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Cross sections for the 54Fe(n, n′) 54Fe and 54Fe(n, p′) 54Mn reactions deduced
from the detection of de-excitation γ rays
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Abstract. γ-ray production cross sections have been deduced for reactions with incident neutrons having en-
ergies from 1.5 - 4.7 MeV. Similar measurements were made on a natural Ti sample to establish an absolute
normalization. The resulting γ-ray production cross sections are compared to TENDL and TALYS calculations,
as well as data from previous measurements. The models are found to describe the production cross sections
for most γ rays observed from 54Mn and 54Fe rather well.

1 Introduction

Iron is an important component of many structural ma-
terials, including energy production complexes, laborato-
ries, devices, and shipping containers that often cross bor-
ders. The properties of iron alloys in structural materi-
als—strength, ductility, and stability—depend on defects
that develop and grow from neutron induced reactions.

54Fe is only 5.8% abundant in natural Fe, but an exam-
ination of neutron total cross sections for incident neutron
energies from 1 to 5 MeV reveals that fluctuations from ≈
1 - 10 b occur for both 54Fe and 56Fe [1]; lower abundance
54Fe can have an out sized contribution to the scattering
in regions where it has a cross section maximum and 56Fe
has a scattering minimum.

Neutron scattering cross sections obtained by the de-
tection of the scattered neutrons offer the clearest path to
the desired neutron scattering cross sections in the fast
neutron region [2, 3], but such measurements are typically
limited to scattering from only the lowest few excited lev-
els because of the large energy spreads (tens to hundreds
of keV) inherent in neutron detection experiments. The
detection of de-excitation γ rays (a few keV resolution)
following inelastic scattering or proton production for neu-
trons incident on 54Fe offers a rare opportunity to investi-
gate (n,n′) and (n,p) cross sections, respectively, to higher-
lying levels in a consistent way by the examination of γ-
ray production rates, as has been reported previously in
Refs. [4, 5].
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Figure 1. γ-ray spectrum from the summed angular distribution
data at En = 4.5 MeV. γ-ray energies denoted in blue are from
54Fe(n,p′γ)54Mn and those denoted in black with a red arrow are
from 54Fe(n,n′γ)54Fe reactions. Unlabeled peaks are from un-
placed γ rays, isotopic impurities or background.

2 Experimental details and data analysis

Measurements were performed at the University of Ken-
tucky Accelerator Laboratory (UKAL) using the neutron
production and γ-ray detection facilities developed there
over many years. A pulsed beam of protons with a time
spread of ≈ 1 ns was accelerated using a model CN Van
de Graaff and produced neutrons via the 3H(p,n)3He re-
action. The 1 cm × 3 cm (diameter × length) stainless
steel 3H cell with a 0.13 mil Mo air-cooled entrance foil,
Ta liner and Ta stopper disk was oriented with its length
parallel to the beam axis; the gas pressure was ≈ 1 atm.
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Table 1. Scattering sample masses, geometries and abundances.
Uncertainties in masses are estimated to be half the smallest
digit and dimensions 0.01 cm. The high-purity metallic 54Fe

sample was leased from the U.S. National Isotope Development
Program; the sample assay was provided upon lease. The 54Fe
sample was pressed and sintered to 85(5)% density. The natTi
sample was elemental with isotopic abundances found from

NuDat3.0 at NNDC [6].

Sample Mass Diameter Height
(g) (cm) (cm)

54Fe 18.045 1.45 1.50
NatTi 44.543 2.23 2.55

54Fe Sample Assay natTi Sample Assay
54Fe 97.60(2)% 46Ti 8.25(3)%
56Fe 2.35(2)% 47Ti 7.44(2)%
57Fe 0.04(1)% 48Ti 73.72(3)%
58Fe 0.01(5)% 49Ti 5.41(2)%

50Ti 5.18(2)%

Samples of 54Fe and natTi were suspended 6.5(1) cm from
the center of the gas cell; sample masses, geometries, and
isotopic abundances are given in Table 1.

The emitted γ rays were detected with a ≈ 50% HPGe
detector located 1.15(1) m from the center of the gas cell;
this detector was surrounded by an annular BGO detec-
tor for active Compton suppression. Both detectors were
shielded by boron-loaded polyethylene, copper and a tung-
sten shadow bar. The γ-ray detector efficiency and en-
ergy calibration were completed using a 226Ra radioactive
source. Time of flight (TOF) techniques were used to veto
neutron events in the main detector.

γ-ray excitation functions and angular distributions
following the 54Fe(n,n′γ)54Fe and 54Fe(n,p′γ)54Mn reac-
tions were measured for incident neutron energies from
1.5 to 4.7 MeV in 200 keV steps and at En = 4.5 MeV,
respectively. The excitation functions were measured with
the HPGe detector fixed at 125◦ where P2 = 0 in the Leg-
endre polynomial expansion dσ

dΩ = A0[1 + a2P2(cosθ) +
a4P4(cosθ)]; Pl is the Legendre polynomial of order l =
0, 2, 4 and al is its coefficient. Provided a4 ≈ 0, then the
γ-ray production cross section is simply σ = 4πA0.

Similar measurements were made on natural Ti for ab-
solute normalization. The uncertainty of the neutron ener-
gies impinging on the samples averaged ≈ 50 keV for the
54Fe and ≈ 70 keV for the natTi samples; those uncertain-
ties include proton straggling in the gas cell entrance foil,
proton energy loss in the 3H gas cell, and sample geome-
try. A spectrum is shown in Fig. 1.

