

1
2
3 **Statistical Survey of Interchange Events in the Jovian Magnetosphere Using Juno**
4 **Observations**

5 **A. Daly¹, W. Li¹, Q. Ma^{1,2}, X.-C. Shen¹, L. Capannolo¹, S. Huang¹, W. S. Kurth³, G. B.**

6 **Hospodarsky³, B. H. Mauk⁴, G. Clark⁴, F. Allegrini^{5,6}, and S. J. Bolton⁵**

7 ¹Center for Space Physics, Boston University, Boston, MA, USA.

8 ²Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA,
9 USA.

10 ³Department of Physics and Astronomy, University of Iowa, Iowa City, IA, USA.

11 ⁴The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland, USA.

12 ⁵Southwest Research Institute, San Antonio, Texas, USA.

13 ⁶University of Texas at San Antonio, San Antonio, Texas, USA.

15 Corresponding authors: Alec Daly (adaly@bu.edu); Wen Li (wenli77@bu.edu)

16 **Key Points:**

17

- 18 Our statistical survey indicates that interchange events occur over L (or M)-shells~6-26 at Jupiter with a peak occurrence rate at $M\sim 17$.
- 19 During interchange events, various types of plasma waves are intensified, each exhibiting a distinct preferential location.
- 20
- 21 The duration and the corresponding spatial extent of interchange events are analyzed for multiple events.
- 22

23 **Abstract**

24 Interchange instability is known to drive fast radial transport of electrons and ions in Jupiter's inner and middle magnetosphere. In this study, we conduct a statistical survey to evaluate the properties of energetic particles and plasma waves during interchange events using Juno data from 2016 to 2023. We present representative examples of interchange events followed by a statistical analysis of the spatial distribution, duration and spatial extent. Our survey indicates that interchange instability is predominant at M -shells from 6 to 26, peaking near 17 with an average duration of minutes and a corresponding M -shell width of ~ 0.05 . During interchange events, the associated plasma waves, such as whistler-mode, Z-mode, and electron cyclotron harmonic waves exhibit a distinct preferential location. These findings provide valuable insights into particle transport and the source region of plasma waves in the Jovian magnetosphere, as well as in other magnetized planets within and beyond our solar system.

35 **Plain Language Summary**

36 The radial transport of plasma around a magnetized planet is crucial for understanding the underlying magnetospheric dynamics. Jupiter's magnetospheric dynamics are primarily 37 dominated by the rapid rotation and plasma source from Io. This rapid rotation drives the 38

39 interchange instability, where hot, low-density plasma is moved towards the inner
 40 magnetosphere. During this process, the inward moving flux tube builds up magnetic pressure,
 41 potentially leading to the trapping of particles alongside plasma waves. In this study, we present
 42 several typical examples of interchange events, and conduct a statistical analysis to explore their
 43 spatial distribution, duration and spatial extent, as well as the typical features of the associated
 44 plasma waves. This survey provides insights into mass transport, the source of these plasma
 45 waves in Jupiter's magnetosphere, with potential implications for other magnetized planets
 46 within and beyond our solar system.

47 1 Introduction

48 Interchange instability can occur through a local gradient in flux tube content, driven by
 49 centrifugal force from a rapidly rotating magnetosphere (Southwood & Kivelson 1987, 1989;
 50 Thomsen, 2013). This instability plays an important role in mass and plasma transport in
 51 Jupiter's magnetosphere, driving magnetic flux tubes containing cold dense plasma in the inner
 52 magnetosphere to interchange with more distant flux tubes of hot tenuous plasma (Bagenal et al.,
 53 2011; Dumont et al., 2014). Modeling demonstrates that this instability influences the radial
 54 transport of plasma from 10-20 R_J (Jupiter Radii) and affects the magnetopause standoff distance
 55 (Feng et al., 2023; Tanaka et al., 2023). This instability also occurs at Saturn and has the
 56 potential to occur in planetary systems beyond our solar system (Tilley et al., 2016). Interchange
 57 "injections" can be distinguished from large-scale transport related to reconnection processes in
 58 the magnetotail based on event location or the instability's driving mechanism (Mitchell et al.,
 59 2015; Azari, 2020).

60 The Galileo spacecraft first observed interchange at Jupiter in 1997. The spacecraft
 61 detected flux tubes characterized by low mass content, whistler-mode wave intensification, a
 62 rapid increase in magnetic field strength, and an enhancement of electron flux from 15 to 300
 63 keV (Bolton et al., 1997; Kivelson et al., 1997; Thorne et al., 1997). Sharp gradients in magnetic
 64 field strength at the edge of the flux tube are associated with variations in plasma pressure and
 65 are expected to influence local energetic particle drifts (André et al., 2005, 2007; Lai et al.,
 66 2016). The drifts of these bouncing particles can be used to estimate the age, speed, and source
 67 region of interchange events (Burch et al., 2005; Hill et al., 2005; Paranicas et al., 2020; Rymer
 68 et al., 2009; Yin et al., 2023).

69 Recent studies at Jupiter identified interchange injections associated with Electron
 70 Cyclotron Harmonic (ECH), whistler-mode, and Z-mode waves (Daly et al., 2023; Kurth et al.,
 71 2023). ECH waves are observed between the harmonics of the electron gyrofrequency (f_{ce}), with
 72 their excitation mechanism attributed to the loss-cone instability of hot plasmas in the presence
 73 of cold background plasmas, often satisfied in injection regions (Ashour-Abdalla & Kennel,
 74 1978; Horne et al., 2003; Kennel et al., 1970; Zhang & Angelopoulos, 2014). Joseph et al. (2023)
 75 found that ECH waves occur near the Io torus (associated with interchange injections) or the
 76 equatorial region of the middle magnetosphere. Whistler-mode waves are electromagnetic
 77 emissions between the electron and proton gyrofrequencies, generated near the equator from an
 78 anisotropic distribution of plasma sheet electrons (Hospodarsky et al., 2012; Kennel, 1966; Li et
 79 al., 2008). These waves have been observed from the equator to high magnetic latitudes over M -
 80 shells of 6-13 (Li et al., 2020; Menietti et al., 2021), where M -shell is defined as the radial
 81 distance from the equatorial crossing of a magnetic field line to the center of Jupiter in Jovian

82 radii. Z-mode waves are electromagnetic emissions confined between the left-hand cutoff
 83 frequency and the upper hybrid frequency, likely generated through the electron cyclotron maser
 84 instability (Wu & Lee, 1979; Yoon et al., 1998). Z-mode waves are typically observed near the
 85 polar region (Kasier et al., 1993) and at middle latitudes at M -shell ~ 10 (Menietti et al., 2021),
 86 with a possible source near the outer and inner edges of the Io torus (Menietti et al., 2023).
 87 During interchange events, the modified distributions of electrons are highly anisotropic, thus are
 88 conductive to wave growth (Daly et al., 2023). Such wave growth can induce electron pitch
 89 angle scattering and precipitation through resonant interactions (e.g., Bhattacharya et al., 2005;
 90 Horne & Thorne, 1998; Li et al., 2021, 2023; Ni et al., 2012; Xiao et al., 2003).

91 While individual interchange events have been reported at Jupiter, a systematic survey on
 92 their occurrence and associated wave and particle properties remains limited. In the present
 93 study, we conduct a statistical analysis of interchange events using Juno data (Bolton, 2010) to
 94 determine their occurrence rate, spatial location, duration, instability source region, and
 95 properties of associated plasma waves, including ECH, whistler-mode, and Z-mode waves.

96 **2 Juno Data and Event Selection**

97 Juno's instruments, which measure particles, plasma waves, and magnetic fields, are
 98 crucial for analyzing the characteristics of energetic particles and plasma waves during
 99 interchange events. We use data from the Waves instrument (Kurth et al., 2017) to analyze
 100 plasma wave properties. To identify relevant wave modes, cyclotron frequencies are calculated
 101 based on in situ magnetic field measurements from the Magnetic Field Investigation instrument
 102 (Connerney et al., 2017). Particle data are collected by the Jovian Auroral Distributions
 103 Experiment (JADE) instrument (McComas et al., 2017) for ~ 50 eV–100 keV electrons and the
 104 Jupiter Energetic Particle Detector Instrument (JEDI) for ~ 25 keV–1 MeV electrons (Mauk et al.,
 105 2017).

106 Interchange events are identified based on electron fluxes measured by JADE and JEDI
 107 and magnetic field measurements at $3 < M < 30$. Detailed identification methods are presented in
 108 Supporting Information Text S1. These criteria identified 87 clear interchange events. It is worth
 109 noting that conditions for magnetically depressed flux tubes were also explored, but no clear
 110 events were identified, in contrast to findings at Saturn (Lai et al., 2016). To enrich the dataset
 111 and identify potential events that may have been missed due to possibly restrictive criteria, we
 112 developed a deep neural network classifier (detailed in Text S2). The 87 events were used to
 113 create training, test, and validation datasets for a fully connected neural network model which
 114 learns the patterns in the events and identifies interchange events beyond those described in Text
 115 S1. By using this approach, 20 additional events were identified. The analysis presented in this
 116 study includes all 107 interchange events. This dataset is not unique or complete and depends on
 117 the model and the original 87 events used for training.
 118

119 **3 Statistical Results**

120 **3.1 Juno Observation of Interchange Events**

121 Figure 1 illustrates three examples of interchange events, each associated with a different
 122 type of plasma wave. Particle and wave measurements were recorded for the first event on 06
 123 September 2018 (perijove 15 or PJ-15), revealing two events over 19:10:20–19:11:13 UT and

124 19:13:27-19:14:22 UT, referred to as interval 1 and interval 2 henceforth. Both events were
 125 observed alongside Z-mode wave intensification at M -shell \sim 9.6, magnetic latitude (MLat) \sim 20.8°,
 126 and magnetic local time (MLT) of 1.6h. Interval 1 includes two closely spaced events, indicated
 127 by changes in magnetic field strength and electron flux (Figures 1a, b), which are treated as a
 128 single event due to their proximity. During these events, the magnetometer detected rapid
 129 changes in magnetic field strength (dB/dt) of 0.94 and 0.75 nT/s at the start of the first and
 130 second intervals, and -1.0 and -0.80 nT/s at the end of each interval (Figure 1a). The JEDI
 131 instrument observed a rapid increase in electron flux along with a slight energy dispersion likely
 132 due to gradient and curvature drifts (Figure 1b). The JADE instrument also detected variations in
 133 electron flux (Figure 1c), albeit less prominently compared to the JEDI measurements, possibly
 134 owing to the lower time resolution of the instrument during this interval. The JEDI instrument
 135 revealed increases in electron flux at 33 keV (Figure 1e) while the change is unclear from JADE
 136 at 90 eV (Figures 1d). During both events, electric wave emissions, identified as Z-mode waves,
 137 were detected with the lower cutoff at the left-hand cutoff frequency ($f_{L=0}$) and the upper cutoff
 138 below the plasma frequency (f_{pe}), as expected for left-hand polarized Z-mode waves (Figures 1f,
 139 g). The modeled plasma frequency (f_{pe_m}), derived from the empirical 2D density model
 140 (Dougherty et al., 2017), is included for intervals outside the event. Intensifications outside of the
 141 event between f_{ce} and $2f_{ce}$ are likely ECH waves (Figure 1f), which disappeared inside of the
 142 event, possibly due to changes in hot and cold electron density (Ashour-Abdalla and Kennel,
 143 1978; Joseph et al., 2023). Based on $f_{pe} \approx 8980 \sqrt{n_e}$ Hz, the density (n_e) inside intervals 1 and
 144 2 is approximately 1.15 cm^{-3} , compared to the modeled density outside the event ($\sim 15 \text{ cm}^{-3}$),
 145 indicative of an inward moving flux tube (Bolton et al., 1997).

