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We propose iterative algorithms to solve adversarial training problems in a variety of supervised learning
settings of interest. Our algorithms, which can be interpreted as suitable ascent-descent dynamics in
Wasserstein spaces, take the form of a system of interacting particles. These interacting particle dynamics
are shown to converge toward appropriate mean-field limit equations in certain large number of particles
regimes. In turn, we prove that, under certain regularity assumptions, these mean-field equations converge,
in the large time limit, toward approximate Nash equilibria of the original adversarial learning problems.
We present results for non-convex non-concave settings, as well as for non-convex concave ones.
Numerical experiments illustrate our results.
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1. Introduction

In this paper, we propose and analyze ascent-descent dynamics to find approximate solutions (interpreted
as Nash equilibria) to minmax problems of the form

min max U(r,v), (1.1)
veEP(O) neP(ZxZ)m,=pn

where 7, is the first marginal of 7 and u is a fixed probability measure. Our dynamics take the form of a
system of finitely many interacting particles, which we will show converge, under suitable assumptions,
toward a mean-field PDE as the number of particles in the system grows. We will also analyze the long-
time behavior of the limiting mean-field dynamics and explore their ability to produce approximate
Nash equilibria for (1.1). The studied dynamics are a version of gradient ascent-descent of the payoff
function ¢/ under a convenient optimal transport geometric setting, and can be understood as analogous
to dynamics studied in [12] and [17].

Through the paper, we will think of @ as the space of parameters of a learning model, e.g. a classifier
or regression function; Z = X’ x ) is a space of input to output samples; I/ : P(Z?) x P(®) — Ris
a function representing a payoff defined over probability measures; and the inner maximization in (1.1)
operates over couplings where the first marginal is kept fixed and equal to the ’clean’ data distribution p.
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2 C. A. GARCIA TRILLOS AND N. GARCIA TRILLOS

As discussed in section 1.1 below and in Appendix A.l, (1.1) encompasses distributionally robust
optimization (DRO) problems of the form

min  max R(it,v) — C(u, v). 1.2
Jun - max (#,v) (1, f1) (1.2)

These are problems that in applications are used to enhance the robustness of learning models to
adversarial perturbations of data.

In a nutshell, a DRO problem like the one above can be interpreted as a game played by a learner and
an adversary: for the learner, the goal is to choose a distribution of learning parameters v (implicitly
inducing an input to output map) that is able to fare well when facing the attack of a reasonable
adversary (reasonable as modeled by the cost function C) who can modify the distribution of clean
data, here represented by the fixed probability measure w; the functional R represents the risk of the
classifier/regression function induced by v relative to the data distribution .

A brief discussion on adversarial training with pointers to relevant literature is presented in
section 2.1.

Before we move on with the description of our algorithms and main theoretical results, it will be
convenient to provide a concrete example of a payoff function I/ that is of interest in practical settings,
in particular, in adversarial machine learning.

1.1  Motivating example: robust supervised learning with shallow neural networks

We examine a specific setting of (1.1) in which the variable v can be directly related to a shallow, although
possibly infinitely wide, neural network; see [18].
Let® CRxRY, Z = RY xR, and write = (a,b) and z = (x,y). We consider the payoff function

U(r,v) :=R(m,v) — C(m), (1.3)

with the following risk and adversarial cost:
Rew)i= [ t,@ . b= [ afe-dab, (14)
ZxZ 2]

where £ : R x R — [0, 00] is a loss function (e.g. squared-loss or logistics loss), f is an activation
function (e.g. ReLu, sigmoid or squared-ReLu), and

C(n) = ca/ |z — 2%dn (2, %), (1.5)
ZxZ

for c, a positive parameter. It is easy to verify that the case of an implementable finite neural network
trained with a finite data-set is obtained by choosing discrete probability laws 7 and v.

The square Euclidean distance case shown above is one of the many possible choices in (1.5). Notice
that the risk function R only depends on 7 through its second marginal, 7r;. This functional is thus the
risk associated to the function /2, when data points are assumed to be distributed according to 7.

The parameter c, in the cost C can be interpreted as reciprocal to an adversarial budget and
determines the strength of adversarial attacks. In particular, if c, is small, the attacker can carry out
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WASSERSTEIN ASCENT-DESCENT DYNAMICS 3

stronger attacks, i.e. can propose new data points that are further away from clean data points z ~ pu,
while the opposite is true when c,, is large.

RemMARK 1. As discussed in Appendix A.1, with the choices made above, problems (1.1) and (1.2) are
equivalent if we set

R(v) 1= B gyogl€(h, (0.9, Clua 1) = c,W3 (1. ).

where W, (u, [1) is the standard 2-Wasserstein distance between p and ji. The resulting problem (1.2)
is a DRO version of adversarial training with an explicit penalty, as opposed to an explicit constraint;
see [45]. One of the main outcomes of our work is precisely to propose an algorithm to solve this type
of adversarial training problems. This intent is manifested in the marginal constraint we impose in the
inner max in (1.1).

RemMARrk 2. Inadversarial training, in order to avoid enhancing robustness at the expense of a considerable
loss in accuracy, it is important to tune the adversarial budget appropriately. Some papers that have
studied the trade-off between robustness and accuracy include [47,55].

1.2 Algorithm

We introduce in Algorithm 1 a discrete in time particle-based scheme for solving the minmax problem
(1.1).

Implicit in the definition of Algorithm 1 is the use of the first variations of the functional ¢/ in the
directions v and 7.

Following Definition 7.12. in [43], we say that the measurable function{, : Z x Z — R s the first
variation of I/ in the direction 7 at the point (s, v) if for any 7* € P(Z x Z), we have

i(U(n +e(@* —m),v))
de

e=0 = / U, (r,v;2,0d(r™ — 7).
ZxZ

In general, U, may depend on the point (77, v) at which the first variation is being evaluated, but we
will drop the explicit reference to this dependence whenever no confusion may arise from doing so,
for otherwise we will write all of U ’s arguments like this: U (7, v;2,2Z). Similarly, we say that the
measurable function ¢/, : ® — R is the first variation of { in the direction v at the point (i, v) if for
any v* € P(®), we have

i(lxl(rr, v+e@* =)
de

0 = / U, v;0)dv* —v).
)

Throughout the paper, we will assume that the first variations of I/ are well-defined and satisfy regularity
properties that are stated precisely in Assumptions 8.

In Algorithm 1 the term 7, At can be interpreted as a time-dependent transport learning rate, and
k At as a constant mass-transfer learning parameter. We expose explicitly the term At to facilitate all
comparisons with the continuous-time dynamics below. The projection maps P z and P, are introduced
to ensure that iterations remain within the sets Z and ©. The averaging steps in lines 18-19 will be
discussed in section 6; Algorithm 1 is related to algorithms introduced in [17,51], in turn related to [13];
a comparison between the content of these papers and ours is presented in section 2.1.
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4 C. A. GARCIA TRILLOS AND N. GARCIA TRILLOS

Algorithm 1 Wasserstein ascent-descent algorithm

Require: A collection {z;, ®;o},_; ., such that 1 5 21 @ o approximates j.
1: Setr=0
2: Choose {Fy obi1, m> cobi=t, .m0 (Zyjodizt, nj=1,.3> A0 {@y0}iny |y j=1, v With the con-
straint:
N
> wjo=wgforalli=1,...n
=1
3: while Stopping condition has not been satisfied do
4 Set

M
M ._
Z Zwlﬂ (zi0- Zz]r) Vi = zak,t819k,t
k=1

i=1 j=1
5: fori=1ton;j=1toN do
o: sz t+1 — PZ ( lj t + (ﬂzAf)Vu (nl’ Vs lOZl] t))
7: wij,t+l = w;;, €xp ((KAI)Z/G)U/ U, (1, v,;zi,o,ilj’t))
8: wljr+l
’ lj 1 Z/ Dl 141
9: end for
10: fork =1toMdo
11: Vi1 = Po (O, — (i, ADVU, (77, v,3 0y )
12: Q1 = o, exp (—(c AD D U, (7,09, )
. Gkt 1
13 Ykt 1 - - ‘;k’ A1
14: end for
15: t=t+1

16: end while
17: **Calculate time- average**
=1Z§ 0W; fori=1,...,m;j=1,...,N

ij,s ljS

19: O =130 Oaksﬂksfork_l M

2. Main theoretical results

We study the continuous-time version of the dynamics in Algorithm 1 and explore its ability to produce
(approximate) Nash equilibria for the game (1.1). As in many works in the literature that study training
dynamics of neural networks in overparameterized regimes (e.g. see [13,52]), our analysis is split into
two parts: (1) convergence of particle dynamics to a mean field in the large number of particles limit,
and (2) analysis of the mean field equation in the long time horizon.

Following this general framework, in our first main result we describe the behaviour of the
continuous-time version of Algorithm 1 (a system of coupled ODEs) as the number of particles grows.

$20z Jaquiaydes g0 Uo Josn salelql AlISIsAIUn eIquwinioD AQ OS2/ //81L09BRIS/S |L/a1o1e/lelewl/woo dno olwapede//:sdiy Wol) papeojumod



WASSERSTEIN ASCENT-DESCENT DYNAMICS 5

To be precise, the collection of iterates in Algorithm 1 can be thought of as a time discretization of the
system of ODE:s:

dzi =0

de =n,V:U (771 ,V; ,Zl Z‘)dt

do' = ko (u @N Wzl 7 — /L{ @N, vV, Zi, /)dn,N(Z/lZf)) dt @1
dvi = —n, VU, (xN, N 9] dt

da! = —kad! (Z/lv(nfvv, vV ol — /U CARAR Y AN ))

with given initial condition (Z}, 26, a)f), 1?6, aé) (possibly random) and

1 N 1N
I8 s N._ 1 is
_NE@%@, WPN;%%. (2.2)
= i=

Here, as well as in our analysis in section 4, we have considered the same number of particles Z, Z , ¥ and
we have eliminated the double indexes. This we do for simplicity and in order to reduce the burdensome
notation throughout our analysis; we will only return to the double indexes when needed.

A simple computation reveals that the empirical measures (7Y, vV) in (2.2) satisfy the PDE (in weak
form)

d, = —ndiv_z(m, (0, Vildy (. v,32,2))) + k7, (Uy (7, v32.2) — [ Uy (1,952, 2)dm, (7 ]2)
v, =ndivy(v,VoU,(r,,v,56)) — kv, (L{v(n,, v;0) — [U, (7, vt;G/)dvt(G/)) ,
(2.3)
initialized at 7, = 7}’ and vy = v). In the above, ,(-|z) must be interpreted as the conditional

distribution of Z given z if the pair (z,z) is assumed to be distributed according to ;. In Theorem 12
we show that, under appropriate conditions, including a *well prepared initialization’ assumption, the
dynamics (2.3) converge to a mean-field system of non-local PDEs as N — oo. This mean field system
is a solution to the exact same type of equation (2.3) except that initialized at different measures v, 7,
formally, the limits of uf)v and n{)v in suitable metrics. We will see that, in contrast to the consistency
requirement for v, in the standard 1-Wasserstein sense, the type of well-preparedness condition for the
n(j)v variable is stronger and closely related to consistency in the Knothe—Rosenblatt optimal transport
sense. The need for this stronger assumption is due to the presence of conditional distributions in the
dynamics (2.3), which must be properly controlled with stronger metrics to carry out a propagation of
chaos analysis. The proof of Theorem 12 thus requires a careful handling of new technical complications
arising from the marginal constraint in (1.1) for the adversary. Our intermediate analysis will also help us
establish the well-posedness of the system of PDEs (2.3) for arbitrary initializations, a result of interest
in its own right.
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6 C. A. GARCIA TRILLOS AND N. GARCIA TRILLOS

In our second main result, Theorem 35 (see also Theorem 36), we study the long-time behavior
of the system of PDEs (2.3) when initialized appropriately. In particular, we prove that, under suitable
assumptions, the time-average of these dynamics eventually reaches an ¢-Nash equilibrium of (1.1), a
notion that we recall below:

DEeFiNITION 3. (¢-Nash equilibrium) Given ¢ > 0, we say that (7*, v*) is an ¢-Nash equilibrium for
problem (1.1) if 7 = 1 and

sup UG, v} — inf {UEFE* )} <e. 2.4)
TeP(ZxZ) s.t.m,=pn veP(O)

Theorem 35 is proved under appropriate assumptions that include the concavity-convexity of I/ (in
the linear interpolation sense) and a convenient, admittedly strong, assumption on the initializations of
the variables 7 and v. These strong assumptions, however, are analogous to ones considered in the study
of training dynamics in overparameterized regimes in the non-adversarial setting. The strong assumption
on the initialization of the variable 7 can be dropped under an additional Polyak—Lojasiewicz (PL)
condition for ¢/ in the & variable (see Assumption 39). As discussed in Example 41, this assumption
is not unreasonable in practical settings of interest, and in the scenario described in subsection 1.1 it is
satisfied by assuming that the adversary has a sufficiently small budget (i.e. a sufficiently large c,,). Under
this additional PL condition, Theorem 42 (see also Theorem 43) states that it is possible to modify the
dynamics in Algorithm 1 to create a gap in speed profiting from the additional concavity to obtain rapid
convergence in the adversarial direction. Intuitively, in the modified dynamics one can quickly obtain
good approximations for the inner maximization problems to obtain dynamics that resemble those of
gradient descent for the outer minimization in (1.1). The effect of this analysis is that the requirements
for convergence toward approximate Nash equilibria are relaxed.

2.1 Literature review

In this section, we provide a brief literature review of the topic of adversarial robustness in supervised
learning settings, focusing on some developments in recent years. Since the literature in this field has
expanded very quickly and spans a variety of disciplines our review is necessarily non-exhaustive.

Many mathematical approaches that aim to enforce robustness in learning models can be categorized
under the term ’Distributionally Robust Optimization’ (DRO), as formulated in (1.2). The DRO formula-
tion has the advantage of clearly casting adversarial robustness in supervised learning as a minmax game.
Several studies have explored adversarial training in the DRO framework, considering various learning
models such as linear regression, neural networks and other parametric settings [4,5,11,29,36,45,48].
Other works have focused on solving the problem by replacing the inner maximization associated with
the adversary’s actions with a regularized risk surrogate. For example, [19], [34], [37], [41], [42], [54]
and [22] derived this surrogate when the adversary is restricted to positions within a distance € from
the training data, expanding the inner maximization objective around € = 0. A few recent studies have
discussed adversarial robustness in the context of agnostic learners, where no modeling assumptions
are made about the learner. This setting can be understood as a limiting case of a problem with a very
expressive family of learning models and provides lower bounds for more general adversarial robustness
problems. Some of these works include [39], [3], [40], [20] and [2]. Another approach is taken in [24],
[9], [8] and [23], where adversarial robustness in classification settings is linked to geometric variational
problems.
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WASSERSTEIN ASCENT-DESCENT DYNAMICS 7

There are other works in the literature that consider the computation of minmax problems over spaces
of probability measures by using particle methods like we do in this paper. In particular, we would
like to highlight our contributions in relation to two papers in this category that are closely related to
ours [17,51], both of which adapt ideas presented in [12] to minmax problems. In the work [17] and
the very recent work [51], the authors consider minmax problems with a linear (with respect to the
measures) payoff function. Our setting is broader as it covers not only non-linear objectives but also
studies the effect on a coupling constrained by one of the components being pinned to an input function.
This level of generality allows us to study broad cases of adversaries in the space of measures (DRO
version of adversarial training). It is worth remarking that under the simpler setting in [51], the authors
are able to show the exponential convergence (toward an actual Nash equilibrium), without assuming
time separation of scales, of an algorithm with a similar geometric motivation than ours. In its practical
implementation, both algorithms look very similar. The convergence in [51] is obtained under similar
regularity hypotheses but assuming in addition that the (unique) solution is supported on a discrete set.
Since we do not a priori assume the existence of a unique solution, our results are weaker in terms of
convergence rate, as well as due to the fact that we can only recover approximate Nash equilibria. Other
work of interest in the linear payoff setting, where a KL-regularization is introduced and then gradually
turned off to deduce convergence of dynamics toward the Nash equilibrium of the original problem, is
[33].

We emphasize that by considering the restriction 77, = u in the minmax problem we can cover a
wider variety of settings relevant to the study of adversarial machine learning than previous works in the
literature. This gain in generality naturally comes at the expense of additional technical challenges. To
point at some of these specific challenges, notice that when the payoff is non-linear its first variations are
measure dependent, already suggesting the need for a more delicate analysis at the moment of proving the
convergence of particle dynamics toward mean-field limits. The difficulties in our analysis are heightened
by the presence of conditional distributions in the evolving systems. In order to handle these additional
terms, we must recur to new ideas and constructions. In the end, the general mean-field analysis that we
present can be also combined with lower-semicontinuity arguments to justify certain steps in the second
part of the paper, i.e. the analysis of the long-time behavior of the mean-field system, providing in this
way alternatives to approaches in the literature that may not be fully justified; we discuss this in section 5
below. Moreover, we believe that some of the ancillary results we obtained to support the targeted level
of generality of our model may be of interest in their own right.