γ-ray production cross sections were normalized rel-
atively using a long counter [7]; corrections were made
for variations in the detector efficiency and 3H(p, n)3He
neutron production cross sections [8] at the position of
the long counter (85 deg) as a function of En [9]. Un-
certainties on all production cross sections include those
from the yields of the peaks of interest in the main and
monitor spectra, an estimated 4% uncertainty from finite
sample corrections (neutron multiple scattering and γ-ray

Figure 2. Comparison of UKAL γ-ray production cross sec-
tions for the first two excited states of 48Ti at 983.5 and 1312.1
keV with previously published data [12, 13] and TENDL calcula-
tions by Koning et al. [14]. An absolute normalization factor for
UKAL data was deduced from Ref.[12] by comparing the 983.5
keV γ-ray production cross sections between 2.1 and 4.3 MeV.

attenuation) [10], a 3% relative uncertainty from the γ-ray
detector efficiency, and uncertainty in finding the absolute
normalization factor discussed below.

To obtain absolute γ-ray production cross sections, the
983.5 keV γ ray from the decay of the first excited state of
48Ti, a reference standard [11], was used, and a normaliza-
tion factor of 1.13(1)×10−2 was found by comparing rel-
ative γ-ray production cross sections to those of Dashdorj
et al. [12]. Only UKAL production cross sections for the
983.5 keV γ ray between En = 2.1 and 4.3 MeV were used
in this comparison, since the assumption that a4 ≈ 0 was
previously found to be valid about ≈ 1 MeV above thresh-
old [10] for the strong E2 transition from the first excited
state to the ground state.

The UKAL normalized values were then compared to
previous measurements [12, 13] and TENDL cross sec-
tions [14], as shown in Fig. 2. While the experimental
cross sections do not agree well with the TENDL calcula-
tions, they do agree well with each other above 2.1 MeV
for the 983-keV γ ray and at all energies for the 1312.1
keV γ ray in 48Ti, with the exception of the two highest
neutron energies, which are still being reviewed.

Once an absolute normalization factor was obtained
from the 48Ti 983 keV γ ray, the same constant factor, cor-
rected for the difference in the number of target nuclei,
was applied to the relative production cross sections of γ
rays observed for 54Fe and 54Mn to obtain absolute cross
sections.

3 Results and Conclusions

Absolute production cross sections for the strongest γ rays
observed from the 4+1 , 5

+
1 , and 3+2 levels in 54Mn, along

with TENDL calculations [14] and TALYS [15, 16] calcu-
lations with default parameters are shown in Fig. 3. The
156.3 keV γ ray is from the lowest excited level observed
in the UKAL measurements, as the 54.9 keV 2+1 first ex-
cited state is below our detection threshold. TENDL cal-
culations [14] do not describe well the γ-ray production
from this 4+1 state, nor do calculations using TALYS de-
fault parameters; however, TENDL model calculations do

Figure 3. Preliminary production cross sections observed in 54Mn for γ rays from the three lowest observed excited levels (red circles),
along with TENDL calculations (blue line) by Koning et al. [14], and calculations performed using TALYS [15, 16] default parameters
(gray dotted line).

Figure 4. Preliminary 54Fe γ-ray production cross sections for the 1408.2 keV (2+1→0+1 ), 1129.9 keV (4+1→2+1 ), 806.5 (3+1→4+1 ), and
1936.5 keV (3+1→2+1 ) decays (red circles), along with TENDL calculations (blue) by Koning et al. [14], TALYS [15, 16] calculations
with default parameters (dotted gray), and the results from Olacel et al. (yellow squares) [4].

well describe the production cross sections of the other
γ rays shown, as well as most observed production cross
sections for γ rays from levels below about 1.6 MeV exci-
tation energy in 54Mn.

54Fe production cross sections are shown in Fig. 4
for γ rays from the 2+1 , 4

+
1 , and 3+1 excited states. For

the 1408.2 keV γ ray (2+1 → 0+1 ), the UKAL data agree
well with TENDL and TALYS calculations, except at En
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< 2 MeV, or until ≈ 1 MeV above threshold [10], and at
the two highest energy points that are still under review.
For the 1129.9 keV γ ray (4+1 → 2+1 ), both TENDL and
TALYS calculations agree with UKAL data until about 3.5
MeV, but are significantly higher than data from Ref. [4].
Interestingly, for the 806.5 and 1936.5 keV γ rays from
the decay of the 3+1 level, the first unnatural parity excita-
tion in 54Fe, the TALYS and TENDL calculations are in
good agreement with the UKAL data; this agreement sug-
gests that the compound nuclear process of the n + 54Fe
interaction is well described. In all cases, the preliminary
UKAL γ-ray production cross sections are significantly
larger than the data of Ref. [4].

The UKAL data set is very large and is still being an-
alyzed. Additional measurements are in progress that will
help us understand the a2 and a4 coefficients for the 983.5
keV γ ray in 48Ti and, hopefully, help us explain the dif-
ferences observed between our measurements and those of
Refs. [12, 13] below ≈ 2 MeV. Once all analyses are com-
pleted, the deduced production cross sections for γ rays
observed from the decay of levels in 48Ti, 54Mn, and 54Fe
will be submitted to EXFOR. Another goal is to deduce
level cross sections for neutrons reacting with 54Fe.
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