
European Journal of Applied Mathematics (2024), 1–21
doi:10.1017/S0956792524000822

PAPER

On the existence of solutions to adversarial training in
multiclass classification
Nicolás García Trillos1, Matt Jacobs2 and Jakwang Kim3

1Department of Statistics, University of Wisconsin-Madison, Madison, WI, USA
2Department of Mathematics, UC Santa Barbara, Santa Barbara, CA, USA
3Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada
Corresponding author: Nicolás García Trillos; Email: garciatrillo@wisc.edu

Received: 22 February 2024; Revised: 03 November 2024; Accepted: 05 November 2024

Keywords: existence of solutions for minimax problems; nonparametric robustness; general topics in artificial intelligence;
problem-solving in the context of artificial intelligence
2020 Mathematics Subject Classification: 49J35 (Primary); 62G35, 68T20 (Secondary)

Abstract
Adversarial training is a min-max optimization problem that is designed to construct robust classifiers against
adversarial perturbations of data. We study three models of adversarial training in the multiclass agnostic-classifier
setting. We prove the existence of Borel measurable robust classifiers in each model and provide a unified perspec-
tive of the adversarial training problem, expanding the connections with optimal transport initiated by the authors
in their previous work [21]. In addition, we develop new connections between adversarial training in the multi-
class setting and total variation regularization. As a corollary of our results, we provide an alternative proof of the
existence of Borel measurable solutions to the agnostic adversarial training problem in the binary classification
setting.

1. Introduction
Modern machine learning models, in particular those generated with deep learning, perform remarkably
well, in many cases much better than humans, at classifying data in a variety of challenging application
fields like image recognition, medical image reconstruction, and natural language processing. However,
the robustness of these learning models to data perturbations is a completely different story. For example,
in image recognition, it has been widely documented (e.g., [26]) that certain structured but human-
imperceptible modifications of images at the pixel level can fool an otherwise well-performing image
classification model. These small data perturbations, known as adversarial attacks, when deployed at
scale, can make a model’s prediction accuracy drop substantially and in many cases collapse altogether.
As such, they are a significant obstacle to the deployment of machine learning systems in security-critical
applications, e.g. [8]. To defend against these attacks, many researchers have investigated the problem of
adversarial training, i.e., training methods that produce models that are robust to attacks. In adversarial
training, one typically pits the adversary against the learner during the training step, forcing the learner
to select a model that is robust against attacks. Nonetheless, despite the attention that has been devoted
to understanding these problems, both theoretically and algorithmically, there are still several important
mathematical questions surrounding them that have not been well understood.

A fundamental difficulty in adversarial training, in contrast to standard training of learning models,
is the fact that the adversary has the power to alter the underlying data distribution. In particular, model
training becomes an implicit optimisation problem over a space of measures. As a result, one may be
forced to leave the prototypical setting of equivalence classes of functions defined over a single fixed

C© The Author(s), 2024. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction,
provided the original article is properly cited.

4  :�
  195�9�� ������
 ����	
�������������!065�421�986582�0#��/70�51�2�.85"2��5 #���2��

https://doi.org/10.1017/S0956792524000822
mailto:garciatrillo@wisc.edu
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0956792524000822&domain=pdf
https://doi.org/10.1017/S0956792524000822


2 N. García Trillos et al.

measure space. In general, measurability issues become more delicate for adversarial training problems
at the moment of providing a rigorous mathematical formulation for the problem. Due to these diffi-
culties, there are several subtle variations of the adversarial training model in the literature, and it has
not been clear whether these models are fully equivalent. More worryingly, for some models, even the
existence of optimal robust classifiers is unknown, essentially due to convexity and compactness issues.

Let us emphasise that these issues arise even in what can be regarded as the simplest possible setting
of the agnostic learner, i.e., where the space of classifiers is taken to be the set of all possible Borel
measurable weak (probabilistic) classifiers. While this setting is trivial in the absence of an adversary
(there the optimal choice for the learner is always the Bayes classifier), the structure of the problem is
much more subtle in the adversarial setting (in other words the analogue of the Bayes classifier is not
fully understood). With an adversary, the training process can be viewed as a two-player min-max game
(learner versus adversary) [4, 12, 32, 35], and as a result, the optimal strategies for the two players are
far from obvious. By relaxing the problem to the agnostic setting, one at least is working over a convex
space, but again measurability issues pose a problem for certain formulations of adversarial training.

In light of the above considerations, the purpose of this paper is twofold. On one hand, we provide
rigorous justification for the existence of Borel measurable robust classifiers in the multiclass classifi-
cation setting for three different models of adversarial training. Notably, our analysis includes a widely
used model for which the existence of Borel classifiers was not previously known. On the other hand, we
develop a series of connections between the three mathematical models of adversarial training discussed
throughout the paper exploiting ideas from optimal transportation and total variation minimisation. By
developing these connections, we hope to present a unified formulation of adversarial training and high-
light the prospective advantages of using tools in computational optimal transport for solving these
problems in the agnostic-classifier setting (and perhaps beyond the agnostic setting too). We also high-
light, in concrete terms, the connection between adversarial training and the direct regularisation of
learning models. To achieve all the aforementioned goals, we expand and take advantage of our previ-
ous work [21] as well as of the work [15] exploring the connection between adversarial training and
perimeter minimisation in the binary classification setting.

1.1 Organisation of the paper
The rest of the paper is organised as follows. In Section 2, we introduce three different models for adver-
sarial training in the multiclass classification setting that we will refer to as the open-ball model, the
closed-ball model and the distributional-perturbing model. In Section 2.1, we state our main mathemat-
ical results, and in Section 2.2, we discuss related literature and some of the implications of our results. In
Section 3, we lay down the main mathematical tools for analysing the distributional-perturbing model.
Part of these tools come directly from our previous work [21], while others are newly developed. In
Section 4, we prove our main results: first, we prove the existence of solutions for the distributional-
perturbing model (Section 4.1); then, we prove that solutions to the distributional-perturbing model are
solutions to the closed-ball model (Section 4.2); finally, we relate the closed-ball model to the open-ball
model in Section 4.3. Lastly, in Section 5, we wrap up the paper and discuss future research directions.

2. Set-up and main results
The setting of our problem will be a feature space (X , d) (a Polish space with metric d) and a label
space Y := {1, . . . , K}, which will represent a set of K labels for a given classification problem of
interest. For each x ∈ X , we will use Bε(x) (Bε(x), respectively) to denote an open (closed) ball with
radius ε centred at x. We denote by Z := X × Y the set of input-to-output pairs and endow it with a
Borel probability measure µ ∈ P(Z ), representing a ground-truth data distribution. For convenience,
we will often describe the measure µ in terms of its class probabilities µ = (µ1, . . . , µK), where each
µi is the positive Borel measure (not necessarily a probability measure) over X defined according to:
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µi(A) = µ(A × {i}),
for A ∈B(X ), i.e., A is a Borel measurable subset of X . Notice that the measures µi are, up to
normalisation factors, the conditional distributions of inputs/features given the different output labels.

Typically, a (multiclass) classification rule in the above setting is simply a Borel mea-
surable map f :X → Y . In this paper, however, it will be convenient to expand this notion
slightly and interpret general classification rules as Borel measurable maps from X into "Y :={
(ui)i∈Y :0 ≤ ui ≤ 1,

∑
i∈Y ui ≤ 1

}
, the set of (up to normalisation constants) probability distributions

over Y (see Remark 2.2); oftentimes these functions are known as soft-classifiers. For future reference,
we denote by F the set

F := {f :X → "Y :f is Borel measurable} . (1)

Given f ∈ F and x ∈ X , the vector f (x) = (f1(x), . . . , fK(x)) will be interpreted as the vector of probabil-
ities over the label set Y that the classifier f assigns to the input data point x. In practice, from one such
f , one can induce actual (hard) class assignments to the different inputs x by selecting the coordinate in
f (x) with largest entry. The extended notion of classifier considered in this paper is actually routinely
used in practice as it fares well with the use of standard optimisation techniques (in particular, F is
natural as it can be viewed as a convex relaxation of the space of maps from X to Y ).

