is fce, and the white 520 
dotted and dashed lines are 2fce and 3fce.; (g) Wave magnetic spectrogram from 100 Hz-20 kHz. 521 
(h)-(n) Similar format to panels (a)-(g) but for the whistler-mode wave event. (o)-(u) Similar 522 
format to panels (a)-(g) but for the ECH wave event. 523 
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 524 
Figure 2. Distribution of observed interchange events from July 2016 to May 2023. (a) 525 
Distribution of events in M-shell and MLat. Interchange events are sorted by associated plasma 526 
waves, with orange triangles representing Z-mode waves, red squares representing whistler-527 
mode waves, green diamonds representing ECH waves, and empty black circles representing no 528 
detected plasma waves. The count rate of events is binned by M-shell width of 2 and MLat width 529 
of 5°. (b) Distribution of events in M-shell and MLT, with binned count rate at every MLT hour.  530 
 531 
 532 
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 533 
Figure 3. Duration of interchange events in M-shell-MLT-MLat coordinates. (a) Duration 534 
distribution in M-shell and MLat; (b) duration distribution in M-shell and MLT; (c) histogram of 535 
interchange event duration in minutes, with 11 bins of 30s width ranging from ~20 seconds to 6 536 
minutes, with one outlier near 17 minutes (not shown); (d) similar format to panel (c) but shown 537 
for the corresponding change in M-shell of the spacecraft during the interchanged flux tube 538 
crossing (or the M-shell width of the interchange events).   539 
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 540 

Figure 4. Multi-event analysis of plasma wave electric spectral density during interchange 541 
events, categorized by (1) Z-mode, (2) whistler-mode, and (3) ECH waves. Zero epoch time 542 
indicates the start (end) of the interchange event, marked by a magenta solid (dashed) vertical 543 
line. Events are ordered by increasing M-shell from top to bottom, with information on MLat, 544 
MLT, and the date of event start time. (1) Z-mode waves confined between the fL=0 (black line) 545 
and fpe (red line), with the white line representing fce. (2) Whistler-mode wave events with the 546 
solid yellow line representing 0.5fce. (3) ECH wave events with the white dotted line representing 547 
2fce.  548 
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