We also highlight our study of the non-convex concave setting delineated in subsection 5.1. Indeed,
we may exploit the additional strong concavity that is gained when considering adversaries with low
budget to obtain stronger convergence results toward approximate Nash equilibria of the adversarial
problem. Other papers that have explored this setting include [45], but the results presented there only
guarantee, for the learner, convergence toward stationary points (although it is worth highlighting that
they do not consider the mean-field regime).

In summary, our work is complementary to other papers such as [12], [17], [51] and [45] (among
others). Our results can be viewed as analogue to those in works such as [52] and [13], which have studied
the global convergence of (non-robust) training of shallow neural networks in the mean-field regime.

2.2 Outline

The remainder of the paper is organized as follows.
In section 3 we introduce required definitions and notation, and we briefly discuss the ascent-descent
interpretation of Algorithm 1.
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8 C. A. GARCIA TRILLOS AND N. GARCIA TRILLOS

In section 4, we present the mean field analysis of the continuous-time version of our algorithm, i.e.
the system of ODEs (2.1). That is, we state and prove our first main result, Theorem 12. We also discuss
important auxiliary results that are used later in section 5.

In section 5, we discuss the long-time behavior of the mean-field system obtained in Theorem 12
and state conditions under which these mean-field dynamics produce approximate Nash equilibria for
problem (1.1). In the first main result in section 5, Theorem 35, we assume strong conditions on the
initialization of the mean field dynamics for both players. In Theorem 42, on the other hand, we drop
the assumption on initialization for the variable 7 by imposing an additional PL condition on the payoff
function U and by introducing a small modification to the dynamics discussed in the previous main
result.

In section 6, we discuss some numerical results of an implementation of our algorithm when used in
an actual machine learning task. Our main purpose with such an implementation is to illustrate that the
algorithm is effective to obtain adversarially robust classifiers even away from the asymptotic regimes
studied theoretically in the paper.

We wrap up the paper in section 7, where we present some conclusions and discuss future directions
for research.

3. Preliminaries

Throughout this section, we introduce some mathematical definitions and notation that we will use in
the remainder. We will also briefly discuss the geometric motivation behind Algorithm 1.

In the sequel, we use the p-Wasserstein distance W, (with p > 1) to compare probability distributions
over a given metric space (M, d(-, -)). The metric d(-, -) that will be used in each instance will be specified
in context. For example, in Assumption 8, the 1-Wasserstein distances considered are the ones relative
to the Euclidean metric in each corresponding Euclidean space.

DEerINITION 4. Given two probability measures v, v’ over M, their p-Wasserstein distance Wp(v, V') is
defined according to

Wh(v,v') := _ inf / (du, u))PdY (u, i),
Tel'(v,V') JMxM

where I" (v, V') is the set of couplings between v and v’. We will use P (M) to denote the space of Borel
probability measures over M.

3.1 Gradient ascent-descent interpretation of Algorithm 1

In this section, we summarize the geometric motivation behind the system of equations (2.3) and its
discretization in Algorithm 1. The interested reader can find a more detailed discussion in Appendix B,
or consult several related references like [21], [28], [14], [46] and [32]. In short, system (2.3) can
be interpreted as the projection of a Wasserstein gradient flow in an appropriate lifted space. It is
also possible to interpret the resulting equations as gradient flows relative to a certain Wasserstein—
Fisher—Rao metric over the original probability space (see our Remark B.1). While both interpretations
are valid, in the main text, we avoid explicitly mentioning the WFR metric and stick with the
Wasserstein interpretation given that several of our computations take place explicitly on the lifted
spaces.
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WASSERSTEIN ASCENT-DESCENT DYNAMICS 9

3.1.1 Lifted space We introduce two projection maps between probability spaces that will play an
important role in our derivations. We use the same name for both of them for convenience, and we
expect no ambiguity, given the context.

Let M (®) (respectively M +(Zz)) denote the space of finite positive measures over @ (respec-
tively Z2). We consider the projection map from either P(® x R 1) onto M, (@), or from P(Z ZxR +)
onto M +(Zz), characterized by the respective identities

/(p(Q)d(fG)(Q) =/a<p(9)d0(9,a); /@(Z,E)d(fy)(z,i) =/a<p(z,2)dy(z,2,cx) (3.1

for all regular enough test functions ¢ from @ or 22 into R. The map F allows us to lift an energy
functional defined over M, (®) (or M (Z 2)): we can then consider gradient descent dynamics in the
lifted space, and, in turn, these lifted dynamics can be projected down to the original space of measures
to generate an evolution there.

ReMARK 5. Notice that the function F is a surjection. Indeed, let v € M_ (®) and let M = v(®), which
we first assume is non-zero. Consider the probability measure o = 1%1 ® 6, It is straightforward to show
that Fo = v. In case M = 0, which means v is the measure that is identically equal to zero, we may take
o to be any probability measure over ® X [0, 0o) that satisfies o (® x {0}) = 1 to conclude that Fo = v.
Clearly, the same argument holds for F : P(2? x R, ) — M_ (Z?). Finally, while F is surjective, it is
worth highlighting that it is far from being one to one.

3.2 Ascent-descent equations in the lifted space

In an Euclidean space, where one has a target payoff function (say U) for which one wishes to find its
saddles, one could consider a system of the form

q, = —V,U(q,.p,)

b= V,U(g,.p)
or a projected version thereof in case additional constraints on the variables p, g are present. Analogous
systems can be considered in more general Riemannian settings. In particular, by considering the

Riemannian structure for the space P(® x [0, 00)) presented in Appendix B, one obtains the following
gradient ascent-descent equations in the space of measures:

Fm = —divys) . (1, (0.5 0)), .

9,0, = dive’a (ov,(0,)),

where

v, (z.2,0) = (0, n,V:ll, (77,52, 2), ko (Un(ﬂt, V32,2) — /Un (7, V,;Z,E’)dﬂt(i’lz))),

v, (0,a) = (n,VQI/{(nt, v;0), kaU, (7, v,;0) — /Z/{v(n,, vt;G/)dvt(G/))) ,

and 7, = Fy,, v, = Fo,
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10 C. A. GARCIA TRILLOS AND N. GARCIA TRILLOS

Notice that here we allow the scaling factor n to change in time. This change does not affect the above
discussion but warrants us with additional flexibility that is used in the convergence analysis. Section 4
is devoted to studying equation (3.2). In particular, we prove well-posedness and show that system (3.2)
can be recovered as a suitable limit of systems of interacting particles. Looking forward to applications
in section 5, in section 4 we will actually study a slightly more general system than (3.2).

To finally return to the original system (2.3), it now suffices to project the dynamics (3.2) via the map
F as stated in Proposition 6, whose proof is in appendix B.6.

ProposiTION 6. Suppose that (y, o) solves the lifted dynamics (3.2). Then the pairr, = Fy,, v, = Fo,
solves the system (2.3).

The bottom line is that, by studying the system (3.2) and its approximation with particle systems, we
will be implicitly studying the system (2.3) and its approximation with particle systems. System (3.2),
however, has the advantage of having a direct Lagrangian interpretation that we exploit.

3.2.1 Conservation of mass Let us now remark that the system (2.3) with arbitrary initialization
satisfies certain conservation of mass properties.

RemARK 7. Note that the dynamics in (2.3) imply that the first marginal of 7 (7r,) remains constant. This
can be verified by considering a test function ¢ : Z — R and observing that

d
- ¢(Z)d7f;(z, Z) = 77[/
zZ zZ

V.:0(2) - (0, Vil )dm, (2, 2)
dr [z, z Z t

X

+ K / ?(2) (Z/{,, (z,2) — / U, (z, E’)dn,(i’lz)) dmn,(z,2)
ZxZ

/ ¢(z)/ (Un(z, 2 —/Z/{n (Z,Z/)dnl(z/lx)) dr,(z|z)dm, ,(2)
Z Z

=K
=0.

Similarly, one can show that v, and 7, have a total mass equal to one for all times, provided v, 7
are probability measures.

3.3 Notation
In the sequel, we will use the following notation:

* W, i probability measures over Z. u is the observed data distribution and & represents an adversarial
perturbation of u.

* g isameasure over Z X Z, and we write points in the support of 7 as (z,z). z can be interpreted as
an observed data point, while z corresponds to a perturbed data point.

e g, will be used to denote the first marginal of 7, whenever 7 is a probability measure. 7 (-|z) will
be used to denote the conditional distribution of the second variable, given that the first one is equal
to z.

 y will represent a probability measure over the lifted space 22 x R oy

* v will represent a measure over ©.
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WASSERSTEIN ASCENT-DESCENT DYNAMICS 11

* o will denote measures over the lifted space ® x R, .
» Fis the projection map from either P(® x R ) onto M_ (), or from P(Z% x R, ) onto M+(Zz).

» y will denote a probability measure over the space C([0,T], Z x R, ), and o will be used to denote
probability measures over the space C([0,7],® x R, ). The space C([0,T],® x R,) is the space
of continuous functions from the interval [0, 7] into & x R and C([0,T], ZZ xR ) is defined
analogously. These spaces will be endowed with the metric of uniform convergence.

«  We will use y to represent probability measures over the lifted space Z2 x R%r (notice the additional
coordinate), and & will be used to represent probability measures over the lifted space ® x Ri.

ey will denote a probability measure over the space C([0,T], Z x Ri), and o will be used to denote
probability measures over the space C([0,T], ® x R%_).

*  U(m,v) denotes the payoff associated to the measures 7 and v, and U/, and U/, denote the first
variations of I/ in the coordinates = and v, respectively.

e We will use H(-||-) to denote the KL-divergence, or Shannon relative entropy, between two arbitrary
probability measures defined over the same space. That s, given v, v’ probability measures, H(v'||v)
is defined as [ log(%)dv/, if v/ « v, and 400 otherwise.

4. From particle system to mean-field PDE

Our first result, which describes the large number of particles limit (N — oo) of the system (2.3) when
initialized at rr(])v and v(l)v , is deduced under the following assumptions on I/ and its first variations.

AssumpTION 8. We assume that there exist constants M, L > O such that

* U is bounded and Lipschitz with respect to the 1-Wasserstein distance. That is,

U@, <M; U@ Y = U@ v < LW (e, 72) + W ! v?)).

e The first variations of I/ are bounded and Lipschitz, i.e.
U, (T, 02,2 + U, (T, v;0)| <M
Uy (' 012 2 — U, (2 A 2 ) < LW (o xd) + W0 D) + [ = 2+ -2

U, ' vt 0h) — U, (2, v 0| < LW, (' ) + W 000 + (01 = 67)).

* The gradients of the first variations of ¢/ are bounded and Lipschitz, i.e.
[V:U, (7, v;2,2)| + VU, (T, v;0)] < M
IVald, (' vt 2 2D = Vald, (r2 0% 2 ) < LW () + W 0l v + I = 2+ R -2
IVold, (' w1501 — VU, (22,0%:6%)| < LW, (!, 72) + W, (0!, 0?) + 101 — 62)).
In the above, w, 7! € P(Z22), v,v' € P(®), (Z,7) € 22, and #' € O. The sets ® and Z2 are

compact subsets of the Euclidean spaces R? and R, respectively. We assume that these sets have
Lipschitz boundaries.
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12 C. A. GARCIA TRILLOS AND N. GARCIA TRILLOS

Since the sets @ and Z2 have been assumed to be bounded, in order to simplify the writing of our
proofs and guarantee that all the dynamics to be studied in the paper stay within the domains @ and 22
we make the following technical assumption:

AssuMPTION 9. At all points 7 at the boundary of Z and at all points 6 at the boundary of ®, it holds that the
vector V:U, (,v; 2, 2) points toward the interior of Z, regardless of 7, v, z; and the vector VU, (7, v; 0)
points toward the interior of @, regardless of &, v.

By restricting our attention to compact sets @, Z2, we make it simpler to verify the boundedness
and Lipschitz conditions in Assumption 8 as these conditions reduce to weaker properties like local-
Lipschitzness. Notice that in many applications there are natural bounds on the supports of the desired
solution!. Assumption 9, on the other hand, guarantees that all dynamics considered in the paper remain
in the domains ® and 22 (e.g. the ODE dynamics (4.1)) below. For Assumption 9 to make sense, one
requires the Lipschitz assumption on the boundary of @, Z2 (indeed, the reader is invited to consider the
case of @ or Z2 being a Cantor set). Now, in order to satisfy the constraint imposed by this assumption,
we can work with a modified functional I/ that strongly penalizes leaving the domains as we move closer
to their borders. In particular, to a given U satisfying Assumptions 8 we can add, if needed, an exogenous
term of the form f 0, (0)dv(0) — f @ (2)dm;, where the ¢, ¢, are confining potentials: they are zero
away from the boundary of the domains and grow as one approaches the boundaries. We reiterate that
this assumption is made to simplify the writing of our proofs by sparing us from introducing additional
terms like projection operators. We emphasize that Assumption 9 does not have an effect on the convexity
properties (in linear or Wasserstein sense) of our loss function and the addition of confining potentials as
described does not play any role in our analysis. Throughout the entire paper, we adopt Assumption 9,
even if not mentioned explicitly.

ExampLE 10. In the context of the motivating example in subsection 1.1, we see that when & and Z
are bounded balls with respect to the Zp, p > 1, norm the required conditions on the spaces would be
satisfied, and so all conditions in Assumption 8 are satisfied when one considers a loss function that is
twice differentiable and an activation function whose first derivative is Lipschitz. This is the case, for
example, for the squared-loss and the squared ReLu or sigmoid activations.

Let us now introduce an enlarged system of ODEs closely related to the system (2.1). For i =
1,...,N,let

dZi =0

dZ! = n,V:U, (xN VN Z, Zhar

do' = k! (u CARAY /) —/Un(n,N,v 7!, 7)dn! (z’|zl))

dol = —n, VU, (xN,vN; 9] dt (4.1)
da! = —ka! (Z/{v(n V] ,ﬂ)—/u N, N, 0)dvN (6 ))

dp; =0

doj = 0;

! To give only one example, images are typically represented by pixels that have a lower and upper values
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WASSERSTEIN ASCENT-DESCENT DYNAMICS 13

with given initial condition (Z, Z}), i), 9, b, B5, 0f) (possibly random) and

N N N

1 I LA

v N . L N._ L N ._ Ny_ ic .

TN le(s@f,zf),w},ﬂf’ VSN ZI:‘S@;,z;),w;’ o= ril=y lew’(S(z:,z:)’
= = 1=

4.2)

1 N 1 N 1
vN .__ L N .__ o N .__ Ny _ ig .
o, == E 8 o, == E 8 v, = Flo,' 1= — E 8gi.
t N — 19; ,w},g; ’ t N — I?; ,Ol; ’ t [ t N - al 1?;
= =

The new variables 8 and o have been added to the system for convenience: in particular, the extra degrees
of freedom that come from the different ways to initialize these variables will come in useful in the second
half of section 4.3. However, as can be seen from (4.1), these variables do not affect the evolution of the
remaining variables, which follow the dynamics (2.1).

Before stating the main result of this section, it is worth introducing one last definition that we use
to characterize the type of consistency requirement for the initialization in the particle system in the
N — oo limit.

DeriNtTION 11. Given two probability measures y, ¥’ over Z x Z x [0, 00), we define

WER(y . ) = inf /W 12, ¥ ClZ)dvu(z, 2).
L,y e Ton P P10 1y Cl2), v (12))du(z, 2)

In the above, F[y]. is the first marginal of F[y] (we recall F was introduced in (3.1)) and F[y'], is
interpreted analogously; I“OPt (Flyl,. F [y .) stands for the set of optimal couplings between F[y ], and
Fly'], that realize the 1-Wasserstein distance between F[y]. and F[y'].; finally, y(-|z) (likewise for
v'(+]2)) is the conditional of the second and third variables given the first one has been fixed.

The above construction is related to the notion of Knothe—Rosenblatt rearrangement (see chapter 2.3
in [43] and also [6]), and to the notion of fibered optimal transport introduced in [38].
We are ready to state our first main result precisely.

THEOREM 12. (Convergence particle system) Let 7 > 0, and suppose that Assumptions 8 and 9 hold.
Let 7, vy be probability measures with 77, , = w and suppose that y;, and o}, are probability measures

satisfying Fy, = 7 and Fo, = v, where F is defined in (3.1).

Let y,N s otN

1Y 1 Y
N._ L N._ o
7= 2z off = D gt i
i=1 i=1

for initial values a)f), af) bounded from above by a constant D (uniformly over N) and Zf) in the support
of u, and evolutions as in (4.1). Finally, suppose that, as N — oo,

WiRG, v) — 0, andW, (o}, o) — 0, (4.3)

where W]KR was introduced in Definition 11.
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14 C. A. GARCIA TRILLOS AND N. GARCIA TRILLOS
Then, as N — oo,

sup (W, (N, ) + W, v)} — 0,
t€[0,T]

where 7,, v, solve (2.3) with initializations 77 and v.