The goal in the standard (unrobust) classification problem is to find a classifier f ∈ F that gives
accurate class assignments to inputs under the assumption that data points are distributed according to
the ground-truth distribution µ. This aim can be mathematically modelled as an optimisation problem
of the form:

inf
f ∈F

R(f , µ), (2)

where R(f , µ) is the risk of a classifier f relative to the data distribution µ:

R(f , µ) := E(X,Y)∼µ[#(f (X), Y))].

Here, a loss function is defined as #:"Y × Y →R. For general and reasonable #, one can observe
that solutions to the risk minimisation Problem (2) are the standard multiclass Bayes classifiers from
statistical learning theory (e.g., see [13, 40]). These classifiers are characterised by the condition
f $
Bayes,i(x) = argmaxi∈Y P(Y = i|X = x) with an arbitrary tie-breaking rule, and such Bayes classifier is
written as f $

Bayes(x) = (1A$
1
(x), . . . , 1A$

K
(x)), where A$

1, . . . , A$
K form a measurable partition of X . In other

words, there always exist hard classifiers that solve the risk minimisation Problem (2).
By definition, a solution to (2) classifies clean data optimally; by clean data here we mean data

distributed according to the original distribution µ. However, one should not expect the standard Bayes
classifier to perform equally well when inputs have been adversarially contaminated, and the goal in
adversarial training is precisely to create classifiers that are less susceptible to data corruption. One
possible way to enforce this type of robustness is to replace the objective function in (2) with one that
incorporates the actions of a well defined adversary and then search for the classifier that minimises
the new notion of (adversarial) risk. This adversarial risk can be defined in multiple ways, but two
general ways stand out in the literature and will be the emphasis of our discussion; we will refer to these
two alternatives as the data-perturbing adversarial model and the distribution-perturbing adversarial
model. More precisely, the data-perturbing adversarial model is generally defined as

inf
f ∈F

E(X,Y)∼µ

[

sup
X̃∈Aε (X)

#(f (X̃), Y)

]

where Aε( · ) is a measurable set parameterised by and adversarial budget ε (usually, closed/open ball
with radius ε), and the distribution-perturbing adversarial model is defined as:

inf
f ∈F

sup
µ̃

E(X̃ ,̃Y)∼µ̃

[
#(f (X̃), Ỹ) − Cε(µ, µ̃)

]
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where Cε(µ, µ̃) is some cost or distance over P(Z ). Although the interpretation of these models is
straightforward, their theoretical underpinnings are not completely understood. This is true even for the
simple linear loss function

#(u, i) = 1 − ui, (u, i) ∈ "Y × Y ,

which, in lieu of the fact that #(ej, i) is equal to 1 if i (= j and 0 if i = j (ej is the extremal point of "Y

with entry one in its j-th coordinate), will be referred to as the 0-1 loss. We will focus on this important
case from now on. With this choice, R(f , µ) can be written explicitly as:

R(f , µ) =
∑

i∈Y

∫

X

(1 − fi(x))dµi(x).

As it turns out, some results in the literature have established some connections between the two
types of models (see [35] for more details), and we will develop further connections shortly. For the
data-perturbing adversarial model, we will consider the following two versions:

R$
open(ε) := inf

f ∈F
R$

open(f ;ε) := inf
f ∈F

{
∑

i∈Y

∫

X

sup
x̃∈Bε (x)

{1 − fi (̃x)}dµi(x)

}

, (3)

and

inf
f ∈F

{
∑

i∈Y

∫

X

sup
x̃∈Bε (x)

{1 − fi (̃x)}dµi(x)

}

. (4)

Recall Bε(x) (Bε(x), respectively) denotes an open (a closed) ball. In both versions, the adversary can
substitute any given input x with a x̃ that belongs to a small ball of radius ε around the original x. The
adversary has more power to perturb an input x by x̃ with a larger ε since more powerful deviation will
be possible with larger ε. Due to measurability issues that we will discuss next, at this stage, Problem
(4) is introduced informally.

In both Problems (3) and (4), the learner’s goal is to minimise the worst-loss that the adversary
may induce by carrying out one of their feasible actions. Although at the heuristic level the difference
between the two models is subtle (in (3) the adversary optimises over open balls and in (4) over closed
balls), at the mathematical level these two models can be quite different. For starters, the Problem (4)
is not well formulated, as it follows from a classical result in [30], which discusses that, in general, the
function x )→ supx̃∈Bε (x){1 − fi(x̃)} may not be Borel measurable when only the Borel measurability of the
function fi has been assumed. For this reason, the integral with respect to µi in (4) (which is a Borel
positive measure, i.e., it is only defined over the Borel σ -algebra) may not be defined for all f ∈ F .
In Subsection 2.1, we will provide a rigorous formulation of (4), which we will call the closed-ball
Model (9) because the adversarial attack lies in the closed ball. This reformulation will require the use
of an extension of the Borel σ -algebra, known as the universal σ -algebra, as well as an extension of the
measures µi to this enlarged σ -algebra. Problem (3), on the other hand, is already well formulated, as
no measurability issues arise when taking the sup over open balls. At a high level, this is a consequence
of the fact that arbitrary unions of open balls are open sets and thus Borel measurable; see, for example,
[15, Remark 2.3]. Regardless of which of the two models one adopts, and putting aside for a moment
the measurability issues mentioned above, it is unclear whether it is possible to find minimisers for any
of the Problems (3) and (4) within the family F .

Moving on to the distributional-perturbing adversarial model, notice that it is defined as a minimax
problem that can be described as follows: after the adversary selects a new data distribution µ̃ ∈ P(Z )
and, by paying some cost C(µ, µ̃), attempts to make the risk R(·, µ̃) be as large as possible, the learner
has chosen a classifier f ∈ F . The reverse interpretation is also true due to the strong duality of (5) in
Ref. [21]. Theorem 2.5, furthermore, implicitly implies the strong duality as a corollary since it proves
a stronger result, the existence of saddle points (Nash equilibria).
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Precisely, the distributional-perturbing adversarial model can be rewritten as:
R$

DRO(ε) := inf
f ∈F

sup
µ̃∈P(Z )

{R(f , µ̃) − C(µ, µ̃)} , (5)

where we assume the cost C:P(Z ) × P(Z ) → [0, ∞] takes the form:

C(µ, µ̃) := inf
π∈'(µ,µ̃)

∫
cZ (z, z̃)dπ (z, z̃),

for some Borel measurable cost function cZ :Z × Z → [0, ∞]. Here and in the remainder of the paper,
we use '(·, ·) to represent the set of couplings between two positive measures over the same space; for
example, '(µ, µ̃) denotes the set of positive measures over Z × Z whose first and second marginals are
µ and µ̃, respectively. Note that Problem (5) is an instance of the distributionally robust optimisation
(DRO) problem. Problem (5) is well defined given that all its terms are written as integrals of Borel
measurable integrands against Borel measures.

In the remainder, we will assume that the cost cZ :Z × Z → [0, ∞] has the form

cZ (z, z̃) :=





c(x, x̃) if y = ỹ,

∞ otherwise
(6)

for a lower semi-continuous function C:X × X → [0, ∞]. Note that when cZ has the above structure,
we can rewrite C(µ, µ̃) as:

C(µ, µ̃) =
K∑

i=1

C(µi, µ̃i),

where on the right-hand side, we slightly abuse notation and use C(µi, µ̃i) to represent

C(µi, µ̃i) := inf
π∈'(µi ,µ̃i)

∫
c(x, x̃)dπ (x, x̃).

Although R$
DRO(ε) seems not to depend on ε explicitly unlike Problems (3) and (4), readers can under-

stand that a cost function c relies implicitly on the choice of adversarial budget ε. The most popular
example, in both theory and practice, of a cost function c, that we discuss in detail throughout this paper
is the 0-∞ cost function:

c(x, x̃) = cε(x, x̃) :=





∞ if d(x, x̃) > ε

0 if d(x, x̃) ≤ ε.
(7)

Similar to (3) and (4), a larger ε means more powerful adversarial attacks, as the adversary may select
arbitrary µ̃ at no cost.

