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Abstract

Identifying processes that promote coral reef recovery and resilience is crucial as ocean
warming becomes more frequent and severe. Sexual reproduction is essential for the
replenishment of coral populations and maintenance of genetic diversity; however, the abil-
ity for corals to reproduce may be impaired by marine heatwaves that cause coral bleaching.
In 2014 and 2015, the Hawaiian Islands experienced coral bleaching with differential bleach-
ing susceptibility in the species Montipora capitata, a dominant reef-building coral in the
region. We tested the hypothesis that coral bleaching resistance enhances reproductive
capacity and offspring performance by examining the reproductive biology of colonies that
bleached and recovered (B) and colonies that did not bleach (NB) in 2015 in the subsequent
spawning seasons. The proportion of colonies that spawned was higher in 2016 than in
2017. Regardless of parental bleaching history, we found eggs with higher abnormality and
bundles with fewer eggs in 2016 than 2017. While reproductive output was similar between
B and NB colonies in 2016, survivorship of offspring that year were significantly influenced
by the parental bleaching history (egg donor x sperm donor: B x B, B x NB, NB x B, and NB
x NB). Offspring produced by NB egg donors had the highest survivorship, while offspring
from previously bleached colonies had the lowest survivorship, highlighting the negative
effects of bleaching on parental investment and offspring performance. While sexual repro-
duction continues in M. capitata post-bleaching, gametes are differentially impacted by
recovery time following a bleaching event and by parental bleaching resistance. Our results
demonstrate the importance of identifying bleaching resistant individuals during and after
heating events. This study further highlights the significance of maternal effects through
potential egg provisioning for offspring survivorship and provides a baseline for human-
assisted intervention (i.e., selective breeding) to mitigate the effects of climate change on
coral reefs.
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Introduction

Ocean warming caused by anthropogenic greenhouse gas emissions is one of the primary
threats to the function of shallow tropical coral reefs [1,2]. Prolonged warming above the local
thermal threshold for bleaching coupled with high irradiances can cause severe coral bleaching
[3], the disruption of the nutritional symbiosis between the coral host and its unicellular dino-
flagellates, Symbiodiniaceae (formerly, Symbiodinium spp.) [4]. This can subsequently result
in increased rates of disease transmission [5] and mortality [6] along with reduced calcification
rates and reproductive capacity in corals [7,8]. Continual declines in coral cover are predicted
given the range of local and global disturbances simultaneously acting on coral reefs, with
warming ranked as the most severe [9-11]. Identifying sources of resilience in coral reef eco-
systems, such as locating exceptional coral genotypes that can thrive under extreme warming
or temperature fluctuations, will be key in maintaining and restoring reefs for the future.

Differential bleaching susceptibility [12-14] during a thermal stress event illustrates biologi-
cal variation within populations that may serve as a source of resilience and an opportunity for
selection through reproductive success [15,16]. Thermal tolerance and capacity to recover
after bleaching are important factors that influence sexual reproduction, recruitment, and suc-
cess of future generations to adapt [7,8,17,18]. Successful sexual reproduction and recruitment
are essential in maintaining coral populations [19], repopulating disturbed coral reefs [20-23],
and enhancing genetic diversity within populations to overcome selective pressures [24,25].
However, parental investment in gametogenesis is energetically costly [26] and for corals
reproductive cycles may exceed six to ten months [27,28]. Therefore, prolonged environmental
stress can drive prioritization of energetic investment into basic metabolic function and repair,
at the expense of growth and sexual reproduction [29-31]. Importantly, this tradeoff in ener-
getic investment is likely to depend on the susceptibility and severity of coral bleaching, with
greater energy available for reproduction in corals resistant to bleaching [32].

Previous studies have identified some of the way coral bleaching can impact aspects of sex-
ual reproduction [8,33] and dampen recruitment [34,35]. For example, after the 1987 coral
bleaching event in the Caribbean, Orbicella annularis recovered from bleaching by metaboliz-
ing tissue biomass, but did not complete gametogenesis in the following months, whereas colo-
nies that had not bleached of the same species were able to develop and release gametes [7].
Similarly, during the 1998 bleaching event on the Great Barrier Reef, bleached corals showed
high variation in reproduction compared to colonies resistant to bleaching nearby that experi-
enced the same thermal stress. For acroporid species, reproductive polyps were more common
in colonies that did not bleach, with larger eggs at higher densities per polyp than colonies that
bleached and recovered [30]. More resolution is needed to better understand the impact and
extent of coral bleaching events on the early life cycles of coral, from the stress event through
recruitment.

