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he original article stated that the excited-state lifetime of

the polymer radical anion was 850 + 6 ps (Figure S15).
However, further analysis of our data (by the expanded
research group listed as authors here) revealed that the excited-
state lifetime reported is incorrect; it represents the lifetime of
the neutral polymer, not a radical anion. Additionally, the g-
value we observed for doped P1 likely corresponds to trace
metal-centered radical, not an organic radical anion.'

We have since found that our original conditions for
polymer reduction with sodium napththalenide did not
sufficiently reduce P1. Instead, excess Na metal does reduce
P1, which we confirmed with UV-vis absorption and
spectroelectrochemistry (Figures S24 and S25, respectively,
in the revised Supporting Information presented here). The
corrections include updated CW-EPR and femtosecond
transient absorption spectroscopy (fsTA) data to reflect the
reduced species. The corrected excited-state dynamics are
calculated from global wavelength fitting in Matlab (revised
Figure S15). Femtosecond transient absorption spectroscopy
of P1°~ displays biexponential decay with lifetimes of 0.56 and
4.68 ps. The shorter lifetime of 0.56 ps can be attributed to
either vibrational relaxation or internal conversion from a
higher-lying excited state.”* The longer lifetime of 4.68 ps can
be assigned as the excited-state lifetime of the P1 radical anion.
These data and experimental procedures have been included in
the revised Supporting Information.

We have also re-collected the CW-EPR of reduced P1 and
the reaction mixture (updated Figure 2 below). Based on the
instability of reduced P1 in air, greater care was taken to
exclude oxygen from the samples when they were transferred
from the glovebox to the instrument, which allowed detection
of the radical anion of interest. The g-value of the chemically
reduced P1 radical anion is 2.0035, and that of the reaction
mixture is 2.0033, both of which are in agreement with the
values for a dimer radical anion from a report by King and
Zhukhovitskiy published after our original article." The caption
of Figure 2 has been corrected to reflect the revised procedure
and data.
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Figure 2. Continuous-wave electron paramagnetic resonance spectra
of neutral P1, isolated and chemically reduced P1, 1-MgBr, and
polymerization reaction mixture (see SI for details).

The TOC graphic was also updated to include the updated
CW-EPR data, as shown below:

Br
R __N R —ln_
N-R NG

Br, /N NN
Pn_Q_"'Mg"'TH —_ =/
— =
No:N o Br Br Ler
R

°N visible light

N
\ —_—
r—OMgBr LIC-'Il-lgsFaL)

o2

5

<

g

=2

w

8| — Reaction

® | = Polymer

£ +Na

(<]

z 346 348 350 SV
Magnetic Field (mT) density difference plot, D; vs. Dy
experiment TD-DFT

Published: July 18, 2023

https://doi.org/10.1021/jacs.3c06271
J. Am. Chem. Soc. 2023, 145, 16285-16286



Journal of the American Chemical Society

pubs.acs.org/JACS

Addition/Correction

These revised data do not change our hypothesis or the
conclusions in the original article.
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The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/jacs.3c06271.

Synthetic procedures; details of the computational
methods; characterization data for new compounds;
visualized HOMO and LUMOs of relevant structures;
XYZ coordinates of calculated structures, with revised
reduction procedure and corrected spectroelectrochem-
istry and transient absorption data (PDF)
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