Remark 2.1. Throughout the paper, we use the convention that C(µi, µ̃i) = ∞ whenever the set of
couplings '(µi, µ̃i) is empty. This is the case when µi and µ̃i have different total masses.

Remark 2.2. Given the structure of the 0–1 loss function considered here, in all the adversarial models
introduced above, we may replace the set F with the set of those f ∈ F for which

∑
i fi = 1. Indeed,

given f ∈ F , we can always consider f̃ ∈ F defined according to f̃i0 := fi0 + (1 −∑
i∈Y fi) and f̃i = fi for

i (= i0 to obtain a value of risk that is no greater than the one of the original f .

2.1 Main results
Our first main theorem discusses the existence of (Borel) solutions for Problem (5) under the assumptions
on the cost c:X × X → [0, ∞] stated below.

Assumption 2.3. We assume that the cost c:X × X → [0, ∞] is a lower semi-continuous and sym-
metric function satisfying c(x, x) = 0 for all x ∈ X . We also assume that the following compactness
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property holds: if {xn}n∈N is a bounded sequence in (X , d) and {xn
+}n∈N is a sequence satisfying

supn∈N c(xn, xn
+) < ∞, then {(xn, xn

+)}n∈N is precompact in X × X (endowed with the product topology).

Remark 2.4. Notice that Assumption 2.3 implicitly requires bounded subsets of X to be precompact.
In particular, when the cost has the form as in (7), Assumption 2.3 implies that every bounded subset in
X should be precompact. We want to emphasise that this assumption is not too strong and is satisfied
in many natural settings, e.g., Euclidean spaces or smooth manifolds of finite dimension endowed with
its geodesic distance.

A simple cost function c, which does not satisfy Assumption 2.4, is

c+(x, x̃) =





∞ if d(x, x̃) ≥ ε

0 if d(x, x̃) < ε.

This is almost the same as (7), but c+ is no longer lower semi-continuous. One can easily see that replacing
cε by c+ changes the closed-ball model (4) to the open-ball model (3). It is reasonable to expect that c+

plays almost the same as cε: we will see that indeed this is true in Theorem 2.8.

Theorem 2.5. Suppose that c:X × X → [0, ∞] satisfies Assumption 2.3. Then there exists a (Borel)
solution f $ of the DRO model (5). Furthermore, there exists µ̃$ ∈ P(Z ) such that (f $, µ̃$) is a saddle
point for (5). In other words, the following holds: for any µ̃ ∈ P(Z ) and any f ∈ F , we have

R(f $, µ̃) − C(µ, µ̃) ≤ R(f $, µ̃$) − C(µ, µ̃$) ≤ R(f , µ̃$) − C(µ, µ̃$). (8)

When the cost function c is regular enough or when µ is an empirical measure, we can reduce the
problem of finding a solution f $ of (5) to the problem of solving the dual of a generalised barycenter
problem or the dual of a multimarginal optimal transport problem. These connections were first put
forward in our earlier work [21] and will be discussed again in Section 3, concretely in Proposition 3.10.
Unfortunately, when the cost is only lower semi-continuous (e.g., for c as in (7)) and when µ is an
arbitrary Borel probability measure, we cannot directly use the content of Proposition 3.10 to guarantee
the existence of (Borel) solutions f $. To overcome this issue, we approximate c with a sequence of
continuous costs cn such that the previous theory applies. We then show that both the optimality and
the Borel measurability of the optimal classifier are preserved in the limit. At a high level, we can thus
reduce finding solutions for the DRO Problem (5) to that of an multimarginal optimal transport (MOT)
or a generalised barycenter (or sequences thereof).

Next, we revisit Problem (4) and reformulate it in a rigorous way. Let us first introduce the universal
σ -algebra of the space X .

Definition 1. [33, Definition 2.2]. Let B(X ) be the Borel σ -algebra over X , and let M (X ) be the
set of all signed σ -finite Borel measures over X . For each ν ∈ M (X ), let Lν(X ) be the completion
of B(X ) with respect to ν. The universal σ -algebra of X is defined as:

U (X ) :=
⋂

ν∈M (X )

Lν(X ).

We will use P(Z ) to denote the set of probability measures γ over Z for which γi is a universal
positive measure (i.e., it is defined over U (X )) for all i ∈ Y . For a given probability measure µ ∈
P(Z ), we will denote by µ its universal extension, which will be interpreted as:

µ(A × {i}) := µi(A), ∀A ∈ U (X ),

where µi is the extension of µi to U (X ).

Having introduced the above notions, we can reformulate Problem (4) as:

R$
closed(ε) := inf

f ∈F
R$

closed(f ;ε) := inf
f ∈F

{
∑

i∈Y

∫

X

sup
x̃∈Bε (x)

{1 − fi(̃x)}dµi(x)

}

. (9)
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Although the difference with (4) is subtle (in [4] we use µi’s whereas in [9] we use µi’s), Problem (9)
is rigorously well defined. Indeed, combining [35, Lemma 4.2] with [6, Corollary 7.42.1], which was
originally proved in Ref. [30], it follows that for any Borel measurable fi, the function x )→ supx̃∈Bε (x){1 −
fi(x̃)} is universally measurable and thus the integrals on the right-hand side of (9) are well defined.

Remark 2.6. Similar to the universal extension of Borel measure, one might want to extend the solution
space F to F , which is the set of all f = (f1, . . . , fK) for which each 0 ≤ fi ≤ 1 is universally measurable
and

∑
fi ≤ 1. However, unless X =Rd, extending the solution space requires hierarchical extension of

measures, i.e. universal extension of universal extension: see [33]. Note that on Rd, every universally
measurable set is Lebesgue measurable.

Our second main result relates solutions of (5) with solutions of (9).

Theorem 2.7. There exists a Borel solution of (5) for the cost function c defined in (7) that is also a
solution of (9). In particular, there exists a (Borel) solution for (9).

Finally, we connect Problem (9) with Problem (3).

Theorem 2.8. For all but at most countably many ε ≥ 0, we have R$
open(ε) = R$

closed(ε). Moreover, for
those ε ≥ 0 for which this equality holds, every solution f $ of (9) is also a solution of (3).

Remark 2.9. Theorem 2.8 is optimal in general. One cannot expect the optimal adversarial risks of (3)
and (9) to agree for all values of ε. To illustrate this, consider the simple setting of a two-class problem
(i.e., K = 2) where µ1 = 1

2
δx1 and µ2 = 1

2
δx2 , where δx denotes the usual Dirac delta measure at x. Let

ε0 = 1
2
d(x1, x2). It is straightforward to check that R$

open(ε0) = 0 whereas R$
closed(ε0) = 1/2. Naturally, if we

had selected any other value for ε > 0 different from ε0, we would have obtained R$
open(ε) = R$

closed(ε).

From Theorems 2.5, 2.7 and 2.8, we may conclude that it is essentially sufficient to solve Problem
(5) to find a solution for all other formulations of the adversarial training problem discussed in this
paper. Our results thus unify all notions of adversarial robustness into the single DRO problem, (5). The
advantage of (5) over the other formulations of the adversarial training problem is that it can be closely
related to a generalised barycenter problem or an MOT problem, as has been discussed in detail in our
previous work [21] (see also section 3 below). In turn, either of those problems can be solved using
computational optimal transport tools. Recently, in [36], the authors propose fast algorithms for solving
(5). From a practical perspective, hence, it is thus easier to work with the DRO formulation than with
the other formulations of adversarial training.