146 The second example of two interchange events is associated with whistler-mode wave
 147 intensifications. These events were recorded on 16 October 2021 (PJ-37), spanning 02:27:27-
 148 02:30:05 and 02:30:59-02:33:20 UT. These events occurred at $M\sim$ 16.7, MLat \sim 10°, and
 149 MLT \sim 1.4h. Within these events, the JEDI instrument detected a rapid increase in electron flux
 150 (Figure 1i), while the JADE instrument revealed a rapid decrease in electron flux (Figure 1j).
 151 The pitch angle distribution of both high and low energy electrons appears nearly isotropic both
 152 inside and outside the event (Figure 1k, l). The intensification of wave electric spectral density
 153 below f_{ce} is likely attributed to oblique whistler-mode chorus waves (Figure 1m), as no
 154 appreciable wave power was detected in the magnetic spectral density (Figure 1n).

155 The final interchange event example is associated with ECH waves. This period also
 156 reveals two close interchange events on 15 April 2021 (PJ-33) at $M\sim$ 15.2, MLat \sim 1°, and
 157 MLT \sim 21.4h, occurring over 08:18:05-08:19:25 and 08:20:09-08:21:22 UT. Similar to previous
 158 examples, high-energy electrons exhibit a slight enhancement in flux (Figure 1p), while the low-
 159 energy electrons demonstrate a rapid dropout in flux (Figure 1q). The resultant pitch angle
 160 distribution of electrons at 33 keV is primarily field aligned (Figure 1s), while the 45 eV
 161 electrons are nearly isotropic (Figure 1r). While there is no noticeable wave magnetic
 162 intensification (Figure 1u), ECH waves are intensified within the interchange events (Figure 1t).
 163 The first interval exhibits intensifications in the first three harmonics of f_{ce} , while the second
 164 interval primarily shows an intensification in the first harmonic.

165 Each of these interchange events are indicative of inward radial transport, which is
 166 suggested by the total electron density decrease inferred from the f_{pe} during the Z-mode event or
 167 calculated from the JADE flux during the whistler-mode and ECH associated events. Additional

168 interchange events detected by Juno can be found in Daly et al. (2023), Kurth et al. (2023), or in
 169 the data availability statement.

170 **3.2 Distribution of interchange events in M , $MLat$, and MLT**

171 We evaluated the distribution of interchange events from PJ 01 to PJ 51 spanning July
 172 2016 to May 2023. Figure 2 shows the distributions of these events in M -shell, $MLat$, and MLT ,
 173 along with associated plasma waves within the events. In Figure 2a, we examine the interchange
 174 events in M -shell versus $MLat$ domain, where events associated with Z-mode waves are marked
 175 as orange triangles, whistler-mode waves as red squares, ECH waves as green diamonds, and
 176 events with no plasma waves as open black circles. The count rate or the number of identified
 177 interchange events is shown for both M -shell (bin size of 2) over $6 < M < 26$, and $MLat$ (bin size of
 178 5°) over $-20^\circ < MLat < 45^\circ$. Our observations include 107 distinct interchange events, with a peak
 179 count rate occurring near $M \sim 17.5$ within 5° of the magnetic equator. These observations align
 180 with previous models (e.g., Tanaka et al., 2023) at Jupiter, where interchange instabilities
 181 dominate over $15-20 R_J$ and also play a role over $10-15 R_J$. Further information regarding the
 182 occurrence rate of these interchange events is provided in Supporting Information Figure S1.

183 Z-mode wave-associated interchange events were observed as two groups across M -shells
 184 ranging from 6.6-25.7 in the mid-latitudes ($MLats$ of $17.1-42^\circ$), as illustrated in Figure 2a. The
 185 first group occurred within $6 < M < 10$, consistent with the inferred source region of Z-mode waves
 186 being the outer edge of the Io torus, as well as observations of Z-mode waves above 20° beyond
 187 $6 R_J$ (Menietti et al., 2023). It is noteworthy that the second group of Z-mode wave associated
 188 interchange events is distributed across M -shells of 18 to 26 at higher latitudes ($>30^\circ$).

189 Whistler-mode wave-associated interchange events are observed across $M \sim 8.7-22.4$ and
 190 $MLats$ of $-15.8-17.1^\circ$. These observations agree with previous surveys on whistler-mode waves,
 191 which indicate their preferential occurrence at $|MLat| < 50^\circ$ across M -shells of 6 to 20, particularly
 192 for whistler-mode chorus waves within $|MLat| < 30^\circ$ (Li et al., 2020; Menietti et al., 2023). The
 193 source region of these waves is believed to be outside Io's orbit and near the magnetic equator
 194 (Menietti et al., 2023).

195 The interchange events associated with ECH waves are observed across M -shells from
 196 8.7 to 17.3 and $MLats$ from -3.8 to 15.3° . The majority of these ECH waves are distributed near
 197 the equatorial region ($|MLat| < 5^\circ$), while some ECH waves are distributed at higher latitudes
 198 ($>10^\circ$). This distribution pattern agrees with recent observations of ECH waves at Jupiter (Joseph
 199 et al., 2023), where ECH waves were intensified near the Io torus associated with interchange
 200 injections, characterized by $f_{pe} > f_{ce}$, and also observed alongside the magnetic equator in the
 201 middle magnetosphere.

202 It is notable that in some interchange events, no plasma wave intensification is observed,
 203 likely due to unfavorable plasma conditions inhibiting wave growth. The distribution of such
 204 interchange events without changes in plasma waves ranges from M -shells of 8.7-22.5 and
 205 $|MLat|$ up to 20° , as marked by black circles in Figure 2a.

206 Figure 2b shows the M - MLT distribution of the corresponding interchange events by
 207 merging events from all magnetic latitudes. Juno provided good coverage over the nightside

208 from 2016 to 2023, while dayside coverage was limited. Z-mode wave-associated interchange
 209 events preferentially occur in the postmidnight sector, while ECH wave-associated interchange
 210 events tend to occur in the premidnight sector. However, whistler wave-associated events occur
 211 in both the premidnight and postmidnight sectors. It is noteworthy that the MLT-dependence of
 212 these events remains inconclusive due to the limited coverage and the limited number of events
 213 in each MLT sector.

214 3.3 Duration and Spatial Extent

215 We analyze the duration of the interchange events and the corresponding widths in M -
 216 shell (ΔM) of the spacecraft crossing the interchanged flux tube. The duration and ΔM of the first
 217 interchange intervals are indicated as blue text on the top panel of Figure 1 for the three
 218 examples. The reported values for the duration and ΔM may represent the minimum estimates,
 219 due to the challenge of precise measurements from a moving spacecraft.

220 Figure 3 illustrates the duration and ΔM for all identified interchange events. The
 221 scatterplot in the M -shell versus MLat domain (Figure 3a) indicates that the average duration at
 222 lower M -shells (<15) is relatively short, with an average value of ~ 1.1 minutes, while the average
 223 duration at M -shells from 15 to 26 is ~ 2.1 minutes. These results imply that events beyond $M=15$
 224 may last longer and/or have larger spatial extent, as estimated under the assumption of rigid
 225 corotation. Similar observations of larger-scale interchange events at greater distances have been
 226 reported at Saturn (Azari et al., 2018; Chen et al., 2010). The MLT dependence of the duration
 227 (Figure 3b) is unclear, with the longest event observed over 3-6 MLT.

228 Figure 3c shows the histogram of duration, revealing that $\sim 96\%$ of observed events last
 229 between 20 seconds and 4 minutes, with an additional outlier at 17 minutes. This distribution is
 230 comparable to observations at Saturn (Azari et al., 2018), which showed interchange event
 231 durations ranging from 2 to 34 minutes, with most lasting less than 10 minutes. It is also
 232 consistent with recent observations at Jupiter, which indicated events on the order of one minute
 233 with temporal spacings of $\sim 15\text{-}40$ minutes between different events (Kurth et al., 2023). The
 234 corresponding M -shell width is typically small, with $|\Delta M| < 0.05$, constituting 78% of events
 235 (Figure 3d), while $|\Delta M|$ can reach up to 0.6 for the longest events.

236 3.4 Multi-Event analysis

237 A multi-event analysis of interchange events associated with plasma waves is shown in
 238 Figure 4, sorted by increasing M -shell from top to bottom. The columns, labeled as (1) Z-mode,
 239 (2) whistler-mode, and (3) ECH, are organized by plasma wave association. The solid (dotted)
 240 vertical magenta line indicates the start (end) of each interchange event.

241 Z-mode waves (Figures 4.1a-e) are observed within $f_{L=0}$ (black) and f_{pe} (red). The plasma
 242 frequency is estimated from $f_{L=0}$ and f_{ce} through $f_{pe} = \sqrt{f_{L=0}(f_{L=0} + f_{ce})}$ (Gurnett &
 243 Bhattacharjee, 2005), where f_{ce} is depicted with the solid white line. Each of these Z-mode waves
 244 is expected to be left-hand circularly polarized or a fast mode. The average frequency bandwidth
 245 of all observed Z-mode waves is $\sim 0.27 f_{ce}$ for events at $M < 10$, broader than other observed
 246 plasma waves near the same frequency.

247 The middle column shows interchange events in association with whistler-mode waves.
 248 Narrow-band chorus waves, either upper or lower band, are observed between the marked lines
 249 of $0.5f_{ce}$ (yellow) and f_{ce} (white) or below $0.5f_{ce}$, respectively. The average bandwidth of the 13
 250 observed whistler-mode chorus events (8 not shown) is $\sim 0.22f_{ce}$. It is interesting to note that three
 251 whistler-mode associated events are also linked with ECH waves (Figures 4.2a-b).

252 The final column shows interchange events associated with ECH waves, with f_{ce} and $2f_{ce}$
 253 indicated by the solid and dashed white lines. The first harmonic is intensified in each of these
 254 events, with an average peak intensity of 4.6×10^{-6} V/m during all observed events. Some events
 255 exhibit an intensification at the 2nd and/or 3rd harmonics with varying durations in wave
 256 intensification, possibly owing to modified particle distributions during different periods of the
 257 event.

