

1 **Generation and Impacts of Whistler-mode Waves During Energetic Electron
2 Injections in Jupiter's Outer Radiation Belt**

3 **Q. Ma^{1,2}, W. Li², X.-J. Zhang³, J. Bortnik¹, X.-C. Shen², A. Daly², W. S. Kurth⁴, B. H.
4 Mauk⁵, F. Allegrini^{6,7}, J. E. P. Connerney⁸, F. Bagenal⁹, and S. J. Bolton⁶**

5 ¹Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles,
6 California, USA.

7 ²Center for Space Physics, Boston University, Boston, Massachusetts, USA.

8 ³Department of Physics, University of Texas at Dallas, Richardson, Texas, USA.

9 ⁴Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa, USA.

10 ⁵Applied Physics Laboratory, Laurel, Maryland, USA.

11 ⁶Southwest Research Institute, San Antonio, Texas, USA.

12 ⁷Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio,
13 Texas, USA.

14 ⁸NASA Goddard Space Flight Center, Greenbelt, Maryland, USA.

15 ⁹Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, Colorado,
16 USA.

17 Corresponding author: Qianli Ma (qianlima@ucla.edu)

18 **Key Points:**

- 19 • Chorus wave generation due to electron injections is demonstrated by their correlative
20 occurrence and wave instability analysis
- 21 • Whistler-mode waves scatter electrons into the loss cone and cause diffuse auroral
22 precipitation with intensities of 60-160 erg/cm²/s
- 23 • Chorus waves cause local acceleration of MeV electrons in several days, further aided by
24 the seed electron population from injections

25 **Abstract**

26 Energetic particle injections are commonly observed in Jupiter's magnetosphere and have
27 important impacts on the radiation belts. We evaluate the roles of electron injections in the
28 dynamics of whistler-mode waves and relativistic electrons using Juno measurements and wave-
29 particle interaction modeling. The Juno spacecraft observed injected electron flux bursts at
30 energies up to 300 keV at M shell ~ 11 near the magnetic equator during perijove-31. The
31 electron injections are related to chorus wave bursts at 0.05–0.5 f_{ce} frequencies, where f_{ce} is the
32 electron gyrofrequency. The electron pitch angle distributions are anisotropic, peaking near 90°
33 pitch angle, and the fluxes are high during injections. We calculate the whistler-mode wave
34 growth rates using the observed electron distributions and linear theory. The frequency spectrum
35 of the wave growth rate is consistent with that of the observed chorus magnetic intensity,
36 suggesting that the observed electron injections provide free energy to generate whistler-mode
37 chorus waves. We further use quasilinear theory to model the impacts of chorus waves on 0.1–10
38 MeV electrons. Our modeling shows that the chorus waves could cause the pitch angle scattering
39 loss of electrons at < 1 MeV energies and accelerate relativistic electrons at multiple MeV
40 energies in Jupiter's outer radiation belt. The electron injections also provide an important seed
41 population at several hundred keV energies to support the acceleration to higher energies. Our
42 wave-particle interaction modeling demonstrates the energy flow from the electron injections to
43 the relativistic electron population through the medium of whistler-mode waves in Jupiter's outer
44 radiation belt.

45 **1. Introduction**

46 Planetary electron radiation belts are strongly affected by resonant interactions between
47 electrons and whistler-mode waves (Horne and Thorne, 2003; Horne et al., 2008; Thorne, 1983).
48 Whistler-mode waves are right-hand polarized electromagnetic emissions at frequencies below
49 the electron gyrofrequency and are commonly observed in Jupiter's outer radiation belt (Li et al.,
50 2020; Menietti et al., 2012, 2016, 2020). Energetic electrons with sufficient pitch angle
51 anisotropy generate whistler-mode waves through cyclotron resonance (Gary et al., 2012; Liu et
52 al., 2011). On the other hand, the whistler-mode waves scatter the energetic electrons into the
53 loss cone to cause their precipitation into the upper atmosphere (Bhattacharya et al., 1997; Li et
54 al., 2017, 2021) and accelerate relativistic electrons in the Jupiter's outer radiation belt (Ma et al.,
55 2020a; Shprits et al., 2012; Woodfield et al., 2013). The wave-particle interaction processes
56 could be quantified using quasilinear modeling for relatively long periods compared to single
57 wave-particle interaction timescales (Nénon et al., 2017; Woodfield et al., 2014).

58 Energetic electron injections provide an important energy source for whistler-mode wave
59 generation (Li et al., 2009a; Xiao et al., 2003). Electron injections are commonly observed in
60 Jupiter's middle magnetosphere and are associated with the auroral structures equatorward of the
61 main auroral oval (Dumont et al., 2018; Gray et al., 2017; Thorne and Tsurutani, 1979). The
62 Galileo mission statistics show that injections have a high occurrence rate at $M < 12$ and occur
63 across all local times (Mauk et al., 1999, 2002). Following the azimuthal drift motion of particles
64 after injection, the lower energy electrons could be observed earlier than the higher energy
65 electrons, thereby demonstrating an energy dispersion signature in spacecraft observations
66 (Haggerty et al., 2019; Mauk et al., 2002). The pitch angle distribution of injected electrons is
67 usually pancake-like, which is different from the field-aligned distributions at M shells higher

68 than the injection region (Ma et al., 2021a; Tomás et al., 2004). The Earth's radiation belt
 69 modeling demonstrates that the injections provide both the source electrons for chorus wave
 70 generation and the seed electrons for acceleration (Jaynes et al., 2015), which are important for
 71 the rapid enhancement of relativistic electron fluxes during geomagnetic storms (Ma et al., 2018;
 72 Thorne et al., 2013). Energetic electron injections may play similar roles in Jupiter's outer
 73 radiation belt (Tao et al., 2011), which will be analyzed in this paper.

74 The Juno spacecraft (Bolton et al., 2010; Bagenal et al., 2017) has polar orbits around
 75 Jupiter and samples the region near the magnetic equator at $M < 15$ after the 20th orbit in May
 76 2019. Electron injections were observed at high magnetic latitudes during the early orbits
 77 (Haggerty et al., 2019). Because the local magnetic field is weaker at the equator and the high
 78 pitch angle electrons mirror within a narrow latitude range near the equator, the most efficient
 79 wave generation and wave-particle interaction processes occur at low magnetic latitudes. Juno's
 80 equatorial measurements of waves and particles are essential for performing a quantitative
 81 modeling during an injection event.

82 In this paper, we investigate the whistler-mode wave generation, energetic electron
 83 precipitation, and relativistic electron acceleration processes during an electron injection event
 84 observed by Juno near the equator. The Juno observations of whistler-mode waves and electrons,
 85 as well as the wave generation are presented in Section 2. We perform a quasilinear modeling of
 86 wave-particle interaction processes in Section 3. We summarize and discuss our results in
 87 Section 4.

88 2. Chorus wave generation by electron injections

89 2.1 Juno observations of whistler-mode waves and electrons

90 We analyze the Juno measurements of whistler-mode waves and electron fluxes near the
 91 magnetic equator during the perijove-31 (PJ-31) approach on 30 December 2020. The orbital
 92 period was about 53.5 days, and the spacecraft was at the magnetic local time of ~ 22 h before
 93 travelling to the polar region. The Juno magnetometer (MAG) provides the background magnetic
 94 field measurements in three orthogonal directions (Connerney et al., 2017), and the 1-s resolution
 95 data is used in this study. The Waves instrument provides the wave magnetic field (B_w) power at
 96 50 Hz - 20 kHz frequencies and electric field (E_w) power at 50 Hz - 40 MHz frequencies with a
 97 time resolution of 1 s (Kurth et al., 2017). The ratio $E_w/(c \cdot B_w)$ is calculated after considering the
 98 electric dipole antenna length, where c is the speed of light. We use Jovian Auroral Distributions
 99 Experiment (JADE) (McComas et al., 2017) measurements to obtain the pitch angle and energy
 100 distributions of electron fluxes from ~ 50 eV to 30 keV. The electron count rate is converted to
 101 flux by considering the geometric factor in Allegrini et al. (2021). We use Jupiter Energetic
 102 Particle Detector Instrument (JEDI) (Mauk et al., 2017) measurements to obtain the pitch angle
 103 and energy distributions of electron fluxes from 30 keV to 1 MeV. The penetrating electron
 104 fluxes at 100-200 keV energies due to minimum ionizing artifacts are corrected following the
 105 procedure in Mauk et al. (2018). Jupiter's internal magnetic field model JRM-33 (Connerney et
 106 al., 2022a) and external current sheet model CON-2020 (Connerney et al., 2020) are used to
 107 calculate the M shell, map the measured local magnetic field to the magnetic equator, and obtain
 108 the magnetic field line geometry to be used in the quasilinear analysis.

109 Figure 1 shows the 6-hour observation of waves and electron fluxes, when Juno was
 110 travelling towards lower M shells passing through the magnetic equator at $9 < M < 11.5$ (Figure

111 1e). The wave magnetic power spectrogram shows bursty and intense chorus waves at $0.05f_{ce}$ -
 112 f_{ce} frequencies occurring during 11:28 - 13:05 UT (Figure 1b). Here f_{ce} is the electron
 113 gyrofrequency calculated using the local magnetic field measurement. Electron cyclotron
 114 harmonic waves were observed at frequencies above f_{ce} during 12:15 - 14:35 UT with the highest
 115 intensity in the first harmonic band (Figure 1a). During this period, the wave electric power
 116 measurements show an intensification of hiss waves at frequencies below $0.05f_{ce}$, and the
 117 magnetic power measurements show occasional bursts of hiss waves. After 14:35 UT, Juno
 118 travelled away from the equator, and observed chorus and hiss waves at frequencies above and
 119 below $0.05f_{ce}$, respectively. The chorus waves are less intense at $M < 9$ after 14:35 UT than the
 120 chorus waves observed at $M \sim 11$ during 11:28 - 12:35 UT. The frequency of major chorus wave
 121 power spectral densities roughly follows the variation of equatorial electron gyrofrequency,
 122 suggesting that the chorus waves are generated near the magnetic equator. The wave properties
 123 are similar to the observations near the equator in the previous studies (Li et al., 2020; Menietti
 124 et al., 2012, 2020, 2021).

125 The JEDI and JADE measurements show bursts of injected electron fluxes at energies
 126 from 100 eV to 300 keV during 11:00 - 13:20 UT (Figures 1c-d). After 13:20 UT, the electron
 127 fluxes are relatively stable at energies above 30 keV, showing a peak flux at $M \sim 8.1$ (~15:45
 128 UT). In general, the high fluxes of energetic electrons are observed during the same period when
 129 the chorus waves are observed.

130 We select the period of 11:59 - 12:34 UT to analyze the relation between chorus wave
 131 bursts and electron injections. This period is chosen because the spacecraft was close to the
 132 magnetic equator, strong intensities of whistler-mode waves were observed at frequencies above
 133 $0.05f_{ce}$, and both chorus wave bursts and electron injection bursts were observed together. The
 134 35-min observation is presented in Figure 2.

135 Figure 2a shows wave electric power intensities at 30-50 kHz frequencies which are
 136 identified as upper hybrid emissions, in addition to the electron cyclotron harmonic (ECH) waves
 137 at lower frequencies. We estimated the upper hybrid resonance frequency (white dashed line)
 138 and calculated the total electron density. The average density is $\sim 27.3 \text{ cm}^{-3}$, which is used as the
 139 density at the magnetic equator in the following modeling of wave generation and wave-particle
 140 interactions.

141 The wave electric power intensity, magnetic power intensity, and the ratio $E_w/(c \cdot B_w)$ are
 142 presented in Figures 2b-d. The chorus wave bursts are observed with the majority of their power
 143 in the 0.1-0.5 f_{ce} frequency range, and the low $E_w/(c \cdot B_w)$ ratio suggests that the waves propagate
 144 close to the magnetic field direction based on cold plasma theory (Stix, 1992). At lower
 145 frequencies, the wave electric power shows an intensification of hiss waves, while the magnetic
 146 power shows several bursts of hiss waves, suggesting that the hiss may have both quasi-parallel
 147 and oblique wave components.

148 The energy spectrograms of electron flux and anisotropy at 1-300 keV energies are
 149 shown in Figures 2e-f. The enhancements of electron fluxes indicate electron injections with
 150 lower energy (e.g., 3-30 keV) electrons observed earlier than higher energy (e.g., 100-300 keV)
 151 electrons (Figure 2e). The energy dispersion is determined by the corotational electric field, as
 152 well as magnetic field gradient and curvature drifts (Mauk et al., 1999; Haggerty et al., 2019).
 153 Several chorus wave bursts are related to the injected electron bursts, although they do not
 154 appear simultaneously especially during later times. Using the measured pitch angle (α)

155 distribution of electron fluxes (j) at each energy (E), the electron anisotropy (A) is calculated as
 156 in Chen et al. (1999)

$$157 \quad A(E) = \frac{\int_0^\pi j(\alpha, E) \sin^3 \alpha d\alpha}{2 \int_0^\pi j(\alpha, E) \cos^2 \alpha \sin \alpha d\alpha} - 1 \quad (1)$$

158 The field-aligned, isotropic, and pancake pitch angle distributions correspond to negative, 0, and
 159 positive values of anisotropy, respectively. Figure 2f shows a transition from negative to positive
 160 anisotropies as energy increases to above 2 keV. The high anisotropy values are mainly observed
 161 at \sim 3-30 keV energies. Figure 2g shows the pancake pitch angle distributions measured at 10.9
 162 keV energy, which is an example for the distributions with high anisotropy.

163 We calculate the electron minimum resonance energies for the chorus waves at $0.1f_{ce}$,
 164 $0.2f_{ce}$, and $0.5f_{ce}$ frequencies shown as the black dashed lines in Figures 2e-f. The calculation
 165 adopts 0° wave normal angle and 0° electron pitch angle, the measured total electron density and
 166 magnetic field, wave dispersion relation from cold plasma theory, and the cyclotron resonance
 167 condition. The energies of high anisotropy match the resonance energies of chorus waves. The
 168 electron anisotropy is higher at the times of injections than the anisotropy of background electron
 169 flux. The analysis of electron anisotropy provides evidence that the high electron fluxes with
 170 anisotropic pitch angle distribution at \sim 3-30 keV energies may generate the chorus waves at 0.1-
 171 $0.5f_{ce}$ frequencies.

172 Figure 2h shows the energy spectrogram of calculated wave growth rate using the
 173 observed electron phase space density distributions. The calculation details are presented in
 174 Section 2.2. The wave growth rates are high (>50 dB/R_J) when the injections provide both high
 175 fluxes and high pitch angle anisotropy; therefore, the simulated waves appear at the same time as
 176 the electron injections at 3-30 keV energies. The frequencies of high wave growth are mainly at
 177 \sim 500 Hz - 2 kHz, roughly consistent with the frequencies of the observed chorus waves.
 178 However, the observed chorus waves present a negative drift of wave frequency in the individual
 179 wave burst within \sim 2 min timescale (Figure 2c), which is not resolved in the simulated
 180 spectrogram of wave growth rate. The wave growth rate calculation shows overall high growth
 181 rates at high frequencies, obscuring the interpretation of frequency dispersion. It is also possible
 182 that the observed electrons were scattered by chorus waves and their pitch angle distributions
 183 changed from the initial injection that generated the waves.

184 2.2 Calculation of linear wave growth rates

185 Whistler-mode wave generation is simulated using the linear theory of wave instability
 186 (Kennel, 1966) and cold plasma dispersion. The local convective growth rate K_i is calculated as
 187 the integral of electron phase space density gradients under the resonance condition (Chen et al.,
 188 2010):

$$189 \quad K_i = \sum_{n=-\infty}^{+\infty} \int_0^\infty dv_\perp (W_{\perp,n} \frac{\partial f}{\partial v_\perp} + W_{\parallel,n} \frac{\partial f}{\partial v_\parallel}) \Big|_{v_\parallel=v_{\parallel,res}} \quad (2)$$

190 where f is the phase space density, n is the resonance harmonic number, v_\perp and v_\parallel are the
 191 perpendicular and parallel particle velocities respectively, $W_{\perp,n}$ and $W_{\parallel,n}$ are the perpendicular
 192 and parallel weighting functions respectively. v_\parallel is evaluated as the resonance velocity $v_{\parallel,res}$
 193 satisfying the resonance condition:

$$194 \quad \omega - k_\parallel v_{\parallel,res} = -n\Omega_{ce}/\gamma \quad (3)$$

195 where ω is the whistler-mode wave frequency, Ω_{ce} (defined as positive here) is the electron
 196 angular gyrofrequency, k_{\parallel} is the parallel wave number, and γ is the relativistic factor. The
 197 resonant harmonic $n = -1$ provides the dominant contribution for the whistler-mode wave
 198 growth through cyclotron resonance. The analytical expressions of the weighting functions $W_{\perp,n}$
 199 and $W_{\parallel,n}$ are provided in Kennel (1966).