2.2 Discussion and literature review
The existence of measurable “robust” solutions to optimisation problems has been a topic of interest
not only in the context of adversarial training of classification problem [2, 3, 19, 20, 35] but also in
the general DRO literature, e.g., [9–11, 28]. Most previous studies of robust classifiers use the universal
σ -algebra not only to formulate optimisation problems rigorously, but also as a feasible search space for
robust classifiers. The proofs of these existence results rely on the pointwise topology of a sequence of
universally measurable sets, the weak topology on the space of probability measures, and lower semi-
continuity properties of R$

closed( · ;ε). The (universal) measurability of a minimiser is then guaranteed
immediately by the definition of the universal σ -algebra. We want to emphasise that all the works
[2, 3, 19, 20, 35] prove their results in the binary (K = 2) classification setting where X is a subset
of Euclidean space.

In contrast to the closed-ball model formulation, the objective in (5) is well defined for all Borel prob-
ability measures µ̃ and all f ∈ F , as has been discussed in previous sections. The papers [2, 3, 35] can
only relate, in the binary setting, problems (5) and (9) when problem (5) is appropriately extended to the
universal σ -algebra, yet it is not clear that such extension is necessary. Recently, the authors of [19, 20]
remove this technical redundancy and prove the existence of Borel robust classifiers (and consistency)
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for the binary classification over Euclidean space. However, it is not obvious that the proof techniques
in those papers can be extended to the multiclass setting. The proof technique that we implement in this
paper allows us to consider all cases at once, while at the same time allows us to reveal the connections
between many of the different models for adversarial training that exist in the literature.

For concreteness, we summarise some related results in the literature in the following theorem. Let
F denote the set of all f = (f1, . . . , fK) for which each 0 ≤ fi ≤ 1 is universally measurable and

∑
fi ≤ 1.

Theorem 2.10. [2, 3, 19, 20, 35]. Suppose K = 2 and µ ∈ P(Z ). Then, for any f ∈ F , we have
sup̃x∈Bε (x){1 − fi (̃x)} ∈ U (Z ) and

2∑

i=1

∫

X

sup
x̃∈Bε (x)

{1 − fi (̃x)}dµi(x) = sup
µ̃∈P(Z )

{R(f , µ̃) − C(µ, µ̃)} ,

where C is defined in terms of the cost function c from (7).
Assume further that (X , d) = (Rd, || · ||). Then, it holds that sup̃x∈Bε (·){1 − fi(̃x)} is universally mea-

surable for any f ∈ F . Also, there exists a universally measurable minimiser ([2, 3, 35]) and a Borel
measurable minimiser ([19, 20]). Finally, the values of (9) and (5) for the binary setting coincide.

In this paper, we use the universal σ -algebra only for the rigorous description of the objective function
in (9). Instead, we will focus on Borel measurable classifiers in the adversarial training in the multiclass
setting. First, based on some of our previous results in [21], we will prove the existence of Borel mea-
surable robust classifiers of (5) for general lower semi-continuous c satisfying Assumption 6 only in
the multiclass setting. This extension is not immediate from all previous results since most techniques
there are tailored for the binary setting. Our proof, however, is much simpler even in this general set-
ting. Employing the combination of duality, an approximation argument, and well known theorems of
optimal transport literature, we will be able to achieve our goal. Then, back to the closed-ball model, we
prove the existence of Borel robust classifiers of (9) by proving that solutions to the DRO model with
cost cε are also solutions to the closed-ball model problem. Furthermore, based on a simple but impor-
tant observation connecting (9) and (3), Theorems 2.7 and 2.8 imply that (5), (9) and (3) are indeed
equivalent (at least for almost all values of adversarial budget) in the sense that if f $ is a Borel minimiser
of one of them, then it is a minimiser of others automatically, which is a new and stronger result in the
adversarial training literature.

When we specialise our results to the binary classification setting (i.e., K = 2), we obtain the
following improvement upon the results from [7, 20, 34].

Corollary 2.11. Let K = 2 and let f $ ∈ F be any solution to the problem (9). Then, for Lebesgue a.e.
t ∈ [0, 1], the pair (1{f $

1 ≥t}, 1{f $
1 ≥t}c ) is also a solution to (9).

In particular, there exist solutions to the problem

min
A∈B(X )

∫

X

sup
x̃∈Bε (x)

1Ac (x̃)dµ1(x) +
∫

X

sup
x̃∈Bε (x)

1A(x̃)dµ2(x).

Notice that Corollary 2.11 implies, for the binary setting, the existence of robust hard classifiers for the
adversarial training problem, a property shared with the standard risk minimisation Problem (2) that we
discussed at the beginning of Section 2. Analogous results on the equivalence of the hard-classification
and soft-classification problems in adversarial training under the binary setting have been obtained in
[15, 24, 34, 35]. Unfortunately, when the number of classes is such that K > 2, the hard-classification
and soft-classification problems in adversarial training may not be equivalent, as has been discussed in
[21, Section 5.2].

In light of Theorem 2.8, one can conclude from Corollary 2.11 that for all but countably many ε > 0
the problem

min
A∈B(X )

∫

X

sup
x̃∈Bε (x)

1Ac (x̃)dµ1(x) +
∫

X

sup
x̃∈Bε (x)

1A(x̃)dµ2(x)
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admits solutions; notice that the above is the open-ball version of the optimisation problem in Corollary
2.11. However, notice that the results in [15] guarantee existence of solutions for all values of ε. It is
interesting to note that the technique used in [15] cannot be easily adapted to the multiclass case K > 2.
Specifically, it does not seem to be straightforward to generalise [15, Lemma C.1] to the multiclass case
since it implicitly relies on the fact that one can always find an optimal hard classifier, i.e. an optimal
decision boundary in the binary setting. Since for f = (f1, f2), f2 = 1 − f1, f is basically a real-valued
function f1. Tailoring f1 suitably, one can replace sup by ess sup (inf by ess inf similarly), and use Lp

spaces, which provide an appropriate topology for the purpose. For example, however, if one used the
aforementioned lemma to modify the coordinate functions fi of a multiclass classifier f , one could end
up producing functions for which their sum may be greater than one for some points in X , thus violating
one of the conditions for belonging to F .

We observe, on the other hand, that the total variation regularisation interpretation for the open ball
model in the binary setting discussed in Ref. [15] continues to hold in the multiclass case. To make this
connection precise, let us introduce the non-local TV functionals:

T̃Vε(fi, µi) := 1
ε

∑

i∈Y

∫

X

sup
x̃∈Bε (x)

{fi(x) − fi (̃x)}dµi(x).

It is then straightforward to show that Problem (3) is equivalent to

inf
f ∈F

K∑

i=1

∫

X

(1 − fi(x))dµi(x) + ε

K∑

i=1

T̃Vε(fi, µi), (10)

which can be interpreted as a total variation minimisation problem with fidelity term. Indeed, the fidelity
term in the above problems is the standard (unrobust) risk R(f , µ). On the other hand, the functional
T̃Vε(·, µi) is a non-local total variation functional in the sense that it is convex, positive 1-homogeneous,
invariant under addition of constants to the input function and is equal to zero when its input is a constant
function. Moreover, in the case (X , d) = (Rd, ‖·‖) and when dµi(x) = ρi(x)dx for a smooth function ρi,
one can see that, for small ε > 0,

T̃Vε(fi, µi) ≈
∫

X

|∇fi(x)| ρi(x)dx,

when fi is a smooth enough function. The functional T̃Vε(fi, µi) is thus connected to more standard
notions of (weighted) total variation in Euclidean space. This heuristic can be formalised further via
variational tools, as has been done recently in Ref. [16].

Total variation regularisation with general TV functionals is an important methodology in imaging,
and also in unsupervised and supervised learning on graphs, where it has been used for community detec-
tion, clustering, and graph trend-filtering; e.g., see [5, 14, 17, 18, 23, 25, 27, 29, 31, 37] and references
therein.

3. Distributional-perturbing model and its generalised barycenter formulation
In this section we introduce some tools and develop a collection of technical results that we use in
Section 4 when proving Theorem 2.5.