In simple terms, the above theorem states that our particle dynamics are consistent when their
initializations are consistent in a suitable sense. This theorem is a consequence of a propagation
of chaos result that we will develop gradually. Indeed, the structure of the dynamics in (2.3)
involving a conditional contractive term escapes the scope of established results in mean-field
analysis with deterministic trajectories (like Dobrushin’s analysis, see [15]). Our own analysis
revisits and goes beyond the underlying argument behind these known results. In particular, our
propagation of chaos result imposes stronger initialization assumptions, ultimately reflected in the
stronger consistency guarantee required for the initialization of the variable y (and thus also 7) in
Theorem 12.

Remark 13. (Constructing approximate initializations in Theorem 12) Fix 7, and v, and define y, =
Ty ® &;. That is, y, is the product of 7, with a Dirac delta at 1. Likewise, let oy = vy ® ;. Evidently,
Fyy =7, Foyg =Vy.

We use randomization to construct approximate initializations satisfying the assumptions in Theorem
12. Let&,...,§,,... be asequence of i.i.d. samples from 77, ,, and for each i € N let ZitseosZips e
be i.i.d. samples from 7, (-|§;). Let6;,...,0,,... beii.d. samples from v,.

For fixed n,m and i < nandj < m, set W = o = 1, Zl-j =§;, and z?l-j = 6;. Consider the measures

n.m 1 Z “ n.m 1 c S
Ty’ ::%ZZS(ZU’ZU)’ Yo' :=%ZZS(Z,»J-Z-,~,MJ-)

i=1 j=1 i=1 j=1 ‘

and

1 n m 1 n m
Vg’m = % Zzgﬁij’ O'(;I’m = % zza(ﬂijsaij)'

i=1 j=1 i=1 j=1

Evidently, Fy;™ = my™ and Foy™ = vy, and the Z; can be assumed to belong to the support

of . It is also clear that the measure ;" has support in 22 x [0, 1] and o;™" has support in
® x[0,1].
By Lemma A.1 in Appendix A.3, we can conclude that there exists a sequence {(n;, m;)};cy such

that, as k — oo, the measures aév = oy*"™ and y(j)v =y ™™ satisfy (4.3) with probability one.

REmMARK 14. We highlight that in order to satisfy the first condition in (4.3) we need to consider the
iterative sampling for the variables Zi-,Zij illustrated in Remark 13, while in general i.i.d. sampling
from 7, does not provide a valid initialization for the particle system. This is because the first
condition in (4.3) is a stronger condition than simply requiring W, (yév ,¥9) — 0; see Remark A.1 in

Appendix A.
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Finally, we highlight that the assumption on the conditional distributions at initialization imposed in
(4.3) is used to control the conditional distributions of 7 as the systems evolve in time.

As mentioned earlier, Theorem 12 relies on the fact that, in the large N limit, system (4.1) is expected
to behave like a system where the interactions in (4.1) have been replaced by mean-field dynamics. Such
a system reads as follows. Fori = 1,...,N, let

dz" =0

dz;" 4= n, ViU, (ntmf, v;nf;Z,mf’i,Z,mf’i)dt

doy”" = k)" (un CARWEVARNARE / U (" 2", z/)dn,"’f(zwz?’f”)) di

4o = —n, VU, (2 9] e (4.4)
do"" = —ka)"" (uv(n’”f o — / U, (i V6 dvy (9’)) dt

dpm™ =0
do™" = 0;

with the same initial conditions as in (4.1), and where ntm - Fy), v,m - F(o,) and (y,0) solves
(3.2) with initial condition y,, o, (in section 4.1 we prove the well-posedness of this equation); we recall
that the map F has been introduced in Section 3.1. The fundamental difference between the mean-
field system (4.4) and the original particle system (4.1) is that the measures determining the dynamics
in (4.4) can be treated as fixed and independent of the evolving particles, while in system (4.1) there
is an explicit dependence of the driving dynamics on the empirical measures 7, vV associated to the
underlying evolving particles.

In order to deduce a propagation of chaos result for the system (4.1), we need to show that
the mean-field system (4.4) is well-defined and that we can control how far the evolutions (4.1)
and (4.4) are from each other; we show this under Assumptions 8. To this aim, it is convenient
to introduce some extra mathematical structure that will allow us to use standard analytical
arguments: we will work on spaces of measures over continuous paths on Z2 x Ri and ® x Ri
and eventually use a fixed point argument to establish well-posedness of a mean-field equation.
We start by introducing a family of particle evolutions that will play an important role in our
analysis.

Letus fix T > 0, and let A be the set of pairs (¥, 6) € P(C([0,T], 2>xR3))xP(C([0,T], © xR3))
such that

1. Fo,and Fy, are probability measures for all t € [0, T].
2. Fly (- x 2) = Flyol(- x 2) Vte[0,T].

Here, as well as in the remainder, for a given y we denote by y the pushforward of y by the map
{(z, 2, w,,0)} = {(z;.%;, w,)}, and abusing notation slightly, in the remainder we may use Fy, and Fy,
indistinctly; we can analogously relate ¢ and o.
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16 C. A. GARCIA TRILLOS AND N. GARCIA TRILLOS

Associated to (y,6) € A, we consider the multidimensional ODE:

azl’ =0

A7} =0V, (w0, 200 2V e
do}? = ko, (uﬂ (v 2%, 7209 — / u,,or,,vt;Z?"*,z@dn,(zﬂz,f'&)) dt

dv]’ = =, Vold, (771, vy 9)%)dt 45)

d(xt)v’ﬁ = —Kka, (uv(nt’ Vs ﬁt}v’,&) - /uv(nt’ vt;e/)dvl‘(e/)) dt

dpl” =0

m,=Fy, v, = F(0,),

with initial conditions

(ZY°. 207y, 0h 08 7) = (5. 8),wp,00) ~ Voo Ol L) = (9,00, By) ~ G (4.6)

Note that with the condition (,6) € A; we can make sense of the term 7, (- |2V in equation (4.5).
Indeed, let us denote by 7, , the marginal on the z coordinate of 7,. By assumption, 7, , = 7, while

7/ = Zg "> can be assumed to be in the support of 7y, Without the loss of generality. The conditional

distribution nt(.|Z,V 7 is thus well-defined, thanks to the disintegration theorem.

Equation (4.5) is a multidimensional classical ODE describing an isolated particle following
dynamics driven by an exogenous measure. A key observation is that, under Assumptions 8, equation
(4.5) is driven by Lipschitz coefficients and so is well-posed by Caratheodory’s existence theorem (see
Theorem 5.3 in [27]). Assumption 8 and Gronwall’s inequality further imply a bound on w?% and a? 7.
We summarize these observations in the next proposition for easy reference.

ProposrTion 15. Under Assumption 8, there exists a unique solution to (4.5) for any fixed initialization.
Moreover, we have

! €0, a)oez’“M’] ol €0, otOeZKMt]; vT >t > 0.

For a given T > 0, let us now consider the map:
W o Ap = PC(0,T1, 2% x R2)) x P(C([0,T],© x R2))
defined by

W (P.6) = (W} (7,6), W2 (7.6)) == Law[(Z79,279), 0?9, 07, Law[97 7, a? 7, g79)),
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WASSERSTEIN ASCENT-DESCENT DYNAMICS 17

i.e. ¥, maps paths in the space of measures in the lifted space to itself. Moreover, ¥, maps A, into
itself, as we state in the next lemma.

LemmA 16. Under Assumption 8, it follows
Moreover, for every (y,6) € Ay we have

FIFL @, x 2) = FIp,1¢ x 2).

Proof. This result is immediate from Remark 7 and the fact that dZ,’V' ) g

For technical reasons, it will be convenient to introduce a version of the set .4, whose elements have
supports satisfying a certain boundedness condition. Precisely, for a given 7 > 0 and D > 0, we let
Ar p be the set

App = {(.6) € Ay s.t.y, (22 x [0,De*M] x [0,D]) = 1, &,(O x [0,De*M] x [0,D]) =1,
Vi € [0, T}.

In particular, for (y,o) € Az p, the weights (wy, 0g) and (e, ) obtained as in (4.6) can be assumed
to belong to [0, D]?. Combining with Proposition 15, we can deduce that for (,6) € Az p the weights

a)ly o oz,y % in the dynamics (4.5) can be bounded above by De?*M!, We summarize this in the following

lemma.
Lemma 17. For every T,D > 0 we have W;(Az p) € Az p.

Under Assumptions 8, we prove that we can control the distance between the image ¥ of two pairs
(;71, 61) and ()72, 62) in A7 j, with their own distance. Given p > 1, we use

Wfp(v, v):= inf / sup |u; — v |PdY (x,y), 4.7
’ Tel'(wv)J) s[04

to compare two probability measures over the same path space. In particular, we will use these distances
to compare measures over paths in any of the lifted spaces.
First, we show a continuity property for the map F when considering a restriction of its domain.

LemmA 18. Let 0,0’ be two probability measures over ® x [0, D], where D is a fixed constant, and
suppose that Fo and Fo' are also probability measures.
Then

WE(F(0), (o) < Co , pW,(0,0"),

where the constant CO p can be written as C, pD = = diam(®)P~ 1(dlam(@) + D).
In particular, when 1ts domain has been restricted, the map F is Lipschitz in the 1-Wasserstein sense.
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18 C. A. GARCIA TRILLOS AND N. GARCIA TRILLOS

Proof. Let us start by noticing that the measures o for which Fo is a probability measure are precisely
the measures satisfying [‘ado (6,a) = 1.

We first prove the result for p = 1.

Assume that o and o’ take the form o0 = 0, = 13" 5, s ando’ = o, = 137", 80! al)-
It is well known that in that case there exists a permutation 7 : {l,...,n} — {l,...,n} such that
W,(o,,0,) = % > 10, e;) — (G’T(i), a’T(l.))|. Now, we can write the measures Fo,, and Fo, as

l — . 1 — ,
Fo, = - Zl mln{ai,a}(i)}Sgi + - 2(% — min{e;, O‘/T(i))}‘sei
= 1=

and

1 1 .
Fo, = - me{ai’a/T(i)}(S@,-’ + - Z(o/m) — mln{ai,a}(i))}éelg.

i=1 i=1

Notice that the mass from 1 > min{o;, o/ 18, can be used to cover for the mass demanded in
n Li=1 i T () 170;

% >, min{a;, o/T(l.)}Sgl_/. We carry out the following mass transfer: for each i, we send min{e;, a’T(i)}

units of mass from 6, to 67,,. The total cost of this mass transfer is % 2 i1 min{oy, oz 16 — 071 <

DW,(o,,0,). Finally, the mass %Z?zl(ai — min{a;, a7))}d,, can be used to cover for the mass
demanded in % 27: l(oz/T([.) — min{o;, o/T(l.))}Bgi/. This mass transfer can be carried out in any way, the
important point being that the total cost of such a mass transfer will not be larger than the total amount
of mass to be transferred 1 3| (o; — min{e, @y} (which is less than W (0,,, 0,)) times the diameter
of the set ®. The bottom line is that W, (Fo,,, Fo,) < (D + diam(®))W,(0,,5,,).

We can extend to arbitrary probability measures o, o’ by noticing that (1) any probability measure
o can be approximated in the weak sense by empirical probability measures o, for growing n; (2)
the map F is continuous in the weak sense (as can be verified directly); (3) given that all measures
are supported on a fixed bounded set, Wasserstein metrics are continuous with respect to weak
convergence.

Finally, to extend to arbitrary p > 1, notice that W,(o,0’) < Wp(a,a/ ), while WI[; (Fo,Fo') <

diam(®)P~'W, (Fo, Fo'). O

REMARK 19. Lemma 18 also holds, mutatis mutandis, for / when it acts on measures y € Z2 x [0, D].

We now deduce an a priori control on the difference between solutions to (4.5) for two different pairs
of measures (y',6"),i = 1,2.

Lemma 20. Let T, D > 0. Suppose that Assumption 8 holds. Fori = 1,2, let (', &) € Ar.p»and denote
by

the corresponding evolution determined by (4.5). We assume that Zg i (although possibly random)

belongs to the support of 716 .» the marginal on the z coordinate of né. We also assume that a)f), Qf), oz(i), /36 €
[0, D].
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Then there exists a constant K ps depending only on 7', D, the function 7, k, and on the constants in
Assumption 8, such that for all 7 € [0, T'], we have

El) — 2| <Elsup |t} — ¢2]

OSSSI
t
SKfD(EK&—5&414{Wﬂyyyﬁ-%Wﬂ5iv5-FE(Wﬂn(IT'”L SHZy“)Ohk)

In the above, the expectation is taken over the prescribed (joint) initializations of the two systems.

Proof. From (4.5) and the Lipschitzness and boundedness conditions in Assumption 8, we get

~v2 ~2 2 x2

d ~y1 x1 x2 32 MY S S | ox2
V.0 V.0 1 1,77 .0 Yy .0 2 2.7V°.0 V.0
|E(Zt — 4y )| :771 Vzu]-[(n[7vt,zt ’Zt )_VZun(n[,Vt,Zt s L ))

V1 v
< L(Z" P 2 2 2w ) D)+ W o) D)),

By performing a similar analysis on the other components of the systems, and using the assumption
(¥',6") € Ay pand Assumption 8, we deduce that we can find a constant C. j, such that for all 7 € [0, T]

5 =&l <15 — ¢
t L1~ ~2 ~2
—wnAhd—&+%@w@ﬂW%ﬁHWﬁkW”xﬁw¢wﬂw
Thus, using Gronwall’s inequality, we get that for all ¢ € [0, T']

g} = ¢2| < sup |¢)} — ¢2| (4.8)

0<s<t

¢ S1osl L2 .
s et ('%‘—féwcT,D/ [Wier) a4 W, ol oD+ Wy ) (1285, 22128 >}ds)'
0
Now, from the fact that Z‘? - Zg l"}l, it follows
2 1R8N 1, o9l 6! 201756 1, 006!
E (W22l 120 0) = E(wie2eizy Saleizl o).

From this and (4.8) it then follows that for all ¢ € [0, T']

Ellz} — ¢?|] < E[ sup [¢} — ¢2]

0<s<t
< eCroT (|¢ —§0|+CTD/ Wl nh + w ol v Y)+E(W1(n2( |zV A ), 7T, (|ZV 7 )))ds)

To conclude, we apply Proposition 15 and Lemma 18. ]
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20 C. A. GARCIA TRILLOS AND N. GARCIA TRILLOS

2 .2 1,1
In general, the terms E (Wl (7rs2 (-|Z(})' 0, n§(-|zg' 7 ))) cannot be bounded above by the Wasser-

stein distance between 72 and 7!. We thus use a similar construction as in Definition 11. Given two
collections ! := {7}y, s and w? := {72}, -7, we define their cost W, | by

W, (x', 7% := sup inf [/Wl(nz( 122, 7} (12 dv, (! zz)] (4.9)

se[0,1] vs€lopt () ,.7w2,)

in the above, we interpret ni as the marginal in the z coordinate of the measure 7/, and F0pt(77s - SZZ)

is the set of optimal couphngs realizing the 1-Wasserstein distance between n . and n
With this notion in hand, we can state and prove the following corollary of Lemma 20

CoROLLARY 21. Suppose the assumptions in Lemma 20 hold. Assume further that ) = y3 and &4 = &3.
Then there exists a constant C‘T’ p depending only on M, L, T, D, k, 1 such that for all r € [0, T]

W (' e w3267 + W, WEG L 6. WGP 67) + W, (W (), Wi ()

<1CrpW, 9D + W, (61,67 + W, (!, x2)).

Here we are abusing notation slightly to denote the collection of measures {F ((lI/ (” o ’)) )}SE 0.7] by
wl (7).
T

Proof. Take ¢! fori = 1,2 in Lemma 20 with identical initial conditions, sampling (Zé, Zé, a)(l), Q(l)) from
Yo and (196, oeé, ,Bé) from & . By the definition of the Wasserstein distance, it follows

W, (e w3 6%) + W, (W2 e, wEp2.6%) < E sup |¢) - ¢2l.

0<s<t

Now, since }7(1) = )V/S and ()V/],&l), (}?2,&2) € Ay, the optimal couplings v in VNV,J(Jrl,Jtz) are all the
identity coupling for the measure JTOI I the exact same is true for V~Vt’] (lI/T1 (h), 'I/Tl (r?)). It follows that

W@, wt@t o) + w, it ¢ wEpt )

<E sup |t} — ¢ < KT,D/ W FL 3D + W, 61,62 + W, (' w2)ds

0<s<t

<KTD/{W (LD + W 61,67 + W (! m?))ds
v v2 vl v2 - 1 2
< tKy (W, 7' 7D + W, 6,67 + W, (x', ).

Likewise,

W, (@} (), ¥ (r?) < E sup |¢g) — 2.