200 As simulation inputs, our wave instability analysis model (Ma et al., 2014a) uses the
 201 satellite measurements of the particle flux distribution as a function of pitch angle and energy,
 202 total electron density, and total magnetic field. The wave growth rates are calculated for different
 203 wave normal angles and different wave frequencies along the satellite trajectory. This model has
 204 been used in our previous studies examining the whistler-mode and Z-mode wave generation
 205 during interchange instabilities at Jupiter (Daly et al., 2023), and magnetosonic wave generation
 206 in the Earth's inner magnetosphere (Ma et al., 2014a,b).

207 Figure 3 shows the wave growth rate calculation using Juno observations at \sim 12:00 UT
 208 on 30 December 2020. The electron fluxes measured by JADE and JEDI are averaged over 30 s
 209 after 12:08 UT, and converted into phase space density. The phase space density is plotted in the
 210 polar coordinate of electron energy and pitch angle in Figure 3a. The phase space densities are
 211 higher at \sim 90° pitch angle than those at \sim 0° or \sim 180°, suggesting an anisotropic distribution,
 212 which is typically unstable so that it would generate whistler-mode waves.

213 The wave growth rate is calculated as a function of wave frequency (ω/Ω_{ce}) and wave
 214 normal angle in Figure 3b. Since there is not a significant degree of asymmetry between the
 215 electron distributions near field-aligned and anti-field-aligned directions, we mirror the electron
 216 phase space densities relative to 90° pitch angle and calculate averages within the pitch angle
 217 ranges of 0°-90° and 90°-180°. The wave growth rate is shown only for the wave normal angles
 218 of 0°-30° since there is no positive wave growth for larger wave normal angles. The highest
 219 wave growth rate is found at \sim 0° wave normal angle due to cyclotron resonance, consistent with
 220 the observational evidence that the $E_w/(c \cdot B_w)$ ratio is low for chorus (Figure 2d). The calculated
 221 wave growth rate is compared with the observed chorus wave intensity as a function of wave
 222 frequency in Figure 2c. The agreement between the frequency spectra of the simulated wave
 223 growth and the observed wave intensity demonstrates that the observed electron distributions are
 224 unstable in the appropriate spectral range and provide the energy source for the chorus wave
 225 generation.

226 2.3 Rising-tone structures of chorus waves

227 Although the time cadence of the Waves instrument sampling is about 1 s during this
 228 event, rising-tone structures of chorus waves are nevertheless observed in the \sim 1-min wave
 229 spectrogram in Figure 4. The chorus wave elements show high electric and magnetic power
 230 densities, and $E_w/(c \cdot B_w) < 1$ suggesting quasi-parallel wave propagation. The chorus wave
 231 element frequency typically rises from $0.05f_{ce}$ to $0.5f_{ce}$ within a timescale of \sim 10 s. The chorus
 232 wave element may start in less than 5 s after the prior one, forming clusters of wave elements.
 233 The intensity gaps in the wave spectra found between different elements enable the identification
 234 of individual rising-tone structures. Comparing to the observations in Figure 2c, the collection of
 235 rising-tone wave elements forms the wave burst with an overall negative drifting frequency in
 236 \sim 2-min timescale.

237 The rising-tone structures shown in Figure 4 may be different from the typical rising-tone
 238 chorus waves observed in the Earth's radiation belts (Li et al., 2011). The rising-tone chorus
 239 waves in the Earth's radiation belts exhibit a faster frequency sweep rate and a shorter repetition
 240 period (less than 1 s) between different elements (Teng et al., 2017) than those shown in Figure
 241 4. The variations within 1 s timescale cannot be resolved in Figure 4. However, the ~10 s rising-
 242 tone structures may imply the possible nonlinear wave-particle interactions in Jupiter's outer
 243 radiation belt, which is beyond the linear wave instability process discussed above.

244 2.4 Correlation between electron fluxes and ULF waves

245 Figure 2 shows electron flux bursts during injections in several minutes timescale. The
 246 observations in the Earth's outer radiation belt suggest that energetic electron fluxes could be
 247 correlated with ultra low frequency (ULF) waves, further modulating chorus wave generation
 248 and electron precipitation (Li et al., 2023; Rae et al., 2018; Xia et al., 2016; Zhang et al., 2019).
 249 We examine the relationship between magnetic field perturbations and electron fluxes in
 250 Jupiter's outer radiation belt using the 1-s magnetic field measurements by MAG instrument.

251 We subtract the total magnetic fields in 3 components by the smoothed magnetic fields
 252 over 10 min, and transform the magnetic fields into field-aligned coordinates to obtain the
 253 poloidal, toroidal, and compressional components as shown in Figure 5a. During this period, the
 254 local minima of compressional wave magnetic field are correlated with the high electron fluxes
 255 from ~1 keV to ~30 keV energy (Figure 5b), as indicated by the vertical dashed lines in Figure 5.
 256 Figure 5c compares the ~3.28 keV electron fluxes measured by JADE (blue) with the negative
 257 values of compressional wave magnetic field component (black). The high correlation shown in
 258 Figure 5c suggests that the electron fluxes are modulated by the compressional ULF waves.
 259 Similar to the coupling process reported in the Earth's radiation belts (Zhang et al., 2019), the
 260 perturbation in compressional magnetic field may lead to the radial transport of energetic
 261 electrons, since the electron phase space density increases with increasing M shell (Ma et al.,
 262 2021a). The modulated electron fluxes during the injection event further generate the chorus
 263 wave bursts on a timescale of a few minutes as shown in Figure 2.

264 3. Electron scattering and acceleration by whistler-mode waves

265 3.1 Calculation of diffusion coefficients

266 To analyze the electron scattering and acceleration by the observed whistler-mode waves
 267 during the injection event, we first use the Full Diffusion Code in Jupiter's radiation belts (Ma et
 268 al., 2020a) to calculate the bounce-averaged diffusion coefficients. The Full Diffusion Code
 269 requires the inputs of the frequency spectrum of wave magnetic intensity, total electron density,
 270 total background magnetic field, and wave normal angle distribution. The total electron density
 271 is obtained by identifying the upper hybrid frequency line (Figure 2a) and averaging over the
 272 period 11:59 - 12:34 UT. The latitudinal dependence of electron density is obtained from
 273 Dougherty et al. (2017) which is also used in Ma et al. (2020a), and the density is linearly scaled
 274 to match the observation at the equator ($\sim 27.3 \text{ cm}^{-3}$). The ratio between the plasma frequency and
 275 electron gyrofrequency at the equator is about 7.5.

276 We obtain the chorus wave frequency spectrum (shown as the black line in Figure 6) by
 277 selecting the waves at $0.05\text{-}0.5 f_{ce}$ frequencies and averaging the wave power density during
 278 11:59 - 12:34 UT. The wave amplitude is found to be about 18 pT. The chorus waves are mainly
 279 quasi-field-aligned from the observation. The wave normal angle distribution is assumed to be a

280 Gaussian function in $X = \tan \theta$, such that the wave magnetic power is proportional to
 281 $\exp(-((X - X_m)/X_w)^2)$. We set the central wave normal angle as $X_m = 0$, wave normal width
 282 as $X_w = \tan 10^\circ$, lower cutoff as $X_{LC} = 0$, and upper cutoff as $X_{UC} = \tan 30^\circ$. The latitudinal
 283 range of the wave distribution is assumed to extend from the equator to 50° based on the
 284 previous statistical distribution of whistler-mode waves (Li et al., 2020). Based on our previous
 285 analysis about the latitudinal dependence of diffusion coefficients (Ma et al., 2020a), the chorus
 286 waves at latitudes below 20° play the major roles in multi-MeV electron acceleration and the
 287 precipitation at energies below 1 MeV.

288 The hiss wave frequency spectrum is obtained by selecting the waves at 50 Hz - $0.05 f_{ce}$
 289 frequencies. Because the $E_w/(c \cdot B_w)$ of hiss presents two components with a ratio that is higher
 290 and lower than 1 respectively, we obtain the quasi-parallel hiss and oblique hiss waves by
 291 selecting the wave power densities with $E_w/(c \cdot B_w) < 1$ and $E_w/(c \cdot B_w) > 1$. The frequency spectra
 292 of the two components are shown as the blue and red lines in Figure 6, and the amplitudes are
 293 9.4 pT and 4.2 pT, respectively. The total amplitude of chorus and hiss waves is similar to the
 294 statistical average amplitude of whistler-mode waves at $M \sim 10$ (Li et al., 2020). The wave
 295 normal angle and latitudinal distribution of quasi-parallel hiss waves are assumed to be the same
 296 as those of chorus waves. For oblique hiss waves, we assume that $X_m = \tan 65^\circ$, $X_w = \tan 65^\circ$,
 297 $X_{LC} = \tan 50^\circ$, and $X_{UC} = \tan 80^\circ$, and the latitudinal range extends from the equator to 10° .

298 The bounce-averaged pitch angle ($\langle D_{\alpha\alpha} \rangle$), momentum ($\langle D_{pp} \rangle$), and mixed pitch angle-
 299 momentum ($\langle D_{\alpha p} \rangle$) diffusion coefficients are presented in Figure 7. Here α is the pitch angle at
 300 the magnetic equator and p is the electron momentum. Since the energy of calculation is up to 30
 301 MeV, we consider 50 orders of harmonic resonances ($-50 \leq n \leq 50$) to include all the possible
 302 scattering interactions. The chorus waves play the dominant role in the electron scattering at
 303 energies below 300 keV. Compared to $\langle D_{\alpha\alpha} \rangle$, the momentum diffusion due to chorus becomes
 304 important for energies above ~ 500 keV. The quasi-parallel hiss waves contribute to the scattering
 305 at energies above 100 keV and the scattering rates become comparable or higher than chorus at
 306 energies above 1 MeV. The electron scattering at > 100 keV energies by oblique hiss waves is
 307 slower than quasi-parallel hiss. However, the oblique hiss waves cause more efficient Landau
 308 acceleration of electrons than chorus and quasi-parallel hiss waves, shown as the higher diffusion
 309 coefficients at low energies where $\langle D_{\alpha p} \rangle < 0$.

310 3.2 Modeling of electron precipitation by whistler-mode waves

311 We model the electron precipitation using the observed whistler-mode waves and
 312 electron fluxes along the Juno trajectory using the technique described in Ma et al. (2020b,
 313 2021b). After the bounce-averaged pitch angle diffusion coefficients are calculated, the
 314 precipitation ratio, which is the ratio between the average electron flux inside the loss cone and
 315 the flux just outside the loss cone, is calculated as a function of energy by comparing $\langle D_{\alpha\alpha} \rangle$ at
 316 the loss cone ($\langle D_{\alpha\alpha} \rangle|_{LC}$) and the strong diffusion limit. The loss cone pitch angle is about 1° at
 317 the equator. It is assumed that the electron pitch angle distribution reaches a quasi-equilibrium
 318 state between pitch angle scattering from just outside the loss cone and precipitation loss inside
 319 the loss cone. The timescale to reach this quasi-equilibrium state is determined by the shorter
 320 time between the timescale of $\langle D_{\alpha\alpha} \rangle|_{LC}$ and the electron bounce period.

321 The modeling of electron precipitation by whistler-mode waves using quasilinear theory
 322 is shown in Figure 8. Figure 8a shows that the chorus wave amplitude reached 20-100 pT, quasi-

323 field aligned hiss wave amplitude reached \sim 10-30 pT, and the oblique hiss wave amplitude was
 324 remained at a few pT. Figure 8b shows the $\langle D_{\alpha\alpha} \rangle|_{LC}$ due to both chorus and hiss waves. The
 325 electrons at \sim 1.5 keV - 100 keV energies are subject to the scattering near the loss cone on a
 326 timescale of a few hours, and the scattering rates become higher during wave bursts. The
 327 calculated precipitation ratio (Figure 8c) shows that the loss cone is nearly full (ratio greater than
 328 0.8) at \sim 1.5-100 keV energies, while the loss cone at $>$ 100 keV energy is filled only when the
 329 whistler-mode chorus or hiss waves are strong. We obtain the electron fluxes just outside the loss
 330 cone from JADE and JEDI measurements (Figure 8d), and calculate the energy spectrogram of
 331 precipitating electron fluxes (Figure 8e) using the precipitation ratio. The total precipitating
 332 energy flux (Figure 8f) is calculated through the integral of the precipitating electron fluxes
 333 inside the loss cone (Ma et al., 2020b, 2021b). The total precipitating energy flux is found to be
 334 \sim 60-160 erg/cm²/s during the injection event, which is a factor of \gtrsim 5 higher than the total
 335 precipitating energy flux during intense chorus wave events in the Earth's outer radiation belt
 336 (Ma et al., 2020b).

337 3.3 Modeling of local relativistic electron acceleration

338 The long-term electron phase space density evolution due to whistler-mode waves is
 339 modeled by performing 2D Fokker-Planck simulation at $M = 11$. We numerically solve the
 340 bounce-averaged Fokker-Planck equation (Ma et al., 2020a):

$$341 \frac{\partial f}{\partial t} = \frac{1}{T(\alpha) \sin \alpha \cos \alpha} \frac{\partial}{\partial \alpha} \left[T(\alpha) \sin \alpha \cos \alpha \left(\langle D_{\alpha\alpha} \rangle \frac{\partial f}{\partial \alpha} + p \langle D_{\alpha p} \rangle \frac{\partial f}{\partial p} \right) \right] + \frac{1}{p^2} \frac{\partial}{\partial p} (p^3 \langle D_{\alpha p} \rangle \frac{\partial f}{\partial \alpha} + \\ 342 p^4 \langle D_{pp} \rangle \frac{\partial f}{\partial p}) - \frac{f}{\tau} \quad (4)$$

343 where t is the time, $T(\alpha)$ is the normalized electron bounce period, and τ is a quarter of bounce
 344 period inside the loss cone and infinity outside the loss cone. We set $\frac{\partial f}{\partial \alpha} = 0$ at $\alpha = 0^\circ$ and
 345 $\alpha = 90^\circ$ as the low and high pitch angle boundary conditions, respectively. The low and high
 346 energy boundary conditions of phase space density are assumed to be constants at 30 keV and 30
 347 MeV, respectively. The initial phase space density distribution is obtained from the 35-min
 348 average of Juno electron flux measurements. Since JEDI provides the electron flux up to 1 MeV
 349 energy, we assume that the electron phase space density decreases as a function of energy as a
 350 power law at energy above 1 MeV, i.e., $f \propto E^{-a}$ where a is obtained from the phase space
 351 density slope measured at the 700 keV - 1 MeV energy channels of JEDI. The simulation is
 352 performed for a 10-day timescale with a timestep of 1 s.

353 Figure 9a shows the simulated electron phase space density evolution due to chorus
 354 waves. The spin-averaged phase space density is plotted as a function of time and electron
 355 energy from 100 keV to 10 MeV. Due to the interaction with chorus waves, the phase space
 356 densities at energies below 1 MeV decrease due to the precipitation to the atmosphere, the
 357 electrons at 1-3 MeV energies are accelerated first and then their fluxes decay, and the electrons
 358 at $>$ 3 MeV energies are accelerated and remained at high levels during the 10-day period. The
 359 hiss waves, however, only cause gradual decay of electron fluxes at 100 keV - 1 MeV energies
 360 (Figure 9b). If both chorus and hiss waves are considered (Figure 9c), the electron flux decay at
 361 200 keV - 3 MeV energies is faster than that due to chorus or hiss individually, while the
 362 electrons at $>$ 3 MeV energies are still accelerated and remain high over this period.

363 The Juno observations suggest that electron injections can provide high electron fluxes at
 364 energies up to 300 keV with anisotropic pitch angle distributions. These electron populations

365 may also act as the seed electrons which are accelerated to energies above several MeV, similar
 366 to the roles of electron injections that play in the Earth's outer radiation belt (Allison et al., 2019).
 367 These seed electrons are not included in the simulations in Figures 9a-c. To demonstrate their
 368 effects on relativistic electron acceleration, we perform a simulation of electron scattering and
 369 acceleration due to chorus and hiss waves using a constant phase space density condition at 300
 370 keV energy (Figure 9d). Compared to the results without seed electrons (Figure 9c), the electrons
 371 at 1-5 MeV energies are first accelerated and their phase space densities are stable afterwards.
 372 The simulation results at >5 MeV energies are similar between Figures 9c and 9d within the
 373 simulation period of 10 days, but their differences may be more significant for longer
 374 simulations (>10 days) due to the gradual development of differences at lower energies (< 5
 375 MeV).