3.1 Generalized barycenter and MOT problems
In our work [21], we introduced the following generalised barycenter problem. Given µ ∈ P(Z ), we
consider the optimisation problem

inf
λ,µ̃1,...,µ̃K

{

λ(X ) +
∑

i∈Y

C(µi, µ̃i): λ ≥ µ̃i for all i ∈ Y

}

. (11)
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In the above, the infimum is taken over positive (Borel) measures µ̃1, . . . , µ̃K and λ satisfying the con-
straints λ ≥ µ̃i for all i ∈ Y . This constraint must be interpreted as: λ(A) ≥ µ̃i(A) for all A ∈B(X ).
Problem (11) can be understood as a generalisation of the standard (Wasserstein) barycenter problem
studied in [1]. Indeed, if all measures µ1, . . . , µK had the same total mass and the term λ(X ) in (11) was
rescaled by a constant . ∈ (0, ∞), then, as . → ∞, the resulting problem would recover the classical
barycenter problem with pairwise cost function c. As stated, one can regard (11) as a partial optimal
transport barycenter problem: we transport each µi to a part of λ while requiring the transported masses
to overlap as much as possible (this is enforced by asking for the term λ(X ) to be small). For the canon-
ical example c defined in (7), allowable µ̃i is a positive measure with the same mass of µi such that its
support is away from the support of µi as most ε almost-surely (otherwise, (11) becomes ∞). Then, as
long as C(µi, µ̃i) = 0, the optimal strategy to minimise (11) is to reduce λ(X ), i.e. to enlarge the overlap
between µ̃i and µ̃j as much as possible, which engenders smaller λ.

We recall a result from Ref. [21], which essentially states that the generalised barycenter Problem
(11) is dual to (5).

Theorem 3.1. [21, Proposition 7 and Corollary 32]. Suppose that c satisfies Assumption 2.3. Then
(5) = 1 − (11).

Furthermore, the infimum of (11) is attained. In other words, there exists (λ$, µ̃$) which minimises (11).

Like classical barycenter problems, (11) has an equivalent MOT formulation. To be precise, we use
a stratified multimarginal optimal transport problem to obtain an equivalent reformulation of (11).

Theorem 3.2. [21, Proposition 14 and Proposition 15]. Suppose that c satisfies Assumption
2.3. Let SK := {A ⊆ Y :A (= ∅}. Given A ∈ SK , define cA:X K → [0, ∞] as cA(x1, . . . , xK) :=
infx

+∈X

∑
i∈A c(x+, xi).

Consider the problem:

inf
{πA:A∈SK }

∑

A∈SK

∫

X K

(
cA(x1, . . . , xK) + 1

)
dπA(x1, . . . , xK)

s.t.
∑

A∈SK (i)

Pi #πA = µi for all i ∈ Y ,
(12)

where Pi is the projection map Pi:(x1, . . . , xK) )→ xi, and SK(i) := {A ∈ SK : i ∈ A}. Then (11)=(12).
Also, the infimum in (12) is attained.

Remark 3.3. Even though cA and πA above are defined over X K , only the coordinates i where i ∈ A
actually plays a role in the optimisation problem. Also, notice that (12) is not a standard MOT problem
since in (12) we optimise over several couplings πA (each with its own cost function cA) that are connected
to each other via the marginal constraints. We refer to this type of problem as a stratified MOT problem.

In the following theorem, we discuss the duals of the generalised barycenter problem and its MOT
formulation. The notions of c-transform and c-transform, whose definition we revisit in Appendix B,
play an important role in these results.

Theorem 3.4. [21, Proposition 22 and Proposition 24]. Suppose that c satisfies Assumption 2.3. Let
Cb(X ) be the set of bounded real-valued continuous functions over X . The dual of (11) is

sup
f1,...,fK∈Cb(X )

∑

i∈Y

∫

X

f c
i (xi)dµi(xi)

s.t. fi(x) ≥ 0,
∑

i∈Y

fi(x) ≤ 1, for all x ∈ X , i ∈ {1, . . . , K},
(13)

and there is no duality gap between primal and dual problems. In other words, (11)=(13). In the above,
f c
i denotes the c-transform of fi as introduced in Definition 3.
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The dual of (12) is

sup
g1,...,gK∈Cb(X )

∑

i∈Y

∫

X

gi(xi)dµi(xi)

s.t.
∑

i∈A

gi(xi) ≤ 1 + cA(x1, . . . , xK) for all (x1, . . . , xK) ∈ X K , A ∈ SK ,
(14)

and there is no duality gap between primal and dual problems. In other words, (12)=(14).
If, in addition, the cost function c is bounded and Lipschitz, then (14) is achieved by g ∈ Cb(X )K .

Also, for f feasible for (13), g+ := f c is feasible for (14). Similarly, for g feasible for (14), f + = max{g, 0}c

is feasible for (13). Therefore, the optimisation of (14) can be restricted to non-negative g satisfying
gi = gcc

i , or 0 ≤ gi ≤ 1 for all i ∈ Y . The notion of c-transform is also introduced in Definition 3.

Remark 3.5. By combining Theorem 3.1, Theorem 3.2 and Theorem 3.4, we conclude that
1-(14)=(5).

Remark 3.6. A standard argument in optimal transport theory shows that problem (14) is equivalent to

sup
g1,...,gK

∑

i∈Y

∫

X

gi(xi)dµi(xi), (15)

where the sup is taken over all (g1, . . . , gK) ∈∏i∈Y L∞(X ;µi) satisfying: for any A ∈ SK ,
∑

i∈A

gi(xi) ≤ 1 + cA(x1, . . . , xK)

for ⊗iµi-almost every tuple (x1, . . . , xK). Here, L∞(X ;µi) is defined as:

L∞(X ;µi) :=
{
f :X →R: measurable, ess supµi

|f | < ∞
}

.

Indeed, notice that since (14) has already been shown to be equal to (12), the claim follows from the
observation that any feasible g1, . . . , gK for (15) satisfies the condition

∑

i∈Y

∫

X

gi(xi)dµi(xi) ≤
∑

A∈SK

∫

X K
(1 + cA(x1, . . . , xK))dπA(x1, . . . , xK)

for every {πA}A∈SK satisfying the constraints in (12).

3.2 Existence of optimal dual potentials g for general lower semi-continuous costs
We already know from the last part in Theorem 3.4 that if c is bounded and Lipschitz, then there is a
feasible g ∈ Cb(X )K that is optimal for (14). In this subsection, we prove an analogous existence result in
the case of a general lower semi-continuous cost function c satisfying Assumption 2.3. More precisely,
we prove existence of maximisers for (15). We start with an approximation result.

Lemma 3.7. Let c be a cost function satisfying Assumption 2.3. For each n ∈N, let

cn(x, x+) := min{c̃n(x, x+), n},
where

c̃n(x, x+) := inf
(x̃,x̃

+
)∈X ×X

{c(x̃, x̃+) + nd(x, x̃) + nd(x+, x̃+)}.

Then the following properties hold:
1. cn is bounded and Lipschitz.
2. cn ≤ cn+1 ≤ c and c̃n ≤ c̃n+1 for all n ∈N.
3. limn→∞ cn(x, x+) = c(x, x+) for all (x, x+) ∈ X × X .
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Proof. First, it is easy to see that c̃n is Lipschitz. Truncating it by n, finally, we obtain a bounded
Lipschitz cost function cn. Hence, items (1) and (2) are straightforward to prove. To prove item (3), notice
that due to the monotonicity of the cost functions, we know that limn→∞ cn(x, x+) exists in [0, ∞] and
limn→∞ cn(x, x+) ≤ c(x, x+). If limn→∞ cn(x, x+) = ∞, then we would be done. Hence, we may assume that
limn→∞ cn(x, x+) < ∞. From the definition of cn, it then holds that limn→∞ c̃n(x, x+) = limn→∞ cn(x, x+) <

∞. Let (xn, xn
+) ∈ X × X be such that

c(xn, xn
+) + nd(x, xn) + nd(x+, xn

+) ≤ c̃n(x, x+) + 1
n

.