Given logistical complexities and challenges, most studies have primarily investigated
gametogenesis in the life cycle of coral with some understanding of cross-generational effects
(i.e., parental, carry-over, or transgenerational effects) following major bleaching events. The
impacts of coral bleaching may last for months to years after the initial thermal stress [36], and
can manifest in life stages downstream such as fertilization [37-39], larval development, and
recruitment [34,35,40]. Between the 2005 and 2010 bleaching events in Panama, Levitan et al.
(2014) found that thermally tolerant Orbicella franksi recovered the capacity to produce and
release gametes more quickly (within 3 to 5 years) than the more thermally sensitive O. annu-
laris. While these studies demonstrate a range of responses in sexual reproductive biology and
ecology during recovery post bleaching (i.e., gametogenesis and recruitment), few studies have
followed both the intra- and intergenerational impacts of bleaching. Recent marine heatwaves
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eliciting differential coral bleaching of M. capitata in Hawai‘i provide an opportunity to com-
pare the impacts of parental bleaching history on coral reproduction and offspring perfor-
mance during recovery and offer potential insight on coral resilience [15,41,42].

Coral reefs in the subtropical waters of Hawai‘i were largely naive to global bleaching events
[43-45] with bleaching events first recorded in the Main Hawaiian Islands in 1996 and then in the
Northwestern Hawaiian Islands in 2002 [43-45]. However, the Hawaiian Archipelago experi-
enced “the blob” heatwave, followed by an El Nifio that resulted in severe back-to-back coral
bleaching in 2014 and 2015 (Fig 1A) [46,47]. During these consecutive bleaching events, degree
heating weeks (DHW) in the Main Hawaiian Islands exceeded 8 weeks by September in both
years [46,47]. In Kane‘ohe Bay (O‘ahu, Hawai‘1), ~70% of corals on the shallow reefs (< 2 m
depth) bleached and exhibited 13-22% mortality in 2014 and 2015 [46,48-50]. During both events
in Kane‘ohe Bay, colonies of the dominant reef-building coral, Montipora capitata, visibly
bleached or remained pigmented during prolonged heat stress (Fig 1B). Despite widespread
bleaching, approximately 70% of M. capitata that bleached in 2014 and 2015 were considered
recovered by the following December and January based on visual coloration [12,14,15,46,51-53].

M. capitata demonstrates relatively high tolerance against multiple local and global stressors
[54,55], with varied sensitivity among individual colonies and their traits measured under ele-
vated temperature [15,51], such as survivorship [49], growth [45], and biomass composition
[45,53,54,56-58]. Reproductive effort of M. capitata, particularly oocyte characteristics and
spawning, has shown little response to warming [36,59]. This reproductive response may have
contributed to its ecological success along the fringing and patch reefs of Kane‘ohe Bay in the
past. However, percent of motile sperm from M. capitata declined from 80-90% in 2011 to
40.5% in 2015, corresponding with the consecutive bleaching events in Kane‘ohe Bay [36]. For
M. capitata, oogenesis can begin as early as July, which means that early egg development may
cooccur with severe, prolonged warming events (July-October), and later egg development
continues when corals are recovering from these events (November-August). This could create
a strain on energetic resources when corals are compromised during a substantial fraction of
the typical gametogenic cycle [60,61]. Therefore, tracking M. capitata through subsequent
spawning seasons after bleaching events can reveal the reproductive capacity of this species as
ocean temperature continues to increase.

In this study, we examined cross-generation plasticity (i.e., parental effects) to determine
how parental response to environmental events influence reproduction [62]. We measured the
reproductive biology of M. capitata for two spawning seasons (2016 and 2017) following
bleaching events (2014 and 2015). We tested the following hypotheses: (i) that parental bleach-
ing history [bleached (B) and nonbleached (NB)] would affect reproductive performance in
subsequent spawning seasons and (ii) intentional crosses of gametes from parent colonies of
differential bleaching history would influence offspring success (Fig 2A). In 2016, we tested the
second hypothesis and quantified the downstream effects of parental bleaching history from
gamete release to settlement of the offspring in parent colonies that did and did not bleach
during the 2015 warming event (Fig 2B). This study was designed to assess the impacts of con-
secutive bleaching events on the early stages within the coral life cycle and selective processes
already occurring in nature while also testing basic breeding techniques as an intervention
strategy for coral restoration to maintain genetic diversity and promote resilience.