376 **4. Conclusions and Discussions**

377 We analyzed the resonant interaction processes that take place between electrons and
 378 whistler-mode waves during an electron injection event at $M \sim 11$. Juno observed bursts of
 379 injected electron fluxes and whistler-mode chorus and hiss waves near the magnetic equator. We
 380 calculated the wave growth rates to analyze the whistler-mode wave generation in association
 381 with electron injections, and used quasilinear modeling to quantify the energetic electron
 382 precipitation into Jupiter's atmosphere and relativistic electron acceleration by these same
 383 whistler-mode waves.

384 Our study is summarized with three major points for wave generation, electron
 385 precipitation, and relativistic electron acceleration, respectively.

- 386 • The electron injections provide high fluxes and high pitch angle anisotropies at >1 keV
 387 energies which act as the free energy source to generate whistler-mode chorus waves that are
 388 then observed by Juno. Local wave generation hypothesis is supported by the observations of
 389 electron injection bursts and chorus wave bursts, the pancake pitch angle distributions of
 390 energetic electrons, and the agreement between resonance energy of chorus and the unstable
 391 electron distributions. The wave generation is demonstrated through our linear wave growth
 392 rate calculation, which shows agreement between the frequency range of large positive wave
 393 growth rates and the observed chorus wave magnetic power density. The chorus wave power
 394 spectrogram shows rising-tone structures, suggesting possible nonlinear processes that take
 395 place in the chorus wave source.
- 396 • The whistler-mode waves could cause high precipitating energy flux of electrons from the
 397 equator to Jupiter's upper atmosphere during electron injections. The modeled total
 398 precipitating energy flux is 60-160 erg/cm²/s, which is more than 5 times higher than that due
 399 to chorus waves during injections in the Earth's radiation belts (Ma et al., 2020b). The
 400 precipitation at >100 keV energies and the peaks of total precipitating energy flux are caused
 401 by strong chorus or hiss during the wave bursts. Chorus waves play a dominant role in the
 402 scattering loss of 1-100 keV electrons. At energies above 100 keV, hiss waves contribute
 403 comparably to chorus waves to electron scattering.
- 404 • The chorus waves are able to accelerate electrons at multiple MeV energies and cause the
 405 decay of lower energy electrons in Jupiter's outer radiation belt. The loss of <3 MeV
 406 electrons becomes faster when hiss wave scattering is also considered. Electron injections at
 407 energies up to 300 keV provide seed electrons, which could be accelerated to 1-3 MeV
 408 energies in less than 2 days and to 3-10 MeV energies over a longer period. The seed electron

409 fluxes are important for supporting a stable radiation belt intensity after the chorus-driven
410 acceleration.

411 The roles of energetic electron injections in whistler-mode wave generation, diffuse
412 auroral precipitation, and relativistic electron acceleration in Jupiter's outer radiation belt are
413 qualitatively similar to those at the Earth (Li et al., 2009a; Jaynes et al., 2015; Thorne et al.,
414 2013). However, there are also significant differences as discussed below.

415 Whistler-mode chorus and hiss waves are observed in the same region in Jupiter's outer
416 radiation belt, while the chorus and hiss waves are mainly observed outside and inside the
417 plasmapause in the Earth's radiation belts, respectively (Li et al., 2009b, 2015; Ma et al., 2023).
418 The chorus waves at frequencies above 0.05 equatorial f_{ce} may be generated by the unstable
419 injected electrons and are the major driver for the relativistic electron acceleration process. The
420 hiss waves at lower frequencies may have mixed sources, such as propagation effects (Wang et
421 al., 2008), and mainly drive electron flux decay.

422 The energetic electron precipitation at Jupiter is at least a factor of 5 higher than the
423 precipitation at the Earth. The key factors leading to the more intense precipitation are the longer
424 magnetic field line and higher level of trapped electron flux at Jupiter than those at the Earth.
425 Our modeled precipitating energy flux is in the same order of magnitude as Juno's direct
426 observation of the precipitating electrons, when the satellite was near the same M shells at high
427 latitude close to Jupiter where the loss cone electron flux was resolved (Allegrini et al., 2020;
428 Clark et al., 2018). The high precipitating energy flux may cause diffuse aurora phenomena in
429 Jupiter's atmosphere (Li et al., 2017, 2021).

430 In our simulation, the timescale of multi-MeV electron acceleration by chorus at Jupiter
431 is longer than the rapid acceleration of electrons in the Earth's radiation belts (Ma et al., 2018;
432 Thorne et al., 2013). The chorus wave amplitude in our simulation is close to the statistical
433 average, which is lower than the chorus wave amplitude during highly disturbed times in the
434 Earth's radiation belts. At Jupiter, if higher amplitude chorus occurs under certain conditions, the
435 acceleration timescale could be shorter than our simulation results; alternatively, if chorus waves
436 with moderate amplitudes have a high occurrence rate, the chorus waves may persistently
437 accelerate the electrons over a long time (Ma et al., 2020a; Woodfield et al., 2013). The frequent
438 occurrence of electron injections at $M < 12$ (Mauk et al., 1999, 2002) may support the second
439 scenario. Future studies are planned to reveal the properties of chorus and hiss waves and the
440 efficiency of electron acceleration and precipitation on a global scale in the Jupiter's outer
441 radiation belt.

442 Acknowledgments

443 We would like to acknowledge the NASA subcontract 699046X to UCLA and subcontract
444 Q99064JAR to Boston University under prime contract ZZM06AA75C. This work was
445 supported by the NASA grants 80NSSC20K0196, 80NSSC20K0557, and 80NSSC24K0572, and
446 the NSF grants AGS-2021749 and AGS-2225445. The research conducted at the University of
447 Iowa was supported by NASA through contract 699041X with the Southwest Research Institute.
448

449 Open Research

450 **Data Availability Statement**

451 The Juno data are retrieved from NASA Planetary Data System (<https://pds-ppi.igpp.ucla.edu/mission/JUNO>). Specifically, this study uses the Juno magnetometer data
 452 (Connerney, 2022b), JADE data (Allegrini et al., 2022), JEDI data (Mauk, 2022), Waves survey
 453 mode data (Kurth and Piker, 2022a), and Waves burst mode data (Kurth and Piker, 2022b). The
 454 simulation data in this study are available at the data repository
 455 <https://doi.org/10.6084/m9.figshare.25347538> (Ma et al., 2024).

457 **References**

458 Allegrini, F., Mauk, B., Clark, G., Gladstone, G. R., Hue, V., Kurth, W. S., et al. (2020). Energy
 459 flux and characteristic energy of electrons over Jupiter's main auroral emission. *Journal
 460 of Geophysical Research: Space Physics*, 125, e2019JA027693.
 461 <https://doi.org/10.1029/2019JA027693>

462 Allegrini, F., Wilson, R. J., Ebert, R. W., and Loeffler, C. (2022), JUNO J/SW JOVIAN
 463 AURORAL DISTRIBUTION CALIBRATED V1.0, JNO-J/SW-JAD-3-CALIBRATED-
 464 V1.0 [Dataset], *NASA Planetary Data System*, doi:10.17189/1519715.

465 Allegrini, F., Kurth, W. S., Elliott, S. S., Saur, J., Livadiotis, G., Nicolaou, G., et al. (2021).
 466 Electron partial density and temperature over Jupiter's main auroral emission using Juno
 467 observations. *Journal of Geophysical Research: Space Physics*, 126, e2021JA029426.
 468 <https://doi.org/10.1029/2021JA029426>

469 Allison, H. J., Horne, R. B., Glauert, S. A., & Del Zanna, G. (2019). On the importance of
 470 gradients in the low-energy electron phase space density for relativistic electron
 471 acceleration. *Journal of Geophysical Research: Space Physics*, 124, 2628-2642.
 472 <https://doi.org/10.1029/2019JA026516>

473 Bagenal, F., A. Adriani, F. Allegrini, S. J. Bolton, B. Bonfond, E. J. Bunce, J. E. P. Connerney,
 474 S. W. H. Cowley, R. W. Ebert, G. R. Gladstone, C. J. Hansen, W. S. Kurth, S. M. Levin,
 475 B. H. Mauk, D. J. McComas, C. P. Paranicas, D. Santos-Costa, R. M. Thorne, P. Valek,
 476 J. H. Waite, and P. Zarka (2017), Magnetospheric Science Objectives of the Juno
 477 Mission, *Space Sci. Rev.*, 213, 219-287, doi:10.1007/s11214-014-0036-8.

478 Bhattacharya, B., Thorne, R. M., Williams, D. J., Khurana, K. K., & Gurnett, D. A. (2005).
 479 Diffuse auroral precipitation in the Jovian upper atmosphere and magnetospheric electron
 480 flux variability. *Icarus*, 178(2), 406-416. <https://doi.org/10.1016/j.icarus.2005.06.013>

481 Bolton, S. J., and Juno Science Team (2010), The Juno mission, *Proc. Int. Astron. Union*, 6
 482 (S269), doi:10.1017/S1743921310007313.

483 Chen, M. W., J. L. Roeder, J. F. Fennell, L. R. Lyons, R. L. Lambour, and M. Schulz (1999),
 484 Proton ring current pitch angle distributions: Comparison of simulations with CRRES
 485 observations, *J. Geophys. Res.*, 104(A8), 17,379-17,389.

486 Chen, L., R. M. Thorne, V. K. Jordanova and R. B. Horne (2010), Global simulation of
 487 magnetosonic wave instability in the storm time magnetosphere, *J. Geophys. Res.*, 115,
 488 A11222, doi:10.1029/2010JA015707.

489 Clark, G., Tao, C., Mauk, B. H., Nichols, J., Saur, J., Bunce, E. J., Allegrini, F., Gladstone, R.,
490 Bagenal, F., Bolton, S., Bonfond, B., Connerney, J., Ebert, R. W., Gershman, D. J.,
491 Haggerty, D., Kimura, T., Kollmann, P., Kotsiaros, S., Kurth, W. S., Levin, S.,
492 McComas, D. J., Murakami, G., Paranicas, C., Rymer, A., & Valek, P. (2018).
493 Precipitating electron energy flux and characteristic energies in Jupiter's main auroral
494 region as measured by Juno/JEDI. *Journal of Geophysical Research: Space Physics*, *123*,
495 7554-7567. <https://doi.org/10.1029/2018JA025639>

496 Connerney, J. E. P., M. Benn, J. B. Bjarno, et al. (2017), The Juno Magnetic Field Investigation.
497 *Space Sci Rev.*, *213*, 39-138, <https://doi.org/10.1007/s11214-017-0334-z>.

498 Connerney, J. E. P., Timmins, S., Herceg, M., & Joergensen, J. L. (2020). A Jovian magnetodisc
499 model for the Juno era. *Journal of Geophysical Research: Space Physics*, *125*,
500 e2020JA028138. <https://doi.org/10.1029/2020JA028138>

501 Connerney, J. E. P., Timmins, S., Oliversen, R. J., Espley, J. R., Joergensen, J. L., Kotsiaros, S.,
502 et al. (2022a). A new model of Jupiter's magnetic field at the completion of Juno's Prime
503 Mission. *Journal of Geophysical Research: Planets*, *127*, e2021JE007055.
504 <https://doi.org/10.1029/2021JE007055>

505 Connerney, J. E. P. (2022b), Juno MAG CALIBRATED DATA J V1.0, JNO-J-3-FGM-CAL-
506 V1.0 [Dataset], *NASA Planetary Data System*, <https://doi.org/10.17189/1519711>.

507 Daly, A., Li, W., Ma, Q., Shen, X.-C., Yoon, P. H., Menietti, J. D., et al. (2023). Plasma wave
508 and particle dynamics during interchange events in the Jovian magnetosphere using Juno
509 observations. *Geophysical Research Letters*, *50*, e2023GL103894.
510 <https://doi.org/10.1029/2023GL103894>

511 Dougherty, L. P., Bodisch, K. M., and Bagenal, F. (2017), Survey of Voyager plasma science
512 ions at Jupiter: 2. Heavy ions, *J. Geophys. Res. Space Physics*, *122*, 8257- 8276,
513 doi:10.1002/2017JA024053.

514 Dumont, M., Grodent, D., Radioti, A., Bonfond, B., Roussos, E., & Paranicas, C. (2018).
515 Evolution of the auroral signatures of Jupiter's magnetospheric injections. *Journal of
516 Geophysical Research: Space Physics*, *123*, 8489- 8501.
517 <https://doi.org/10.1029/2018JA025708>

518 Gary, S. P., K. Liu, R. E. Denton, and S. Wu (2012), Whistler anisotropy instability with a cold
519 electron component: Linear theory, *J. Geophys. Res.*, *117*, A07203,
520 doi:10.1029/2012JA017631.

521 Gray, R. L., Badman, S. V., Woodfield, E. E., and Tao, C. (2017), Characterization of Jupiter's
522 secondary auroral oval and its response to hot plasma injections, *J. Geophys. Res. Space
523 Physics*, *122*, 6415- 6429, doi:10.1002/2017JA024214.

524 Haggerty, D. K., Mauk, B. H., Paranicas, C. P., Clark, G., Kollmann, P., Rymer, A. M., et al.
525 (2019). Jovian injections observed at high latitude. *Geophysical Research Letters*, *46*,
526 9397- 9404. <https://doi.org/10.1029/2019GL083442>

527 Horne, R. B., and Thorne, R. M. (2003), Relativistic electron acceleration and precipitation
528 during resonant interactions with whistler-mode chorus, *Geophys. Res. Lett.*, *30*, 1527,
529 doi:10.1029/2003GL016973, 10.

530 Horne, R. B., R. M. Thorne, S. A. Glauert, J. D. Menietti, Y. Y. Shprits, and D. A. Gurnett
531 (2008), Gyro-resonant electron acceleration at Jupiter, *Nature Physics*, *4*, 301-304,
532 doi:10.1038/nphys897.

533 Jaynes, A. N., et al. (2015), Source and seed populations for relativistic electrons: Their roles in
534 radiation belt changes, *J. Geophys. Res. Space Physics*, *120*, 7240-7254,
535 doi:10.1002/2015JA021234.

536 Kennel, C. F. (1966), Low-Frequency Whistler Mode, *Physics of Fluids*, *9*, 2190,
537 doi:10.1063/1.1761588.

538 Kennel, C. F., and F. Engelmann (1966), Velocity space diffusion from weak plasma turbulence
539 in a magnetic field, *Phys. Fluids*, *9*, 2377-2389, doi:10.1063/1.1761629.

540 Kurth, W. S., G. B. Hospodarsky, D. L. Kirchner, B. T. Mokrzycki, T. F. Averkamp, W. T.
541 Robison, C. W. Piker, M. Sampl, and P. Zarka (2017), The Juno Waves Investigation,
542 *Space Sci. Rev.*, *213*, 1-4, 347-392, doi:10.1007/s11214-017-0396-y.

543 Kurth, W. S., and Piker C. W. (2022a), JUNO E/J/S/SS WAVES CALIBRATED SURVEY
544 FULL RESOLUTION V2.0, JNO-E/J/SS-WAV-3-CDR-SRVFULL-V2.0 [Dataset],
545 *NASA Planetary Data System*, doi:10.17189/1520498.

546 Kurth, W. S., and Piker C. W. (2022b), JUNO E/J/S/SS WAVES CALIBRATED BURST FULL
547 RESOLUTION V2.0, JNO-E/J/SS-WAV-3-CDR-BSTFULL-V2.0 [Dataset], *NASA*
548 *Planetary Data System*, doi:10.17189/1522461.

549 Li, W., Thorne, R. M., Angelopoulos, V., Bonnell, J. W., McFadden, J. P., Carlson, C. W.,
550 LeContel, O., Roux, A., Glassmeier, K. H., and Auster, H. U. (2009a), Evaluation of
551 whistler-mode chorus intensification on the nightside during an injection event observed
552 on the THEMIS spacecraft, *J. Geophys. Res.*, *114*, A00C14, doi:10.1029/2008JA013554.

553 Li, W., R. M. Thorne, V. Angelopoulos, J. Bortnik, C. M. Cully, B. Ni, O. LeContel, A. Roux,
554 U. Auster, and W. Magnes (2009b), Global distribution of whistler-mode chorus waves
555 observed on the THEMIS spacecraft, *Geophys. Res. Lett.*, *36*, L09104,
556 doi:10.1029/2009GL037595.