Since c(xn, xn
+) ≥ 0, the above implies that limn→∞ d(x, xn) = 0 and limn→∞ d(x+, xn

+) = 0. Indeed, if this
was not the case, then we would contradict limn→∞ c̃n(x, x+) < ∞. By the lower semi-continuity of the
cost function c, we then conclude that

c(x, x+) ≤ lim inf
n→∞

c(xn, xn
+) ≤ lim inf

n→∞
c(xn, xn

+) + nd(x, xn) + nd(x+, xn
+) ≤ lim inf

n→∞
c̃n(x, x+)

= lim
n→∞

cn(x, x+) ≤ c(x, x+),

from where the desired claim follows.

Lemma 3.8. Let c be a cost function satisfying Assumption 2.3, and let cn be the cost function defined
in Lemma 3.7. For each A ∈ SK , let

cA,n(xA) := inf
x
+∈X

∑

i∈A

cn(x+, xi), and cA(xA) := inf
x
+∈X

∑

i∈A

c(x+, xi),

where we use the shorthand notation xA = (xi)i∈A. Then cA,n monotonically converges towards cA pointwise
for all A ∈ SK , as n → ∞.

Proof. Fix A ∈ SK and xA := (xi)i∈A ∈ X |A|. From Lemma 3.7, it follows cA,n ≤ cA,n+1 ≤ cA. Therefore,
for a given xA, limn→∞ cA,n(xA) exists in [0, ∞] and is less than or equal to cA(xA). If the limit is ∞, we
are done. We can then assume without the loss of generality that limn→∞ cA,n(xA) < ∞. We can then find
sequences {xn,i}n∈N, {xn,i

+}n∈N and {xn
+}n∈N such that for all large enough n ∈N

∑

i∈A

c(xn,i
+, xn,i) + n(

∑

i∈A

(d(xn,i, xi) + d(xn,i
+, xn

+))) ≤ cA,n(xA) + 1
n

.

From the above, we derive that limn→∞ d(xn,i
+, xn

+) = 0 and limn→∞ d(xn,i, xi) = 0. Hence, it follows
that lim supn→∞ c(xn,i

+, xn,i) < ∞. Combining the previous facts with Assumption 2.3, we conclude
that {xn

+}n∈N is precompact, and thus, up to subsequence of n’s (that we do not relabel here), we
have limn→∞ d(x+

n, x̂) = 0 for some x̂ ∈ X . Combining with limn→∞ d(xn,i
+, xn

+) = 0, we conclude that
limn→∞ d(xn,i

+, x̂) = 0 for all i ∈ A. Using the lower semi-continuity of c, we conclude that

cA(xA) ≤
∑

i∈A

c(x̂, xi) ≤ lim inf
n→∞

∑

i∈A

c(xn,i
+, xn,i) ≤ lim

n→∞
cA,n(xA) ≤ cA(xA).

Proposition 3.9. Let c be a cost function satisfying Assumption 2.3. Then there exists a Borel solution
for (15).

Proof. Let {cn}n∈N be the sequence of cost functions introduced in Lemma 3.7. Notice that for each
n ∈N, there is a solution gn = (gn

1, . . . , gn
K) ∈ Cb(X )K for the Problem (14) (with cost cn) that can be

assumed to satisfy 0 ≤ gn
i ≤ 1 for each i ∈ Y . Therefore, for each i ∈ Y , the sequence {gi

n}n∈N is weakly$

precompact in L∞(X ;µi) by Lemma A.2. This implies that there exists a subsequence of {gn}n∈N (not
relabelled) for which gn weakly$ converges towards some g$ ∈∏i∈Y L∞(X ;R, µi), which would nec-
essarily satisfy 0 ≤ g$

i ≤ 1 for all i ∈ Y ; see Section A for the definition of weak$ topologies. We claim
that this g$ is feasible for (15). Indeed, by Lemma 3.8, we know that cA,n ≤ cA for all A ∈ SK . In par-
ticular, since cA,n ≤ cA, and

∑
i∈A gn

i (xi) ≤ 1 + cA,n ≤ 1 + cA for all A ∈ SK and all n ∈N, it follows that
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∑
i∈A g$

i (xi) ≤ 1 + cA, ⊗iµi-almost everywhere, due to the weak$ convergence of gn
i towards g$

i . This
verifies that g$ is indeed feasible for (15).

Let .n and /n be the optimal values of (11) and (14), respectively, for the cost cn. Likewise, let . and
/ be the optimal values of (11) and (14), respectively, for the cost c. Recall that, thanks to Theorem 3.2
and Theorem 3.4, we have .n = /n for all n ∈N and . = /. Suppose for a moment that we have already
proved that limn→∞ .n = .. Then we would have

∑

i∈Y

∫

X

g$
i (x)dµi(x) = lim

n→∞

∑

i∈Y

∫

X

gn
i (x)dµi(x) = lim

n→∞
/n = lim

n→∞
.n = .,

which would imply that g$ is optimal for (15).
It thus remains to show that limn→∞ .n = .. Given that cn ≤ cn+1 ≤ c, it follows that .n ≤ .n+1 ≤ .. In

particular, the limit limn→∞ .n exists in [0, ∞] and must satisfy limn→∞ .n ≤ .. If the limit is ∞, then
there is nothing to prove. Thus, we can assume without the loss of generality that .∞ := limn→∞ .n < ∞.

Let λn and µ̃n
1, . . . , µ̃n

K be an optimal solution of (11) with the cost cn and let π n
i be a coupling realising

C(µi, µ̃n
i ). We first claim that {µ̃n

i }n∈N is weakly precompact for each i ∈ Y . To see this, notice that for
every n, we have µ̃n

i (X ) = µi(X ) ≤ 1, for otherwise, C(µi, µ̃n
i ) = ∞. Thus, by Prokhorov’s theorem, it

is enough to show that for every η > 0, there exists a compact set K ⊆ X such that µ̃n
i (X \ K ) ≤ Cη

for all n ∈N and some C independent of n, η or K . To see that this is true, let us start by considering a
compact set G such that µi(Gc) ≤ η. Let n0 ∈N be such that n0 − 1 > 1

η
. For n ≥ n0, we have

.∞ ≥ .n = λn(X ) +
∑

i∈Y

∫

X

∫

X

cn(xi, x̃i)dπ n
i (xi, x̃i) ≥

∫

G

∫

X

cn0 (xi, x̃i)dπ n
i (xi, x̃i).

Consider the set
˜K := {x ∈ X s.t. inf

x̃∈G
cn0 (x, x̃) ≤ n0 − 1};

using the definition of cn0 and Assumption 2.3, it is straightforward to show that ˜K is a compact sub-
set of X . Since n0 − 1 > 1

η
, we see that .∞ ≥ 1

η
(µ̃n

i ( ˜K c) − µi(Gc)), from where we can conclude that
µ̃n

i ( ˜K c) ≤ (.∞ + 1)η for all n ≥ n0. We now consider a compact set ˆK for which µ̃n
i ( ˆK c) ≤ η for all n =

1, . . . , n0, and set K := ˜K ∪ ˆK , which is compact. Then, for all n ∈N, we have µ̃n
i (K c) ≤ (.∞ + 1)η.

This proves the desired claim.
Now, without the loss of generality, we can assume that λn has the form

dλn(x) = max
i=1,...,K

{
dµ̃n

i

dµn (x)
}

dµn(x),

where µn(x) =∑K
i=1 µ̃n

i . Indeed, notice that the above is the smallest positive measure greater than
µ̃n

1, . . . , µ̃n
K . Given the form of λn and the weak precompactness of each of the sequences {µ̃n

i }n∈N, we
can conclude that {λn}n∈N is weakly precompact and so are the sequences {π n

i }n∈N. We can thus assume
that, up to subsequence, µ̃n

i converges weakly towards some µ̃i; π n
i converges weakly towards some

πi ∈ '(µi, µ̃i) and λn converges weakly towards some λ satisfying λ ≥ µ̃i for each i ∈ Y . In particular,
λ, µ̃1, . . . , µ̃K is feasible for (11).