258 **4 Summary and Conclusions**

259 Using wave and particle data from the Juno satellite spanning 2016 to 2023, we
 260 conducted a statistical survey of interchange events across a vast region of Jupiter's
 261 magnetosphere. The main findings are summarized below.

- 262 (1) Interchange events can extend to magnetic latitudes of $\sim 40^\circ$ and M -shells ranging from 6
 263 to ~ 26 , with a peak occurrence rate at $M \sim 17$. While the magnetic local time coverage of
 264 Juno measurements from low to middle magnetic latitudes is limited, statistical results
 265 reveal that interchange events occur over the entire nightside.
- 266 (2) During interchange events, various types of plasma waves are intensified, including Z-
 267 mode, whistler-mode, and ECH waves. Z-mode wave-associated interchange events are
 268 observed in the mid latitude range ($MLat \sim 17.1^\circ - 42^\circ$) across M -shells of 6.6-25.7. In
 269 contrast, whistler-mode wave-associated events tend to occur near the equator ($MLat \sim$
 270 $15.8^\circ - 17^\circ$) across M -shells of 8.7-22.4. ECH wave-associated events are observed near
 271 the equatorial plane ($MLat \sim -3.8^\circ - 15.3^\circ$) across M -shells of 8.7-17.3.
- 272 (3) The duration of interchange events measured by the Juno satellite is predominantly less
 273 than 4 minutes, with the longest extending up to 17 minutes. Correspondingly, the M -
 274 shell width ranges from 0.01 to 0.6, with the majority of interchange events having
 275 $|\Delta M| < 0.05$.
- 276 (4) Each of these events indicates inward radial transport, characterized by a rapid increase
 277 (decrease) in magnetic field strength at the onset (end), a rapid increase in hot electron
 278 flux (1-100s of keV), a decrease in low-energy electron flux ($< \sim 100$ eV), and a decrease
 279 in total electron number density in association with plasma waves.

280 It is important to note that our statistical survey includes only fresh interchange events
 281 characterized by abrupt changes in magnetic field intensity. Following the occurrence of these
 282 fresh interchange events, the particles within the interchange flux tube undergo magnetic and
 283 electric drift, leading to further evolution within the Jovian magnetosphere. Additionally, it may
 284 be valuable to examine the electron flux at different energies with respect to pitch angle to
 285 determine if trapping occurs at higher pitch angles within these flux tubes (Yin et al., 2023).

286 However, there has been no clear evidence of this phenomenon occurring for electrons in this
287 study thus far. Moreover, it may be worthwhile to evaluate the characteristics of protons and
288 heavy ions during these events, as shown at Saturn (Thomsen et al., 2014).

289 Nonetheless, our analysis of the interchange instability and its association with electrons
290 and plasma waves reveals the primary locations of interchange events, the characteristics of
291 electrons and plasma waves, as well as the duration and spatial extent of these events. These
292 findings advance our understanding of interchange instability and its influence on electron
293 transport and plasma wave generation in the Jovian magnetosphere, as well as in other
294 magnetized planets within and beyond our solar system.

295 **Acknowledgments**

296 The research at Boston University is supported by the NASA grant 80NSSC20K0557,
297 Subcontract Q99064JAR under NASA Prime contract NNM06AA75C, and NSF grant AGS-
298 2402179. AD would like to acknowledge the NASA FINESST grant 80NSSC23K1641. QM
299 would like to acknowledge the NASA grants 80NSSC20K0196, and 80NSSC24K0572, and the
300 NSF grant AGS-2225445. The work at UCLA was supported by the NASA subcontract
301 699046X under prime contract ZZM06AA75C. The research at the University of Iowa is
302 supported by NASA through Contract 699041X with the Southwest Research Institute. WSK
303 acknowledges the use of the Space Physics Data Repository at the University of Iowa supported
304 by the Roy J. Carver Charitable Trust.

305

306 **Data Availability Statement**

307 We acknowledge the Juno data, including JEDI at <https://doi.org/10.17189/1519713> (Mauk et
308 al., 2022), JADE at <https://doi.org/10.17189/1519715> (Allegrini et al., 2022), Waves at
309 <https://doi.org/10.17189/1520498> (Kurth & Piker, 2022a, 2022b), and Magnetometer at
310 <https://doi.org/10.17189/1519711> (Connerney, 2022). We also thank the use of Jovian magnetic
311 field model from Laboratory for Atmospheric and Space Physics (LASP) at University of
312 Colorado Boulder (<https://lasp.colorado.edu/home/mop/missions/juno/community-code/>). The
313 time intervals, location of events, duration, and spatial extent of all observed events can be found
314 at <https://doi.org/10.6084/m9.figshare.25452559.v1>
315 The time intervals, location of events, duration, and spatial extent of all observed events can be
316 found at <https://doi.org/10.6084/m9.figshare.25452559.v1> (Daly, 2024).

317

318 **References**

319 Allegrini, F., Wilson, R.J., Ebert, R.W., Loeffler, C. (2022), JUNO J/SW JOVIAN AURORAL
320 DISTRIBUTION CALIBRATED V1.0, JNO-J/SW-JAD-3-CALIBRATED-V1.0
321 [Dataset], NASA Planetary Data System, <https://doi.org/10.17189/1519715>.

322 André, N., M. K. Dougherty, C. T. Russell, J. S. Leisner, and K. K. Khurana (2005), Dynamics
323 of the Saturnian inner magnetosphere: First inferences from the Cassini magnetometers
324 about small-scale plasma transport in the magnetosphere, *Geophys. Res. Lett.*, 32,
325 L14S06, doi:10.1029/2005GL022643.

326 André, N., et al. (2007), Magnetic signatures of plasma-depleted flux tubes in the Saturnian inner
 327 magnetosphere, *Geophys. Res. Lett.*, 34, L14108, doi:10.1029/2007GL030374.

328 Ashour-Abdalla, M., and C. F. Kennel (1978), Multi-harmonic electron cyclotron
 329 instabilities, *Geophys. Res. Lett.*, 5(8), 711–714, doi:10.1029/GL005i008p00711.

330 Azari, A. R., Liemohn, M. W., Jia, X., Thomsen, M. F., Mitchell, D. G., Sergis, N., et al.
 331 (2018). Interchange injections at Saturn: Statistical survey of energetic H⁺ sudden flux
 332 intensifications. *Journal of Geophysical Research: Space Physics*, 123, 4692–
 333 4711. <https://doi.org/10.1029/2018JA025391>

334 Azari, A. (2020). A Data-Driven Understanding of Plasma Transport in Saturn's Magnetic
 335 Environment, (Doctoral dissertation). Retrieved from Deep Blue.
 336 (<https://hdl.handle.net/2027.42/155251>). Ann Arbor, MI: University of Michigan.

337 Bhattacharya, B., Thorne, R. M., Williams, D. J., Khurana, K. K., & Gurnett, D. A. (2005).
 338 Diffuse auroral precipitation in the Jovian upper atmosphere and magnetospheric electron
 339 flux variability. *Icarus*, 178, 406-416. <https://doi.org/10.1016/j.icarus.2005.06.013>

340 Bolton, S. J., Thorne, R. M., Gurnett, D. A., Kurth, W. S., & Williams, D. J. (1997). Enhanced
 341 whistler-mode emissions: Signatures of interchange motion in the Io torus. *Geophysical
 342 Research Letters*, 24(17), 2123–2126. <https://doi.org/10.1029/97GL02020>

343 Bolton, S. J. (2010). The Juno mission. *Proceedings of the International Astronomical
 344 Union*, 6(S269), 100. <https://doi.org/10.1017/S1743921310007313>

345 Burch, J. L., Goldstein, J., Hill, T. W., Young, D. T., Crary, F. J., Coates, A. J., André, N., Kurth,
 346 W. S., and Sittler, E. C. (2005), Properties of local plasma injections in Saturn's
 347 magnetosphere, *Geophys. Res. Lett.*, 32, L14S02, <https://doi.org/10.1029/2005GL022611>

348 Connerney, J.E.P., Benn, M., Bjarno, J.B. et al. The Juno Magnetic Field Investigation. *Space
 349 Sci Rev* **213**, 39–138 (2017). <https://doi.org/10.1007/s11214-017-0334-z>

350 Connerney, J.E.P. (2022), Juno MAG CALIBRATED DATA J V1.0, JNO-J-3-FGM-CAL-V1.0
 351 [Dataset], NASA Planetary Data System. <https://doi.org/10.17189/1519711>

352 Chen, Y., Hill, T. W., Rymer, A. M., & Wilson, R. J. (2010). Rate of radial transport of plasma
 353 in Saturn's inner magnetosphere. *Journal of Geophysical Research*, **115**,
 354 A10211. <https://doi.org/10.1029/2010JA015412>

355 Daly, A., Li, W., Ma, Q., Shen, X.-C., Yoon, P. H., Menietti, J. D., et al. (2023). Plasma wave
 356 and particle dynamics during interchange events in the Jovian magnetosphere using Juno
 357 observations. *Geophysical Research Letters*, 50,
 358 e2023GL103894. <https://doi.org/10.1029/2023GL103894>

359 Daly, Alec (2024). Statistical Survey of Interchange Events in the Jovian Magnetosphere Using
 360 Juno observations. [Dataset]. <https://doi.org/10.6084/m9.figshare.25452559.v1>

361 Dougherty, L. P., Bodisch, K. M., and Bagenal, F. (2017), Survey of Voyager plasma science
 362 ions at Jupiter: 2. Heavy ions, *J. Geophys. Res. Space Physics*, 122, 8257– 8276,
 363 <https://doi.org/10.1002/2017JA024053>

364 Dumont, M., Grodent, D., Radioti, A., Bonfond, B., & Gérard, J.-C. (2014). Jupiter's
 365 equatorward auroral features: Possible signatures of magnetospheric injections. *Journal*

366 *of Geophysical Research: Space Physics*, **119**(12), 10068–
 367 10077. <https://doi.org/10.1002/2014JA020527>

368 Feng, E., Zhang, B., Yao, Z., Delamere, P. A., Zheng, Z., Dunn, W. R., & Ye, S.-
 369 Y. (2023). Variation of the Jovian magnetopause under constant solar wind conditions:
 370 Significance of magnetodisc dynamics. *Geophysical Research Letters*, **50**,
 371 e2023GL104046. <https://doi.org/10.1029/2023GL104046>

372 Gurnett, D. A., & Bhattacharjee, A. (2005). *Introduction to Plasma Physics* (p. 97). Cambridge
 373 University Press. <https://doi.org/10.1017/CBO9780511809125>

374 Hill, T. W., Rymer, A. M., Burch, J. L., Crary, F. J., Young, D. T., Thomsen, M. F., Delapp,
 375 D., André, N., Coates, A. J., and Lewis, G. R. (2005), Evidence for rotationally driven
 376 plasma transport in Saturn's magnetosphere, *Geophys. Res. Lett.*, **32**, L14S10,
 377 <https://doi.org/10.1029/2005GL022620>