557 Li, W., R. M. Thorne, J. Bortnik, Y. Y. Shprits, Y. Nishimura, V. Angelopoulos, C. Chaston, O.
558 Le Contel, and J. W. Bonnell (2011), Typical properties of rising and falling tone chorus
559 waves, *Geophys. Res. Lett.*, *38*, L14103, doi:10.1029/2011GL047925.

560 Li, W., Q. Ma, R. M. Thorne, J. Bortnik, C. A. Kletzing, W. S. Kurth, G. B. Hospodarsky, and
561 Y. Nishimura (2015), Statistical properties of plasmaspheric hiss derived from Van Allen
562 Probes data and their effects on radiation belt electron dynamics. *J. Geophys. Res. Space*
563 *Physics*, *120*, 3393-3405. doi: 10.1002/2015JA021048.

564 Li, W., Thorne, R. M., Ma, Q., Zhang, X.-J., Gladstone, G. R., Hue, V., ... Bolton, S. J. (2017).
565 Understanding the origin of Jupiter's diffuse aurora using Juno's first perijove
566 observations. *Geophysical Research Letters*, *44*, 10,162- 10,170.
567 https://doi.org/10.1002/2017GL075545.

568 Li, W., Shen, X.-C., Menietti, J. D., Ma, Q., Zhang, X.-J., Kurth, W. S., & Hospodarsky, G. B.
569 (2020). Global Distribution of Whistler Mode Waves in Jovian Inner Magnetosphere.

570 *Geophysical Research Letters*, 47, e2020GL088198.
 571 <https://doi.org/10.1029/2020GL088198>.

572 Li, W., Ma, Q., Shen, X.-C., Zhang, X.-J., Mauk, B. H., Clark, G., et al. (2021). Quantification
 573 of diffuse auroral electron precipitation driven by whistler mode waves at Jupiter.
 574 *Geophysical Research Letters*, 48, e2021GL095457.
 575 <https://doi.org/10.1029/2021GL095457>.

576 Li, L., Omura, Y., Zhou, X.-Z., Zong, Q.-G., Rankin, R., Yue, C., et al. (2023). Chorus wave
 577 generation modulated by field line resonance and mirror-mode ULF waves. *Journal of*
 578 *Geophysical Research: Space Physics*, 128, e2022JA031127.
 579 <https://doi.org/10.1029/2022JA031127>.

580 Ma, Q., Li, W., Chen, L., Thorne, R. M., and Angelopoulos, V. (2014a), Magnetosonic wave
 581 excitation by ion ring distributions in the Earth's inner magnetosphere, *J. Geophys. Res.*
 582 *Space Physics*, 119, 844- 852, doi:10.1002/2013JA019591.

583 Ma, Q., W. Li, L. Chen, R. M. Thorne, C. A. Kletzing, W. S. Kurth, G. B. Hospodarsky, G. D.
 584 Reeves, M. G. Henderson, and H. E. Spence (2014b), The trapping of equatorial
 585 magnetosonic waves in the Earth's outer plasmasphere, *Geophys. Res. Lett.*, 41, 6307-
 586 6313, doi:10.1002/2014GL061414.

587 Ma, Q., Li, W., Bortnik, J., Thorne, R. M., Chu, X., Ozeke, L. G., et al. (2018). Quantitative
 588 evaluation of radial diffusion and local acceleration processes during GEM challenge
 589 events. *Journal of Geophysical Research: Space Physics*, 123, 1938- 1952.
 590 <https://doi.org/10.1002/2017JA025114>

591 Ma, Q., Li, W., Zhang, X.-J., Bagenal, F. (2020a). Energetic electron scattering due to whistler
 592 mode chorus waves using realistic magnetic field and density models in Jupiter's
 593 magnetosphere. *Journal of Geophysical Research: Space Physics*, 125, e2020JA027968.
 594 <https://doi.org/10.1029/2020JA027968>

595 Ma, Q., Connor, H. K., Zhang, X.-J., Li, W., Shen, X.-C., Gillespie, D., et al. (2020b). Global
 596 survey of plasma sheet electron precipitation due to whistler mode chorus waves in
 597 Earth's magnetosphere. *Geophysical Research Letters*, 47, e2020GL088798.
 598 <https://doi.org/10.1029/2020GL088798>

599 Ma, Q., Li, W., Zhang, X.-J., Shen, X.-C., Daly, A., Bortnik, J., et al. (2021a). Energetic electron
 600 distributions near the magnetic equator in the Jovian plasma sheet and outer radiation belt
 601 using Juno observations. *Geophysical Research Letters*, 48, e2021GL095833.
 602 <https://doi.org/10.1029/2021GL095833>

603 Ma, Q., Li, W., Zhang, X. -J., Bortnik, J., Shen, X. -C., Connor, H. K., et al. (2021b). Global
 604 survey of electron precipitation due to hiss waves in the Earth's plasmasphere and
 605 plumes. *Journal of Geophysical Research: Space Physics*, 126, e2021JA029644.
 606 <https://doi.org/10.1029/2021JA029644>

607 Ma, Q., X. Chu, D. Ma, S. Huang, W. Li, J. Bortnik, and X.-C. Shen (2023), Evaluating the
 608 performance of empirical models of total electron density and whistler-mode wave
 609 amplitude in the Earth's inner magnetosphere, *Front. Astron. Space Sci.*, 10:1232702,
 610 doi: 10.3389/fspas.2023.1232702.

611 Ma, Q., W. Li, X.-J. Zhang, J. Bortnik, X.-C. Shen, A. Daly, et al. (2024), Dataset for
612 "Generation and Impacts of Whistler-mode Waves during Energetic Electron Injections
613 in Jupiter's Outer Radiation Belt" [Dataset], *figshare*,
614 <https://doi.org/10.6084/m9.figshare.25347538>.

615 Mauk, B. H., Williams, D. J., McEntire, R. W., Khurana, K. K., and Roederer, J. G. (1999),
616 Storm-like dynamics of Jupiter's inner and middle magnetosphere, *J. Geophys. Res.*,
617 104(A10), 22759- 22778, doi:10.1029/1999JA900097.

618 Mauk, B. H., J. T. Clarke, D. Grodent, J. H. Waite Jr., C. P. Paranicas, and D. J. Williams
619 (2002), Transient aurora on Jupiter from injections of magnetospheric electrons, *Nature*,
620 415, 1003-1005.

621 Mauk, B. H., D. K. Haggerty, S. E. Jaskulek, C. E. Schlemm, L. E. Brown, S. A. Cooper, R. S.
622 Gurnee, C. M. Hammock, J. R. Hayes, G. C. Ho, J. C. Hutcheson, A. D. Jacques, S.
623 Kerem, C. K. Kim, D.G. Mitchell, K. S. Nelson, C. P. Paranicas, N. Paschalidis, E.
624 Rossano, and M. R. Stokes (2017), The Jupiter Energetic Particle Detector Instrument
625 (JEDI) Investigation for the Juno Mission, *Space Sci Rev.*, doi:10.1007/s11214-013-
626 0025-3.

627 Mauk, B. H., Haggerty, D. K., Paranicas, C., Clark, G., Kollmann, P., Rymer, A. M., ... Valek,
628 P. (2018). Diverse electron and ion acceleration characteristics observed over Jupiter's
629 main aurora. *Geophysical Research Letters*, 45, 1277- 1285.
630 <https://doi.org/10.1002/2017GL076901>

631 Mauk, B. H. (2022), JEDI CALIBRATED (CDR) DATA JNO J JED 3 CDR V1.0 [Dataset],
632 *NASA Planetary Data System*, DOI:10.17189/1519713.

633 McComas, D. J., et al. (2017), The Jovian Auroral Distributions Experiment (JADE) on the Juno
634 Mission to Jupiter, *Space Science Reviews*, 213, 1-4, 547-643, doi:10.1007/s11214-013-
635 9990-9.

636 Menietti, J. D., Shprits, Y. Y., Horne, R. B., Woodfield, E. E., Hospodarsky, G. B., and Gurnett,
637 D. A. (2012), Chorus, ECH, and Z mode emissions observed at Jupiter and Saturn and
638 possible electron acceleration, *J. Geophys. Res.*, 117, A12214,
639 doi:10.1029/2012JA018187.

640 Menietti, J. D., Groene, J. B., Averkamp, T. F., Horne, R. B., Woodfield, E. E., Shprits, Y. Y., de
641 Soria-Santacruz Pich, M., and Gurnett, D. A. (2016), Survey of whistler mode chorus
642 intensity at Jupiter, *J. Geophys. Res. Space Physics*, 121, 9758- 9770,
643 doi:10.1002/2016JA022969.

644 Menietti, J. D., Averkamp, T. F., Imai, M., Kurth, W. S., Clark, G. B., Allegrini, F., et al. (2020).
645 Low-latitude whistler-mode and higher-latitude Z-mode emission at Jupiter observed by
646 Juno. *Journal of Geophysical Research: Space Physics*, 126, e2020JA028742.
647 <https://doi.org/10.1029/2020JA028742>

648 Menietti, J. D., Averkamp, T. F., Kurth, W. S., Imai, M., Faden, J. B., Hospodarsky, G. B., et al.
649 (2021). Analysis of whistler-mode and Z-mode emission in the Juno primary mission.
650 *Journal of Geophysical Research: Space Physics*, 126, e2021JA029885.
651 <https://doi.org/10.1029/2021JA029885>

652 Nénon, Q., Sicard, A., and Bourdarie, S. (2017), A new physical model of the electron radiation
653 belts of Jupiter inside Europa's orbit, *J. Geophys. Res. Space Physics*, *122*, 5148- 5167,
654 doi:10.1002/2017JA023893.

655 Rae, I. J., Murphy, K. R., Watt, C. E. J., Halford, A. J., Mann, I. R., Ozeke, L. G., ... Singer, H.
656 J. (2018). The role of localized compressional ultra-low frequency waves in energetic
657 electron precipitation. *Journal of Geophysical Research: Space Physics*, *123*, 1900–1914.
658 <https://doi.org/10.1002/2017JA024674>.

659 Shprits, Y. Y., Menietti, J. D., Gu, X., Kim, K. C., and Horne, R. B. (2012), Gyroresonant
660 interactions between the radiation belt electrons and whistler mode chorus waves in the
661 radiation environments of Earth, Jupiter, and Saturn: A comparative study, *J. Geophys.
662 Res.*, *117*, A11216, doi:10.1029/2012JA018031.

663 Stix, T. H. (1992). Waves in plasmas, *American Institute of Physics*, ISBN 0883188597.

664 Tao, X., Thorne, R. M., Horne, R. B., Ni, B., Menietti, J. D., Shprits, Y. Y., and Gurnett, D. A.
665 (2011), Importance of plasma injection events for energization of relativistic electrons in
666 the Jovian magnetosphere, *J. Geophys. Res.*, *116*, A01206, doi:10.1029/2010JA016108.

667 Teng, S., Tao, X., Xie, Y., Zonca, F., Chen, L., Fang, W. B., & Wang, S. (2017). Analysis of the
668 duration of rising tone chorus elements. *Geophysical Research Letters*, *44*, 12,074-
669 12,082. <https://doi.org/10.1002/2017GL075824>

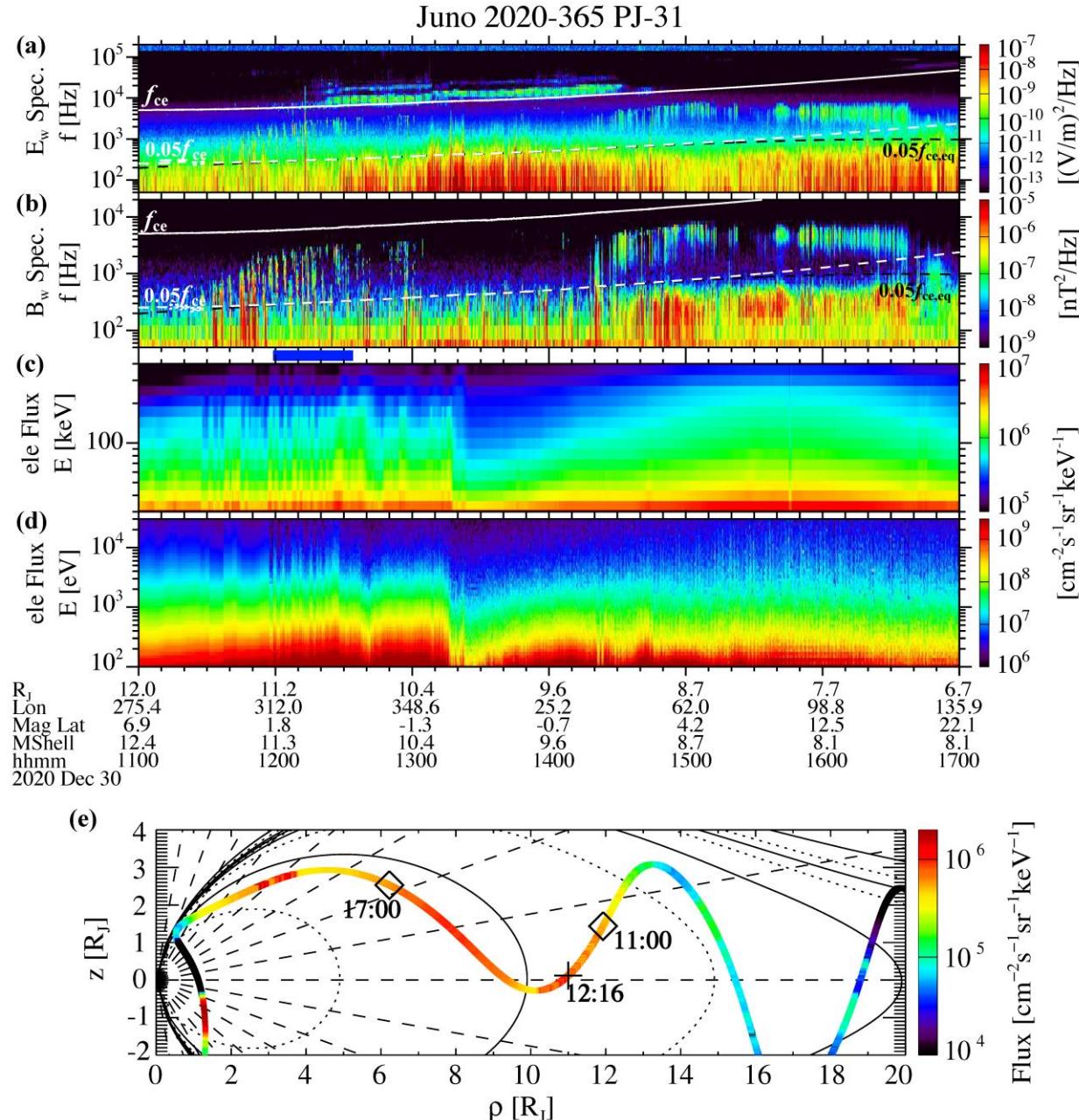
670 Tomás, A. T., J. Woch, N. Krupp, A. Lagg, K.-H. Glassmeier, and W. S. Kurth (2004), Energetic
671 electrons in the inner part of the Jovian magnetosphere and their relation to auroral
672 emissions, *J. Geophys. Res.*, *109*, A06203, doi:10.1029/2004JA010405.

673 Thorne, R. M. (1983), Microscopic plasma processes in the Jovian magnetosphere, in *Physics of
674 the Jovian Magnetosphere*, edited by A. J. Dessler, pp. 454-488, Cambridge Univ. Press,
675 New York.

676 Thorne, R.M. and Tsurutani, B.T. (1979), Diffuse Jovian aurora influenced by plasma injection
677 from Io. *Geophys. Res. Lett.*, *6*: 649-652. doi:10.1029/GL006i008p00649

678 Thorne, R. M., W. Li, B. Ni, Q. Ma, J. Bortnik, L. Chen, D. N. Baker, H. E. Spence, G. D.
679 Reeves, M. G. Henderson, C. A. Kletzing, W. S. Kurth, G. B. Hospodarsky, J. B. Blake,
680 J. F. Fennell, S. G. Claudepierre, and S. G. Kanekal (2013), Rapid local acceleration of
681 relativistic radiation-belt electrons by magnetospheric chorus, *Nature*, *504*, 411-414,
682 doi:10.1038/nature12889.

683 Wang, K., R. M. Thorne, and R. B. Horne (2008), Origin of Jovian hiss in the extended Io torus,
684 *Geophys. Res. Lett.*, *35*, L16105, doi:10.1029/2008GL034636.