0<s<t

Putting together the above estimates, we obtain the desired result. d
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WASSERSTEIN ASCENT-DESCENT DYNAMICS 21

4.1 Well-posedness of mean-field PDE

We now look for a system of ODEs characterizing the solution of the system (3.2). The natural candidate
is given by the mean-field equation

(me’ me’ mf ﬁmf mf ﬂmf mf) _ (Zy ,0 Zy 0’ i’,é’, 1}}7,6” ai’,&, ﬁ?,&’, Q}?,&)’ (4 10)
with 7 = Law[((Z", Z"), ™ ,0")], & = Law[®@"™,a™, B")]. '

Indeed, assuming that such mean-field equation exists, we verify that setting
y = Law[((Z",Z"),0™)], ando = Law[ (9™, a™)]

we satisfy (3.2). Consider two arbitrary testing functions ¢, ¢. We have

d f Hmfy  mf i smfy  mf d_w donf) d ]’
B0 @2, o )]=E|:V(z,z),w¢((zm Z0. e [\ 4 24 ) el ||

and

—E[w(ﬁz o] = [% RICARAE [ ol L ’"f} } :
dt dt
Using the dynamics (4.5) with , v as defined, we obtain precisely (3.2) in a weak sense. Note that,
since the measure driving the dynamics comes from the distribution of the dynamics itself, our previous
argument does not immediately apply. However, the matter is settled by establishing the well-posedness
of the system of ODEs (4.10). The proof is based on Banach’s fixed-point theorem, which simultaneously
guarantees the existence and uniqueness of the solution to this system.

Treorem 22. Let D > 0, and suppose that 7, and &, are two probability measures such that 7, (2% x
[0,D]?) =1, Gy(O® x [0, D1?) = 1, and such that F 0, and Fy, are probability measures. Then, under
Assumption 8, there exists a unique solution to the mean-field system (4.10) with initial distributions

Proof. Consider the set Ay (¥, 0y) = {(¥,0) € Arpstyy = ¥y, 0y = 0p}. As shown, for
example, in [7], we can deduce that the set .A; endowed with the metric Wy (¥, Lyh+ Wr ¢'.6%)
is a complete metric space given that C([0, T], 2% x R? <) (respectively C([0,T], @ x R2 1)) is complete
with respect to the distance function d(u, v) := supo 7y lu; — vyl. It is stralghtforward to see that this
property is inherited by A7 (¥, 5,). Note also that by Corollary 21 one can find 7 > 0 small enough
so that ¥ contracts the quantity Wy | GLPH+ Wr, &' 6%+ Wy (', x?) in the space A7 (¥, 6).
Now, the latter quantity dominates the metric in the space Az (¥, 5). Hence, there is a unique solution
(¥,0) € Ar p(¥ J¢) to the fixed point equation

v (y,0) = (y,0).

By definition, the mean-field system (4.10) is then satisfied and is well-posed in the interval [0, T]. By
continuation, well-posedness can be arbitrarily extended. ]

$20z Jaquiaydes g0 Uo Josn salelql AlISIsAIUn eIquwinioD AQ OS2/ //81L09BRIS/S |L/a1o1e/lelewl/woo dno olwapede//:sdiy Wol) papeojumod



22 C. A. GARCIA TRILLOS AND N. GARCIA TRILLOS

REmARK 23. Since (3.2) is well-defined, we can also conclude that the system of mean-field particles
(4.4) is well-defined given that it can be obtained by plugging in the mean-field law, except that the
initial condition is not sampled from y,, 6, but taken as in the system (4.1).

4.2 Propagation of chaos
Before stating our propagation of chaos result we first present a lemma.

LemMa 24. Let (¥, &) be such that 7, (22 x [0, D]?) = 1, 5,(® x [0,D]*) = 1, and such that &, and
Fy, are probability measures. Let (¥, ¢) be the law of (4.10) with (¥, 6 ) = (¥, J). Let z; and z,, be
two arbitrary points in the support of 7, .. Then for every 7 € [0, T] we have

Sl[lop] W, (7, (-1z0), 7, (- 120)) < K7 p(Wy (70 (- 120), 700 (-120)) + 129 — 2D (4.11)
sel0,t

Proof. Consider one particle as in (4.4) that we denote by ¢ and that we initialize at Z, = z; and
(ZO, wy, 0p) ~ Po(lzg) and (¥, g, By) ~ 0. Likewise, consider another particle as in (4.4) that we
denote by ¢’ and that we initialize at Z, = z, (Z(’), Wy, 0y) ~ Yo(-lzo), and (3, (), B)) = (F. g, By)-
At this point we leave unspecified the joint distribution for the initializations of the variables z, w, o, but
it is understood that one such coupling has been fixed in the computations below:

An application of Lemma (20) deduces that for every ¢ € [0, T]

t
E[ sup |§/ ¢l =< KT,DEK(; - Co| + KT’D/O W1 (7[‘?('|ZE)),7TX('|20))dS-

O<s<t

By definition of the Wasserstein distance, the left hand side of the above expression can be bounded from
below by W, (7r,(-|z;), 7, (:|zg)) for any s € [0, 7], and thus

t
sup Wy, (120). 7, o) < K p166 = ol + Kip /0 W, (2, (12h), 7, (-|20))ds.
se[0,t

By using the fact that the coupling between the distributions for the variables (Z, w, 0) was arbitrary we
can conclude that

s€[0,1]
At this stage we can apply a Gronwall-type argument to obtain the desired result. g

THEOREM 25. (Propagation of chaos) Let T, D > 0, and suppose that Assumption 8 holds. Let (y, 5,) be
such that y,(Z22 x [0,D]?) = 1 and &,(@ x [0,D]?) = 1, and suppose that F&, and Fy,, are probability
measures.

For N € N consider the system (4.1) associated to a sequence {(;?év s &év ) yen satisfying )?év (22 X
[0,D]?) = 1 and 6(1)V(@ x [0,D]*) = 1 for all large enough N, and suppose that ]-'(Vr(l)v and f)?év are
probability measures. We also assume that the Z(i) belong to the support of the measure 7, ..

t
sup Wy (mr,(1z0), 7,(120)) < K7 p (W, (0 (- |20), 770 (-1 20)) + 12 —26|)+KT,D/O W, (7, (- |2), 7, (- |29))ds.
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WASSERSTEIN ASCENT-DESCENT DYNAMICS 23

Assume further that as N — oo, we have

mf / W, (%V( 120)s Vo (- |zg))dv, (z9,29) — 0, andW, (oo ,0y) = 0. (4.12)

UZEFOpt(T[O \70,2)

Then

Wr N9 =0, Wp, @Y. 6) =0, W@, m) -0,
where (p,¢) are the laws of the mean-field system (4.10) with initial conditions drawn from (¥, 6;).

Proof. We assume without loss of generality that for every N and every i = 1,..., N, the weights wé, oz(i)
belong to [0, D]. From Gronwall’s inequality and Assumption 8 we can then see that the weights i, o
belong to [0, De?M*1]. Tt follows that (p, ") € Arp.

In what follows we let ¢? denote the path of all variables of the i-th particle in the system (4.1), and
¢ the corresponding particle in (4.4); we recall that these particles are assumed to be initialized at the
same location. We consider

v N. v N.
yl mf ——ZS(met mfl) mfl mfl and Gt mf ZS mfl mfl mfl,

that is, the empirical measures of the mean-field system of particles.
From the triangle inequality, we have

W . 7+ W, 6,6™) < (W M M)+ W @ 6N+ (W 5 N + W 6,6

4.13)

We now claim that a similar inequality holds for the term Wr,] (m, V). Namely, we prove that
Wm (r, 7 < Wm (m, 7Ny + V~Vt’1 CART Y (4.14)

To see this, recall that the z coordinates of all dynamics remain unchanged and that the initializations
of ¢ and ¢ are the same. It follows that nsz = n(j)vz = n(])v me = nﬁ\’z’”f and thus I, (77, ij gvz)

consists exclusively of the identity coupling. Let v € I, (7, ., 70

inequality for W; we deduce

= FOpt (o.2> 7, Z). From the triangle

/ W, Gy, 7 (1 v (e, 2) < / (W, Gy L2, 2 1)) + Wy GVl (1), 2 )z, 2)
< / W, G, 0, w7 (1) du e, )
+ / W, G 1), 7 () )
< / Wy Gy, (v, ) + W,y eV ),

for every s € [0, t]. Taking the inf over v on both sides and then the sup over s € [0, ¢], we obtain (4.14).
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24 C. A. GARCIA TRILLOS AND N. GARCIA TRILLOS

We use again the fact that the particles ¢ and ¢ have the same initialization to proceed as in the
proof of Corollary 21 and conclude that for every ¢ € [0, T]

W, VN + w6 6N < Ky / W, . 7™) + W, 1 (6,6™) + W, (e, m™))ds,
as well as
t
W,y (@ 2y < KT’D/ W, . 9"™) + W1 (6.6™) + W, (m, ")} ds.
0

We can now combine the previous two inequalities with (4.13) and (4.14) to conclude that

W, 7"+ W, @.6") + W, (e, x) <
W N 9) + W @ 6) + W, (e )

K /O W o7 + W, 6.6Y) + W, (7))

Combining with Gronwall’s inequality, the above implies

W ™) + W@, 6™ + W, () < eKrogw, 7 3" + W (6, 6N + W (2N,

To complete the proof we must show that the right-hand side of the above expression goes to zero as
N — oo. For that purpose we compare the evolutions of ;'gf = (2 7 W ™) and ;gf =

", 7" o™ ™), and then, separately, compare the evolutions of Cg)" - @™ o™ gty and
{;y = (z?’”f Ja™ ﬁmf ). For the first pair of evolutions, we proceed as in the proof of Lemma 20 to
conclude

sup [£2 — e | < Kppleds — ;ZO|+KTD/ W, G, CIZ0Y ), 7, (1Zg! )y ds.

O<s<t

‘We can then use Lemma 24 to obtain

sup 100 — 2| < Ky ple s — e + Kp pW (o (127 70 (1297

0<s<t

Combining the above pathwise estimate with the freedom to choose the coupling for the initializations,
we can conclude that

Wr (¥, JV’N’mf)’ Wrp, (@, aVmy < Kr pW, (g, ”(/)Vz)

+Krp inf )/Wl(%v( 120), Yo (-120))dv, (2, Z)-
70,2

v, EFOPl(T[Oz
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By assumption (4.12), Remark A.1, and Lemma 18, it follows that the right-hand side of the above

expression goes to zero as N — oo. For the pair of evolutions §£f *and ;(f;’f we proceed as in the proof
of Lemma 20, this time noticing that we can write

mf i mf mf i mf
sup [$g — ol = Krpllgg — ool
0<s<t

Combining the above pathwise estimate with the freedom to choose the coupling for the initializations,
we can conclude that

Wy (6,6 < Ky pW, (5.6 — 0. (4.15)
O

4.3 Proof of Theorem 12 and other corollaries of Theorem 25

In this section, we establish some important results that are implied by Theorem 25. The first one is
Theorem 12.

Proof. (Proof of Theorem 12) Let (y,, o) be such that Fy, = 7, and Fo, = vV and such that (4.3)
holds. We introduce the measures ¥, := y, ® §;(do), and 6, := o, ® 8,(dp). That is, y,, is the product
of y,, and a Dirac delta at the value 1 for the o coordinate; 6, is defined analogously. Likewise, we define
)76\] = yév ® 8, and 66\’ = G(I)V ® 8. It is clear that with these definitions, we have (4.12) and thus we
can invoke Theorem 25 to deduce

Wr N 9) + Wy 6", 6) — 0,

where (?N ,6) is the measure in path space induced by the particle system (4.1) with initializations as
described in the statement of the theorem and with ﬂ(i) = Q(i) = 1 for all i; (¥, &), on the other hand, is
the law in (4.10) with initialization (p, 6 ) = (¥, 9¢)-

Using Lemma 18, we conclude that for every ¢ € [0, T]

Wi, 7)) = Wi (Fy ) Fr) < KepWi () ol) < KppWi 09 < Ky pWr 9V 7).
Likewise,
WM v) < Ky pWy 67, 6).
Taking the sup over all ¢ € [0, T in the sum of the above two expressions, we get

S%p {Wl (7TtN,7'[t) + W] (ViN7 Vt)} S KT,D(WT,I (}\;N’ }\;) + WT,] (&N’6))’
t€[0,T]

from where the desired result now follows. O

Corollary 30 and Remark 31 below, which we will use in section 5, are the other important
consequences of Theorem 25 that we discuss in this section. In section 5, we consider an evolution
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26 C. A. GARCIA TRILLOS AND N. GARCIA TRILLOS
{(®,, 77}, closely related to (2.3) that is given by

3,0, = n,div(), VU, (,,v,;30)), 8,7, = —n,div(#,(0, ViU, (7, v (2. 2))), (4.16)
with initializations 1, 77, that are absolutely continuous with respect to v, and 7, respectively. It is at
this stage that we use the extra coordinates S, o in (4.1). Indeed, these variables have been introduced to
accommodate for the changes of measure between 7, and v, and between 77, and ;. We will be able to
use the general purpose Theorem 25 to prove the consistency of particle approximations for the system

(4.16).
We start with a preliminary result.

N .
ProposTion 26. Let vV = £ 37 o;(1)8y, ) and N = y o @i (187, 71y b as in (4.2). Let
Bi,-..,Byand o, ..., 0y be two collections of non-negative scalars satisfying

—Zﬁa((» Zg,wm)—l

Let 9 and 7 be the probability measures defined as
12
0= 2 B 08y, A= Zglw 08020 =0
i=1
Then
9,0y = ntdlv(v, VU, (rrt ,V, N-9)), B,frtN = —n,dlv(nt 0, V:U. (ntN,vt ;(2,2))) 4.17)
in the weak sense.

Proof. Let ¢ (0) be an arbitrary test function. From (4.1), we see that
N .
— / ¢ (0)dd;' (0) = Z By (O)— ¢(z9 (1) = Z Bic;(0)Vp (9;(1)) - (1)
i=1

N
= —%’ Zﬁiai(O)Vtﬁ(l?i(l)) 7N CARARIA(G)

i=1

/ Vo @) - VU, TN, vN;0)ddN ©6).

This shows that D" solves equation (4.17) in the weak sense. The equation for 7% is deduced similarliy]

We will now proceed to relate (4.17) with (4.16). We first introduce some additional mathematical
tools that will help us in this aim.
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Let F : P(22 x R%) — M (Z?) be the map defined via the identity

/¢(9)d(f5)(9) Z/aﬂqb(@)d&(@,a,ﬁ),

for all test functions ¢. Analogously, define Fasa map F PO x R%r) — M (®), substituting

any appearance of &,6,a, 8 in the above with y, (z,Z), w, 0. Notice that Fs is a probability measure
provided that f aBdc(0,a, B) = 1, while an analogous statement holds when F acts on y.
Let us now introduce a map G : C([0, T], 22 x REL) — C([0,T1, 22 x Ri) defined as:

G AGp 2 @ 0D Yoy = 1@ 2 @05 00 icro,1)- (4.18)

That is, G is the map that freezes the coordinates w, ¢ of a given path, setting them to be equal to their
initializations. Naturally, G induces, via pushforward, a map from P (C([0, T, Z%x Ri)) into itself; we
will abuse notation slightly and will also use G to denote this induced map. Furthermore, we will also
think of G asamap G : C([0,T1,0 x R3) — C([0,T],® x R?) that freezes the coordinates a, 8 of
a given path, setting them to be equal to their initializations; we will also denote by G the map induced
via pushforward from P(C([0,T], ® x Ri)) into itself. Which of the interpretations for G will be used
in each instance should be clear from context.

RemARK 27. Notice that #V and 5V in Proposition 26 can be written as F((Gp"),) and F((G&™"),),
respectively.

LemMa 28. Let (p,0) be the law of the process (4.10) initialized at a pair (y,d,). Then {D, =
F((Go) )} epor) and {7, := F((GP) )} ef0.1) solve the PDEs (4.16), where 7, = F(y,) and v, = F (o).

Proof. Consider the mean-field ODE (4.10). For every smooth test function ¢, we have
/¢(9)dﬁt(9) = /aﬂfﬁ(@)d(gﬁ),(@, o, B) = ElapBy (9,)].
In particular,

d d
E/¢>(9)d9,(9) = E]E[Oloﬁ()d)(ﬁ,)] = —ElnofyVo (D)) - Vold, (711, v;59))]

—r/t/qu(O) - VU, (7,,v,;0)dD,(0).

This proves that b satisfies the desired equation. The equation for 7 is obtained similarly. U

ReMARK 29. Notice that 9, and 7, are probability measures if ¥ and 77, are.

In what follows, we use Theorem 25 to show that, under appropriate assumptions on initializations,
the system in (4.17) can be recovered from suitable particle approximations.
CoroLLARY 30. Let v, and 7, be arbitrary, and let ¥, and 77, be probability measures such that 9, < vV,
Ry K Ty, with %‘(’) € L*(v,) and % € L*®(7,). Let y, and &, be as in Theorem 25 and additionally
assume they satisfy Fy, = 7, Foy = vy, and Fyy = 7, F o = V.
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Consider approximating particle systems as in Theorem 25 with the additional assumption that

v(’)V , név are probability measures. Then

sup (W, (0N, 0,) + W, &N, #,)} = 0, sup {W1<v, ) 4+ W@V, 1)) — 0,
t€[0,7T] te0,T

as N — oo. In the above, we use the same notation as in Lemma 28 and Remark 27.