378 Horne, R. B., & Thorne, R. M. (1998). Potential waves for relativistic electron scattering and
 379 stochastic acceleration during magnetic storms. *Geophysical Research Letters*, **25**(15), 3011–3014. <https://doi.org/10.1029/98GL01002>

380 Horne, R. B., Thorne, R. M., Meredith, N. P., and Anderson, R. R. (2003). Diffuse auroral
 381 electron scattering by electron cyclotron harmonic and whistler mode waves during an
 382 isolated substorm. *J. Geophys. Res.* **108** (A7), 1290. doi:10.1029/2002JA009736

383 Hospodarsky, G. B., Sigsbee, K., Leisner, J. S., Menietti, J. D., Kurth, W. S., Gurnett, D.
 384 A., Kletzing, C. A., & Santolí, K. O. (2012). In D. Summers, I. R. Mann, D. N. Baker,
 385 & M. Schulz (Eds.), *Plasma wave observations at Earth, Jupiter, and Saturn. In*
 386 *dynamics of the Earth's radiation belts and inner magnetosphere*, Washington DC:
 387 American Geophysical Union. <https://doi.org/10.1029/2012GM001342>

388 Joseph, J., Jaynes., A. N., Kurth, W. S., Menietti, J. D., Connerney, J. E. P., Bolton, S. J., (2023)
 389 Electron cyclotron harmonic waves in Jovian magnetosphere as seen by Juno. *Frontiers*
 390 *in Astronomy and Space Sciences.*, **10**, <https://doi.org/10.3389/fspas.2023.1274760>

391 Kennel, C., "Low-Frequency Whistler Mode", *The Physics of Fluids*, **9**, 2190–
 392 2202 (1966) <https://doi.org/10.1063/1.1761588>

393 Kennel, C. F., Scarf, F. L., Fredricks, R. W., McGehee, J. H., and Coroniti, F. V. (1970). VLF
 394 electric field observations in the magnetosphere. *J. Geophys. Res.* **75** (31), 6136–6152.
 395 doi:10.1029/JA075i031p06136

396 Kivelson, M. G., K. K. Khurana, C. T. Russell, and R. J. Walker (1997), Intermittent short-
 397 duration magnetic field anomalies in the IO torus: Evidence for plasma interchange?,
 398 *Geophysical Research Letters*, **24**(17), 2127–2130, <https://doi.org/10.1029/97GL02202>

399 Kurth, W. S., Hospodarsky, G. B., Kirchner, D. L., Mokrzycki, B. T., Averkamp, T. F., Robison,
 400 W. T., et al. (2017). The Juno Waves investigation. *Space Science Reviews*, **213**(1–
 401 4), 347–392. <https://doi.org/10.1007/s11214-017-0396-y>

402 Kurth, W. S., & Piker, C. W. (2022a). JUNO E/J/S/SS WAVES CALIBRATED BURST FULL
 403 RESOLUTION V2.0, JNO-E/J/SS-WAV-3-CDR-BSTFULL-V2.0 [Dataset]. NASA
 404 Planetary Data System. <https://doi.org/10.17189/1522461>

405

406 Kurth, W. S., & Piker, C. W. (2022b). JUNO E/J/S/SS WAVES CALIBRATED SURVEY
 407 FULL RESOLUTION V2.0, JNO-E/J/SS-WAV-3-CDR-SRVFULL-V2.0 [Dataset].
 408 NASA Planetary Data System. <https://doi.org/10.17189/1520498>

409 Kurth, W. S., Hospodarsky, G. B., Faden, J. B., Sulaiman, A. H., Mauk, B. H., Clark, G.,
 410 Allegri, F., Connerney, J. E. P., and Bolton, S. J. (2023), Evidence of fresh interchange
 411 injections related to the interchange instability in the Io torus.
 412 <https://doi.org/10.25546/103104>

413 Lai, H. R., Russell, C. T., Jia, Y. D., Wei, H. Y., & Dougherty, M. K. (2016). Transport of
 414 magnetic flux and mass in Saturn's inner magnetosphere. *Journal of Geophysical
 415 Research: Space Physics*, **121**, 3050–3057. <https://doi.org/10.1002/2016JA022436>

416 Li, W., Thorne, R. M., Meredith, N. P., Horne, R. B., Bortnik, J., Shprits, Y. Y., and Ni, B.
 417 (2008), Evaluation of whistler mode chorus amplification during an injection event
 418 observed on CRRES, *J. Geophys. Res.*, **113**, A09210, doi:10.1029/2008JA013129.

419 Li, W., Shen, X.-C., Menietti, J. D., Ma, Q., Zhang, X.-J., Kurth, W. S., & Hospodarsky, G. B.
 420 (2020). Global distribution of whistler mode waves in Jovian inner magnetosphere.
 421 *Geophysical Research Letters*, **47**,
 422 e2020GL088198. <https://doi.org/10.1029/2020GL088198>

423 Li, W., Ma, Q., Shen, X.-C., Zhang, X.-J., Mauk, B. H., Clark, G., et al. (2021). Quantification of
 424 diffuse auroral electron precipitation driven by whistler mode waves at Jupiter.
 425 *Geophysical Research Letters*, **48**, e2021GL095457.
 426 <https://doi.org/10.1029/2021GL095457>

427 Li, W., Ma, Q., Shen, X.-C., Zhang, X.-J., Mauk, B. H., Clark, G., et al. (2023). Driver of
 428 energetic electron precipitation in the vicinity of Ganymede. *Geophysical Research
 429 Letters*, **50**, e2022GL101555.

430 Mauk, B. H., Haggerty, D. K., Jaskulek, S. E. et al. The Jupiter Energetic Particle Detector
 431 Instrument (JEDI) Investigation for the Juno Mission. *Space Sci Rev* **213**, 289–346
 432 (2017). <https://doi.org/10.1007/s11214-013-0025-3>

433 Mauk, B. (APL), JEDI CALIBRATED (CDR) DATA JNO J JED 3 CDR V1.0 [Dataset], NASA
 434 Planetary Data System, 2022, <https://doi.org/10.17189/1519713>.

435 McComas, D. J., Alexander, N., Allegri, F., et al. (2017). The Jovian Auroral Distributions
 436 Experiment (JADE) on the Juno Mission to Jupiter. *Space Science Reviews*, **213**(1-4),
 437 547-643. <https://doi.org/10.1007/s11214-013-9990-9>

438 Menietti, J. D., Averkamp, T. F., Kurth, W. S., Imai, M., Faden, J. B., Hospodarsky, G. B., et al.
 439 (2021). Analysis of whistler-mode and Z-mode emission in the Juno primary mission.
 440 *Journal of Geophysical Research: Space Physics*, **126**, e2021JA029885.
 441 <https://doi.org/10.1029/2021JA029885>

442 Menietti, J. D., Averkamp, T. F., Kurth, W. S., Faden, J. B., & Bolton, S. J. (2023). Survey and
 443 analysis of whistler- and Z-mode emission in the Juno extended mission. *Journal of
 444 Geophysical Research: Space Physics*, **128**,
 445 e2023JA032037. <https://doi.org/10.1029/2023JA032037>

446 Mitchell, D.G., Brandt, P.C., Carbary, J.F., Kurth, W.S., Krimigis, S.M., Paranicas, C., Krupp,
447 N., Hamilton, D.C., Mauk, B.H., Hospodarsky, G.B., Dougherty, M.K. and Pryor, W.R.
448 (2015). Injection, Interchange, and Reconnection. In Magnetotails in the Solar System
449 (eds A. Keiling, C.M. Jackman and P.A. Delamere).
450 <https://doi.org/10.1002/9781118842324.ch19>

451 Ni, B., Liang, J., Thorne, R. M., Angelopoulos, V., Horne, R. B., Kubyshkina, M., et al. (2012).
452 Efficient diffuse auroral electron scattering by electrostatic electron cyclotron harmonic
453 waves in the outer magnetosphere: a detailed case study. *J. Geophys. Res.* 117, A01218.
454 doi:10.1029/2011JA017095

455 Paranicas, C., Thomsen, M. F., Kollmann, P., Azari, A. R., Bader, A., Badman, S. V., et al.
456 (2020). Inflow speed analysis of interchange injections in Saturn's
457 magnetosphere. *Journal of Geophysical Research: Space Physics*, 125,
458 e2020JA028299. <https://doi.org/10.1029/2020JA028299>

459 Rymer, A. M. & Mauk, B. H. & Hill, T. W. & André, Nicolas & Mitchell, Donald & Paranicas,
460 C. & Young, D. & Smith, H.T. & Persoon, A.M. & Menietti, J. D. & Hospodarsky,
461 George & Coates, Andrew & Dougherty, M. K. (2009). Cassini evidence of rapid
462 interchange transport at Saturn. *Planetary and Space Science*. 57. 1779-1784.
463 <https://doi.org/10.1016/j.pss.2009.04.010>

464 Southwood, D. J., and M. G. Kivelson (1987), Magnetospheric interchange instability, *J.*
465 *Geophys. Res.*, 92(A1), 109–116, <https://doi.org/10.1029/JA092iA01p00109>

466 Southwood, D. J., and M. G. Kivelson (1989), Magnetospheric interchange motions, *J. Geophys.*
467 *Res.*, 94(A1), 299–308, <https://doi.org/10.1029/JA094iA01p00299>

468 Tanaka, T., Ebihara, Y., Watanabe, M., Fujita, S., & Kataoka, R. (2023). Radial transport of Io
469 plasma from the inner magnetosphere to the tail. *Journal of Geophysical Research: Space*
470 *Physics*, 128, e2022JA030891. <https://doi.org/10.1029/2022JA030891>

471 Thomsen, M. F. (2013), Saturn's magnetospheric dynamics, *Geophys. Res. Lett.*, 40, 5337–5344,
472 <https://doi.org/10.1002/2013GL057967>

473 Thomsen, M. F., Reisenfeld, D. B., Wilson, R. J. et al. (2014), Ion composition in interchange
474 injection events in Saturn's magnetosphere, *J. Geophys. Res. Space Physics*, 119, 9761–
475 9772, <https://doi.org/10.1002/2014JA020489>

476 Thorne, R. M., T. P. Armstrong, S. Stone, D. J. Williams, R. W. McEntire, S. J. Bolton, D. A.
477 Gurnett, and M. G. Kivelson (1997), Galileo evidence for rapid interchange transport in
478 the Io Torus, *Geophysical Research Letters*, 24(17), 2131–2134,
479 <https://doi.org/10.1029/97gl01788>

480 Tilley, M. A., and Harnett, E. M., and Winglee, R. M. (2016). Extrasolar Giant Magnetospheric
481 Response to Steady-state Stellar Wind Pressure at 10, 5, 1, and 0.2 au, *Astrophys. J.*,
482 827(1), 77, <https://doi.org/10.3847/0004-637x/827/1/77>

483 Wu, C. S., and L. C. Lee (1979), A theory of terrestrial kilometric radiation, *Astrophys.*
484 *J.*, 230, 621, <https://doi.org/10.1086/157120>