685 Woodfield, E. E., R. B. Horne, S. A. Glauert, J.D. Menietti, and Y. Y. Shprits (2013), Electron
686 acceleration at Jupiter: input from cyclotron-resonant interaction with whistler-mode
687 chorus waves, *Ann. Geophys.*, *31*, 1619-1630, doi:10.5194/angeo-31-1619-2013.

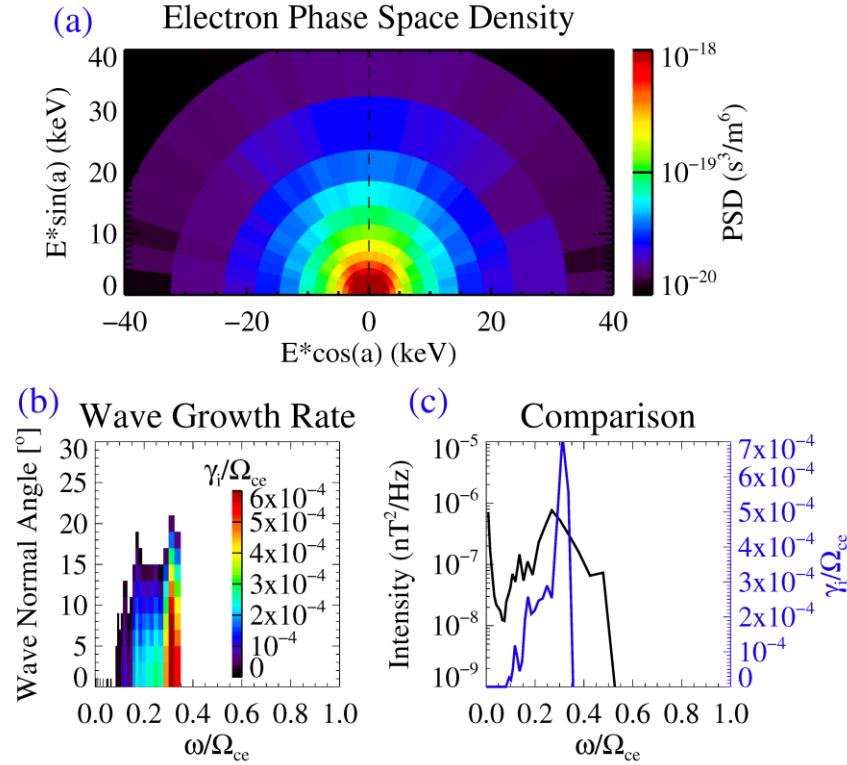
688 Woodfield, E. E., Horne, R. B., Glauert, S. A., Menietti, J. D., and Shprits, Y. Y. (2014), The
689 origin of Jupiter's outer radiation belt, *J. Geophys. Res. Space Physics*, *119*, 3490- 3502,
690 doi:10.1002/2014JA019891.

691 Xia, Z., L. Chen, L. Dai, S. G. Claudepierre, A. A. Chan, A. R. Soto-Chavez, and G. D. Reeves
692 (2016), Modulation of chorus intensity by ULF waves deep in the inner magnetosphere,
693 *Geophys. Res. Lett.*, 43, 9444–9452, doi:10.1002/2016GL070280.

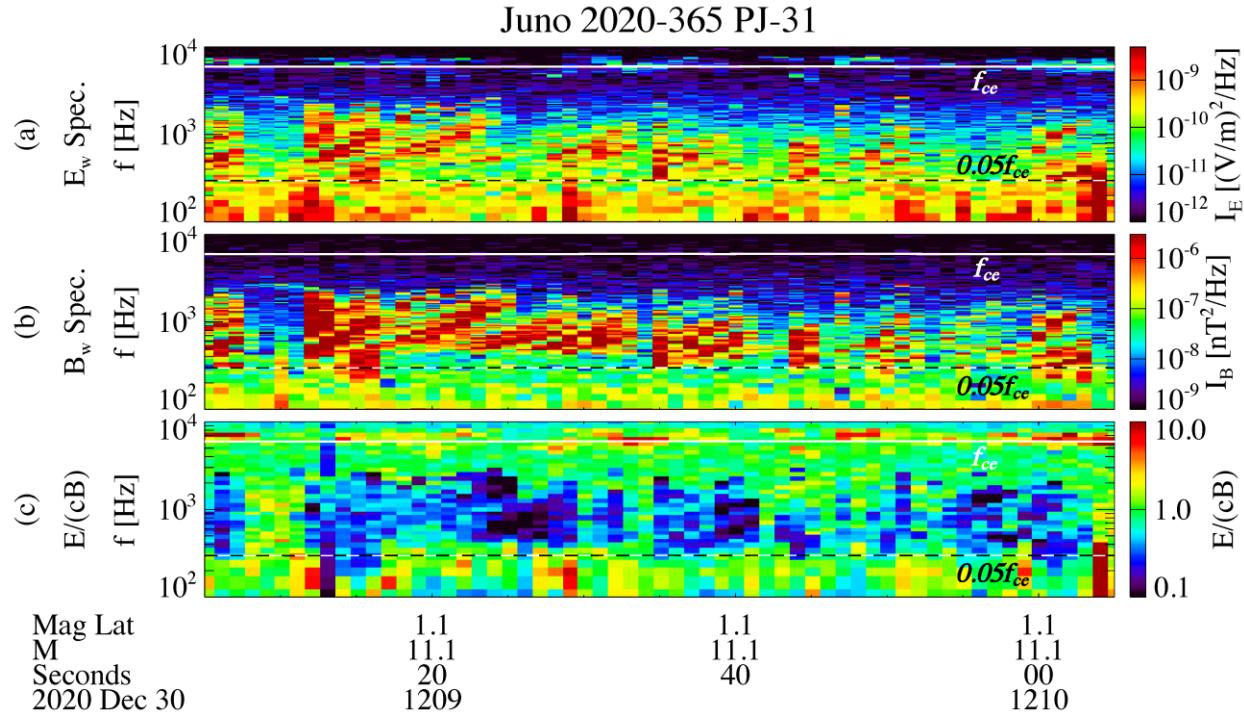
694 Xiao, F., Thorne, R. M., Gurnett, D. A., and Williams, D. J. (2003), Whistler-mode excitation
695 and electron scattering during an interchange event near Io, *Geophys. Res. Lett.*, 30, 1749,
696 doi:10.1029/2003GL017123, 14.

697 Zhang, X.-J., Chen, L., Artemyev, A. V., Angelopoulos, V., & Liu, X. (2019). Periodic
698 excitation of chorus and ECH waves modulated by ultralow frequency compressions.
699 *Journal of Geophysical Research: Space Physics*, 124, 8535–8550.
700 <https://doi.org/10.1029/2019JA027201>.

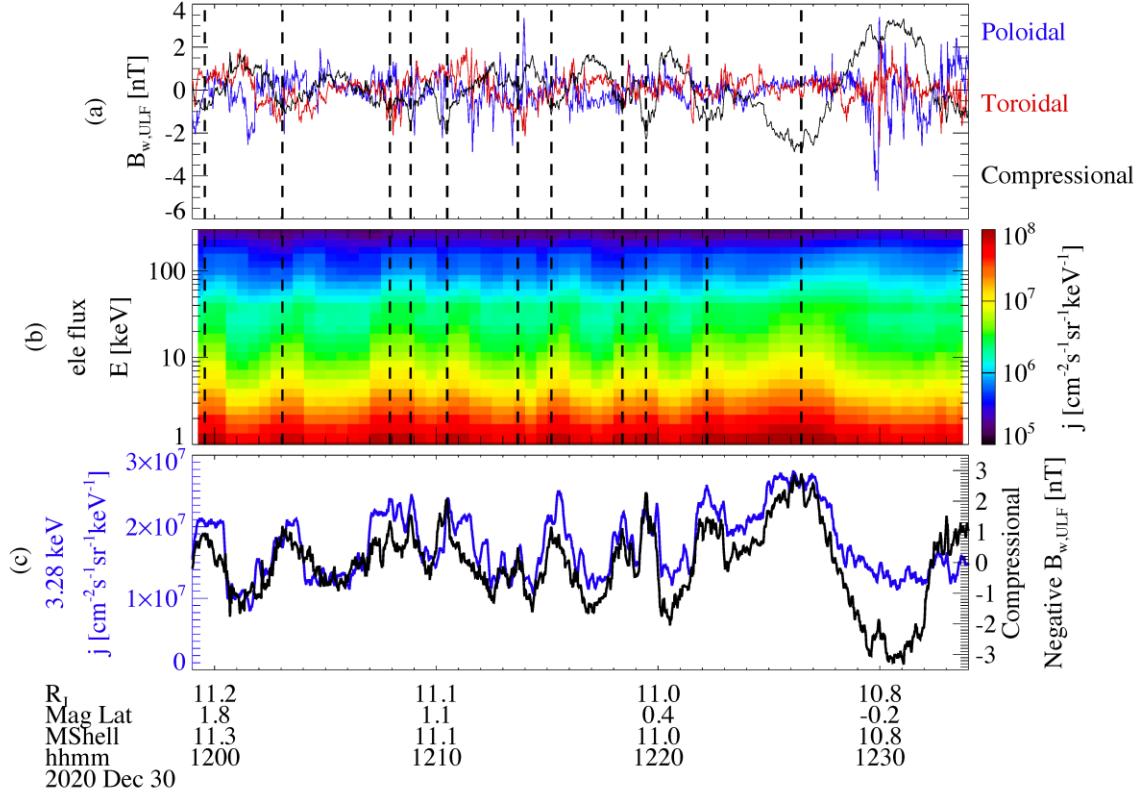
701 **Figures and Captions**


702

703 **Figure 1.** Juno observation of waves and electron fluxes during 11-17 UT on 30 December 2020.
704 (a) Wave electric power spectrogram from 50 Hz to 100 kHz frequencies measured by the
705 Waves instrument; (b) Wave magnetic power spectrogram from 50 Hz to 20 kHz; (c) Spin-
706 averaged electron flux at 30 keV - 400 keV energies observed by JEDI; (d) Spin-averaged
707 electron flux at 0.1 keV - 30 keV energies observed by JADE; (e) ~98 keV electron flux along
708 Juno's trajectory in the polar coordinate system of M shell and magnetic latitude. In Panels a-b,
709 the white solid and dashed lines are local electron gyrofrequency (f_{ce}) and $0.05f_{ce}$, respectively,
710 and the black dashed line is $0.05f_{ce,eq}$ ($f_{ce,eq}$ representing the equatorial electron gyrofrequency).

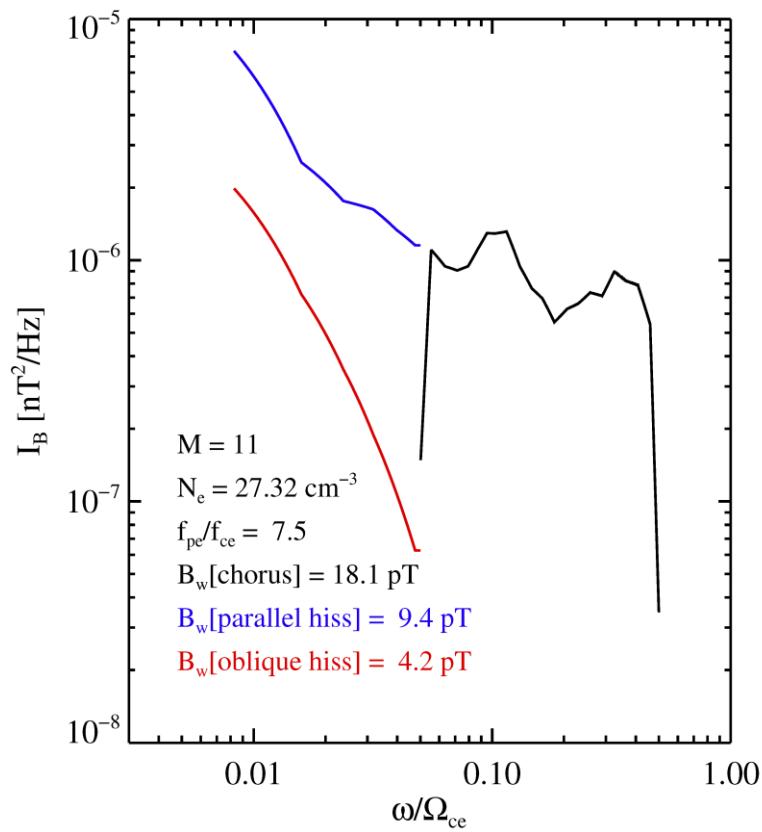

711

712 **Figure 2.** Detailed observation during 11:59 - 12:34 UT on 30 December 2020 and the linear
 713 wave growth rate calculation. (a) Wave electric power spectrogram at 20 kHz - 100 kHz
 714 frequencies, where the white dashed line is the identified upper hybrid resonance frequency
 715 (f_{UH}); (b) Wave electric power spectrogram at 50 Hz - 20 kHz frequencies, where the white solid
 716 line is f_{ce} ; (c) Wave magnetic power spectrogram at 50 Hz - 20 kHz frequencies, where the
 717 white-black dashed lines are $0.1 f_{\text{ce}}$, $0.2 f_{\text{ce}}$, and $0.5 f_{\text{ce}}$, respectively; (d) The ratio of wave electric
 718 to magnetic field ($E_w/(cB_w)$); (e) Spin-averaged electron flux at 1 – 300 keV energies, where
 719 the black dashed lines are the minimum electron resonance energies (E_{01} , E_{02} , and E_{05}) for
 720 parallel-propagating whistler-mode waves at $0.1 f_{\text{ce}}$, $0.2 f_{\text{ce}}$, and $0.5 f_{\text{ce}}$ frequencies, respectively;
 721 (f) Electron anisotropy calculated from the observed pitch angle distributions; (g) Electron pitch
 722 angle distribution at 10.9 keV energy; (h) Frequency spectrogram of wave growth rates
 723 calculated using the observed electron distributions.

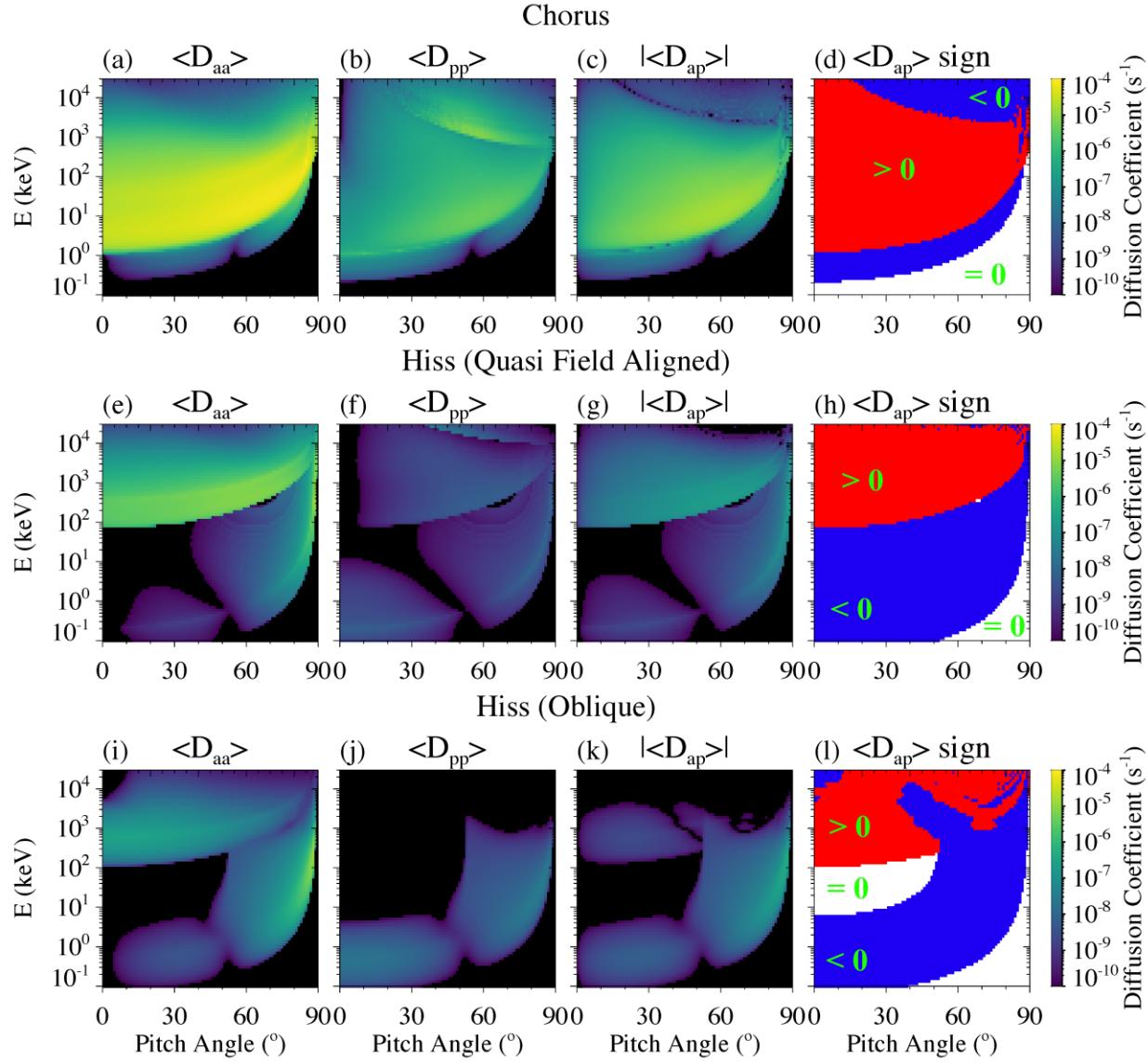

724

725 **Figure 3.** Wave growth rate calculation using the measurements averaged during 12:00 - 12:01
 726 UT. (a) Electron phase space density in the polar coordinate of electron energy and pitch angle;
 727 (b) Linear growth rates (γ_i/Ω_{ce}) of whistler-mode waves calculated as a function of wave
 728 frequency (ω/Ω_{ce}) and wave normal angle; (c) Comparison between the wave growth rates for
 729 0° wave normal angle (blue) and the measured wave magnetic intensity (black).