Therefore, for all n0 ∈N, we have

. ≥ .∞ = lim
n→∞

(

λn(X ) +
∑

i∈Y

∫

X

∫

X

cn(xi, x̃i)dπ n
i (xi, x̃i)

)

≥ lim
n→∞

(

λn(X ) +
∑

i∈Y

∫

X

∫

X

cn0 (xi, x̃i)dπ n
i (xi, x̃i)

)

≥ λ(X ) +
∑

i∈Y

∫

X

∫

X

cn0 (xi, x̃i)dπi(xi, x̃i).
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Sending n0 → ∞, we can then use the monotone convergence theorem to conclude that

. ≥ .∞ ≥ λ(X ) +
∑

i∈Y

∫

X

∫

X

c(xi, x̃i)dπi(xi, x̃i) ≥ λ(X ) +
∑

i∈Y

C(µi, µ̃i) ≥ ..

This proves that .∞ = ..

3.3 From dual potentials to robust classifiers for continuous cost functions
Having discussed the existence of solutions g$ for (15), we move on to discussing the connection between
g$ and solutions f $ of Problem (5).

Proposition 3.10 [21, Originally in Corollary 33]. [22, see correction in Corollary 4.7 and Remark 4.9]
Let c:X × X → [0, ∞] be a lower semi-continuous function and suppose that (µ̃$, g$) is a solution pair
for the generalised barycenter problem (11) and the dual of its MOT formulation (15). Let f $ be defined
as:

f $
i (̃x) := max

{
sup

x∈spt(µi)

{
g$

i (x) − c(x, x̃)
}

, 0
}

, (16)

for each i ∈ Y .
If f $ is Borel measurable, then (f $, µ̃$) is a saddle solution for the problem (5). In particular, f $ is a

minimiser of (5).

Remark 3.11. By the definition (16), 0 ≤ f $
i (x) ≤ 1 since 0 ≤ g$

i (x) ≤ 1. However, it is not trivial that∑
f $
i (x) ≤ 1. In [22, Corollary 4.7] (originally [21, Corollary 33]), it is proved that

∑
f $
i (x) ≤ 1, i.e.,

f $ = (f $
1 , . . . , f $

K) is feasible.

The reason why we cannot directly use Proposition 3.10 to prove existence of solutions to (5) for
arbitrary c and µ is because it is a priori not guaranteed that f $

i , as defined in (16), is Borel measurable;
notice that the statement in Proposition 3.10 is conditional. If spt(µi) was finite for all i, then the Borel
measurability of f $

i would follow immediately from the fact that the maximum of finitely many lower
semi-continuous functions is Borel; this is of course the case when working with empirical measures.
Likewise, the Borel measurability of f $

i is guaranteed when µ is arbitrary and c is a bounded Lipschitz
function (in fact, it is sufficient for the cost to be continuous), as is discussed in [39, Definitions 5.2 and
5.7 and Theorem 5.10]. However, nothing can be said about the Borel measurability of f $

i without further
information on g$

i (which in general is unavailable) when c is only assumed to be lower semi-continuous
(as is the case for the cost C from (7)) and spt(µi) is an uncountable set.

Our strategy to prove Theorem 2.5 in Section 4.1 will be to approximate an arbitrary cost function
c from below with a suitable sequence of bounded and Lipschitz cost functions cn (the costs defined in
Lemma 3.7), and, in turn, consider a limit of the robust classifiers f $

n associated to each of the cn. This
limit (lim sup, to be precise) will be our candidate solution for (5).

4. Proofs of our main results
In this section, we prove the existence of a Borel measurable robust classifier for Problem (5) when c
is an arbitrary lower semi-continuous cost function satisfying Assumption 2.3. We also establish the
existence of minimisers of (9) and establish Theorem 2.8 and Corollary 2.11.

4.1 Well-posedness of the DRO model
Proof of Theorem 2.5. Let {cn}n∈N be the sequence of cost functions converging to c from below defined
in Lemma 3.7. For each n ∈N, we use Theorem 3.4 and let gn = (gn

1, . . . , gn
K) ∈ Cb(X )K be a solution

4  :�
  195�9�� ������
 ����	
�������������!065�421�986582�0#��/70�51�2�.85"2��5 #���2��

https://doi.org/10.1017/S0956792524000822


European Journal of Applied Mathematics 15

of (14) with cost cn; recall that we can assume that 0 ≤ gn
i ≤ 1. In turn, we use gn and the cost cn to

define f n := (f n
1 , . . . , f n

K) following (16). Since the gn
i and cn are continuous, and given that the pointwise

supremum of a family of continuous functions is lower semi-continuous, we can conclude that f n
i is

lower semi-continuous and thus also Borel measurable for each n ∈N. Thanks to Proposition 3.10, f n is
optimal for (13) with cost function cn.

From the proof of Proposition 3.9, we know that there exists a subsequence (that we do not relabel)
such that the gn

i converge in the weak$ topology, as n → ∞, towards limits g$
i that form a solution for

(15) with cost c. Using this subsequence and recalling (16), we define f $ ∈ F according to

f $
i (̃x) := lim sup

n→∞
f n
i (̃x), x̃ ∈ X . (17)

Notice that each f $
i is indeed Borel measurable since it is the lim sup of Borel measurable functions. In

addition, notice that 0 ≤ f $
i ≤ 1, due to the fact that 0 ≤ f n

i ≤ 1 for all i ∈ Y and all n ∈N. We’ll conclude
by proving that f $ is a solution for (5).

Let µ̃ ∈ P(Z ) be an arbitrary Borel probability measure with C(µ, µ̃) < ∞. For each i ∈ Y , let πi

be an optimal coupling realising the cost C(µi, µ̃i). Then

R(f $, µ̃) − C(µ, µ̃)

= 1 −
∑

i∈Y

∫

X

f $
i (̃x)dµ̃i (̃x) −

∑

i∈Y

∫

X ×X

c(x, x̃)dπi(x, x̃)

= 1 −
∑

i∈Y

∫

X ×X

(
f $
i (̃x) + c(x, x̃)

)
dπi(x, x̃)

= 1 −
∑

i∈Y

∫

X ×X

(

lim sup
n→∞

max

{

sup
x
+∈spt(µi)

{
gn

i (x+) − cn(x+, x̃)
}

, 0

}

+ c(x, x̃)

)

dπi(x, x̃)

≤ 1 −
∑

i∈Y

∫

X ×X

(

lim sup
n→∞

sup
x
+∈spt(µi)

{
gn

i (x+) − cn(x+, x̃)
}

+ c(x, x̃)

)

dπi(x, x̃)

where the last inequality follows from the simple fact that − max{a, 0} ≤ −a for any a ∈R. Choosing
x+ = x in the sup term (notice that indeed x can be assumed to belong to spt(µi) since πi has first marginal
equal to µi), and applying reverse Fatou’s lemma, we find that

R(f $, µ̃) − C(µ, µ̃) ≤ 1 −
∑

i∈Y

∫

X ×X

lim sup
n→∞

{
gn

i (x) − cn(x, x̃) + cn(x, x̃)
}

dπi(x, x̃)

= 1 −
∑

i∈Y

∫

X ×X

lim sup
n→∞

{
gn

i (x)
}

dπi(x, x̃)

= 1 −
∑

i∈Y

∫

X

lim sup
n→∞

{
gn

i (x)
}

dµi(x)

≤ 1 − lim sup
n→∞

∑

i∈Y

∫

X

gn
i (x)dµi(x)

= 1 −
∑

i∈Y

∫

X

g$
i (x)dµi(x)

= R$
DRO(ε),

where the third equality follows from the weak$ convergence of gn
i towards g$

i and the last equality follows
from Remark 3.5 and the fact that g$ is a solution for (15) (combined with Remark 3.6). Taking the sup
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over µ̃ ∈ P(Z ), we conclude that

sup
µ̃∈P(Z )

{R(f $, µ̃) − C(µ, µ̃)} ≤ R$
DRO(ε),

and thus f $ is indeed a minimiser of (5).
Let now µ̃$ be a solution of (11) (which exists due to Theorem 3.1). The fact that (µ̃$, f $) is a saddle

for (5) follows from the above computations and the fact that by Theorem 3.1 and in [21, Corollary 32],
we have

R$
DRO(ε) = sup

µ̃∈P(Z )
inf
f ∈F

{R(f , µ̃) − C(µ, µ̃)} = inf
f ∈F

{R(f , µ̃$) − C(µ, µ̃$)} .