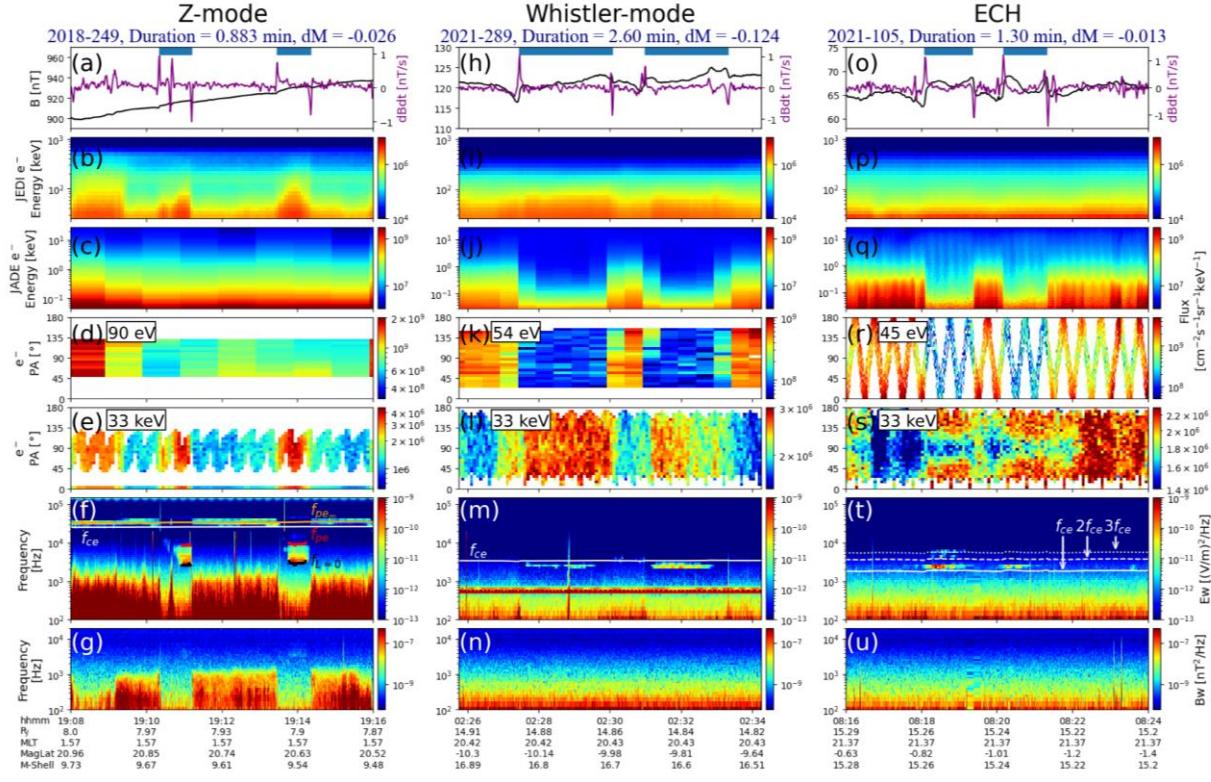
485 Xiao, F., Thorne, R. M., Gurnett, D. A., and Williams, D. J. (2003), Whistler-mode excitation
486 and electron scattering during an interchange event near Io, *Geophys. Res. Lett.*, 30, 1749,
487 <https://doi.org/10.1029/2003GL017123>

488 Yin, Z.-F., Sun, Y.-X., Zhou, X.-Z., Pan, D.-X., Yao, Z.-H., Yue, C., et al. (2023). Trapped and
489 leaking energetic particles in injection flux tubes of Saturn's magnetosphere. *Geophysical*
490 *Research Letters*, 50, e2023GL105687. <https://doi.org/10.1029/2023GL105687>

491 Yoon, P. H., Weatherwax, A. T., and Rosenberg, T. J. (1998), On the generation of auroral radio
492 emissions at harmonics of the lower ionospheric electron cyclotron
493 frequency: *X, O* and *Z* mode maser calculations, *J. Geophys. Res.*, 103(A3), 4071– 4078,
494 <https://doi.org/10.1029/97JA03526>

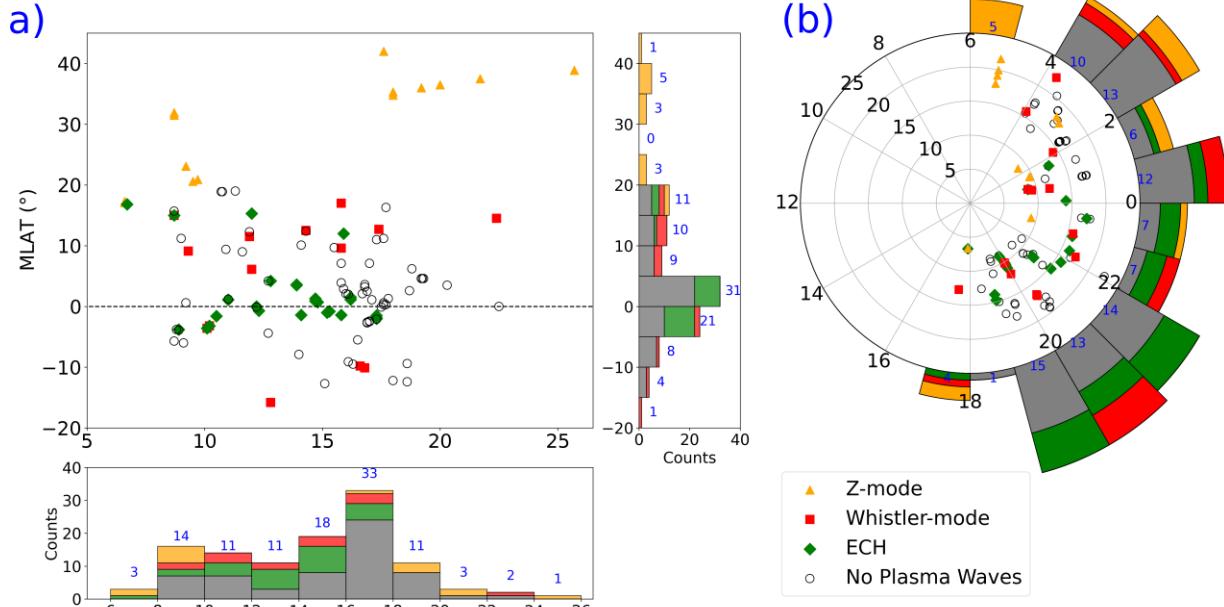
495 Zhang, X., and Angelopoulos, V. (2014). On the relationship of electrostatic cyclotron harmonic
496 emissions with electron injections and dipolarization fronts. *J. Geophys. Res. Space*
497 *Phys.* 119, 2536–2549. <https://doi.org/10.1002/2013JA019540>

498 **Supporting References**


499 Kollmann, P., Paranicas, C., Clark, G., Mauk, B. H., Haggerty, D. K., Rymer, A. M., et al.
500 (2017). A heavy ion and proton radiation belt inside of Jupiter's rings. *Geophysical*
501 *Research Letters*, 44(11), 5259–5268. <https://doi.org/10.1002/2017GL073730>

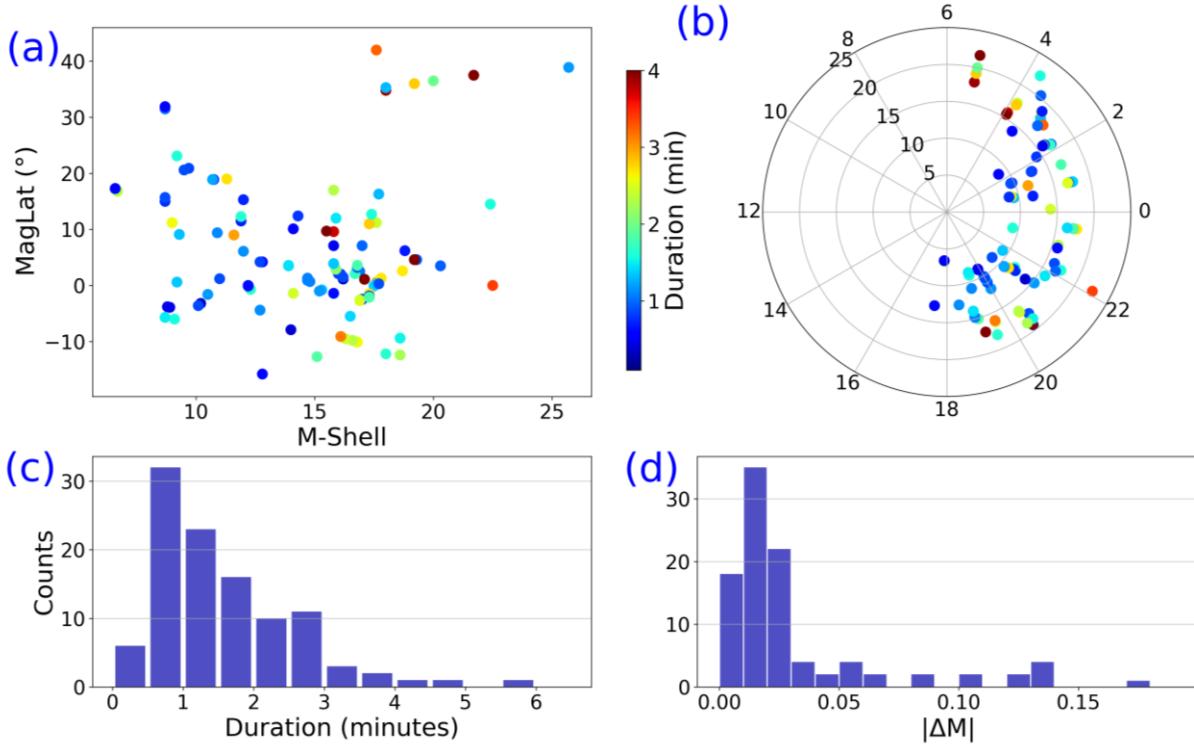
502 Rymer, A. M. & Mauk, B. H. & Hill, T. W. & André, Nicolas & Mitchell, Donald & Paranicas,
503 C. & Young, D. & Smith, H.T. & Persoon, A.M. & Menietti, J. D. & Hospodarsky,
504 George & Coates, Andrew & Dougherty, M. K. (2009). Cassini evidence of rapid
505 interchange transport at Saturn. *Planetary and Space Science*. 57. 1779-1784.
506 <https://doi.org/10.1016/j.pss.2009.04.010>

507 Southwood, D. J., and M. G. Kivelson (1987), Magnetospheric interchange instability, *J.*
508 *Geophys. Res.*, 92(A1), 109–116, <https://doi.org/10.1029/JA092iA01p00109>