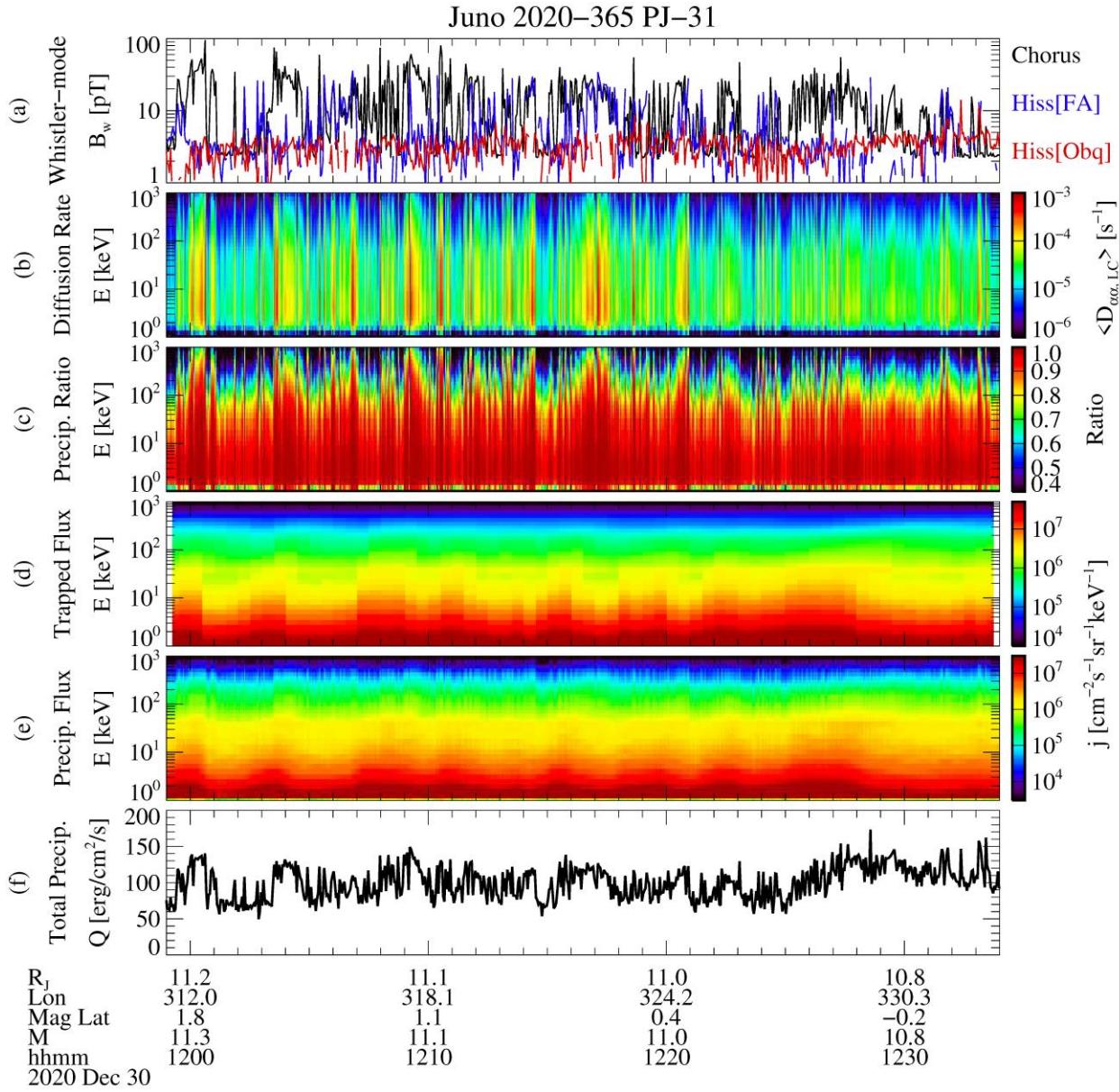
730


731 **Figure 4.** Rising-tone chorus waves observed by the Waves instrument. (a) Wave electric power
 732 spectrogram; (b) Wave magnetic power spectrogram; (c) $E_w/(cB_w)$ ratio. The white solid line is
 733 f_{ce} , and the white-black dashed line is $0.05f_{ce}$ frequency.

734

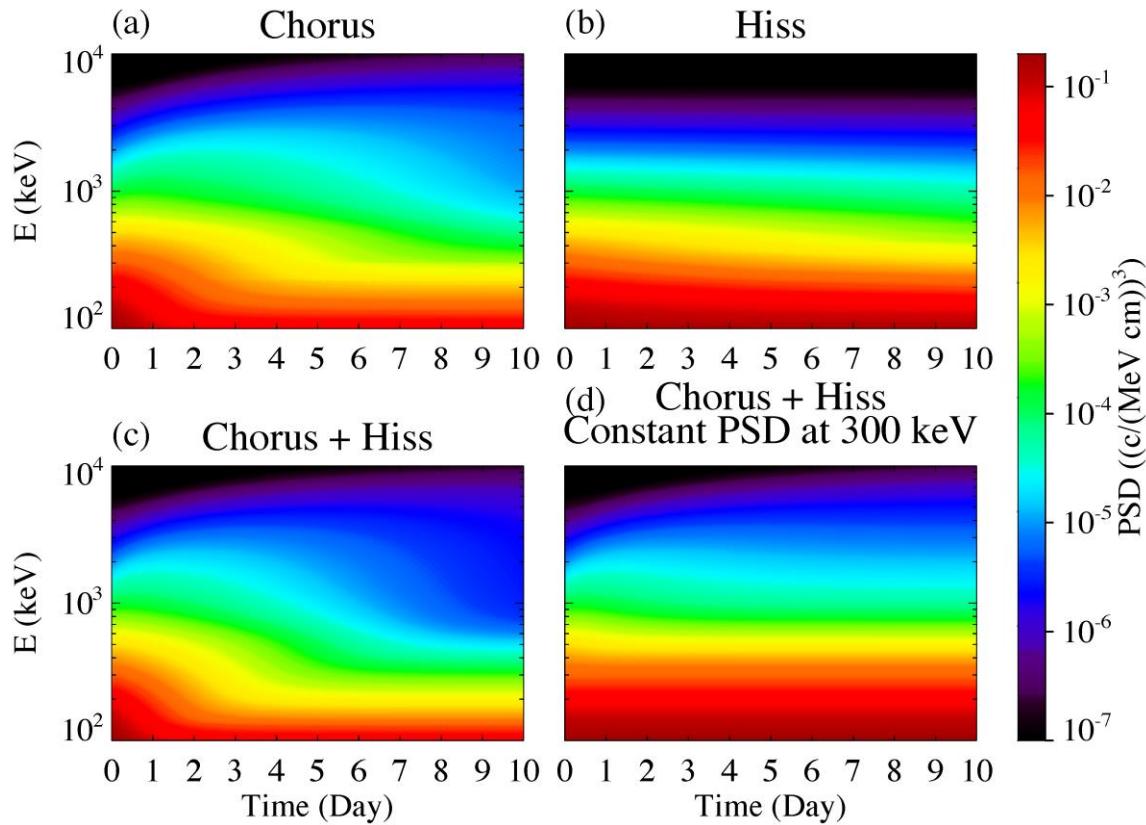

735 **Figure 5.** Correlation between ULF waves and electron fluxes observed by Juno. (a) Poloidal
 736 (blue), toroidal (red), and compressional (black) components of magnetic field perturbations,
 737 obtained after subtracting the total magnetic fields by the smoothed magnetic fields over 10 min
 738 in field-aligned coordinates; (b) Spin-averaged electron fluxes measured by JADE and JEDI;
 739 (c) Electron flux at 3.28 keV energy averaged in every 10-s time window of JADE measurements
 740 (blue), and negative values of the compressional magnetic field perturbations (black). The
 741 vertical dashed lines mark the minima of compressional magnetic field perturbations which are
 742 correlated with electron fluxes.

743



744

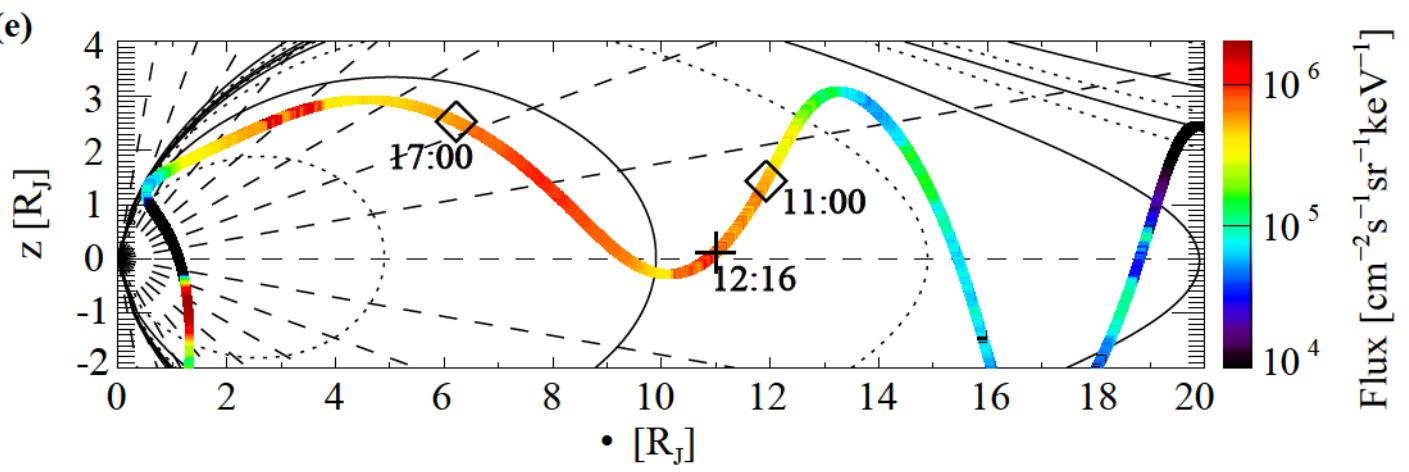
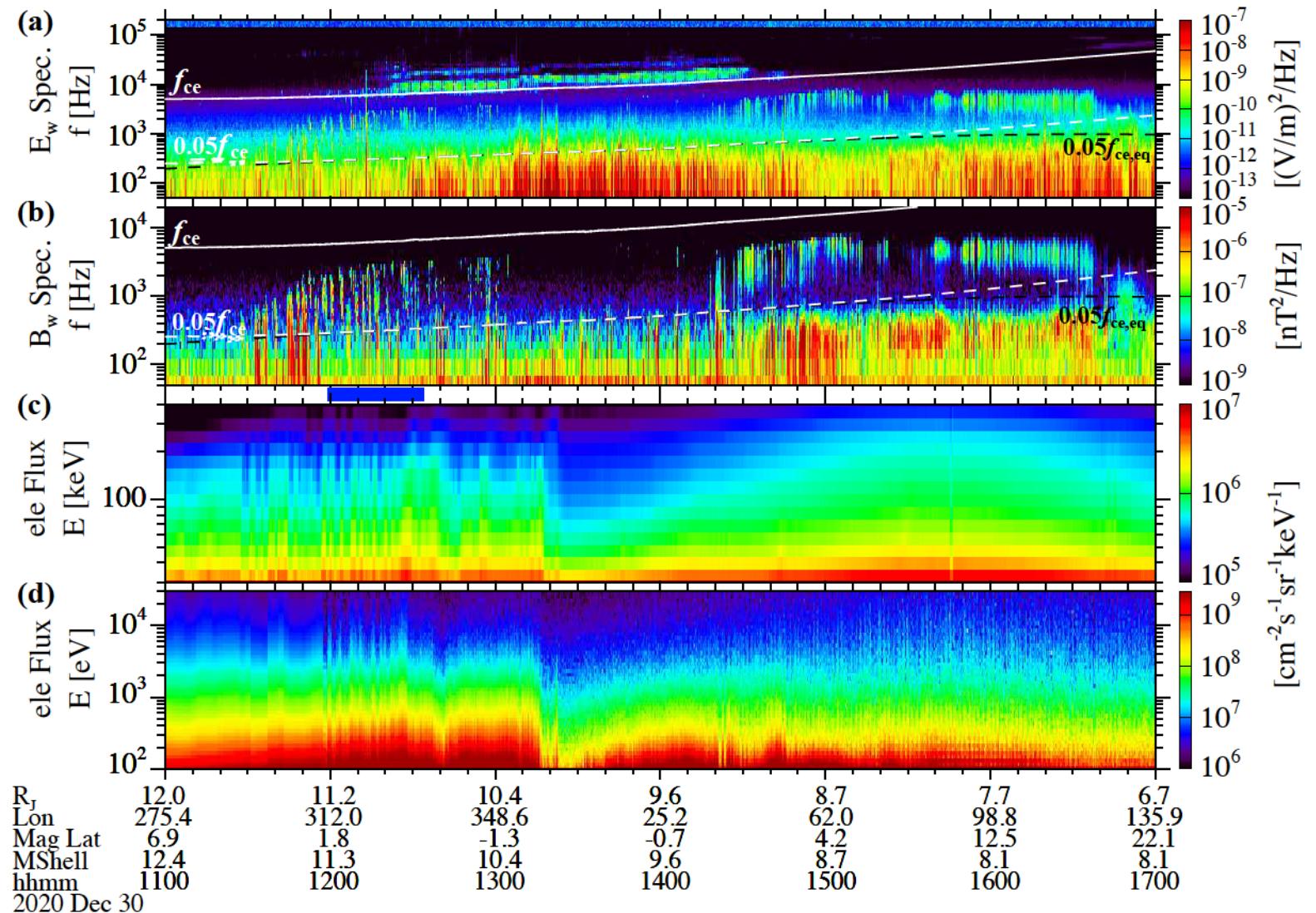
745 **Figure 6.** Wave magnetic power spectrum averaged during 11:59 - 12:34 UT,
 746 The black, blue, and red lines are the frequency spectra of chorus, quasi-parallel
 747 propagating hiss, and oblique propagating hiss waves, respectively. The wave power spectrum and the average parameters as
 748 shown are inputs used to calculate the electron diffusion coefficients due to the whistler-mode
 749 waves.



751 **Figure 7.** Bounce-averaged pitch angle ($\langle D_{\alpha\alpha} \rangle$), momentum ($\langle D_{pp} \rangle$), absolute value of mixed
752 pitch angle-momentum ($|\langle D_{ap} \rangle|$) diffusion coefficients, and the sign of $\langle D_{ap} \rangle$, due to chorus (a-
753 d), quasi-parallel hiss (e-h), and oblique hiss waves (i-l). The diffusion coefficients are plotted as
754 a function of electron pitch angle at the equator and electron energy. In Panels d, h and l, the red,
755 blue, and white colors indicate positive, negative, and 0 values, respectively.