Materials and methods
2.1 Selecting parent colonies and spawning events

Montipora capitata is a hermaphroditic broadcast spawner and its reproductive cycle, spawn-
ing dynamics, and early life stages have been extensively studied at the Hawai‘i Institute of
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Fig 1. A) Temperature data from 2010 to 2017 (NOAA Buoy Moku o Loe, HI Station ID: 1612480) illustrate
historical patterns and identify years of bleaching events in O‘ahu, Hawai'i. The bleaching threshold between 30 to
31°C of corals in Kane‘ohe Bay (Coles et al., 2018) is shown in the shaded red, thermometers indicate the 2014 and
2015 bleaching events and the spawning corals indicate the spawning seasons. B) An image depicting the tagged
bleached (left) and nonbleached (right) parental colonies in response to the 2015 heat stress in Kane‘ohe Bay.

https://doi.org/10.1371/journal.pone.0290479.9001

Marine Biology (HIMB) located in Kane‘ohe Bay, on the windward side of O‘ahu, Hawaii,
USA [27,60,61,63-65]. In Hawai‘l, oogenesis begins a 9-10 month period as early as July and
as late as October, while spermatogenesis begins the following April to May, ca. 1 month prior
to the first spawning event in May or June [28], creating the potential for differential effects of
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Fig 2. Experimental design of the study. A) Bleached and nonbleached colonies were tagged in October 2015 at the peak of the bleaching event. Bleached
colonies in this experiment recovered by January 2016. Total reproductive output and gamete collections were measured during the 2016 and 2017 spawning
seasons. Months of the spawning season differ between years because of the different timing of the new moon in 2016 and 2017. B) Selective breeding matrix
illustrating the crossing of egg and sperm donors conducted in July 2016 based on parental bleaching history. Colored squares indicate the cross of individuals
attempted and solid black circles indicate successful fertilization. Offspring from these crosses were used to measure survivorship of larvae and settlers and

settlement.

https://doi.org/10.1371/journal.pone.0290479.9002

bleaching on oocytes and sperm. Symbiodiniaceae are vertically transferred from M. capitata
parent colonies into eggs prior to the formation of the egg-sperm bundles, which are released
during spawning [63]. Spawning in M. capitata extends over three, consecutive lunar months
between May and September for 3 to 5 consecutive nights between 20:45 and 22:30 hrs, start-
ing on the night of the new moon [27,60]. The second and third nights are when the largest

spawning events most commonly occur [60].

During the peak of the 2015 bleaching event in Hawai‘i, ten pairs of colonies (30-100 cm
diameter) of M. capitata were identified and tagged as bleached (B) and nonbleached (NB)
along the leeward side of the reef surrounding HIMB (21'26.09 N, 157°47.47° W) on 20 Octo-
ber 2015 (Fig 3C). These colonies remained in the field until retrieved three days prior to the
new moon of the spawning months in 2016 (June, July, and August) and 2017 (May, June, and
July) (Fig 3A). To examine reproductive performance of B and NB colonies of M. capitata, par-
ent colonies were collected by removing the entire colony from the reef, or by breaking large
fragments (30-40 cm in diameter) from tagged colonies using a hammer and chisel. These col-
lections were first completed on 4 and 5 June 2016. Of the twenty colonies tagged, seven
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colonies that had not bleached and eight colonies that had bleached and recovered were alive
and used for the study. The other five colonies not recovered had either died or were missing
from the reef. The fifteen colonies were transported to the wet laboratory at HIMB in 20L
buckets filled with seawater from Kane‘ohe Bay at an ambient temperature of ~28 to 29°C.
Colonies were randomly allocated to two ~1,300L shaded outdoor flow-through tanks [55,66].
Both tanks had sand-filtered seawater delivered at a flow rate of ~6L minute " and a circulation
pump (700 gph Magnetic Drive, Danner Manufacturing Inc. Islandia, NY, USA). Irradiance
and temperature within each tank were recorded every fifteen minutes with a cosine corrected
photosynthetically active radiation (PAR) sensor (Odyssey PAR loggers, Dataflow Systems
Ltd, Christchurch, NZ) calibrated to a Licor 192SA sensor, and a temperature logger (Hobo™
Water Temp Pro v2 resolution + 0.2°C, Onset Computer Corporation, Bourne, MA, USA).
Three to five days after each spawning event, colonies were returned to the original field site
by attaching them to a fixed rack with cable ties and retrieved two days before the next new
moon of the spawning season.

2.2 Sexual reproduction

Starting one night prior to the new moon, M. capitata parent colonies were monitored for
seven nights. During each night of spawning, colonies were isolated at 19:30 in individual con-
tainers filled with ambient seawater from the flow-through tanks. When spawning occurred,
M. capitata released egg-sperm bundles into the water column between 20:45 and 22:30 with
peak spawning typically expected on the second night of the new moon [27,59,60]. Spawning
activity of individual colonies was monitored each night and recorded as “spawn” or “no
spawn”. For the spawning colonies, we quantified the total volume of gametes released, num-
ber of eggs per bundle, and egg quality (i.e., area and abnormality).