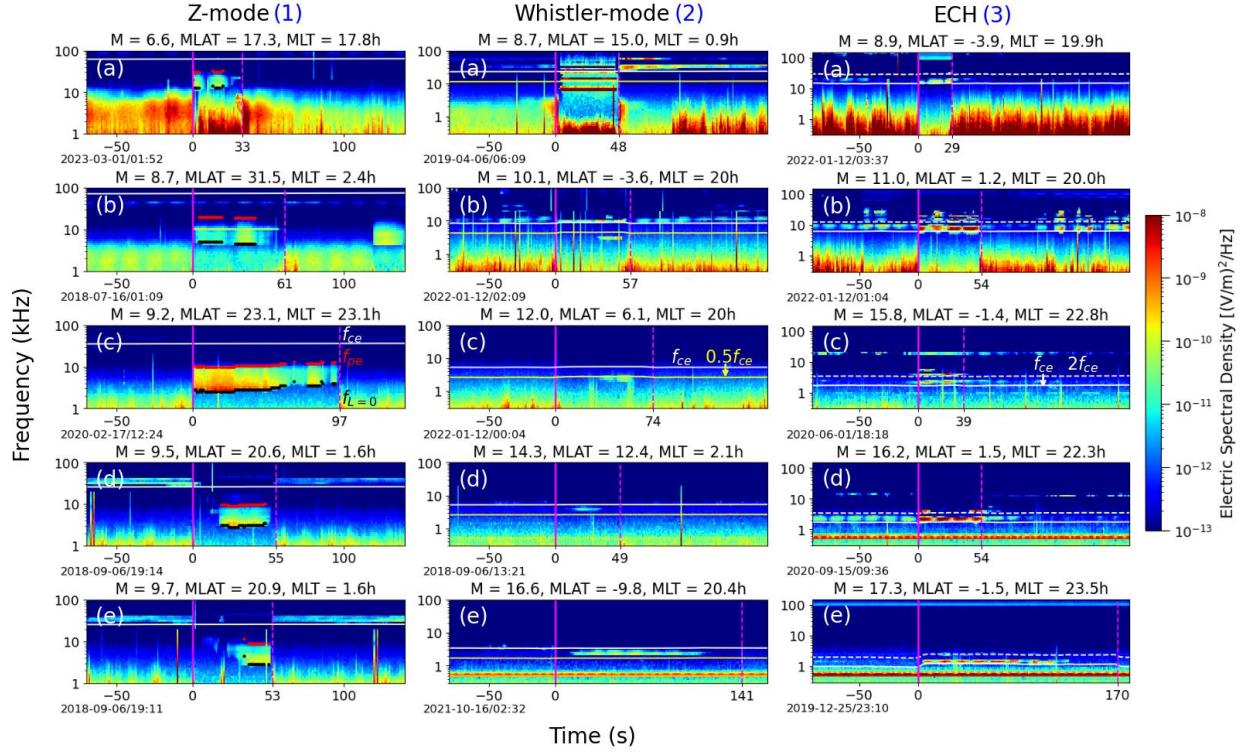

509

510

511 **Figures.**

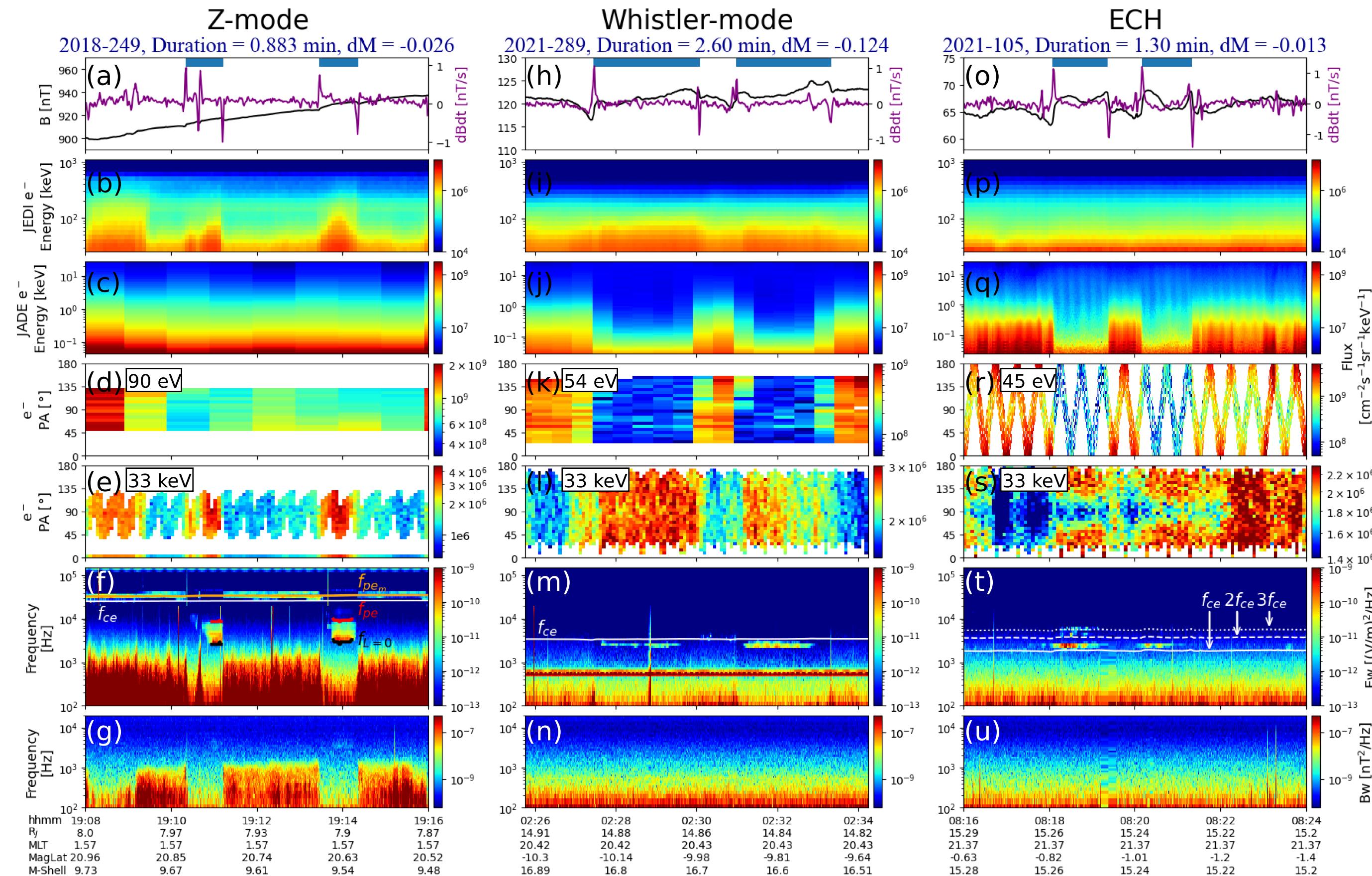

512

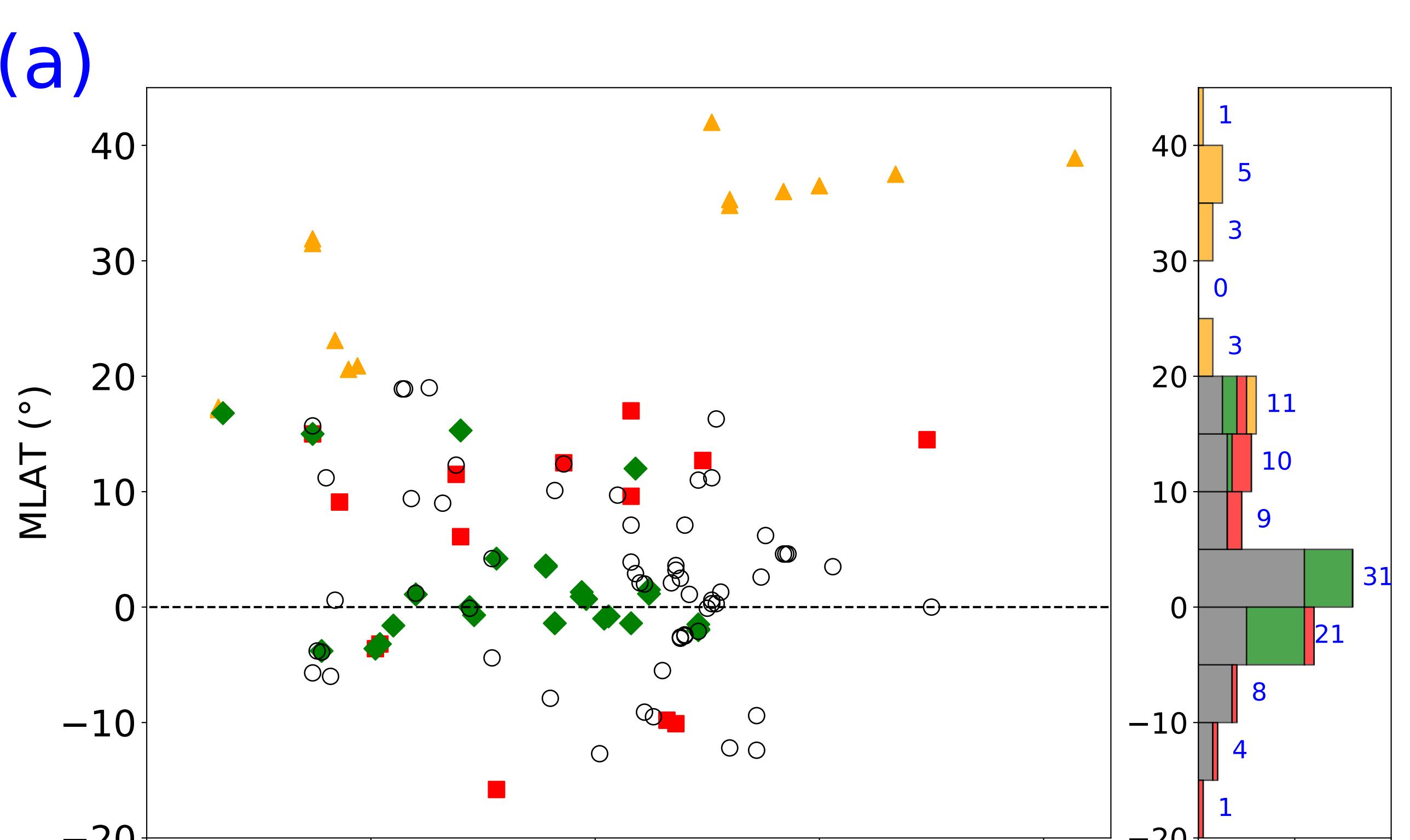
513 **Figure 1.** Juno observations of energetic electrons and plasma waves for three interchange
 514 events (marked by blue bars), where the associated plasma waves are Z-mode (left), whistler-
 515 mode (middle), and ECH waves (right). (a) Magnetic field strength (black) and rate of change
 516 (dB/dt , purple); (b) Energy spectrogram of electron flux from ~ 30 keV to ~ 1 MeV observed by
 517 JEDI; (c) Energy spectrogram of electron flux from 100 eV to 30 keV observed by JADE; (d)
 518 Pitch angle distribution of electron fluxes at 90 eV and (e) 33 keV; (f) Wave electric spectrogram
 519 from 100 Hz-150 kHz, where the solid black line represents $f_{L=0}$, the solid red line is f_{pe} , the solid
 520 orange line is the modeled plasma frequency ($f_{pe\ m}$), the white solid line is f_{ce} , and the white
 521 dotted and dashed lines are $2f_{ce}$ and $3f_{ce}$; (g) Wave magnetic spectrogram from 100 Hz-20 kHz.
 522 (h)-(n) Similar format to panels (a)-(g) but for the whistler-mode wave event. (o)-(u) Similar
 523 format to panels (a)-(g) but for the ECH wave event.