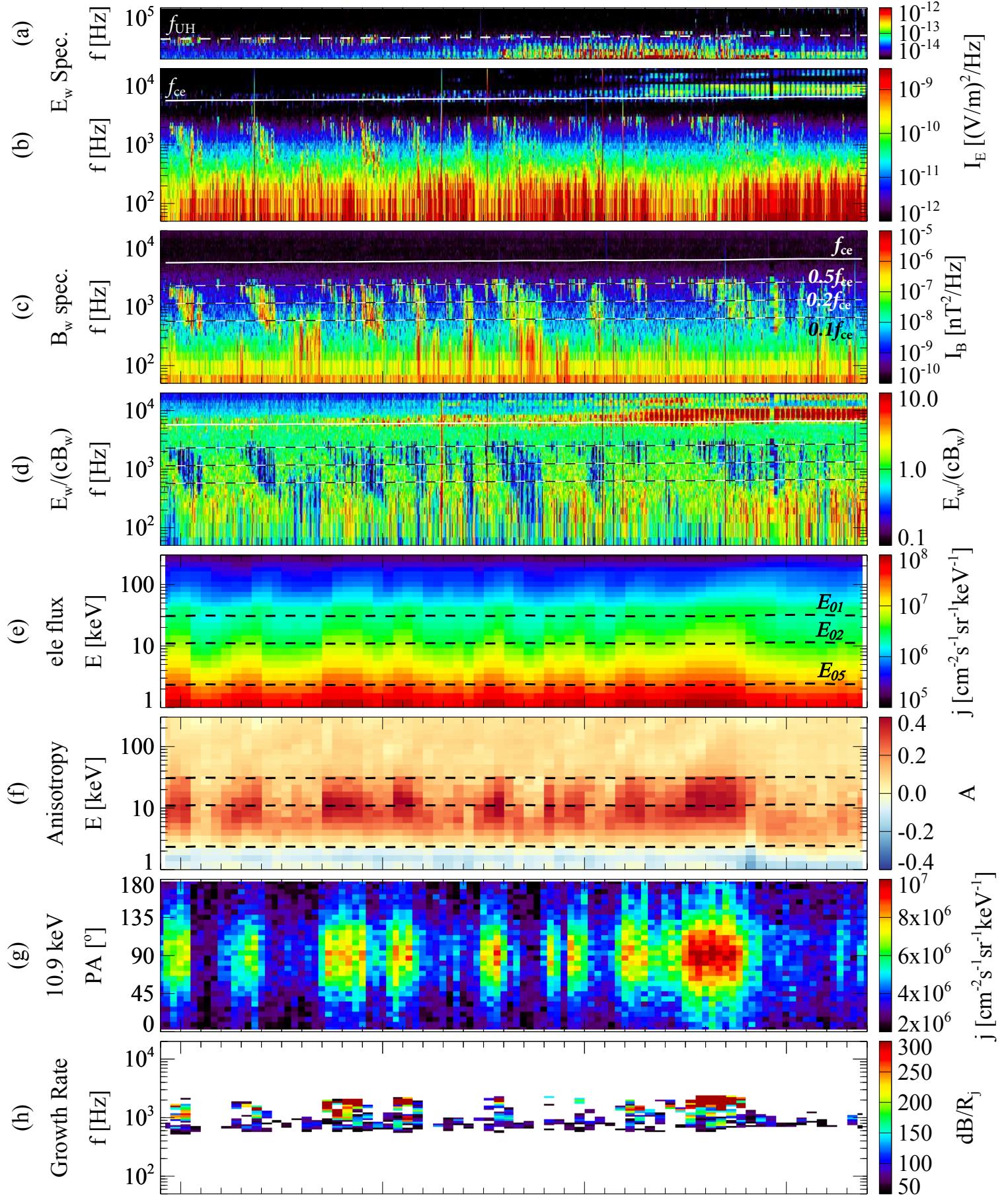
756

757 **Figure 8.** Analysis of electron precipitation due to whistler-mode waves along Juno's trajectory
758 during 11:59 - 12:34 UT on 30 December 2020. (a) Wave magnetic amplitudes of chorus
759 (black), quasi-parallel hiss (blue), and oblique hiss (red) waves; (b) Bounce-averaged pitch angle
760 diffusion coefficients due to the observed whistler-mode waves at the pitch angle of loss cone as
761 a function of electron energy; (c) Electron precipitation ratio, defined as the ratio between
762 average electron flux inside the loss cone and the electron flux just outside the loss cone,
763 calculated using quasilinear theory; (d) The electron flux just outside the loss cone measured by
764 Juno; (e) The modeled precipitating electron flux, which is the average flux inside the loss cone;
765 (f) Total energy flux of precipitating electrons.

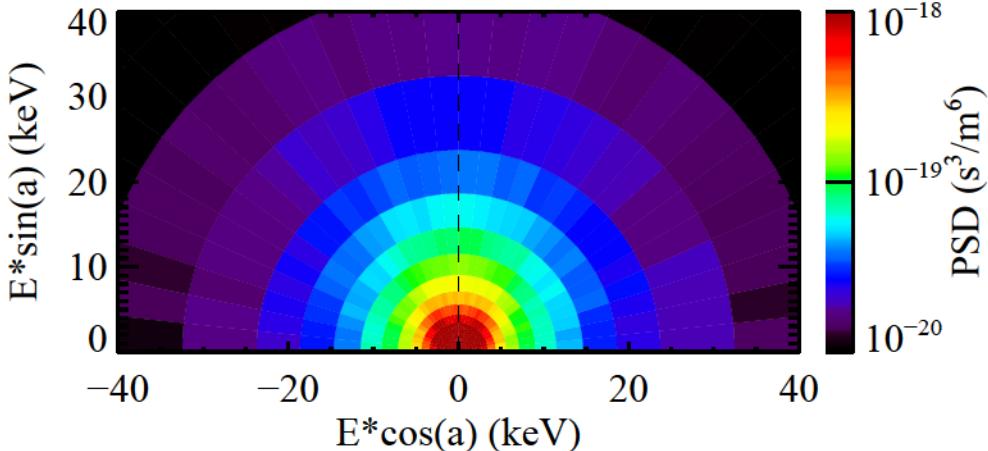
766

767 **Figure 9.** 2D Fokker-Planck simulation of electron phase space density evolution for 10 days at
768 $M = 11$. Spin-averaged phase space density as a function of energy and time due to (a) chorus,
769 (b) quasi-parallel and oblique hiss, (c) both chorus and hiss, and (d) both chorus and hiss but
770 with a constant low energy boundary condition at 300 keV energy.


Figure 1.

Juno 2020-365 PJ-31

Figure 2.


Juno 2020-365 PJ-31

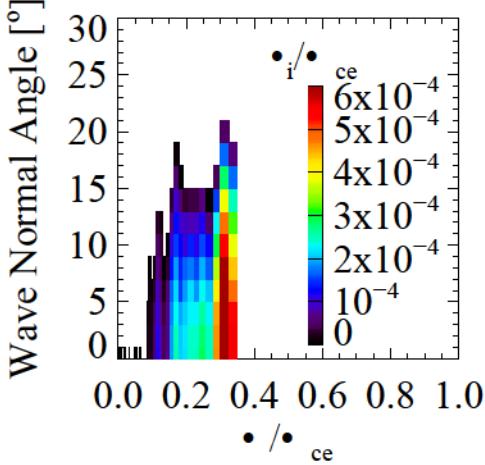
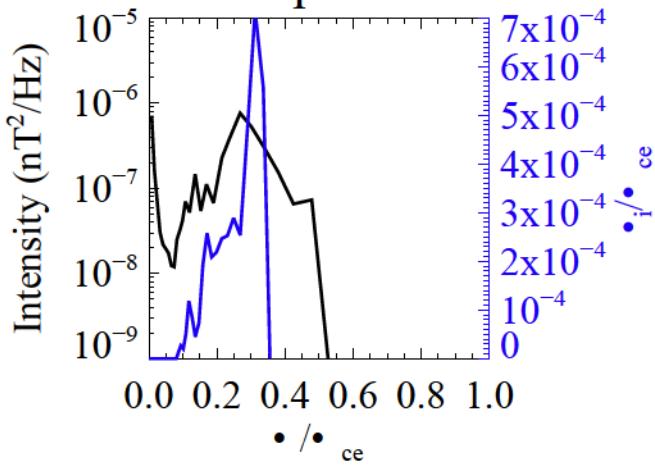
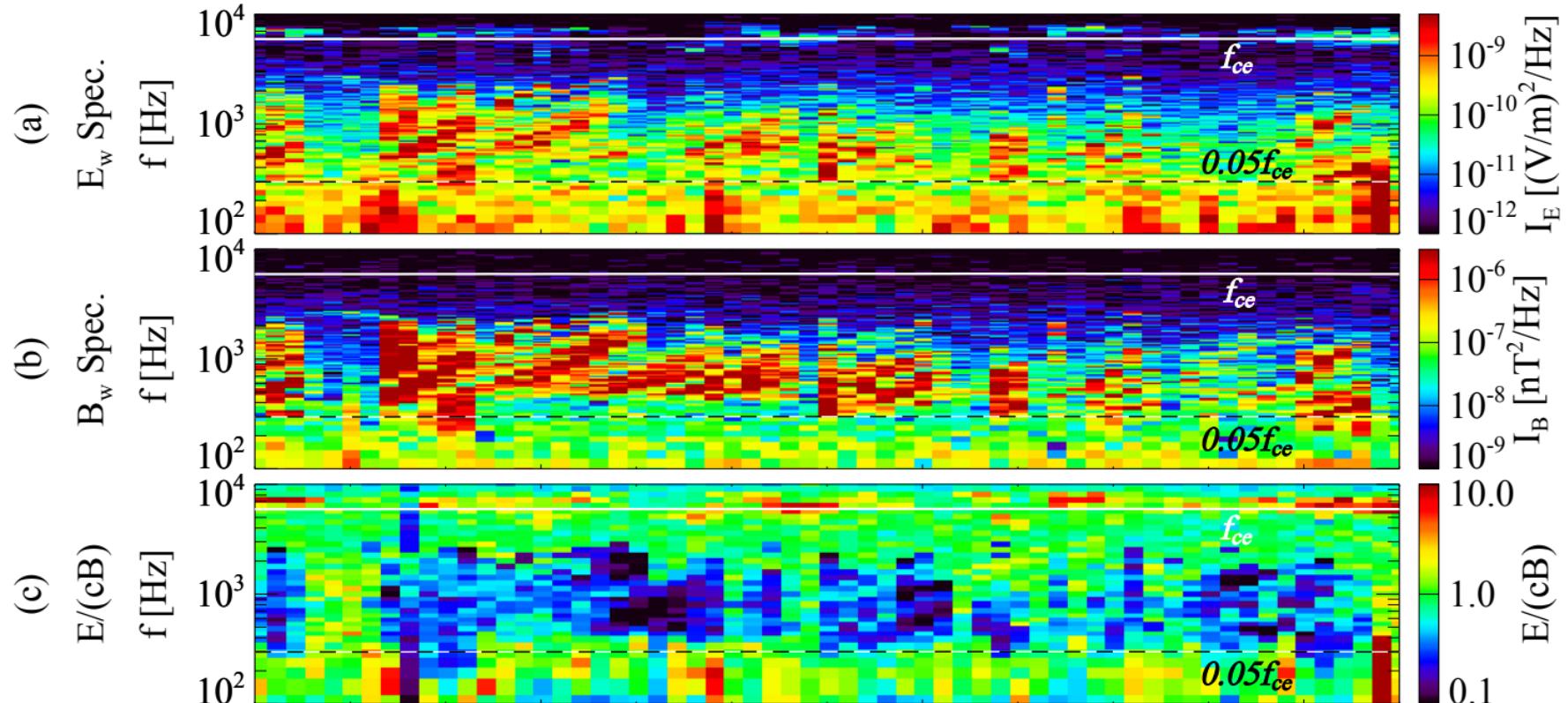

R _J	11.2	11.1	11.0	10.8
Lon	312.0	318.1	324.2	330.3
Mag Lat	1.8	1.1	0.4	-0.2
MShell	11.3	11.1	11.0	10.8
hhmm	1200	1210	1220	1230
2020 Dec 30				

Figure 3.