Sterilized disposable pipets (2 mL) were used to gently collect all egg-sperm bundles at the
water surface from each individual colony to avoid cross contamination or prematurely break-
ing the egg-sperm bundles. We preserved 3-5 egg-sperm bundles per colony per night to
quantify the number of eggs per bundle, egg volume for size, and abnormality. Each egg-
sperm bundle was placed in a 2 mL microcentrifuge tube and allowed to break up in 0.1 mL of
seawater and for the eggs to hydrate for 2 hrs before preserved in zinc fixative (1:4 Z-fix,
Sigma-Aldrich Inc. to 0.2 pm filtered seawater ESW). Preserved eggs from each bundle were
photographed using an Olympus SZX7 dissecting microscope equipped with an Olympus
America camera (SN: BH039933-H); from photographs, we counted the number of eggs per
bundle and measured the egg diameter using Image]2 software (Schneider et al., 2012). Egg
volume was calculated using the equation for a sphere with the measured egg diameter of
spherical eggs. We also recorded the proportion of abnormal (irregular) eggs packaged within
each bundle [36,63]. Remaining egg-sperm bundles from each colony were placed into indi-
vidual 50 mL Falcon tubes to quantify the total volume of gametes of each colony per night.
Annual reproductive output per colony was estimated by summing the spawn volume across
the entire spawning season, normalized to planar surface area of the colony using Fiji software
[67].

2.3 Fertilization success and Offspring

To compare offspring performance of bleached and nonbleached parents, we isolated the egg-
sperm bundles from each parental colony that released more than 1 mL of spawn volume on
the nights of 5 and 6 July 2016 (peak spawning) and placed egg-sperm bundles from each col-
ony into a separate 50 mL falcon tube. Within one hour of the bundle breaking apart, eggs
floated to the surface and sperm sank to the bottom. Sperm were pipetted from the bottom of
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the tube, and eggs were rinsed twice with 0.2 um filtered seawater (FSW). Sperm from each
colony was placed in separate 50 mL falcon tubes and later used to fertilize eggs from specific
colonies. Nine colonies had adequate spawn volume to include in crosses, and thirty individual
crosses were made from gametes based on parental bleaching history to generate four cross-
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types (egg donor x sperm donor): Bx B (n=8), BxNB (n=4), NB x B (n=4), and NB x NB
(n = 7) (Fig 2B). For fertilization, the eggs (1 mL) were in a concentration of ~10° sperm mL™"
(by visual inspection) within a 50 mL falcon tube [68]. Thirty minutes after sperm and eggs
were mixed, each cross type of fertilized eggs was transferred into individual 1 L conical tanks
filled with UV-sterilized 1-um FSW to avoid polyspermy. For M. capitata, self-fertilization is
extremely rare [68,69]. To estimate fertilization success, three subsamples of 20-30 eggs were
collected from each conical after approximately 3-hrs (i.e., when initial cleave stages are
expected [70,71]), placed in a 2-pL microcentrifuge tube, and preserved in Z-fix (1:4 Z-fix to
FSW). Remaining embryos in the conical tanks developed, and slow flow rate of FSW was
introduced to mitigate potential effects of montiporic acid [65]. Five days post-fertilization,
10-15 larvae per conical tank were placed in a 10 mL well-plate filled with 5 mL of FSW with a
chip of crustose coralline algae to track settlement through time; FSW was exchanged every
other day. The proportion of planulae and settlers were examined on days 7, 28, and 53 post-
fertilization while the total number of offspring alive were counted on days 6, 7, 28, 53, and 59
post-fertilization to estimate survivorship probability curves.

2.4 Statistical analysis

All analyses were conducted in R (R Core Team, 2014; v. 3.5.1). We used a generalized linear
mixed effects model to determine the effects of bleaching history on spawning activity, number of
eggs per bundle, and egg abnormality of the 8 B and 7 NB parental colonies observed (glmer in
Ime4) [72] with a binomial (spawn/no spawn and proportion of abnormal eggs) and poisson (eggs
per bundle count) response. Bleaching history (B/NB) and year (2016/2017) were included as fixed
effects, and spawning month (1/2/3) and colony ID were included as random effects. To analyze
total reproductive output and egg size, we used linear mixed effects models (Ime in Ime4) [72] with
bleaching history and year as fixed effects, and colony ID as a random effect. Analysis of variance
(ANOVA) tables were generated using type II sum of squares (Anova in car) [73]. Post-hoc analy-
ses were conducted to further explore significant main effects and interactions. We utilized the
emmeans package [74] to calculate and compare the estimated marginal means (EMM:s), which
represent the predicted means of the response variable for each level of the fixed effects, adjusted
for the other covariates in the model. Pairwise comparisons between the levels of the fixed effects
were then performed using Tukey’s Honest Significant Difference (HSD) test to adjust for multiple
comparisons. This approach allowed us to identify significant differences between specific treat-
ment groups, while accounting for the variability associated with random effects.