Proof. First of all, let us notice that the condition Zlo € L*(v) and % € L* (7)) is used to guarantee

that we can indeed build &, and y,, with bounded supports; see the first part of Remark 31 below:
It is straightforward to check that G is a Lipschitz map, i.e.

W;1(G6,G6") < 2Wy (6.,6"), Wp (GY.GP) <2Wr, (7, ¥).

In addition, we can find a constant CT’ p such that for every ¢ € [0, T]

W (F((G6)), F(GF™),) < CrpW,((Gd),). (G&™M),) < CrpWy (G5, G™),

where the first inequality follows from a very similar approach to the one in Lemma 18. Similarly,

W(FWGP)). F(GP™))) < CrpWr Gy, GP™).

We may now combine the above inequalities with Theorem 25, which allows us to obtain
Wry (7Y 9) + Wi 67.6) — 0,

to deduce the desired convergence. U
RemARK 31. (Constructing initializations) Let 7 and v, be arbitrary, and let p, = Zf"i‘()) and o, = %,
which we assume satisty p, € L>(v,) and p, € L>(7)); we further assume that 77, , = 7, . The latter
assumption implies that f Pz, E)dyro(az) = 1, for all z in the support of 7, 2

Let 9, and &, be the measures y, := h n”o’ 0y = hgjvo, ()~ (31,0,(2,2), h, 1 60—
0,1, p,(0)). Notice that Fy, = 7 and ]:V() = 7y, while F6, = 7, and ]-'00 = Dy.

We use the same objects and notation as in Remark 13 and introduce the extra variables ;; = p, (¥;)
and Qij = Pr (Zij, Zl-j); notice that the uniform boundedness on p, and p,, is imposed to guarantee that
the weights g;; and B;; are uniformly bounded. Consider the measures

1 n m
GETPHX GEFP»X
ZijZijwieip) 0 T (j.ijsByj)*

i=1 j=1 i=1 j=1

From Lemma A.1 we can find a sequence { (1, m;) }; <y such that, almost surely, the induced sequence

of pairs )70 = )76’ kI V(I)V k.= 6(;’”'” satisfies conditions (4.12). Moreover, thanks to the law of large
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numbers and Lemma A.2 in Appendix A, this subsequence can be assumed to be such that

Nk

1
lim — -1 ,  lim
k— o0 ny, ; mlk ka (ZU’ZU) ‘ k—o00 ny P

1
- —1|=0. 419
= 2, () ‘

We make a slight modification to the weights ©;; and B;;, normalizing them so that mik > iCi=1 for

ij°
all i, as well as nlelk > i ,Bij = 1. From (4.19) we can directly show that condition (4.12) continues to hold
.. . . AN _ . ANe
after the normalization of weights. The resulting measures 77, = Zj Qij(S(Z,-j,Z,-j) and vy~ = ZU /30»819”
can be seen to converge, in the Wasserstein sense, respectively, toward 7, and 7, while the measures
Ni 1

S . Ne _ 1 — — .
Ty = o ZU B(Zij’zij) and v," = o ZU 8%, converge toward 7, and V), respectively.

Moreover, another application of the law of large numbers implies that
N 1
H(Dy*[[vg*) = (— Z P, ()™ 1— Z log(p, W), W) —log { —— 3, ()
KM

converges, as k — 0o, toward fo log(p, (0))p,(6)dvy(0), which is precisely H(Dy||Vy). Likewise, we

can see that H(név"HJTO ") = H(ryllTy), as k — oo.
The above convergence of relative entropies will be used in the next section.

5. Long-term behavior of mean-field equation and approximate Nash equilibria of (1.1)

In this section, we study the long time behavior of the system of equations (2.3) appropriately initialized
at some measures (77, vy). Our aim is to study the ability of system (2.3) (or slight modifications thereof)
to generate approximate Nash equilibria for problem (1.1). We start by imposing additional convexity-
concavity assumptions on U/, where convexity-concavity must be interpreted in the linear interpolation
sense.

AssumpTION 32. We assume that I/ is convex in v and concave in 7 in the linear interpolation sense. That
is,

Uzr +A —1)m,v) > tU(T,v) + (1 — 1)U, v)
and

U, v+ 1 —1)) < tU(m,v) + (1 —1)U@T, D),

for all = € [0, 1] and all probability measures 7,7 € P(Z x Z),and v, D € P(O).
Assuming that I/ has the form (1.3), the above conditions are equivalent to analogous convexity-
concavity assumptions on R (s, v), given that C is linear in 7.

RemMark 33. The fact that I/ is convex-concave according to linear interpolation (i.e. as introduced in
Assumptions 32) does not imply that I/ is geodesically convex-concave with respect to the geometry
that induces the dynamics (2.3) (see section 3.1 for a discussion on the geometric interpretation of
equations (2.3)), so that convergence to a global Nash equilibrium or an approximate Nash equilibrium
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is not immediate. Due to this, despite Assumptions 32, without any further assumptions we will think
of problem (1.1) as non-convex non-concave. We contrast this setting with the one in section 5.1, which
we will refer to as the non-convex concave setting.

As expected, the long-term convergence of the mean-field PDE to an equilibrium point is associated
with the convex-concave nature of /. It is worth noting that both the ascending and descending parts of
the PDE dynamics in (3.2) can be broken down into two components: a transport term and a mass-transfer
term. Intuitively, the linear interpolation type of convexity-concavity aligns with the mass-transfer term
but not the transport term. Consequently, convergence requires dynamics primarily dominated by the
mass-transfer term, as demonstrated in Theorem 35

In contrast, the non-convex-concave setting detailed in section 5.1 introduces a form of concavity
that is compatible with the transfer term. Therefore, in this scenario, convergence imposes dynamics
dominated by the transport term for the adversary, as exhibited in Theorem 42.

ExampLE 34. In the context of the motivating example in subsection 1.1, we see that Assumption 32 is
satisfied provided that the loss function £ is a convex function in its first coordinate. This is certainly the
case for both the squared-loss and the logistic loss.

We separate our discussion into two distinctive cases: (1) a rather general non-convex non-concave
setting, and (2) a non-convex concave setting. Recall that by non-convex/non-concave here we mean not
geodesically convex/concave relative to the optimal transport geometry driving the dynamics, while we
do assume convexity/concavity in the linear interpolation sense as in Assumption 32.

Let us start by stating the result in the non-convex non-concave setting.

THEOREM 35. (Long-time behavior mean-field PDE) Let € > 0. Suppose that Assumptions 8, 9, and 32
hold. Assume that v, and 7, are probability measures (with 7, = w) such that v, and 7 (-|z) are
absolutely continuous with respect to Lebesgue measure (in each corresponding space) and their densities
are lowered-bounded by some k > 0: i.e. there exists k > 0 for which ‘%(0) > k, and %(Zk) > k for
all z in the support of u.

Finally, assume that the learning rate 7 satisfies n € CY([0, 00)) and is such that

tl_i)rgj%/ot /Os n.drds =1 (GR))
for 7 satisfying
AL+ M)?7 <e.
Then there exists 7* such that for all ¢ > T*

sup U*,b,) — inf  UT, V) <€,
T*eP(Z2) stmr=pn v*eP(O)
where 7, := L [!7r dsand v, := L [! v,ds, and (,, v,) solve (2.3), when initialized at 7, v, as above.

As it turns out, we can prove a very similar result if v, and m(-|z) are assumed to be empirical
measures that are well spread out and have a sufficiently large number of support points.
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THEOREM 36. Let € > 0. Suppose that Assumptions 8, 9, and 32 hold. Assume that v, and 7, take the
form

1 Y 1Y
M . _ N _
1)021)0 ZMZI:SG[’ JTO—JTO —,bL® IVZI:SE/ 5
= j=
where 0,,...,6), and Z;,...,Zy are ii.d. samples from the uniform distributions over ® and Z,
respectively. Assume, also, that M and N are large enough so that
log(M)P? log(N)Pa
YV zmyya =€

for suitable constants Cg, and Cz and a power p, that takes the form p; = 3/4ifd =2 andp;, = 1/d
if d > 3. Finally, assume that the learning rate 7 satisfies the same assumptions as in Theorem 35.
Then, with probability at least 1 — Lo % (on the samples |, ...,0), and 7, ..., Zy), there exists

M2
T* such that for all r > T*

sp UG — b UG < 26,
TreP(Z?) stmf=p v*eP(®)

where 7, 1= % fot wds and v, 1= % fé vyds, and (7, v,) solve (2.3), when initialized at 7, v, as above.

Remark 37. The assumptions on the initializations 7, and v, in Theorems 35 and 36 effectively suggest
that the particles in Algorithm 1 need to be well spread out throughout the domains at time zero. This is
certainly a strong assumption, but it is not unlike other theoretical assumptions in the literature studying,
mathematically, the training process of neural networks; see [13], [17], [S1], [52] and [53]. In the next
section, we discuss how the strong assumption on m, can be removed when one restricts the adversarial
budget in the setting described in section 1.1.

Let us emphasize that Theorem 36 implies that the convergence toward approximate Nash equilibria
also holds for dynamics induced by a finite particle system, provided that the particles are well spread
out at initialization and the number of particles is sufficiently large.

Remark 38. The assumption on 7 is easily satisfied and essentially imposes a decay rate. For instance,
given A > 0, we have that a exp(—Af) and a(r + 1)~U+4 satisfy (5.1).

Let us highlight that the statement does not impose restrictions on the parameter «. It is possible, via
a change of time, to lower the requirements in the upper bound on 7 by instead adding lower bounds for
the parameter « that grow as € decreases. This is analogous to treatments in other contexts as in [17].
Either way, the crucial point is that the mass transfer term should clearly dominate the dynamics. This
is consistent with the intuition on the effects of the assumed linear convexity-concavity as highlighted
in Remark 33. Note in passing that the situation when stronger concavity is assumed as presented in
Theorems 42 and 43 is not the same (see Remark 44).

5.1 The non-convex and strongly concave case

In contrast to Theorem 35, the results in this subsection hold under no assumptions on the initialization
7o but at the expense of additional assumptions on the payoff function ¢/ and a slight modification of

$20z Jaquiaydes g0 Uo Josn salelql AlISIsAIUn eIquwinioD AQ OS2/ //81L09BRIS/S |L/a1o1e/lelewl/woo dno olwapede//:sdiy Wol) papeojumod



32 C. A. GARCIA TRILLOS AND N. GARCIA TRILLOS

the dynamics (2.3). These additional assumptions on ¢/ are not unnatural. For instance, in the motivating
example from subsection 1.1, they are linked to the strength given to the adversarial cost function C.

AssumpTION 39. We assume the following uniform PL (Polyak-Lojasiewicz) condition on the functions
U(-, v): There exists A > 0 such that for all v € P(©) and all = € P(Z?) with w, = u we have

/ VU, (, ;2,22 d(2,2) = Mm* — U, v)),

where m}} :=sup; ¢\ 5 _, U7, v).

REMARK 40. For simplicity, we will refer to the setting when Assumption 39 holds as the strongly concave
setting, as it is often the case that one can deduce the PL condition from strong (geodesic) concavity; see
Proposition A.2 in Appendix A.2.

ExampLE 41. Suppose that the payoff function ¢ has the form (1.3) for R and C as in (1.4) and (1.5),
respectively. As we show in Proposition A.2 in Appendix A.2, if the set Z is convex (a reasonable
assumption in applications), the activation and loss functions are twice continuously differentiable, and,
importantly, the parameter c,, is large enough, then Assumption (39) is satisfied.

To exploit the additional concavity on (-, v), it will be useful to consider a slight variation of (2.3)
where we slow down time in the descent equation and where we remove the scaling factor 7 in the
equation for 7,. Precisely, given K > 1, we consider the system

dv, = Edivy(v, VU, (mm,,v30)) — %v, (U, (7,,,30)) — [U, (77, v,:0")dv,(6)))
a[n[ = —diVZ’z(T[t(O, Vzun (T[[» U[;Z, Z))) + KJT[ (Z/{]T (JT[, U[; 2, Z) - fun (jT[a VI;Z, Z’)dn,(ﬂz)) 5
(5.2)

initialized at an arbitrary 7, € P(2?%) with 7y, = i and at some v,. Well-posedness for this equation
under Assumptions 8 and 9 can be established as for equation (2.3); we omit the details. To reflect the
variations introduced in (5.2) in our Algorithm 1, it suffices to remove the 7 in the update for the variables
z;; and to allow for the for loop over i, to be repeated a number of times (quantity that can be tuned)
before entering the loop over k.

We prove the following result:

THEOREM 42. Suppose Assumptions 8, 9, 32, and 39 hold. Assume further that there exists k > 0 such
that % > k, and let ) be an arbitrary probability measure with 7, , = w. Finally, assume that

L _
tl_l)I?élo;/o/OanTdS:r)<OO.

Fix € > 0. Then there exists K, ry, 71,7, > 0 such that, if K > K, and /K < ry, then for all
t > max{ty, K/ry}, we have

sup UF, D) — inf UG, D) <e.
FeP(Z?) st =p PeP(O)

In the above, 7, := % fé mdsand v, := % fot vds, and (77, v,) solve (5.2) initialized at v, 7, as above.

$20z Jaquiaydes g0 Uo Josn salelql AlISIsAIUn eIquwinioD AQ OS2/ //81L09BRIS/S |L/a1o1e/lelewl/woo dno olwapede//:sdiy Wol) papeojumod



WASSERSTEIN ASCENT-DESCENT DYNAMICS 33

Just like Theorem 35, Theorem 42 has a version where vy is only assumed to be an empirical measure
that has a support that is well spread out.

THEOREM 43. Let € > 0. Suppose Assumptions 8, 9, 32, and 39 hold. Let 7, be an arbitrary probability
measure with 7 . = u and assume that v, takes the form

| M
Vg =V, = — ,
0 0 M “ 0;
i=1
where 6, ..., 0), are i.i.d. samples from the uniform distribution over ®. Assume, also, that M is large
enough so that
log(M)Pd
oM

for a suitable constant Cy, and a power p, that takes the form p, =3/4ifd =2andp, = 1/dif d > 3.
Finally, assume that the learning rate n satisfies the same assumptions as in Theorem 42.
There exists K, ry, 7,1, > 0 such that, if K > K, and 77/K < r{, then, with probability at least

1-— # (on the samples 6, ..., 0,,), for all ¢t > max{t,, K/ry} we have
sup Um,v,) — inf U, D) < 2e.
FeP(22) sti,=p VeP(O)
In the above, 7, = % fot wds and v, 1= % f(; vds, and (7r,,v,) solve (5.2) initialized at v, 7, as
above.

REMARK 44. As announced, the additional concavity assumptions bring important benefits to the
algorithm, since there is no assumptions that we must impose on 7, in either of the previous theorems.
Moreover, the parameter K allows us to avoid a smallness condition on 7 as long as K and the search
time are long enough.

5.2 Proofs of Theorem 35 and 36

To begin our analysis, we first discuss the relationship between the system (2.3) and an associated ‘hat’
process as in Lemma 28. The study of similar systems has been considered in works like [17]. However,
here we present an alternative approach that allows us to fully justify our derivations; see Remark 48
below for more details. Our approach makes use of the larger structure that we studied in section 4.
Indeed, we use the particle approximation in Remark 31 to understand the time evolution of the relative
entropy between ¥ and v, and 7 and 7, for arbitrary initializations. As a first step, we study the time
evolutions of relative entropies when the measures (v)'*, 7*) and (0™, #'*) are initialized at empirical
measures as in Remark 31.

ProposiTION 45. Let 7, and v, be arbitrary, and let 77, and 7 be as in Remark 31. For a fixed k € N, let

v Nk 7Ne 2Nk be as in Proposition 26 when initialized as in Remark 31.
Then

d R R
SHE I =« /O U, (e, Y 9)d oM — oy (5.3)
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and
_’H(ANk”ﬂ't == / U, (71’, ,Vt ,z,z)d(JT _n’Nk)'
Proof. Notice that
d ng  mg B::(0)a.::(0)
AN Nk y U
d _e (0 (0
7-[( ) = — "kmklzlljzll ( a5 )ﬂl,( )at;(0)
ng Mg

=- ZZ - 1oz (2 (1) By (0)a(0)

ey 5=

= ZZ(u (%, v 05(0)) — U,) B (0)a;(0),

n,m
kktl/l

where to go from the second to the third hne we have used equation (4.1) for ¢; (t) We have also used

the shorthand notatlonu = fo U, (71, ,v, k. 0)dv, "(9) Identity (5.3) now follows
The identity for d;H(”tN ||7r ) follows from similar considerations, but now we rely on the fact that
the weights g;; are normalized along every row:

R X 0;( 0w ,()
Lty = 4 (L5230, ( uOo, )Q,-,(omi,.(o)
k'K

i=1 j=I

ng o mg
1

d
2.2 - lor(@(1)e;(0)w;(0)

n,m
KTk =1 j=1

Z Z(u (ks 2y, Z) — Uy )0;(0)w;(0).
nkmk i=1 j=1
In the above we have used the shorthand notation /. oy =/ 2wz Uy (TL’t , vt s Zijs Z)dm, k(z 1Z;j); recall
that in our construction Z;; does not depend on ;.