(a) Electron Phase Space Density

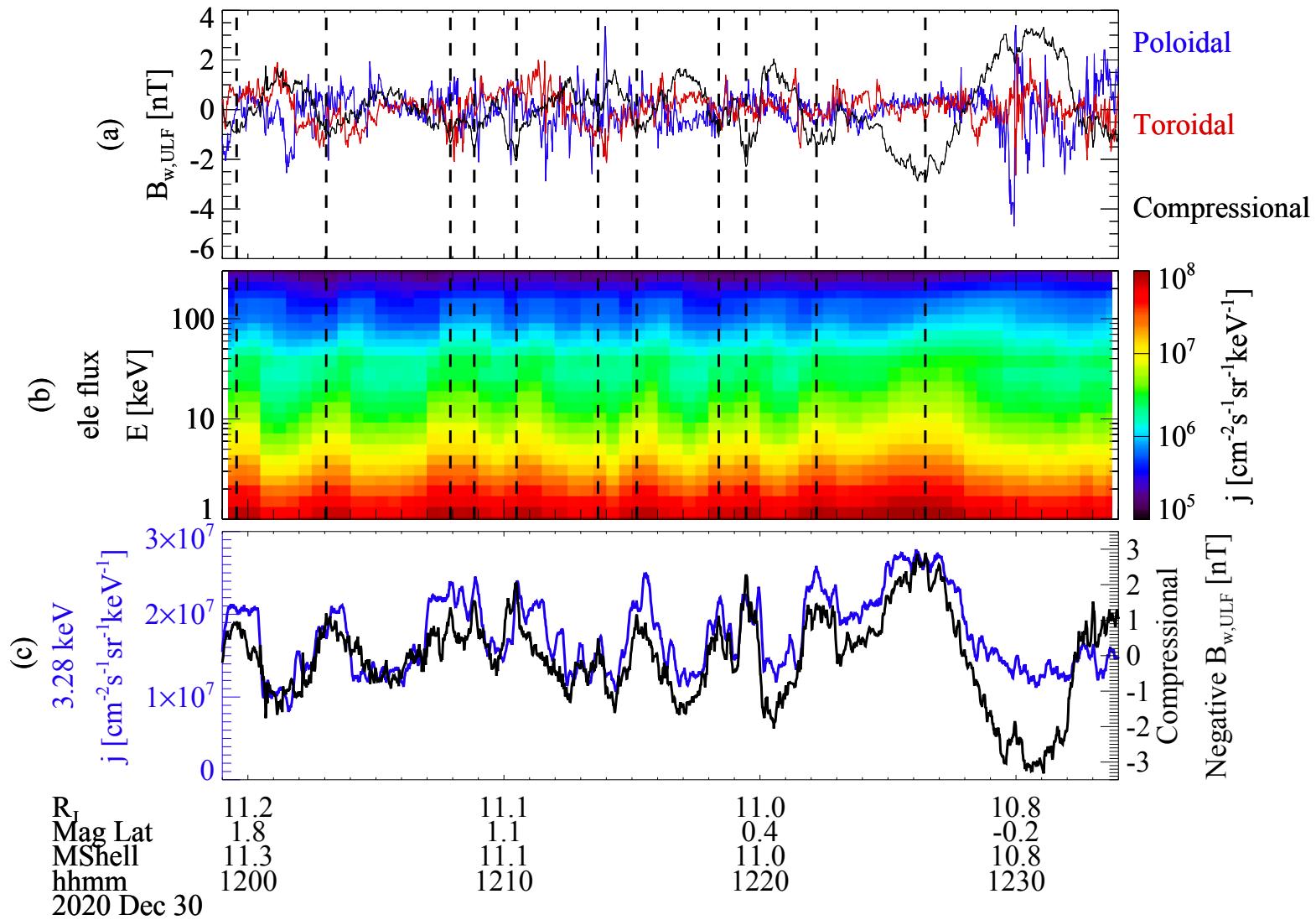
(b) Wave Growth Rate



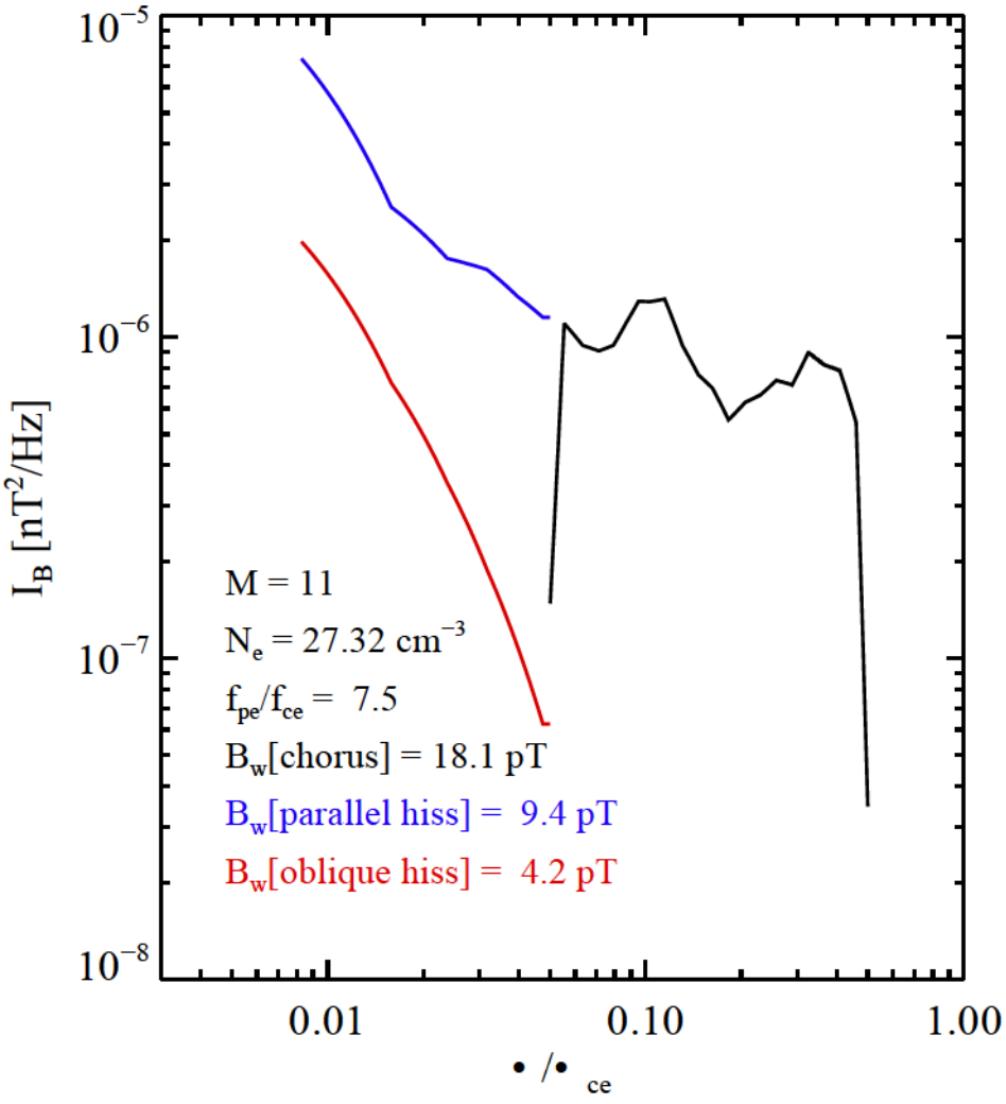
(c) Comparison

Figure 4.

Juno 2020-365 PJ-31


Mag Lat
M
Seconds
2020 Dec 30

1.1
11.1
20
1209


1.1
11.1
40

1.1
11.1
00
1210

Figure 5.

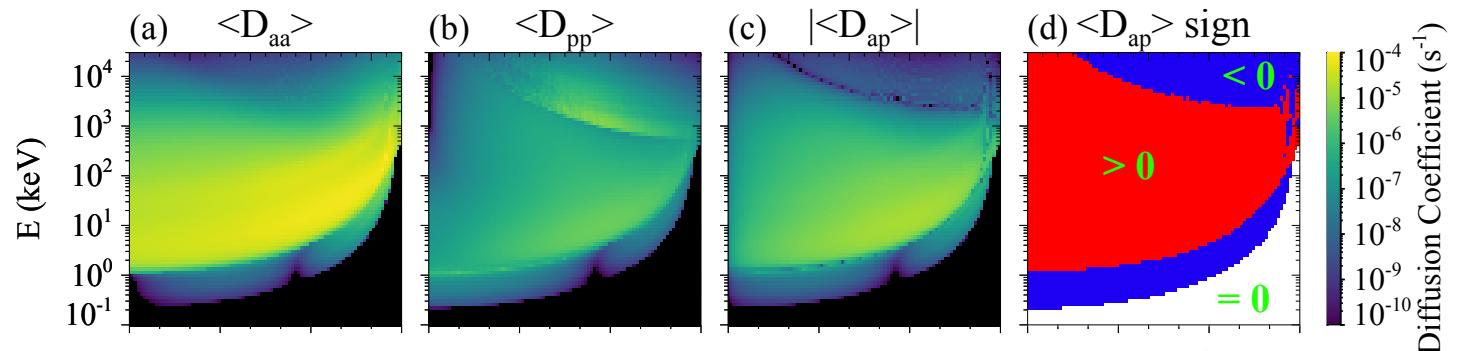


Figure 6.

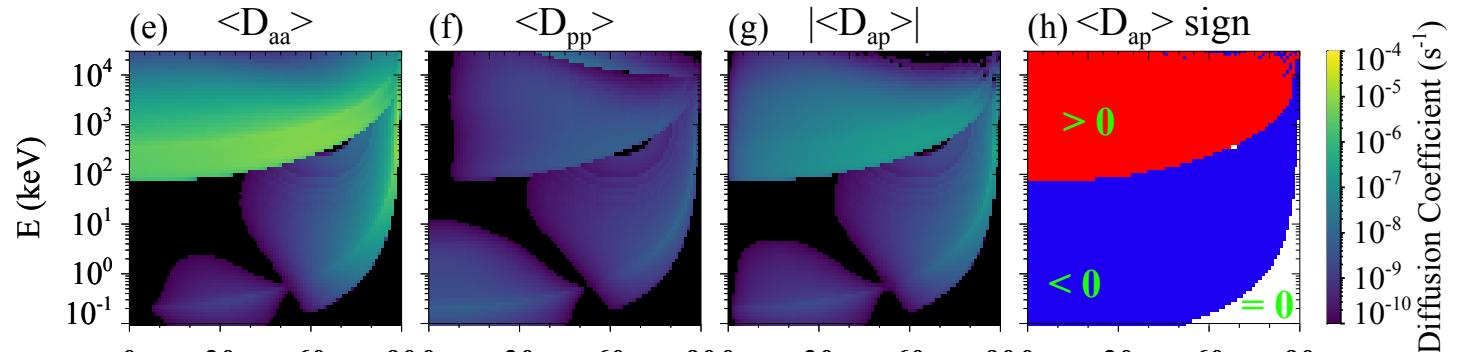
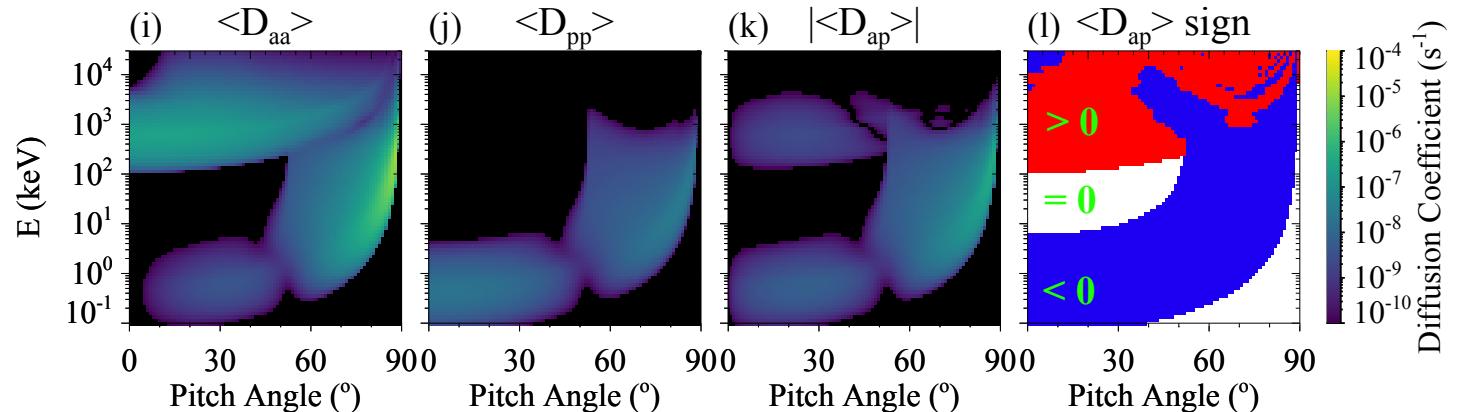
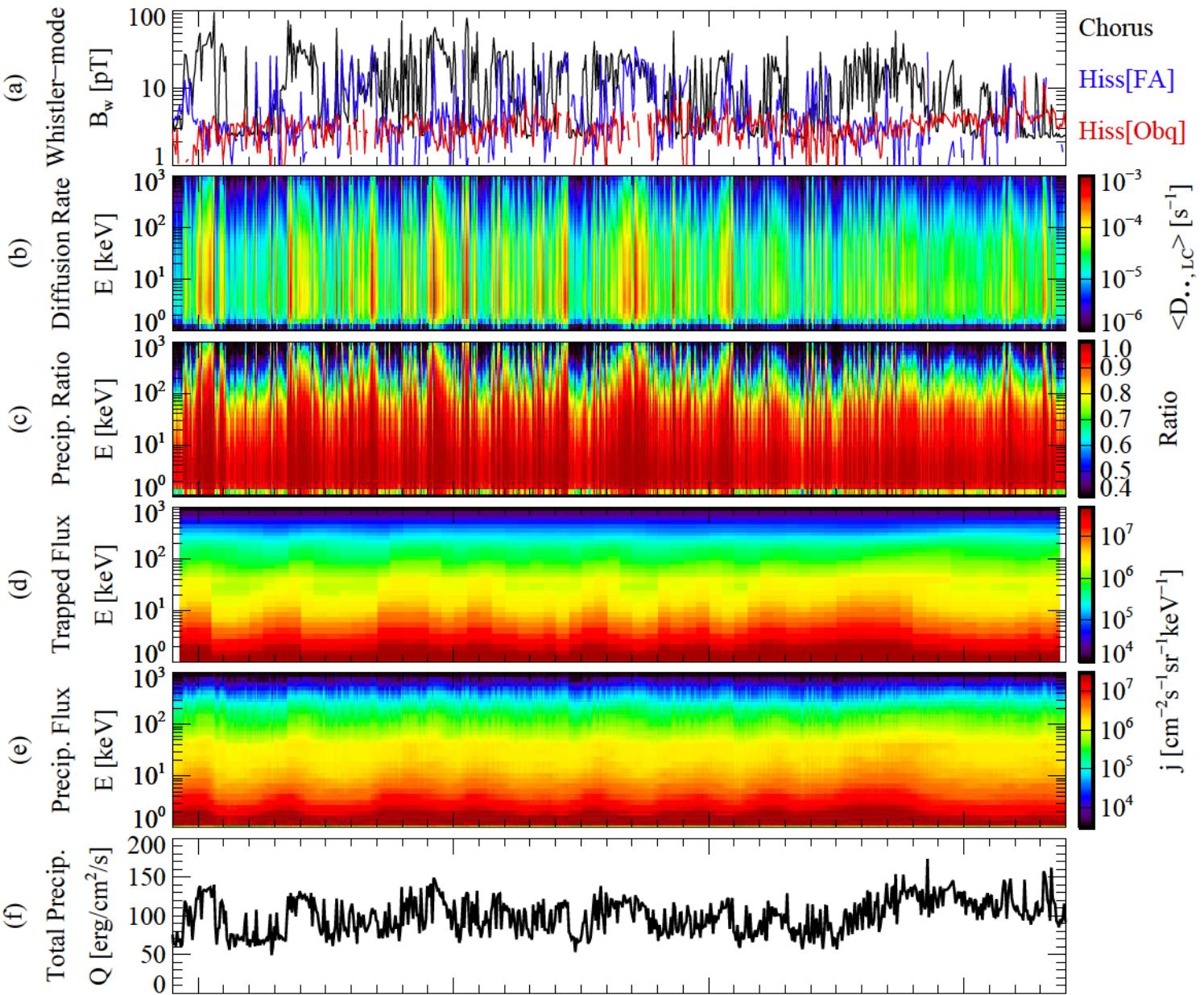


Figure 7.


Chorus


Hiss (Quasi Field Aligned)

Hiss (Oblique)

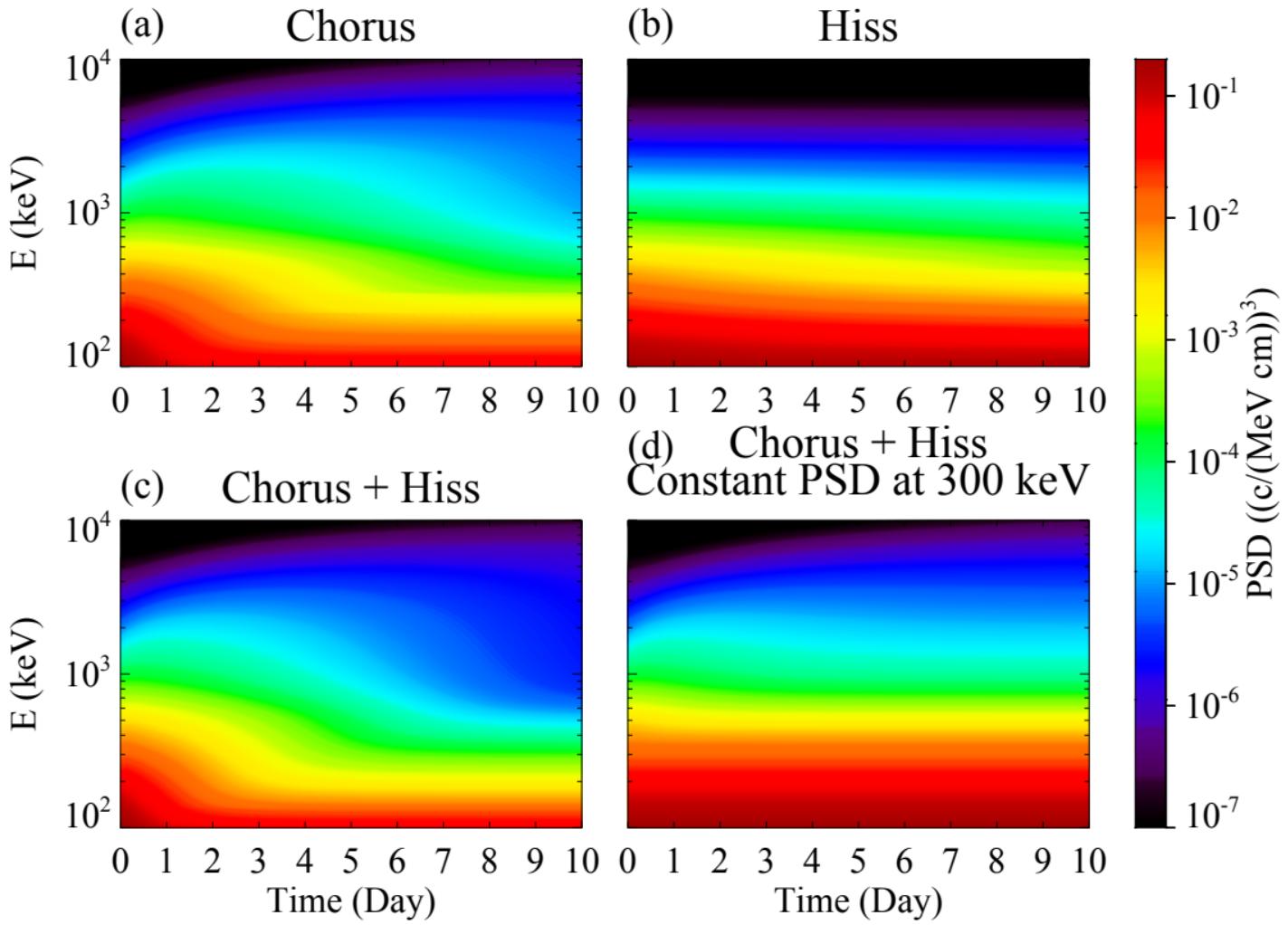


Figure 8.

R_J	11.2	11.1	11.0	10.8
Lon	312.0	318.1	324.2	330.3
Mag	1.8	1.1	0.4	-0.2
Lat	11.3	11.1	11.0	10.8
hhmm	1200	1210	1220	1230
2020 Dec 30				

Figure 9.