Figure 2. Distribution of observed interchange events from July 2016 to May 2023. (a) Distribution of events in M -shell and MLat. Interchange events are sorted by associated plasma waves, with orange triangles representing Z-mode waves, red squares representing whistler-mode waves, green diamonds representing ECH waves, and empty black circles representing no detected plasma waves. The count rate of events is binned by M -shell width of 2 and MLat width of 5° . (b) Distribution of events in M -shell and MLT, with binned count rate at every MLT hour.

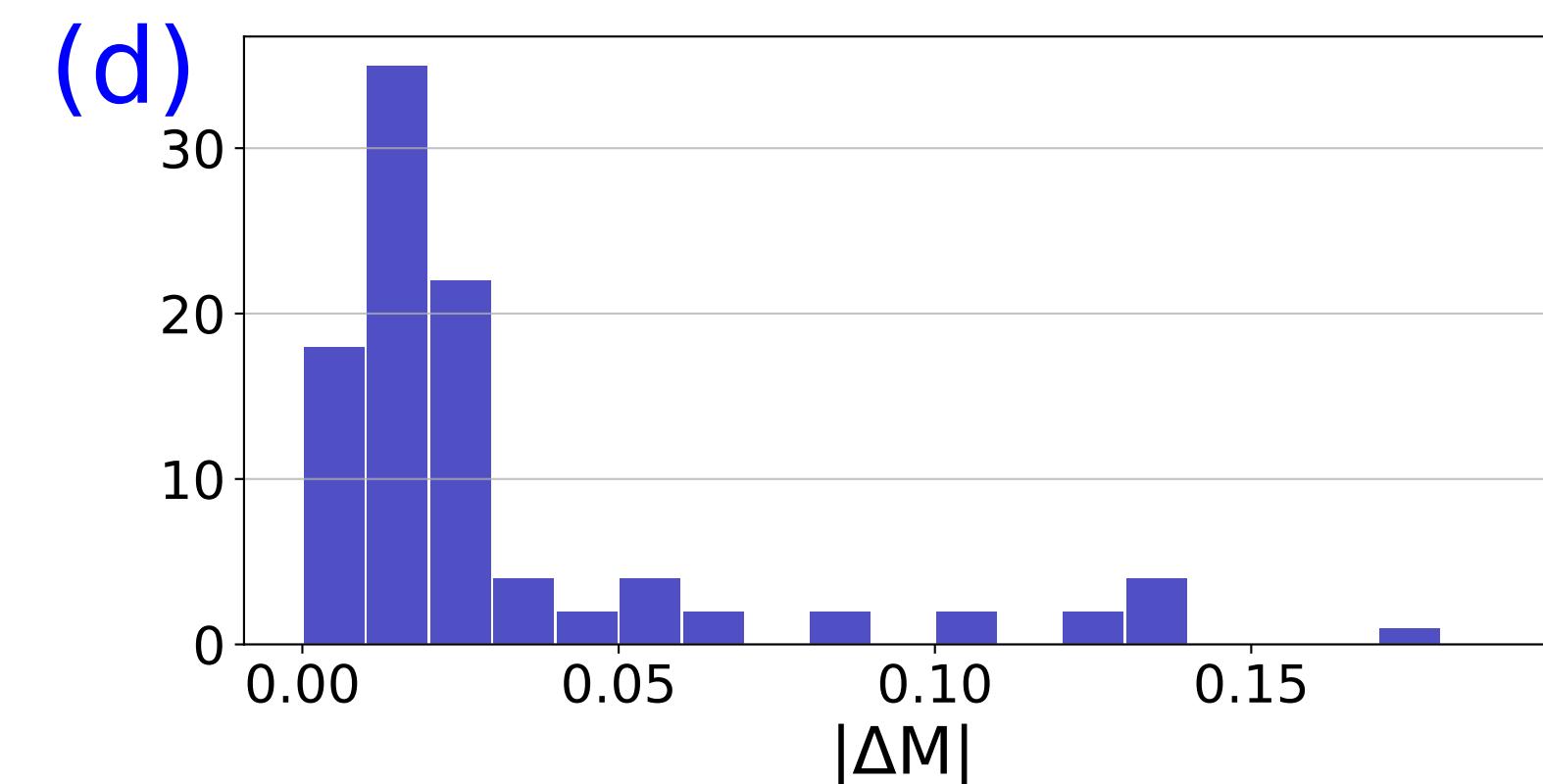
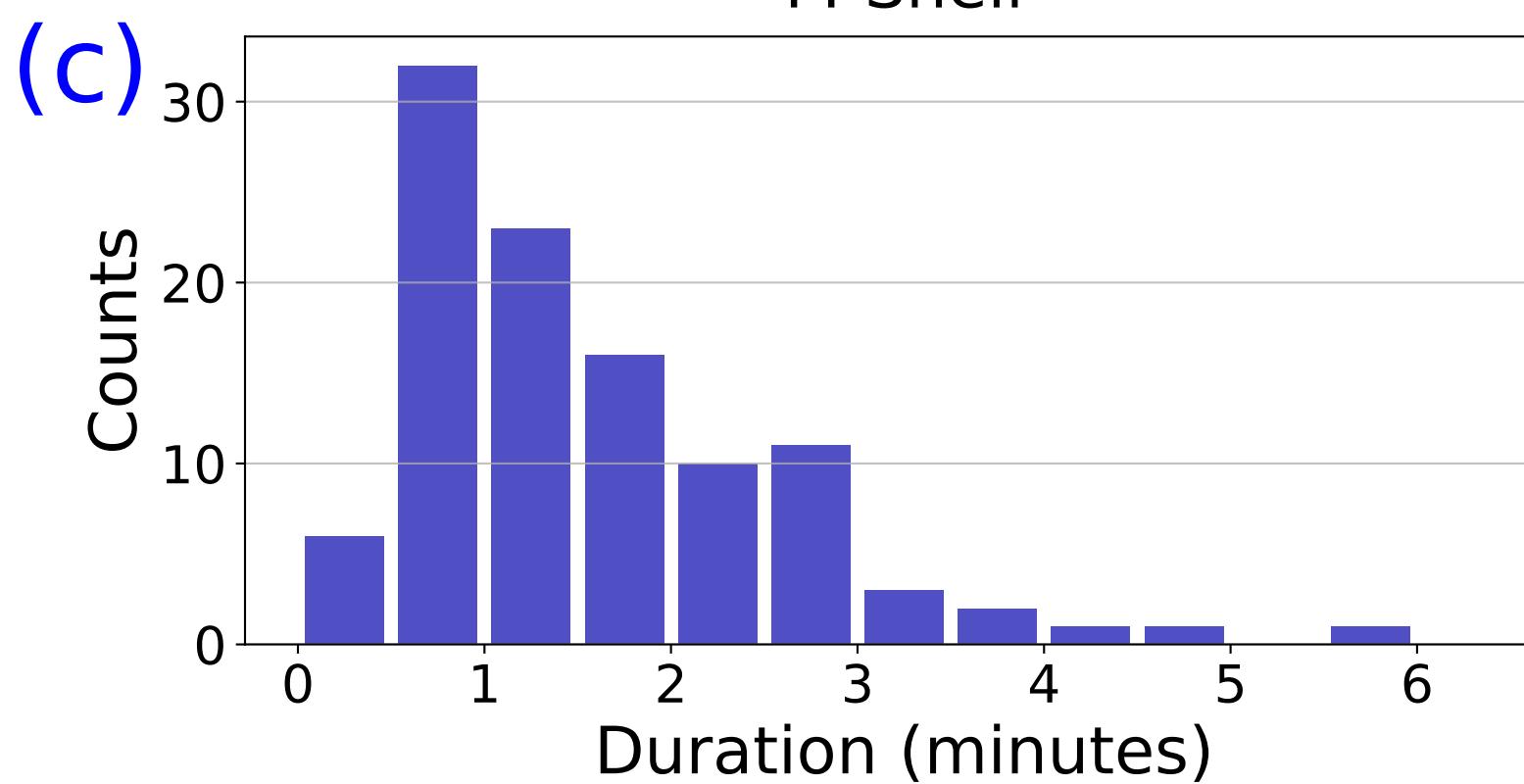
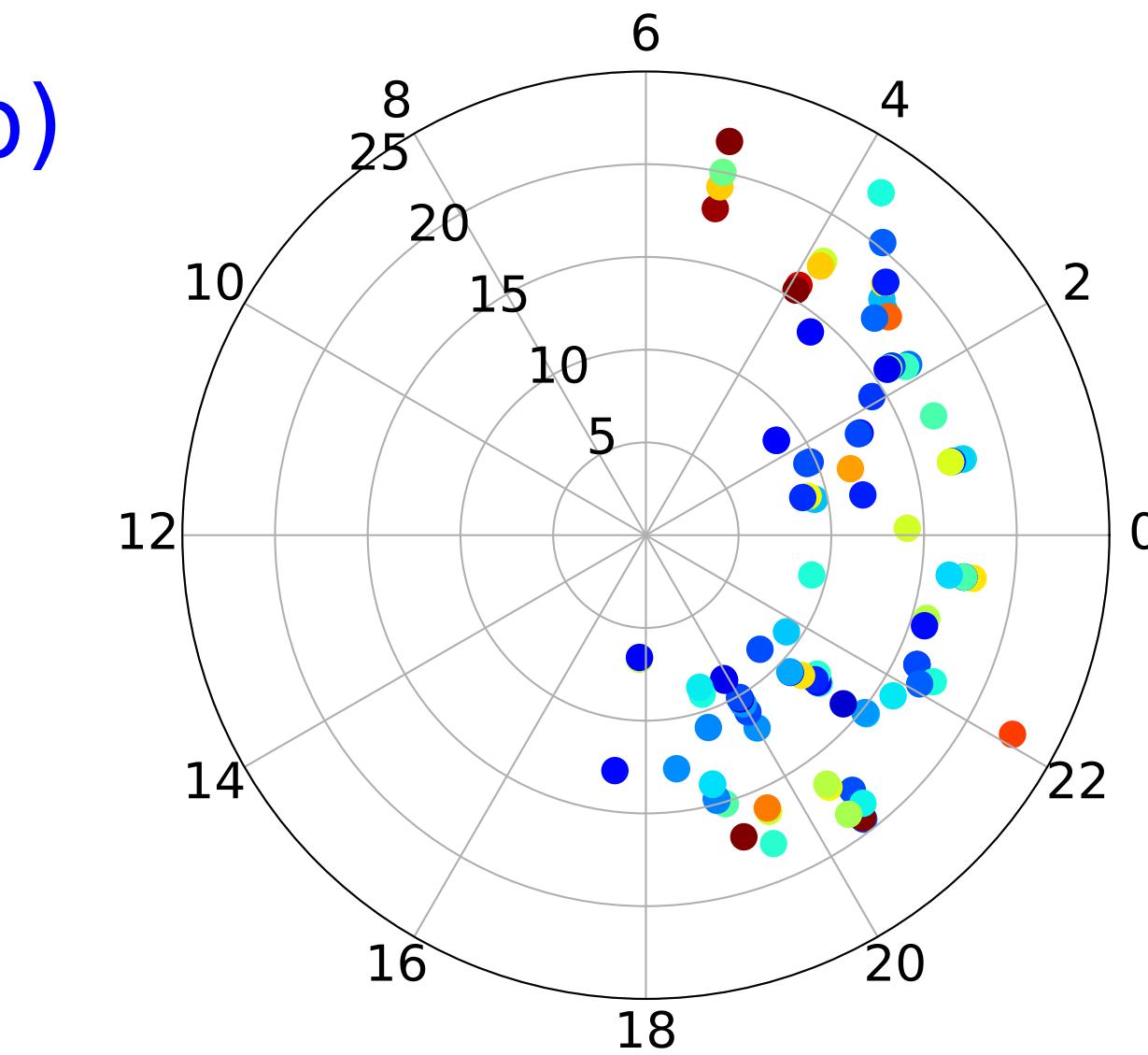
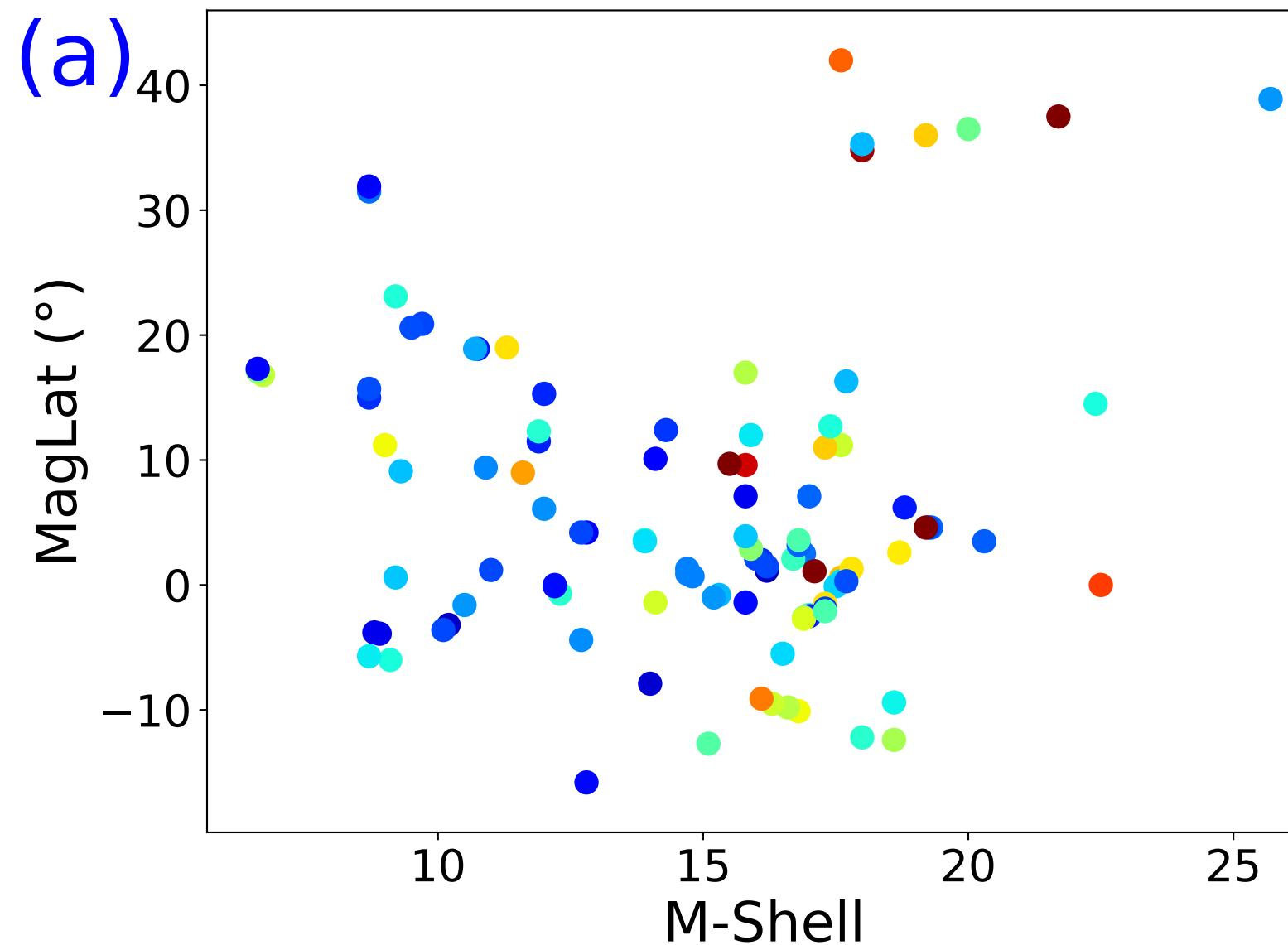
524
525
526
527
528
529
530
531
532