To test the effects of parental bleaching history on offspring performance, we first analyzed
the proportion of eggs fertilized using generalized linear mixed effects models with cross-type
as a fixed effect and the egg donor and sperm donor as random effects. The proportion of eggs
reaching each developmental stage (2-cell, 4-cell, 8-cell, and 16-cell), the Kruskal-Wallace test
was applied as the dataset did not meet the assumption of normality. For post-hoc analysis, we
performed the Dunn’s test for multiple pairwise comparisons to determine which specific
cross-types differed. To analyze the proportion of larvae that settled at 7, 28, and 59-days post-
fertilization, we used a generalized linear mixed effects model with cross-type and day (7, 28,
and 59-d post-fertilization) as fixed effects and colony ID of egg donor and sperm donor as
random effects. Lastly, we generated survivorship estimate curves to visualize offspring fate by
cross-type with ggsurvplot of the census over time (i.e., days 6, 7, 23, 27, 28, 53, and 59 post-fer-
tilization) (survfit in survminer) [75]. Cox proportional hazards (CPH) model was used to ana-
lyze the effects of cross, egg donor, and sperm donor individually on offspring survivorship
(coxph in survminer) [75]. Dispersion parameters were inspected through a simulation-based
approach (DHARMa package) [76].
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Results
3.1 Sexual reproduction and egg traits

All fifteen colonies observed in this study released egg-sperm bundles one or more nights in
both years (Fig 3A). When spawning was observed, colonies began releasing egg-sperm bun-
dles between 20:20 and 21:32 hrs and ended between 20:30 and 22:15 hrs. Parental bleaching
history did not affect the occurrence of spawning (P = 0.619) and had no interactive effect with
year (P = 0.982). The proportion of colonies releasing gametes significantly differed by year

(P < 0.001) which may largely be due to some spawning in 2016 compared to no spawning in
2017 during the third month (August). In 2017, the proportion of colonies participating in
spawning events was 36% lower than in 2016. In both years, the second month of the spawning
season had the highest proportion of colonies spawning.

In 2016, the spawning season following consecutive bleaching events, colonies that bleached
and recovered had 22.5% higher mean total reproductive output than colonies that did not
bleach, although this was not statistically significant (Fig 3B; Table 1; P = 0.076). There was no
effect of year and no interaction between bleaching history and year on reproductive output
(Fig 3B; Table 1; P > 0.560). Individual egg volume ranged from 0.032 to 0.099 mm” and did
not differ by parental bleaching history, year, or by their interaction (Fig 3C; Table 1;

P > 0.462). The number of eggs per bundle from both bleached and nonbleached parental col-
onies ranged from 2 to 29, and mean eggs per bundle for all colonies examined was 13.3% less
in 2016 than in 2017 (Fig 3D; Table 1; P = 0.017). Eggs per bundle did not differ by parental
bleaching history (Fig 3D; P = 0.249). There were 79.5% more eggs with irregularities in 2016
than in 2017 (P < 0.001) with no difference by bleaching history (Fig 3E; Table 1; P = 0.292).

3.2 Fertilization, survivorship, and settlement

While reproduction continued in the colonies examined, we found that cross-type did have an
effect on fertilization, embryonic development, and percent larval survivorship (Fig 4;

Table 1. Statistical summary of Type II Wald % test of generalized linear mixed effects model and linear mixed effect models testing the fixed effects of spawning
year and parent history of bleaching susceptibility on sexual reproduction.

Response Variables Fixed Effects Ve df P-value Post-hoc
Summary

Colony-level Spawning Bleaching History 0.248 1 0.619

(0 =no spawn / 1 = spawn) 22.479 1 < 0.001 2016 > 2017
Bleaching History * Year 0.001 1 0.982

Total Reproductive Output Bleaching History 3.155 1 0.076

Log transformed Year 0.339 1 0.560
Bleaching History * Year 0.097 1 0.756

Egg Volume Bleaching History 0.108 1 0.742
Year 0.541 1 0.462
Bleaching History * Year 0.225 1 0.635

Eggs per Bundle Bleaching History 1.332 1 0.249
Year 5.656 1 0.017 2016 < 2017
Bleaching History * Year 1.408 1 0.235

Egg Abnormality Bleaching History 1.109 1 0.292
Year 191.259 1 <0.001 2016 > 2017
Bleaching History * Year 0.035 1 0.852

Significance indicated in bold text.

https://doi.org/10.1371/journal.pone.0290479.t001
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Fig 4. Offspring performance from selected crosses. A) Images of fertilized eggs and embryos (scale bar = 500 um), planula larvae (scale

bar = 500 um), and settlement (1 mm). Mean + SE. B) proportion of eggs fertilized by cross-type, C) proportion of cell division after 3-h fertilization
D) proportion of motile larvae and E) settlers during five timepoints over a 59-d period, and F) survivorship estimate curves by cross over seven
timepoints between 6 and 59-d with the figure embedded comparing the survivorship curves of offspring from bleached and nonbleached egg

donors.