Next, we add one ingredient to the approximation result from Corollary 30 in search of a relationship
similar to (45) but for general initializations.

ProposiTiON 46. Let 7, and v, be arbitrary, and let 77, and 1, be as in Remark 31. Let (D, 7) be the
dynamics in Lemma 28 when initialized as in Remark 31. For every k € N, let v*, 9V 7Nk 2Nt pe ag
in Proposition 26 when initialized as in Remark 31.

Then

lim [ U, (2N, vNe; 0)d(DNe — vy = / U, (v 0)d(D, — vy) (5.4)

s Vs >
k— 00
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as well as

lim U, (e oM 2, D d (RN — 7Ny = — / U (T, v,;2,0)d(F, — 7). (5.5)
k—oo Jzxz ’ ZxZ

Proof. From Assumptions 8 and Corollary 30, we have

‘ / U, (e Ne, vk 0)d (N — ey — / U, (7, v 0)dON —vN) | < LW, (v, vM0) + W, (r,, ) — 0,

as k — o0. On the other hand, since the function ¥, (7 -) is continuous with at most linear growth

s° S’

in |6|, and since Wl(viv", ) — 0, Wl(ﬁﬁv", D) = 0as k — oo by Corollary 30, it follows that

hm ‘ / U, (1, vy 0)d(dNe — vNey — / U, (r,,v;0)d(d, —v)| = 0.

Equation (5.4) readily follows. (5.5) is obtained similarly. O
ProposiTioN 47. Let 7, and 7, be arbitrary, and let 77, and 7, be as in Remark 31. Let (), 7) be the

dynamics in Lemma 28 when initialized as in Remark 31.
Then the following inequalities hold:

t
HO,v,) — HDlIvg) < K/ (/ U, (g, v 0)dd, — vs)(é)) ds, Vt>0, (5.6)
0
and

1
H(w,l|m,) — Hmgllmy) < —/{/ (/ U, (g, v 2, 2)d(7, — (2, 2)) ds, Yt>0. (5.7)
0

Proof. Forevery k € N, consider v, , ﬁtN , n,N k7 Mepeasin Proposition 26 when initialized as in Remark

31. Notice that thanks to Corollary 30, we have W, (vs V) — 0, W, (vév", V) — 0,as k — oo.

From Proposition (45), we have

HOM o) = H(DY vy + / / U, (Ve v 0)d o — viyds.
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We may now use the joint lower semi-continuity of the relative entropy w.r.t weak convergence to
obtain

t
H(D,|[v,) < liminf HEOM ) = liminfic/ (/umst, vV 0)a (DN — ugvk)(e)) ds
k— 00 k— 00 0

+ Tim M@ [vp").

k— 00

t
= liminfx /0 ( / U, (e, vlNe; 9)d (HNe — uﬁ’k)(@)) ds
+ H(Dy17)-

Using Proposition (46) and the approximation properties discussed in Remark 31 we obtain (5.6).
Inequality (5.7) is obtained similarly. g

REMARK 48. In contrast to the analysis presented in [17], here we have used our mean-field limit results
from section 4 and the lower semi continuity properties of the relative entropy to fully justify the one-
sided identities (5.6) and (5.7). As we will see below, these one-sided identities are sufficient for our
analysis. Following our approach, we can sidestep the strategy considered in [17] for analyzing a similar
problem. Their strategy relies on the assumption of existence and regularity of solutions to a certain PDE
describing the evolution of the change of measure between processes similar to the v and » considered
here. Unfortunately, such PDE is not even well-defined in general, as it becomes apparent when one
considers flows initialized at empirical measures. While this technical difficulty is acknowledged in
[17], no solution for it is provided; see Page 29 in [17].

With Proposition (47) in hand, and following similar steps as in [17], we can now derive results
controlling exploitability under Assumptions 8 and 32.

LeEmmA 49. Let 7, v be the solution of equation (2.3) initialized at probability measures m,, v, with
7, = (. Let w*, v* be arbitrary probability measures over Z x Z and O, respectively, and suppose that
= . Let

z

1
O _(mp, ™ 1) 1= inf o — a5 + —HG@ |7},
(T ) 7%ep(zxz)’ﬁzzﬂ{ll Iz . (7 ||}

where ||-[|;, denotes the dual of the BL (Bounded Lipschitz) norm || - [|p; := || -
also Q, (vy, v*; 7) defined as

+ Lip(-). Consider

lloo

1
Q (vy,v*;7):= inf {|v* = D% + —HD||vy)}.
L (Vg ) 13673(@){” (153 . V[lvg)}

Suppose that Assumptions 8 and 32 hold. Then

2 t K}
UG, 5(1) —UGD), ) < BQ, (g, kBE) + Q, (g, v*; 1 BY)) + 2% / / n deds,
0 JoO
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where B := M + L (see Assumption 8 for the meaning of L and M). In the above, 7, := % fol 7 .ds and
— 1 gt
U, =1 fo vds.

Proof. Consider two arbitrary probability measures 77, and Dy with 7, < 7y, D) <K Vg, Ty, = M,

diy

oo € L (v,), and d”O € L*(m,). We consider the dynamics (77,, V,) and (7,, v,) as in Proposition 47.

1. Step 1: From the concavity of U in its first coordinate (with respect to linear interpolation), it
follows that

UG v <UL v,) + / U (v 2. d(n" — )
U, v) + / U, (1,032, d (o — 7,)

+/U,,(ﬂ,, V52, 2)d(7, — 7).

Using the BL (bounded Lipschitz) norm, we get from Proposition 47 that

t t t
/0 U™, v,)ds — /0 Ui, v,)ds < /0 (U Gt v g 7% — 7,y )ds

t
+/ /Un(ﬂs, v; 2, 2)d(7, — m)ds
0

. (5.9
< [ Qe Mgl = )
0
1 N N
- ;(H(ﬂ,llﬂ,) — H(mpllmp))-
A similar argument using the convexity of ¢/ in its second coordinate deduces
1 1
/ UGr,, v*)yds — / Ulr,, v)ds = / (I, Gy g3 g IV = By l5)ds
0 0 (5.10)

+ ;(H(Q,IIV,) — H(glIvp))-

Using again the concavity and convexity of I/, we get

1 1
UG = - / U, v*)ds, U™, D) <~ / U™, v,)ds.
0 0
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Combining the above with (5.9), (5.10), and the fact that H(D,||v,), H(7,||,) > 0 we conclude
that

_ _ I R N
U™, ) — U, v") S;/O (U, (g, vgs Mg V™ = Dollpy + U, (T, v g llr™ — 7l 5 )ds
1 R .
+ p (H(Vo”‘)o) + H(”o””o))

E ! ETES ® ok l ~ ~
= A (Iv* = sllp, + llw™ — 7llg)ds + p (H(Dollvo) + H(FglImg)) -
(5.11)

2. Step 2: Observe that both Uf, and U/, have their BL norm bounded by B = M + L. To conclude,
it remains to remark that

1 /! R . | I
;/0 I — A, ds <[l —non;;ﬁ;/() 1Ay — 2, 1.ds

R 1/t . .
=|l7* — Al + —/ I sup /fd(ns - no)} ds
tJo Wfpstyec!

. R . B t s
<lI7* = myllg, + — n.drds,
tJo Jo

and similarly,

1 t B t N
—/ v — Dllgds < v — Dol + —/ / n,dtds.
rJo tJo Jo

Replacing in (5.11), it follows that

U™, b)) — U, v < B(Iv' = Doz + Im™ — Alip) (5.12)
1 R R 232 t prs
+ — (H(Dyllvg) + H(Fllmg)) + —/ / n.dzds.
Kt t Jo Jo

Recall that 77, and 7, were arbitrary measures with densities with respect to 7, and v, belonging
to L*°. From a simple density argument we may now conclude the desired estimate. 0

The following Lemma is taken from [17], which, in turn, follows the arguments in [13].

LemMma 50. Suppose that Assumptions 8 and 32 hold. Assume further that there exists £k > 0 such that

‘%(9) > k, and suppose that By . N O| > kK’ ¢ uniformly in 6 € @, where By . is the Euclidean ball of

radius € centered at 6. Then,

Q,(vy,v*;7) < d Il —log (ﬂ)} + l{—IOg(k) — log(k)}.
T T T
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Proof. We obtain a bound for the min in the definition of Q. For afixed ¢ > 0 we introduce a probability
measure v¢ given by

|B€€ﬂA|
€(A) := — 2 dv*(6).
@) /@|Bg,m@| V@)

We now calculate W, (v*, v¢). Consider the coupling:

B, NA
T(A,A) :=/£du*(9).
4 1By N O

Indeed, one easily verifies 7(©,A") = v¢(A") and T (4, ®) = v*(A). Thus,

Wl(v*,ve)S/O/O|9—0’|d{(9,0’)=/0/ . O|89,Eﬂ@|*1|9—9/|d9’dv*(9)56.
(~) () (~) ’E H,EQN

Since for any measure v € P(@) we have that [[v* — v||;, < W;(v*,v), we obtain a bound of € for the
first term in Q.

We now turn to the relative entropy term. Observe that the definition of v and Fubini’s theorem
gives

dv€ _
E(@):/@mg,ﬁmw 15, ne@)dv (@)

thus, by convexity of the function x — xlog(x), Jensen’s inequality and Fubini’s theorem, we have

dv¢ dv¢
/@ =5 ©)log (%(9)) o < /O/O By N6 15, (6)log(IBy 1O )dv (@)de  (5.13)
< —/ log(|By . N ONdv*(0') < —log(k') — dlog(e),
)

where we have used the convention 0 x —oo = 0. On the other hand, by assumption,

dv* dvy 3 dvy .
/(_) = (0)log(d9 (9)) do _/@log(de (9)) dve () > log(k). (5.14)

From the above, it follows
HO W) < —log(k) — log(K') — dlog(e).

Hence,

Q(vy,v™ ;1) <€ — %(dIOg(e) + log(k') + log(k)),
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40 C. A. GARCIA TRILLOS AND N. GARCIA TRILLOS

for every € > 0. Choosing € = g, the minimizer of the right-hand side of the above expression, we get
the desired result. U

RemARrK 51. The condition |By , N O > K uniformly over § € @ is implied by the fact that the
boundary of ® was assumed to be Lipschitz; see Assumptions 8.

A posteriori, we can generalize Lemma 50 to allow for empirical measures that approximate in a
suitable sense a measure v, satisfying the assumptions in Lemma 50. This is the content of the next
result.

LeEmMA 52. Let 6y,...,60,, € ® be M distinct points in &, and let vf)"l = Zf‘il 591,. Suppose that v,

=M
and @ are as in Lemma 50. Then, for every 7 > 0, we have

Q, (', V¥ 7) < Weo (g, 1) + g [1 — log (g)] + %{—IOg(k) — log(K))},

where W_, denotes the co-Wasserstein distance between v, and v}/
In particular, if 6, ...,0,, are sampled independently from a v, with a density with respect to the

Lebesgue measure that is bounded and bounded away from zero, then, with probability at least 1 —1/M?2,

log(M)P4  d

d 1
QU(V(I)W7V*;.E) =< CW + z [1 —log (;)] + ;{—log(k) — log(kK')},

for a constant C that depends on v, and a power p,, that takes the formp,; = 3/4ifd =2 andp; = 1/d
ifd > 3.

Proof. Fix t > 0 and let v* € P(®) be an arbitrary probability measure. By Lemma 50 for any given
¢ > 0 we can find D, € P(O) such that

. 1 . d d 1
v — D, ||§L + ;H(vr||v0) <&+ z [1 — log (;)] + ;{— log(k) — log(k)}.

LetT : ® — {6,...,0)} be an co-OT map between v, and v(/)” , which exists thanks to the
assumptions on v, and the main result in [10]. In particular, T’ can be taken to satisfy Tn vy = v{)” and

sup |0 — T(0)] = Wy, (vg. v5):
0e®

notice that we can indeed take an actual supremum on the left hand side of the above expression, and not
just an essential supremum, thanks to the assumptions on v, and the domain ®. Having introduced the
map 7, we define the measure

M
DM =" 0.(T71(6)))8,
=1

which is an empirical version of ¥_. In what follows we bound |[v* — M 5, + %’H(f}ﬁ” | |v8’1 ).
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First,
~M - NN
v = D2 Mg < IV = Dplipr + 119, — D7 I,
A A AM
= ||V* - Vr”zL + W, (o, v7)
< v =D lip +/ 16— T(©6)|db,(0) (5.15)
¢
< V" =D, llpy +sup |6 —T(O)|
0e®
~ M
= ||V>'< - v-[ ”2[‘ + Woo(v()9 v() )9

where in the second to last inequality we have used the fact that, as can be easily verified, 7,0, = M.

On the other hand, a straightforward application of Jensen’s inequality reveals that
HOY g < HD, vy

Combining the above inequalities we conclude that for every ¢ > 0

Q, (!, V53 7) — & < Wy (g, ) + g [1 — log (g)] + %{—bg(k) — log(k))},

which of course implies the desired bound.

When the points 6,,...,0,, are sampled from a distribution v, satisfying the specified additional
assumptions, Theorem 1.1 in [26] allows us to bound Woo(vo,vg’[) by C 10%4(11‘2” with very high
probability. (]

Lemma 53. Suppose that Assumptions 8 and 32 hold. Let 7, be such that 77, , = 1 and suppose that there

exists k > O such that dmzl—(;lz)(i) > k for all zin the support of 1. Suppose further that |B; N Z| > Ked
uniformly in Z € Z. Then, for all 7* with yrz* = u, we have

0 (ry ey < & [ - log (d )} + 2= log(k) ~ log(k).

T

Proof. Since all measures of interest must have the same first marginal (i.e. 1) we proceed as in Lemma
50, but this time only regularizing conditional distributions. More precisely, for a given z in the support
of Z we define the measure 7€ (-|z) as follows:

|B; . NA

TAlz) = | ———
Z |B§,€ N Z|

dn*(Z|2).

We then define the measure 7€ as:

dn(z,2) = dn (Z|z)dp(2).
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Notice that the measure 7€ is such that 7{ = . Moreover, it is straightforward to show (repeating
similar computations as in the proof of Lemma 50) that W, (w€,7*) < € and H(7€||my) < —log(k) —
log(k") — d’log(€). The desired result now follows as in Lemma 50. d

N
i=1 82,’

Lemma 54. LetZ;,...,Zy be N distinct points in Z, and let név =u® (% > ). Suppose that fi is

a probability measure over Z that has a density with respect to the Lebesgue measure satisfying % >k
and Z is such that |[B,, N ©| > Ke uniformly in z € Z. Then

. R d d 1 /
Q1. 71 7) = Wog g 3 D 82) + = [1 ~log (;)] + —(~ log(6) — log(k).
i=1

In particular, if Z;, ..., Zy are sampled independently from a fi,, with a density with respect to the
Lebesgue measure that is bounded and bounded away from zero, then, with probability at least 1 —1/N?,

log(N)P¢  d' d 1
Qu (g 7™ 1) = C— o + — {1 —log | — ) 1 + —{—log(k) — log(k)},

for a constant C that depends on fi(, and a power p, that takes the form p, = 3/4 if ' = 2 and
py =1/d" ifd > 3.

Proof. The proof follows the same ideas as the ones in the proof of Lemma 52 and thus we skip the
details. 0

Proof. (Proof of Theorem 35) On the one hand, by assumption, we can find 7 such that for all # > T}

21 t s 3
|2B —/ / n,duds| < —e.
t Jo Jo 4

On the other hand, Lemmas 50 and 53 imply that there exists T, such that, for all # > T, and arbitrary
m* with 7 = p and v*, we have

(Q(my, w*; kBt) + (Q(vy, v*; kBr) < %.

We conclude by taking 7% = T, Vv T, and using Lemma 49. O

Proof. (Proof of Theorem 36) The proof is as the proof of Theorem 35 except that we use Lemmas 52
and 54 instead of Lemmas 50 and 53. O

5.3 Proofs of Theorems 42 and 43
In this section, we present the proofs of Theorems 42 and 43.

Proof. (Proof of Theorem 42) Throughout this proof we use m to denote the quantity

my = sup U(m,v,).
TSt T =1
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From concavity-convexity of I/ in the linear interpolation sense, we have for all arbitrary 7 (with
7, = i) and b:

t
UT,v) —UT,D) < %/ U(r,vy) = U(m,, v))ds
0

1 [ 1 [
= —/ U, vg) — m})ds + —/ (m} — U (g, D))ds
tJo ’ X tJo :

(5.16)

IA

l t
—/ (my — U (g, D))ds
tJo |
1 [ 1 /!
= ;/ (m} — U(my, vy))ds + ;/ Uy, v) —U(my, V))ds.
0 0
=1, +1

In the above, the second inequality follows from the definition of m}. We will now control each of the
terms 7, and Z, on the right-hand side of the above expression.