533
534
535
536
537
538
539


Figure 3. Duration of interchange events in M -shell-MLT-MLat coordinates. (a) Duration distribution in M -shell and MLat; (b) duration distribution in M -shell and MLT; (c) histogram of interchange event duration in minutes, with 11 bins of 30s width ranging from ~ 20 seconds to 6 minutes, with one outlier near 17 minutes (not shown); (d) similar format to panel (c) but shown for the corresponding change in M -shell of the spacecraft during the interchanged flux tube crossing (or the M -shell width of the interchange events).


540

541 **Figure 4.** Multi-event analysis of plasma wave electric spectral density during interchange
 542 events, categorized by (1) Z-mode, (2) whistler-mode, and (3) ECH waves. Zero epoch time
 543 indicates the start (end) of the interchange event, marked by a magenta solid (dashed) vertical
 544 line. Events are ordered by increasing M-shell from top to bottom, with information on MLat,
 545 MLT, and the date of event start time. (1) Z-mode waves confined between the $f_{L=0}$ (black line)
 546 and f_{pe} (red line), with the white line representing f_{ce} . (2) Whistler-mode wave events with the
 547 solid yellow line representing $0.5f_{ce}$. (3) ECH wave events with the white dotted line representing
 548 $2f_{ce}$.





Figure 1.

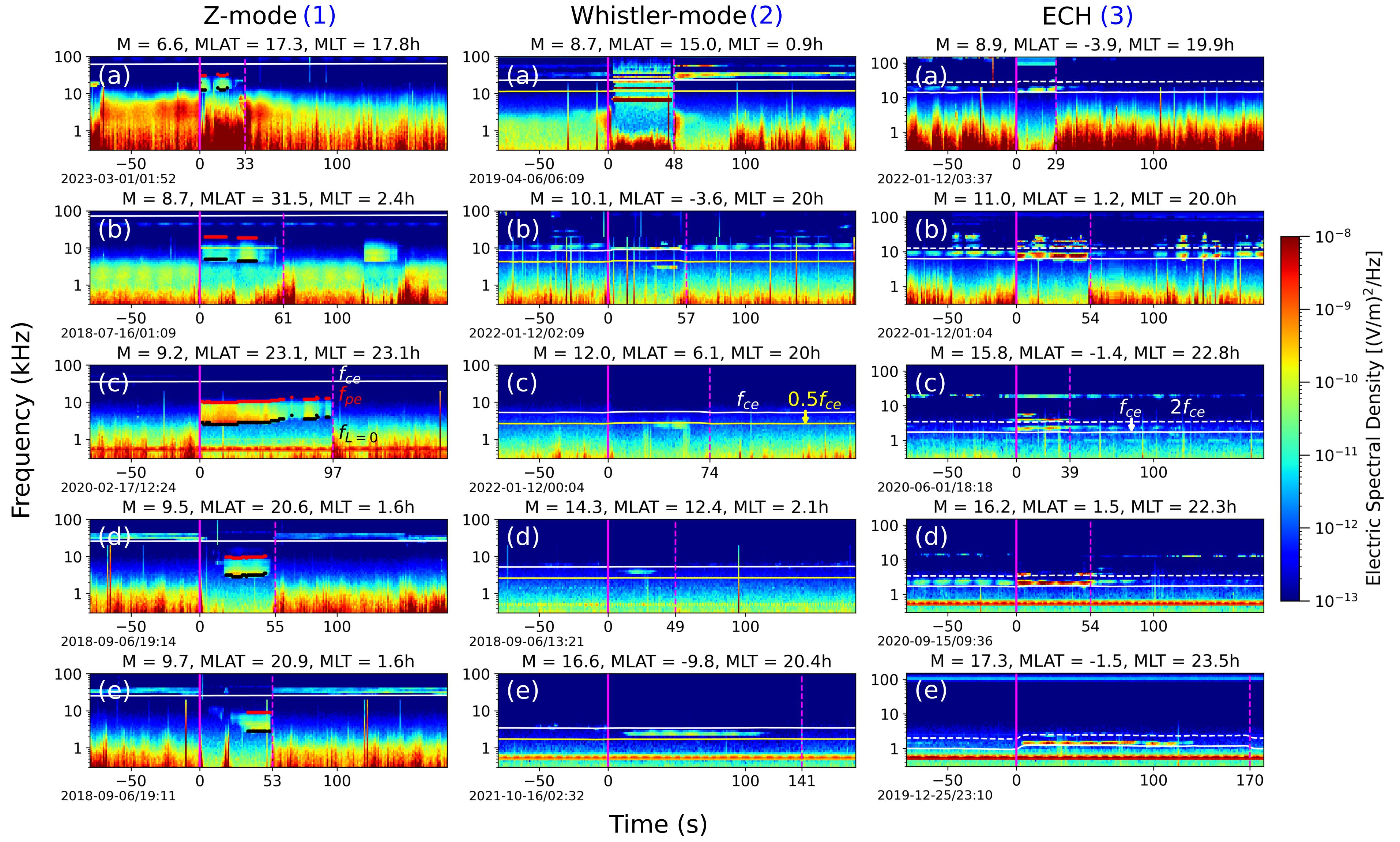

Figure 2.

Figure 3.

Figure 4.