https://doi.org/10.1371/journal.pone.0290479.9004

Table 2). Specifically, fertilization success in the NB x NB cross-type was higher than the

B x NB and NB x B cross-types (Fig 4B; Table 2; post-hoc P = 0.002 and 0.010, respectively)
but not B x B (post-hoc P = 0.163). The fertilization success in cross-type B x B also did not
differ between NB x B (post-hoc P = 0.250), but was higher than B x NB (post-hoc P = 0.047).
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Table 2. Statistical summary of Type I Wald % test of generalized linear mixed effects model testing the fixed effects of cross-type (NB x NB, NB x B, B x NB,
B x B) on the proportion of fertilized embryos and summary of the Kruskal-Wallace test for the cellular development (2-Cell, 4-Cell, 8-Cell, and 16-Cell). Statistical
summary of Type IT Wald y test of generalized linear mixed effects model testing the fixed effects of cross-type on larval survivorship, and settlement over three timepoints

post-fertilization.

Response Variable Effect x df P-value Post-hoc Summary
Embryonic Development Fertilization 16.334 3 0.001 BxB > BxNB
Cross NBxNB > BxNB, NBxB
2-Cell 34.071 3 <0.001
BxB = NBxNB
NBxB = BxXNB
4-Cell 21.729 3 <0.001
BxB = NBxNB, NBxB
NBxB = BxXNB
8-Cell 33.882 3 <0.001
BxB = NBxNB
BXNB = NBxB
16-Cell 20.445 3 <0.001 BxB = NBxNB, BxXNB, NBxB
NBxB = BxNB
Response Variable Fixed Effects
Larval Survival Cross 20.915 3 <0.001 BxB # NBxB
Square-root transformed Days Post-Fertilization 178.595 2 <0.001
Cross * Days Post-Fertilization 7.174 6 0.305
Larval Settlement Cross 7.623 3 0.055
Days Post-Fertilization 17.214 2 <0.001
Cross * Days Post-Fertilization 9.066 6 0.170

Significance indicated in bold text.

https://doi.org/10.1371/journal.pone.0290479.t002

Cell division advanced beyond the 2-cell stage more quickly for within cross-types (B x B and
NB x NB) than between cross-types (B x NB and NB x B) at 3-h post-fertilization. Embryos
from both B x B and NB x NB cross-types reached the 16-cell stage at 3-h post fertilization,
whereas embryos from BxNB and NB x B crosses developed at a slower rate and only reached
the 4-cell stage (Fig 4C, Table 2).

Percent larval survivorship and settlement varied by cross-type, driven by egg donor
bleaching history (Fig 4D and 4E; Table 3). Offspring developed from eggs from previously B
egg donors had lower survivorship than those from NB egg donors. NB egg donors had a sig-
nificant effect on the proportion of larvae survival (Fig 4E; P < 0.001). However, no difference
was found in offspring survivorship from bleached or nonbleached sperm donors (P = 0.992).
Overall, percent mortality from the initial to final time point (i.e., day 5 to 59) were 92.5% for
B x B, 87.8% for B x NB, 85.6% for NB x B, and 77.3% for NB x NB (Fig 4F).

Table 3. Summary of Cox proportional hazards analysis of coral offspring survival influenced by the fixed effects:
Cross-type, dam, and sire over time with model average estimates of the hazard ratio (with 95% confidence inter-
vals; Cross (NB x NB, NB x B, B x NB, B x B): df = 3 or egg/sperm donor (NB vs. B): df = 1; n = 1,318; number of
events = 560) for five timepoints (day 6, 7, 28, 53, and 59).

Fixed effect Hazard ratio z P-value
0.90 (0.84-0.96) -3.071 0.002
Cross
Egg Donor 0.77 (0.65-0.91) -3.068 0.002
Sperm Donor 1.00 (0.80-1.24) -0.010 0.992

Significance indicated in bold text.

https://doi.org/10.1371/journal.pone.0290479.t003
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Discussion

Here, we demonstrate the influences of marine heatwaves on coral reproductive capacity and
parental effects in spawning seasons following major bleaching events. It is noteworthy that
the unprecedented, consecutive warming events in 2014 and 2015 in Kane‘ohe Bay, Hawai'‘i
influenced the reproductive capacity of M. capitata regardless of parental bleaching response.
When comparing the first spawning season following the 2015 bleaching event to the second,
M. capitata colonies had fewer eggs packaged within the egg-sperm bundles released. While
average egg volume did not differ between years, the egg abnormality was higher in 2016 than
in 2017 regardless of parental bleaching history. Parental colonies that bleached and did not
bleach had similar reproductive output, number of eggs per bundle and egg abnormality.
However, delayed beneficial maternal effects were observed in offspring from parents resistant
to bleaching. These results demonstrate that although M. capitata has the energetic capacity to
continue reproduction despite bleaching response, cross-generational impacts occur (Byrne
et al., 2020), with possible ecological consequences downstream.