In order to control Z;, we start by using the chain rule (e.g. see section 10.1.2 in [1]) to obtain an
expression for %Z/{ (7, vy):

d —
gu(np vg) :/ |V2uj-[ (ﬂs, V‘y; s Z) |2d7TS(Z, 2) + K /uﬂ (ns9 vS; s Z)(uﬂ' (ny VS; 2, 2) - un’z)dns(z’ Z)

K
_ %/ Vol (70, v;0) |2 dvg(6) — }/L{U(ns,vs;e)(uv(nx,vs;e) —U,)dv,(6);
(5.17)

in the above, we use the shorthand notation Zjln’z to denote [ U, (7, vy;2,7)dn (7 |z), and U, to denote
JU, (g, vg:6")dvg(0'). Assumption 39 implies that the first term on the right-hand side of (5.17) is
bounded from below by A (m} —U (7, v,)). On the other hand, Jensen’s inequality implies that the second
term is non-negative. Finally, Assumptions 8 imply that the last terms can be bounded from below by
—%Mz — %"M; It follows that for all t > 0

t
d
U(r,,v,) =U(mg, vy) + / d—L{(rrr, v,)dr
0 r
‘. '
>U (1, V) — §B + A/ (m} — U(my, vy))ds,
0

where B := (||| o T 2k)M?. Subtracting my from both sides of the above inequality, we get, thanks to
Assumptions 8,

. t
U, v,) —mf > —2M — EB + A/O (m} — Uy, v,))ds.
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Equivalently,
‘. t
my —U(w,,v,) <2M + fB — A/ (my — U (g, vy))ds.
0

We thus see that the function f(f) := m} — U(v,, m,) satisfies

D t
f@®) <2M + Et - k/ f(s)ds,
K 0

and from Lemma A.3 in Appendix A.4 we conclude that

B A
I <_+_7
' = Ka t

forA:=Lppm— B |.
To estimate Z, in (5.18), we follow similar computations to those in the proof of Lemma 49 to
conclude that

t t t
/O UG, v,)ds — /0 UG, D)ds < /O (1, (e, 0,3 gy 15 — D, 1%, )ds

t
- / ( / U, v: 0)d (D, — vs)(é?)) ds,
0

where now we use a modified hat process ¥ satisfying

(5.18)

A VTN
8tvt = EIdIVG(UtVQZ/{U(T[ts Vt;e))’

initialized at an arbitrary 9, < v, with density in L*(v). Following a straightforward adaptation of
Proposition 47, we can then see that

t
M 1)~ HEI) < / ( / U, (2, vy 0)d (D, — vs)w)) ds, ¥i=0,
0
from where it now follows that
1 /! . K .
I, < 7)o (N, (g, vgs Mg IV — Vgllipr)ds + EH(vollvo)

B . . BZ t s K N
< B|lv — Yyl + I o n.drds + E’H(UOHUO).
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From the above, we can deduce

K B2 t K
Z, < BQ,(vy, V; EBI)) + E/o /0 n,dtds.

Putting all our estimates together, we obtain
o _ .. _ B A s B2 [t s
UGTT) UL D) < o+ — +BQ, (. i B0 + o A n.duds.

At this stage, we can use the specific properties of v, and use Lemma 50 to conclude that there are
ro(€), Ky(€), ty(€), 7y (€) such that, if% <rg(€), K = Ky(e),t = t5(¢), 7/K < r{(€), then

sup U@,v,) — inf UG, D) <e.
FeP(Z2) st = VeP(O) -

Proof. (Proof of Theorem 43) The proof is the same as the proof of Theorem 42, except that in the last
step, we use Lemma 52 instead of Lemma 50. (I

6. Numerical examples

We illustrate our results numerically in the context of image classification on the MNIST database
[30]. Our main purpose is to illustrate the effectiveness of the algorithm to obtain adversarially robust
classifiers even away from the asymptotic regimes that we studied.

In this framework, we take the particles representing the distribution v to be the training parameters
(i.e. weights and biases) for simple convolutional networks with fixed widths and depths® , while the
particles representing the distribution 7 are pairs of images where the first component is an image from
the original database and the second is an adversarial image built during the training process. We consider
the square loss with an adversarial cost given by the Wasserstein-2 distance, i.e.

R(mw,v) :/ [y (%) —52dv(®)dn(z,%); C(w) = ca/ Iz — 7%dn(z,%)
ZxZJ6

ZxZ

where, h, (x) is the outcome of the convolutional network for the input x when setting the parameters of
the network to be 6.

Given the nonlinear structure of the convolutional architecture, it would be extremely memory-
consuming to apply directly the time average step 19 in Algorithm 1, as it would require us to keep
track of copies of all intermediate networks in the training process. A possible solution, proposed for
example in [17], is to calculate the time average on the weights only, while keeping the last position of
the network-parameter particles. We implement also an alternative approach based on the resampling
methods used in particle filters (see [31] for a review): we keep in memory at most a maximum number
of network parameters (M’). At each update time, we use residual systematic resampling (RSR) to pick
M’ parameters to keep from the list of the M’ already contained in memory and the new bunch of M

2 Two layers with a convolutional kernel of size 5 and output channel sizes of 32 and 64, respectively, ReLu activation functions,
and maxpool; and two linear layers at the end with respective output sizes 1000 and 10.
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Table 1  Parameters and results of numerical experiment

Model parameters

N 4
M 2

n, 0.1t + 17!
K 0.25

c 10

a

Implementation parameters

Dataset MNIST
Batch size 64
Training epochs 4
Results
Accuracy

Time avg. on weights Resampling
Clean 94.49% 92.58%
PGD (20 steps) 55.32% 49.72 %
Relative change of loss at solution - 5 additional training epochs

Time avg. on weights Resampling
T, 0.29% 0.05 %
r 0.26% 4.5%

particles. Details of the (RSR) method can be found in [31] (see for example code 4 in Table 2). The
time-average calculation of adversarial images is done similarly.
To illustrate our main result, we compute a proxy for the ratios

sup- - U, v* inf- o UGT*, D
I PreP(2?) sti.=u ( )’ and r = veP(O) ( )’

a U™, v¥) " U™, v*)

where (77*, v*) are the time-averaged distributions for the networks and adversarial images obtained after
training. According to our results, we should reach an approximate Nash equilibrium, so we expect both
ratios to be closed to zero. The proxy is computed as follows: we approximate the supremum in r,, by
fixing v* while training each one of the networks representing 7* with stochastic gradient descent for
a fixed number of epochs (weights are kept constant). We compute then the relative change in total risk
after this procedure. The proxy for r,, is computed analogously. We present a summary of the parameters
used for the numerical experiments *and the results obtained in Table 1.

Intuitively, we expect that the classification provided by the final time-averaged distributions of
networks should be both effective and robust. To test this idea, we evaluate the accuracy of this classifier
with a clean test sample, independent of the original distribution, and with an adversarial version
constructed via modification of the latter using projected gradient descent (PGD) with 20 steps and a
step size of 0.04. PGD constructs adversarial images by repeatedly perturbing each pixel in the image

3 The code used to run these experiments can be found at https:/github.com/camgt/robust_learning
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by a fixed amount choosing the sign of the perturbation to be the same as the sign of the gradient of the
loss function with respect to the entry. See, for example, [35]. Results of this test are also included in
Table 1. We observe that the overall procedure has degraded a bit the clean performance of the network
but significantly improved the resistance to adversarial attacks. For reference, a baseline obtained by a
simple training of a network with the same characteristics obtains in the same number of epochs a clean
accuracy of 98.41% but an accuracy after the PGD attack of only 0.68% (compare also with the results
in [22]). Table 1 shows that in the tested case, calculating the time average on the weights only is not
just simpler but also has better results than the resampling procedure. However, there may be settings,
not explored here, where the latter approach may be more advantageous. Exploring this would be an
interesting research direction.

7. Conclusions

In this paper, we have studied minmax problems over spaces of probability measures with a payoff
structure motivated by adversarial training problems in supervised learning settings; we have studied
gradient ascent-descent dynamics aimed at solving these problems. The dynamics that we have studied
take the form of an evolutionary system of PDEs that can be discretized using systems of finitely
many interacting particles. Under some reasonable assumptions on the payoff structure of the game,
we can show that the proposed particle systems are consistent and recover the solution of the original
PDE as the number of particles in the system scales up. We have also discussed the behavior of our
evolutionary system of PDEs as time tends to infinity, showing that in a certain sense (see below) the
system can produce approximate Nash equilibria for the adversarial game. Our results are stated under
suitable assumptions on initialization in two settings of interest: (1) for non-convex non-concave payoffs
(convexity and concavity understood in a suitable OT-sense), and (2) non-convex strongly-concave
problems (again, in a suitable OT sense). Both settings are realistic in adversarial learning games for
supervised learning tasks, while in general convexity can only be enforced by introducing additional
(exogenous) regularization penalties in the payoff function.

Due to the lack of convexity of the payoff in our problem (w.r.t. the metric inducing the dynamics of
our ascent-descent dynamics), we can only guarantee that time averages of the measures produced by our
PDE system become approximate Nash equilibria in the 1 — oo limit. For our algorithms to follow more
closely our theoretical results, it was thus important to discuss strategies for constructing surrogate time
averages that do not incur in memory overload and that can still recover approximate Nash equilibria for
the game, at least in some benchmark learning tasks.

There are several directions for research that our work motivates. Here we mention a few.

First, the theoretical analysis that we have presented in this paper presupposes that the optimization
updates take into account all (perturbed) data points, but in practice a natural strategy is to use batches of
data to compute the loss (and its gradient) at each iteration. We thus believe that it is of interest to study
how the use of stochastic gradient descent affects the resulting PDE system.

Another interesting direction for future research is the exploration of broader frameworks for
adversarial learning covering multiclass classification settings (as opposed to regression problems as
considered in this paper or just binary classification problems). In principle, one could even consider
situations where prior information on the similarity of classes in a learning problem is available (e.g.
the class ’guitar’ may be considered more similar to class ’violin’ than to class ’baseball’) as in those
situations it may be beneficial to use such information to construct more nuanced models for risk and
admissible adversarial attacks; for example, the work [44] discusses the advantages of using similarity
or hierarchical structures between classes in different learning tasks; the work [16] explicitly discusses
how to build similarities between labels using their semantic content. Our framework indeed seems
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better suited for regression problems, since in that setting the cost function C for the adversary can be
naturally defined using something like the Wasserstein distance over the feature space times the label
space, where the latter space is simply the real line. When the response variable has a discrete structure,
it is less obvious how one can still define a reasonable (from the modelling perspective) cost structure for
the adversary in such a way that the resulting adversarial game can still be solved using an ascent-descent
scheme as explored in this paper.
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A. Auxiliary results and computations

A.1  Equivalence between (1.1) and DRO problems
In this section we assume that the payoff I/ has the form (1.3) and that

R(m,v) =R(mwz,v), C(u,p) = inf ~)C(zr), C(m) :/c(z,z)drr(z,i). (A.1)
M

wel'(n

In other words, we assume that R’s dependence on = is only through 7’s second marginal, C is an
average cost, and C(u, [t) is the optimal transport problem between measures  and ji for the cost ¢ in
the definition of C. We will show that under these assumptions problems (1.1) and (1.2) are equivalent.
By this we mean that it is possible to easily construct approximate Nash equilibria for one of the problems
from approximate Nash equilibria for the other.

DeriNiTION A.1. We say that (i*, v*) is an e-Nash equilibrium for (1.2) if

sup {R(j1,v*) — C(u, )} — inf {R(A*,v) — C(u, 1%)} < e.
neP(2) veP(O)

ProposiTiON A.1. Suppose U has the form (1.3) and R,C, C are as in (A.1). If (7*,v*) is an e-Nash
equilibrium for problem (1.1) (see Definition 3), then (n;, v*) is an e-Nash equilibrium for (1.2).
Conversely, if (2*, v*) is an e-Nash equilibrium for (1.2) and 7* € I"(u, i) realizes the cost C(u, ™),
then (7 *, v*) is an e-Nash equilibrium for (1.1).

Proof. Let (r*,v*) be an almost Nash equilibrium for (1.1) and let &* = JTE*. For arbitrary i € P(Z),
assume for simplicity that there is 7 € I' (i, ft) that achieves the cost C(u, i), i.e. C(r) = C(u, ii).
Also, let v € P(®) be arbitrary. We see that
R(*,0) — C(u, i*) + & = R(, D) —=C(@*) + e =UT*, D) + ¢
> U, v7)
= R(ji,v*) = C(7)
= R(j1,v*) — C(u, ).

Given that i@ and ¥ were arbitrary, we conclude that

sup {R(fi,v*) — C(u, )} — inf {R(A*,v) — C(u, ")} <e,
AEP(Z) veP(O)

which is what we wanted to prove.
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Conversely, suppose that (*, v*) is an e-Nash equilibrium for (1.2) and suppose 7* € I'(u, it*)
realizes C(u, 1*). Consider arbitrary 7, v with 7, = p and let it = ;. Then

U, v)+e=R(u*v) —Cr*)+¢
= R(1*,v) — C(u, 1*) + ¢
> R(t,v*) — C(u, 1)
> R(jt,v*) — C(m)
=U(m, V).

Since 7 (with 7, = u) and v were arbitrary, we conclude that (7*,v*) is an e-Nash equilibrium for
(1.1), as we wanted to prove. O

A.2  On the PL condition of Assumption 39

ProposiTion A.2. Suppose that Z is a convex set and that we select an activation function and a loss
function in the setting in 1.1 that are twice continuously differentiable. Then the function ¢/ in (1.3),
with R and C as in (1.4) and (1.5), satisfies the condition in Assumption 39 for all large enough c,,.

Proof. A straightforward computation reveals that in this case
Uy (,v32,2) = €(h, (8),5) — ¢,lz — 27 = UW; 2, 9).

Assuming that the loss function ¢ and the activation function f are at least twice continuously
differentiable, we can conclude that the function 7 € Z +— U(v;z,z) (for fixed z and v) is strongly
concave (for all z and v), provided that c,, is large enough. Indeed, this is simply because we can bound,
uniformly over z, v, the second derivatives of the first term in ¢/ (v; z, 7). Thanks to this and Theorem 5.15
ii) in [49], we deduce that there is A > 0 such that for every z € Z and 1" € P(Z), we have

/ |VZZ/{(v;z,Z)|2dT(2) > A( sup / U(;7,2)dT () —/ UW;2,2)dTY (2)).
zZ TeP2)/ 2 Z
In particular, for a given 7 € P(Z x Z) with 7, = u, we have
/ |V:U(v;2,2)%dm (Zlz) = A( sup / UW;z.2)dT (3) —/ U(v;z,2)dr (Z]2)),
z TeP(2)/2 z
forallz € Z andall v € P(®). Integrating over z with respect to ;« on both sides of the above inequality,
we get

/ IVEUﬂ(n,v;Z,Z)Izdn(z,Z)=/ |V-U(v;2,2)*dr (2, 2)
ZxZ ZxZ

zk(/( sup /L((v;z,Z)df(Z))du(z)—Z/{(n,v))
Z\rep2)’/2

zk( sup Z/{(J%,v)—l/{(n,v)).

7eP(Z2) s.t.ha,=pn
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A.3  Auxiliary lemmas for the construction of approximate initializations in Theorems 12 and 25

ProrosiTioN A.3. Let A, B be two bounded Borel subsets of RY and Rd/, respectively. Let u € P(A), and
letu € A p,(-) € P(B) be a measurable map.
For every sequence {7, },cn € I' (1, u) satisfying

lim |lu — u/|dTn(u, u) =0,

n—o0 AXA

we have

n— oo

lim / W] (/l«uy Mu’)dTn (M, u/) =0.
AXA

Proof. Sequences {7}, satisfying the hypothesis in the proposition are called stagnating sequences
of transport plans; see [25].

Let & > 0. For such ¢ > 0, we can build a finite partition {B;},_; , of the set B in such a way that
each set B; has diameter less than ¢/3; this partition can be constructed by simply intersecting a grid of
boxes in R of diameter less than & /3 with the set B. Select now a point v, in each of the B;. Associated to
eachl/=1,...,L, we define a function &, € L' (1) as follows: for every u in the support of ., we define
hy(u) := u,(B;). We now consider the measures /i, := ZIL: 1 hy(u)é,,. Notice that these are probability
measures satisfying W, (ii,,, ,,) < &/3. In particular, using the triangle inequality for W, we deduce

W (s 1, )T, (') 5/ Wl(uu,ﬁu)d’fn(u,u’)Jr/ Wy (s )Y, (1)
AXA AXA AXA

+ Wl (ﬂu,,/l,u/)d'fn(u, M/).
AxA

2 A A
< 3¢ + Wi (s 2,)d Y, (u, ).
AXA

Let us now find an upper bound for the term [, , W, (fL,, f1,,)dY, (u,u’). By the Kantorovich duality
for the W, distance, we have

Wi () = sup { [ FO)df, 0) — / FOp, W)
Lip(f)=1

Since the set B is bounded, and the argument inside the sup is invariant under addition of a constant to a
given f, we can further assume that the sup is taken over functions f whose supremum norm is bounded
by a fixed constant C. For such a function f, we have

L L
/ FO)i, ) — / FO)f, () =" (hyw) = by NF ) < C D Iy(u) — Iyl
=1

=1

From the above it follows

L
Wiy AT, 0l = €7 [ Wt = byl i,
AXA =1 AXA
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We now invoke Lemma 3.10 in [25] to conclude that the right-hand side of the above expression
converges to zero as n — ©oo. In particular, there exists N large enough such that for all n > N we
have CZ{;I foA |y () — by ()Y, (u,u') < % In turn, we conclude that if » > N, then

/ W (s )Y, (u, ') < €.
AXA

This establishes the desired result. O

Lemma A.1. Let A, B be two bounded Borel subsets of RY and RY, respectively. Let © € P(A), and let
ueAr pn,(-) € P(B) be ameasurable map.