4.1 Reproductive capacity after bleaching events

M. capitata appears to maintain reproductive resilience, as well as recovery with time, after
consecutive marine heatwaves and coral bleaching events, as evidenced by continuing syn-
chronous broadcast spawning and production of viable eggs and sperm. These results are con-
sistent with prior studies examining the influence of environmental and biological factors on
M. capitata gametogenesis and spawning in Kane‘ohe Bay [28,59]. For instance, Padilla-
Gamiflo et al. [28] found similar rates of gametogenesis along a strong sedimentation gradient.
Further, Cox [59] found no differences in reproductive output, eggs per bundle, and egg size
between B and NB parents in the spawning season immediately following the 2004 mild warm-
ing event. Resilience in M. capitata may be due to its capacity to maintain energetic stability
under stress [53], here evident by the completion of gametogenesis even at the cost of produc-
ing fewer eggs per bundle with higher proportion of irregularity in shape in 2016 than in 2017.
One hypothesis to explain similar reproductive traits in bleached and nonbleached parents, is
that after the thermal stress (Septemebr-October), there is still time for the colonies to recover
(~5-6 months) and develop gametes that can be released during the spawning season (May-
August) [14,53,60,63]. Furthermore, Rodrigues & Padilla-Gamino [77] found that M. capitata
colonies that bleached allocated 10% more carbon to gametes despite bleaching by limiting the
allocation of carbon to adult tissues, with 50-80% less carbon allocated to bleached compared
to non-bleached colonies. Compared to other species, M. capitata prioritizes gametogenesis at
the expense of the adult colony. Maintaining egg traits such as size and biochemical composi-
tion would serve as an advantageous strategy to ensure ecological fitness of parents and their
developing offspring [61,78,79]. For example, there may be an optimal egg size that needs to
be achieved to ensure successful fertilization [80,81]. It is notable that the relationship between
egg size and number of eggs per bundle in our study has shifted from prior studies; we found
10-12 eggs per bundle in 2016-2017 compared to 15-18 eggs per bundle in studies and egg
size was 11% larger in our study than previous studies [59,60]. This apparent tradeoff in repro-
ductive effort suggests plasticity in response to environmental changes and emphasizes the
need for long-term studies to detect changes in sexual reproduction [14,35,36]. While further
examination of egg traits, such as total lipid content and composition of lipid classes, was
beyond the scope of this study due to limited material available, larger egg volume could be
beneficial in storing lipids and carbohydrates as well as increased surface area for slower sperm
to fertilize eggs in the water column.

PLOS ONE | https://doi.org/10.1371/journal.pone.0290479  January 7, 2025 12/20


https://doi.org/10.1371/journal.pone.0290479

PLOS ONE

Coral sexual reproduction after bleaching

High inter- and intraspecific variation in thermal tolerance contribute to reproductive con-
sequences after bleaching events [8,17,33]. For example, there were no differences in percent
reproductive polyps between bleached and nonbleached colonies of acroporid species at
Heron Island on the Great Barrier Reef after the 1998 bleaching event [82]. Baird and Marshall
[8] found that the bleaching response of Acropora millepora did not influence fecundity,
whereas the bleaching response of Acropora hyacinthus strongly influenced the completion of
gametogenesis. It is important to emphasize that although reproductive capacity after bleach-
ing events can be greatly suppressed, there are species and populations that are resistant and/
or more able to recover from bleaching [7,8,17,39,59,82]. Distinctive populations carrying
resilient individuals are critical to identify and protect, particularly if they are successful in
continuing sexual reproduction to replenish impacted neighboring reefs [83,84]. Coral repro-
ductive modes and strategies have evolved to withstand environmental fluctuations and severe
selective pressures, but the question of how much thinning can a population withstand without
complete collapse remains.

4.2 Parental effects on fertilization and offspring survivorship

We demonstrate parental effects, or cross-generational plasticity, in M. capitata, with parent
cross-type having an effect on fertilization and embryonic development with maternal effects
apparent in offspring survivorship. Fertilization success differed by cross-type which may be
due to gametic compatibility [85]. Such compatibility could be driven by gamete-recognition
proteins that mediate fertilization through chemoattraction, binding, and fusion of egg and
sperm [85-87]. Furthermore, high gamete compatibility may explain the advanced rate in cell
division during embryogenesis in offspring from NB x NB and B x B cross-types. The lack of
compatibility observed in crosses between B x NB and B x NB could potentially result from
lineage crossing. However, in our study, we were unable to analyze the genetic composition of
the parent organisms and we could not determine if they belonged to distinct parental lineages.
Future studies should take into account parental lineages to better understand gamete compat-
ibility, inheritance patterns and traits that can lead to increased genetic diversity or novel off-
spring phenotypes.

Egg-sperm compatibility has been observed as a mechanism for pre-zygotic isolation to
select for populations that are likely to succeed under intense environmental pressures, such as
temperature [88-91]. With regards to sperm selection, Henley et al. [92] demonstrated sperm
motility in M. capitata is strained with a severe decline that may be associated with damaged
mitochondria in response to heat stress. Eggs from parent colonies that were resistant to
bleaching had offspring with notably higher survivorship regardless of the sperm donor
bleaching history [42]. More pronounced benefits of nonbleached egg donors support previ-
ous work of maternal provisioning in coral offspring [93-95]. Previous studies have demon-
strated that beneficial cross-generational plasticity can occur from maternal effects observed in
offspring survivorship. Benefits of maternal effects could be associated with phenotypic traits
that help overcome hurdles created by thermal stress such as energetic provisioning through
lipid reserves stored in the eggs and larvae [61,96,97], mitochondria [96], or vertical transmis-
sion of Symbiodinaceae from the parent into the eggs [64,94,97].

M. capitata houses the endosymbionts Cladocopium spp. and Durusdinium spp., formerly
Clade C and D, respectively. It has been shown that M. capitata colonies associate with Durus-
dinium spp. in more challenging environments such as high light and variable thermal regimes
[61,98,99]. After a bleaching event, there was a rise in the relative proportion of the heat-toler-
ant symbiont Durusdinium spp. in M. capitata colonies across most areas in Kane‘ohe Bay
[98]. However, despite this increase, the overall composition of Symbiodiniaceae symbionts

PLOS ONE | https://doi.org/10.1371/journal.pone.0290479  January 7, 2025 13/20


https://doi.org/10.1371/journal.pone.0290479

PLOS ONE

Coral sexual reproduction after bleaching

remained largely unchanged, and distinct regions of the bay retained their pre-bleaching com-
positions. In M. capitata, these symbionts are vertically transferred to the eggs creating off-
spring with different assemblages [64] that could confer different physiological attributes to
the offspring. For example, Little et al. [100] found that Acropora juveniles grew faster when
infected with Cladocopium spp. than Durusdinium spp. (formerly clade C and D, respectively)
and Abrego et al. (2008) showed enhanced physiological tolerance and higher '*C photosyn-
thate incorporation in juveniles infected with Cladocopium spp. (clade C1). Padilla-Gamifo

et al. [64] showed that Cladocopium spp. is more likely to be transferred to M. capitata eggs,
but further research is needed to better understand transfer mechanisms, and how different
symbionts influence survival, tolerance and/or tradeoffs in larvae and juveniles.

4.3 Interventions for thermal tolerance

Research on coral reefs has become greatly focused on identifying human interventions (i.e.,
assisted evolution) that support biological persistence and resilience against anthropogenic
stressors [101-103]. Developing effective interventions to implement has become increasingly
urgent to protect shallow-dwelling coral reef ecosystems [103]. Current strategies proposed to
overcome bottlenecks in early life history include identifying genetic adaptation [104], envi-
ronmental hardening through non-genetic or epigenetic mechanisms [105-110], manipula-
tion of Symbiodiniaceae symbionts [41,111,112], cryopreservation for coral conservation
[113], and selective breeding [94,95,114].

Human interventions, such as selective breeding in coral sexual propagation, has been pro-
posed as one of the viable options to maintain genetic diversity and increase resilience in resto-
ration efforts [15,102,103,105,115,116]; however, feasibility to potentially scale up efforts
remain limited and costly without full understanding of tradeofts [117,118]. Our study sup-
ports the potential for selective breeding and environmental hardening to have positive fitness
consequences. In our study, bleaching in M. capitata did not severely disrupt reproductive out-
put or egg traits measured (size and abnormality), but the use of eggs from NB colonies in the
intentional crossing of gametes produced offspring with higher settlement and survivorship,
while bleached corals had higher overall fecundity to balance reduced survivorship and settle-
ment. These results are important to maximize restoration efforts through selective breeding
by identifying candidate colonies in the natural environment or through manipulated stress
tests and performing crosses using the gametes of resilient colonies. We encourage further
research to test the efficacy and trade-offs of human-assisted evolution, particularly selective
propagation and environmental hardening, designed to increase coral resistance that would
ensure the continuation of coral reefs confronted by global climate change.
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