Letu,,...,u,,... be a sequence of i.i.d. samples from u, and for eachi € N, let v;;,...,v
be i.i.d. samples from p,, (-). For each n and m, consider the (random) measures

1 n m 1 n
" o 2 DBy = Db
P

i=1 j=1

ims

and let u™™(-|u) be the conditional distribution, according to u*", of the variable v given the value u of
the first coordinate.
Then

lim lim E
n— 00 m— 00 e el"opt(p, L)

/W (™" Cu), oy )dT, (u, u)]

In particular, there is a sequence {(;, m;)};cy such that

lim E inf /W ("™ (), o AT (uy ')
k—00 Tielop (k1)

and a subsequence (not relabeled) such that

lim /W ("™ (), o)A Y (u,u') = 0,

k—00 TkEFom(u"k D)

almost surely.

Proof. Let T, € I Opt(u", w). By Corollary 5.22 in [50], this random measure can be chosen in a
measurable way over the tacitly defined sample space giving support to the random variables in the
problem.

From the triangle inequality for W;, we have

[ WAl T, el = [ W Gl )T + [ WGt D)

L (A2)

= S W st + [ WGy, ),
i=1

In what follows we analyze each of the terms on the right-hand side of the above expression. We start
with the second term.
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Let us introduce ’ffn := E[7,,], the (deterministic) measure that acts on test functions ¢ according to
/ ¢ (u,u)dT, (u,u') = B[ / ¢ (u, u)a,, (u,u)].

It is straightforward to see that ’f’n € I'(u, ). Now, due to the boundedness of the space A and the fact
that " converges weakly to n almost surely, we know that, almost surely,

hm /|u—u|d’r (u,u) = hm W (", pw) =0.
By the dominated convergence theorem, it thus follows

hm/|u—u|dT(u u) = hm E[/|u—u|dT(u )] =0.

In particular, {?A’n}neN is a stagnating sequence of transport plans for u, and thus, from Lemma A.3, it
follows that

nllpgo E[/ W, (s p2,)d Y, (u, u)] = nlingo/ W, (1 )T, (u, 1) = 0.

We now study the first term on the right-hand side of (A.2). To avoid introducing cumbersome
notation, we will assume for simplicity that all the u; are different so that in particular " (-|u;) =

1 jm ] 5‘, We then have

1 n
lim E[- ZWW'"( 4, 11,1 = EL T = Wy (™" Clut), )
i=1

m—00
i=1

~ 1 o (A3)
—E[E[n}ggozzljwl(u Clu)s )y w11

-0,

where we have used the dominated convergence theorem in the first line, and the fact that % Z]m:l (SV”

converges almost surely in the Wasserstein sense toward w,,, in the last line. O

RemARK A.1. Let {u"}, . be a sequence of probability measures over A x B and let 1 be a probability
measure. We show that the condition

inf [ WA . GO il 0
Ynelopt (]}, 14u)
implies
Wy (u", 1) — 0,

while the converse is not true in general; in the above, u/, and u, denote the first marginals of p”"
and u, respectively. Indeed, suppose that the first condition holds, and for each u,u’ let T4 be
a coupling between wu”"(-|u) and p(-|u’) realizing the W, distance. Also, choose 7, in I Opt(u",u)
such that [ W, (u"(-lu), u(-|u'))dY, (u,u’) — 0, and consider the measure dr,((u,v),(u',V)) :=
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arv (v, V)Y, (u,u). 1t is straightforward to verify that 7, € I'(u",u) and that [|(u,v) —
(',v")|dm, — 0. This implies W, (u", u) — 0.

As we stated earlier, the converse statement is not true. For example, taking A = [0, 1], B = [0, 1],
W the uniform measure on [0, 1]2, and u" = % Z/’ S(Mj’vj) with (uy,vy),..., ,,v,) iid. samples from
w, we see that W, (1", u) — 0, while infnel“om(u{:,uu) J Wi (W Clw), w(-1u))dY, (u,u’) = 1 for all n.

Lemma A.2. Consider the same setting and notation as in Lemma A.1. Let p : A x B — [0,D] be a
measurable function satisfying

/ pu,v)ydu,(v) =1,

for all u in the support of . Then, with probability one,
n

lim lim - E
n—00 m—>00 1 4 N
=

1
1
m Z}L o (u, vy

Proof. This is a direct consequence of the law of large numbers. d

A4 Auxiliary lemmas for section 5

The following result follows from a Gronwall-type argument:

LEmMma A.3. Let E, M, K, X\ > 0, and suppose h : [0, 00) — [0, 00) is a function satisfying

E t
h(t) <2M + —t — )»/ h(s)ds,
K 0

for all ¢. Then, forall T > 0,

1 B
where A := 7 [2M — & |.

Proof. The condition on & can be equivalently written as

h) — — <|2m - — —A/ h(s) — — )ds.
K\ K 0 K\

Let H(t) := fot(h(s) — %)ds. The above condition can thus be written as

, B
H'(1) < (2M - ﬁ) — LH ().

d At B At

From this it follows that
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Integrating the above expression, we get

At _é l A
H(t)e §(ZM KA) (e 1),

B\1 B\1 _,,
Hoy <(2M — — |- —(2M — — ) -7
Kr ) a Kr ) a

Recalling the definition of H, we deduce that

1 [T B 1 B\1 1 B \1 B A
_/ h(s)ds < — + —2M — — )= — —2M — — | =M < — + =,
T Jo K. ' T K ]r T K\ ] A Kr T

or what is the same

B. Riemannian structure for P(® x [0, c0))

In this section, we review the Riemannian structure for the space P(® x [0, 0o)) that motivates the PDE
dynamics given in (2.3).

B.1 A metric on the lifted space

We start by defining a metric tensor over the space ® x (0, 00) according to:
((v.9), (7,5) = = ~)Jr—l s
v,8),(#,58) = — (v, S5,
8@ n Ko

where (-,-) denotes the standard inner product in Euclidean space, and « and n are two positive
parameters. In what follows we use the notation |(v, s)|%9’a) =8 ((v,9), (v,9)).

It is straightforward to verify that the gradient of a scalar function ¢ (6, o) with respect to the inner
product g, which we denote by V¢, can be written as

Vo = (gveqb,xozaaqb), (B.1)

where V,¢ (0, @) is the usual gradient of ¢ in the 6 variable and 9,¢ (8, «) is the partial derivative of ¢
with respect to . Notice that V¢ is a vector in R? x R.

Relative to the base metric g in & x (0, 00), we define a Wasserstein metric, in dynamic form, over the
space of probability measures P(® x [0, 00)]). More precisely, for o,0’ € P(O x [0, 00)) we consider

1
W3 (0.6) = / VB0, )2 do, (0, ), (B.2)

inf /
{(Br01)}1e10.1€CE(0,6) J o

where the set CE(o, 0') consists of all solutions ¢ € [0, 1] — (B,, 0,) to the (intrinsic) continuity equation

(B.3)

3,0, +div(o,VB,) =0,
c(0)=0, o(l)=0';
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in particular, div denotes the divergence in the space @ x (0, 00) when endowed with the metric g. In
general, equation (B.3) has to be interpreted in the weak sense, i.e. it must hold that

d _ _
d—t/d)(@,a)da,(é’,oz) =/g(e’a)(Vﬁ,(G,a),Vd)(@,ot))da(@,ot)

for all t € (0, 1) and all ¢ regular enough test functions.

More than the metric (B.2) itself, from formula (B.2) we are interested in the implicit formal
Riemannian structure that we can endow P(® x [0,00)) with and that can be used to motivate,
heuristically, gradient descent or projected gradient descent dynamics in the space P(® x [0,00)]).
As is standard when interpreting optimal transport from a Riemannian geometric perspective, one can
think of the set 7, := (VB s.t.B: ©® x (0,00) — R} as a formal tangent plane to the formal manifold
P(© x [0, 00)) at the point o, and over this formal tangent plane one can define an inner product (-, ),
according to

(VB, V), = / 80.a)(VBO,), VB (6,2))do, (6, ).

Before we finish this section, we state a result that we use in the sequel and that allows us to write
the continuity equation (B.3) in terms of basic Euclidean divergence and gradient operators.
ProposiTion B.1. The intrinsic continuity equation from (B.3) can be written, in terms of the Euclidean
divergence divg’a in R” x R, as

9,0, + divy o, (0}, ) = 0,

where v, is the vector field

v, (@, 0) = (gvgﬁ(e,a),maaﬁ(e,a)).

Proof. This is a consequence of the following simple observation. For all regular enough test functions
¢ we have

d =
d_t/¢d0t =/g(9,a)(Vﬂ,V¢>)th
n
:/(&V9¢~V0,3+/<a8a¢3a,3) do,

= /<V0,a¢’ vy )do,,

where in the above we use (-, -) to denote the standard Euclidean inner product in R” x R and V, ,¢ to
denote the standard gradient in R” x R. 0

B.2  Vertical and horizontal vector fields in P(® x [0, 00))

We now introduce and discuss some relevant subspaces of the formal tangent plane 7. We will use these
subspaces later on.
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The horizontal space T" at o is defined as
Tg = {VB st.8(0,a) = ap(®) for someyp},
and the vertical space T, as
T' :={VBst(VB,Vp), =0, forall VB eT!}.

The vertical space T, represents the directions that infinitesimally leave Fo invariant, while the
horizontal space is T,,’s orthogonal complement.

Let us denote by N' = {0 s.t. Fo € P(®)}. For o € N, we consider the subspace T, N of T,
defined as

TN = {V¢ s.t./aaaqb(e,a)da =0}.

The subspace 7, can be interpreted as the space of tangent vectors of all curves passing by o that stay

in V.

RemARK B.1. The space M (@) can be endowed with a metric, the Wasserstein—Fisher—-Rao metric,
that makes the map F into a Riemannian submersion. Indeed, notice that for two potentials of the form
ap(0) and ag¢’(0) (i.e. two potentials inducing horizontal vector fields at a point o), we have the identity

(V(ag),V(ag)), = /

(1Y - Vo4 + cpp')do 0, 0) = / (Vo9 - Vog! + kg VdFo ().
® x[0,00) e

In other words, the above inner product in fact does not depend on the specific o, but only on Fo.
‘We refer the reader to the references [14,21,28,32,46] for details about the Wasserstein—Fisher—-Rao
geometry.

B.3  Gradient flows of lifted energies

We introduced in section 3.1.1 a projection mapping J characterized by equation (3.1). We are interested
in describing a Riemannian-like metric for the lifted space P(® x [0, 00)) with respect to which we will
define gradient flows of 7.

Let us start by highlighting that to lift a functional J : M, (®) — (—00,00] to a functional on
P(® x [0,00)), we simply consider the composition of J with the projection map F as follows:

J(o) =J(Fo), o e€P(O x][0,00)). (B.4)
In particular, if J has the form

J() = /j(@,v)dv(@), veM,(O),
then

J (o) =/aj(9,]:0)d0(9,a).

Given an arbitrary energy J : P(® x [0,00)) — (—00, 00] (not necessarily of the form (B.4)), the
gradient (descent) flow of 7 with respect to the Riemannian geometry introduced in section B.1 takes
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the form:
9,0, —div(o,VJ,,) =0, (B.5)

where 7 is the first variation of 7 at the point o, defined as we did in the beginning of section 1.2. For
more details on the interpretation of (B.5) as a gradient flow, see Chapter 8.2 in [49].

In case J has the structure of a lifted energy as in (B.4), its first variation can be computed as follows.
Leto,0™ and let v = Fo and v* = Fo™*. Using the linearity of the map F (which is evident from its
definition), we get

d d
Zele=0J (@ + e(0” —0)) = Ze =0/ (F (o + (0™ —0)))

d
= %L?:OJ(]:O' +e(Fo* — Fo))

/ J,0)d(v* —v)
e

= / al,(0)d(c* — o),
® x[0,00)

where J|, is the first variation of J at the point v. In other words, the first variation of J at o takes the
form aJ,, where J, is the first variation of J; this specific form for 7, should not be surprising, since
the function 7 is constant along vertical vector fields and thus its gradient should be a horizontal vector
field. Plugging this expression back in (B.5), we conclude that the gradient flow of a lifted energy J
takes the form:

do, — div(o, V() =0; Fo,=v,
which, after using Proposition (B.1), can also be written as

{ata, — divg 4 (0,,) = 0;

(B.6)
v, (0,a) = (’7V9Ju, (9),/{0:]‘),(9)) ;o v, =F(o).

B.4 Projected gradients

In general, o, from (B.6) may not belong to A for ¢ > 0, even if initialized at a o, € N. If we want to
guarantee that v, = Fo, € P(®) for all £, we must then project the (Wasserstein) gradient of the energy
J driving the dynamics (B.6) onto the subspace T, N

Given o and v = Fo, we write the potential o/, as

aJ,(0) = alJ,O) — / J,(0)dv(©)) + a / J,(0)dv(©®").

A direct computation shows that

<V(a/JU(H/)dv(G/))),V¢(9,a)> =0,
for all V¢ € T, \; this means that V(e [ J,(8")dv(8"))) € T, N'*. Another direct computation shows
that V(a(J,(0) — [ J,(6")dv(8"))) € T, N.From this, we can then see that V(a(J,,(6) — [ J,(0")dv(6")))
is the projection of V(aJ,) onto T, \.
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Using Proposition (B.1), we can thus conclude that
9,0, — divy , (o,v,) = 0;
’ , , (B.7)
vy (0,0) = (nVd,, (0), ka(J, 0) = [ ], (0")v,(0))); v, = F(o)),

represents projected (onto ) gradient descent dynamics of the lifted energy 7.

B.5 An analogous geometric structure for M, (Z x Z)

There is a similar geometric structure to the one we discussed in the previous sections that the space
M (Z x Z) can be endowed with. In what follows we use y to denote elements in the lifted space
P(Z x Z x [0,00)) and represent elements in Z x Z x [0, c0) with triplets of the form (z,Z, w). The
space P(Z x Z x [0, 00)) is endowed with a Wasserstein metric just as in (B.2), obtained by changing any
appearance of € with (z,z) and any appearance of o with w. We will use F (we use the same notation as
in section 3.1.1 for simplicity) to denote the projection map F : P(Z x Z x[0,00)) - M (Zx Z). An
arbitrary functional J : M_ (Z x Z) — (—00, 00] can be lifted to P(Z x Z x [0, 00)) by composition
with F (we use J as in the previous sections to denote this composition). The structure of the first
variation of 7 is wJ, where J_ is the first variation of J at m = F(y).

Since problem (1.1) forces us to restrict to measures 7 with first marginal equal to w, we consider
evolution equations that can be seen as suitable (projected) gradient ascent versions of the gradient ascent
flow of a lifted energy J w.r.t. the Wasserstein metric discussed above. Such evolution equation takes
the form:

0y +divs ,(vv,) =0, (B.8)
v, (2,2,0) = (0,7V:), (2.2, k0 (I, (,2) = [J, (2 2)dn,Z12); 7 = Fy, ’

To motivate the zero in the first component of v, (2,2, w), suppose that t — 1, has the form

N
M= D 0z
ij=1

where 7, solves the evolution equation
9,7, +div,;(7,V,) =0

for some vector field \7,(2, 2) = (Vy,(z,2), V,,(z,2)) that changes smoothly in time. We claim that if )
is constant in time, then V|, must be equal to zero at all points in the support of ) (and thus of the

support of n&). Indeed, it is enough to notice that if Vj, (z 2,-]-) was different from 0, then for all small

ij3
enough 7 > 0 we would have that z;; , is different from z; , for all i'j', implying that the support of 7, is

different from the support of nol for small enough 7 > 0. This would contradict the assumption that Htl
was constant in time.

B.6  Dynamics in lifted and non-lifted space

We end this appendix by proving the connection between the dynamics in the lifted and non-lifted space.
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Proof. (Proof of Proposition 6) Taking a test function ¢ (9), we see that

d d

E/q}(@)dvt = E/aq&(@)dat(é’,a) = nt/ozveqj(@) - Vol (m,,v,50)do, (6, a)
+K/0{(Z/{v(rrt, v;;6) — /Z/{v(nt, v,;@’)dvt(e’))dat(e,oz)
= nt/V9¢>(9) - VU (7r,,v,50)dv,(0)

—}—K/(Z/{U(nt,vt;é) — /Z/{U(nt,vt;9/)dvt(9/))dv,(6),

which is the weak form of the second equation in (2.3). The equation for 7 is deduced similarly.
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