The next proposition states that the function g$
i constructed in the proof of Proposition 3.9 is a Borel

measurable version of the c-transform of f $
i , where f $

i was defined in (17).

Lemma 4.1. Let {gn}n∈N and {f n}n∈N be as in the proof of Theorem 2.5, g$ be the weak$ limit of the gn

and f $ be as defined in (17). Then, for every i ∈ Y ,

g$
i (x) = inf

x̃∈X

{
f $
i (̃x) + c(x, x̃)

}
(18)

for µi-a.e. x ∈ X . This statement must be interpreted as: the set in which (18) is violated is contained
in a Borel measurable set with zero µi measure.

Proof. From the proof of Theorem 2.5, it holds that for each i ∈ Y
∫

X

f $
i (̃x)dµ̃$

i (̃x) +
∫

X ×X

c(x, x̃)dπ$
i (x, x̃) =

∫

X

g$
i (x)dµi(x). (19)

On the other hand, from the definition of f n
i , it follows that

gn
i (x) ≤ f n

i (x̃) + cn(x, x̃), ∀x̃ ∈ X , and µi-a.e. x ∈ X .

We can then combine the above with Lemma A.3 to conclude that for µi-a.e. x ∈ X and every x̃ ∈ X ,
we have

g$
i (x) ≤ lim sup

n→∞
gn

i (x) ≤ lim sup
n→∞

f n
i (x̃) + cn(x, x̃) = f $

i (x̃) + c(x, x̃).

Taking the inf over x̃ ∈ X , we conclude that for µi-a.e. x ∈ X , we have

g$
i (x) ≤ inf

x̃∈X
{f $

i (x̃) + c(x, x̃)}. (20)

From this and (19), we see that g$
i ∈ L1(µi) and −f $

i ∈ L1(µ̃i) are optimal dual potentials for the optimal
transport problem C(µi, µ̃$

i ). If (20) did not hold with equality for µi-a.e. x ∈ X , then we would be able to
construct a Borel measurable version hi of the right-hand side of (20) (see Lemma C.1 in the Appendix),
which would be strictly greater than g$

i in a set of positive µi-measure. In addition, we would have that
(hi, −f $

i ) is a feasible dual pair for the OT problem C(µi, µ̃i). However, the above would contradict the
optimality of the dual potentials (g$

i , −f $
i ). We thus conclude that (20) holds with equality except on a

set contained in a set of µi measure zero.

4.2 Well-posedness of the closed-ball model (9)
Proof of Theorem 2.7. We actually prove that for arbitrary cost c satisfying Assumption 2.3, the
solution f $ to (5) constructed in the proof of Theorem 2.5 is also a solution for the problem:

inf
f ∈F

{
∑

i∈Y

∫

X

sup
x̃∈X

{1 − fi (̃x) − c(x, x̃)} dµi(x)

}

. (21)
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Theorem 2.7 will then be an immediate consequence of this more general result when applied to c = cε

as in (7).
Let f $ be the Borel solution of (5) constructed in the proof of Theorem 2.5. It suffices to show that

for any f ∈ F
∑

i∈Y

∫

X

inf
x̃∈X

{
f $
i (̃x) + c(x, x̃)

}
dµi(x) ≥

∑

i∈Y

∫

X

inf
x̃∈X

{fi (̃x) + c(x, x̃)} dµi(x).

Suppose for the sake of contradiction that the above inequality does not hold. Then there exists some
f̂ ∈ F which provides a strict inequality in the opposite direction. Now, on one hand, (18) of Lemma
4.1 implies

∑

i∈Y

∫

X

inf
x̃∈X

{
f $
i (̃x) + c(x, x̃)

}
dµi(x) =

∑

i∈Y

∫

X

g$
i (x)dµi(x).

On the other hand, by Lemma C.1, for each i ∈ Y , there exists a Borel measurable function ĝi equal to
inf̃x∈X {̂fi(̃x) + c(x, x̃)} µi-almost everywhere. Let ĝ := (̂g1, . . . , ĝK). Combining the existence of such ĝ
with the above equation, and using (1), it follows that ĝ satisfies

∑

i∈Y

∫

X

g$
i (x)dµi(x) <

∑

i∈Y

∫

X

ĝi(x)dµi(x). (22)

Notice that for each A ∈ SK and ⊗µi-almost everywhere x1, . . . xK , we have
∑

i∈A

inf
x̃∈X

{̂
fi (̃x) + c(xi, x̃)

}
≤ inf

x̃∈X

{
∑

i∈A

f̂i (̃x) + c(xi, x̃)

}

≤ 1 + cA(x1, . . . , xK).

From the above, we conclude that ĝ is feasible for (15). However, this and (22) combined contradict the
fact that g$ is optimal for (15), as had been shown in Proposition 3.9.

Proof of Corollary 2.11. It is straightforward to verify (e.g., see [15]) that for (f1, 1 − f1) ∈ F , we can
write

R$
closed((f1, 1 − f1);ε) =

∫ 1

0

R$
closed((1{f1≥t}, 1{f1≥t}c );ε)dt. (23)

It is also straightforward to see that

R$
closed((1{f1≥t}, 1{f1≥t}c );ε) =

∫

X

sup
x̃∈Bε (x)

1Ac (x̃)dµ1(x) +
∫

X

sup
x̃∈Bε (x)

1A(x̃)dµ2(x).

Let (f1, 1 − f1) be a solution to (9) (which by Remark 2.2 can indeed be taken of this form). It follows
from (23) that for almost every t ∈ [0, 1], the pair (1{f1≥t}, 1{f1≥t}c ) is also a solution for that same problem
and thus also for the problem restricted to hard classifiers. This proves the desired result.

4.3 Connection between closed-ball model and open-ball model
Proof of Theorem 2.8. One can easily observe that for any fixed ε > 0 and δ > 0, we have

sup
x̃∈Bε (x)

{1 − fi (̃x)} ≤ sup
x̃∈Bε (x)

{1 − fi (̃x)} ≤ sup
x̃∈Bε+δ (x)

{1 − fi (̃x)}

for all x ∈ X and all f ∈ F . This simple observation leads to R$
open(f ;ε) ≤ R$

closed(f ;ε) ≤ R$
open(f ;ε + δ) for

all f ∈ F . Thus, we also have R$
open(ε) ≤ R$

closed(ε) ≤ R$
open(ε + δ), and, in particular, R$

open(ε) ≤ R$
closed(ε) ≤

lim infδ→0 R$
open(ε + δ). From the above, we can also see that the function ε )→ R$

open(ε) is non-decreasing
and, as such, is continuous for all but at most countably many values of ε > 0. Therefore, for all but at
most countably many ε, we have R$

open(ε) = R$
closed(ε).

Now, let f $ be solution of (9) and assume we have R$
open(ε) = R$

closed(ε). Then
R$

open(f $;ε) ≤ R$
closed(f $;ε) = R$

closed(ε) = R$
open(ε),

which means f $ is a solution of (3).
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5. Conclusion and future works
In this paper, we establish the equivalence of three popular models of multiclass adversarial training: the
open ball model, the closed ball model and the DRO model, and, for the first time, (with the exception
of partial results in [15]) we prove the existence of Borel measurable optimal robust classifiers in the
agnostic-classifier setting for any number of classes. We are able to unify these models via a framework
we have developed that connects these problems to optimal transport. Notably, our results show that it is
unnecessary to grapple with the cumbersome machinery of universal sigma algebras, which was needed
to prove existence of classifiers in past results.

Although our analysis sheds light on this area, many open questions still remain on both the theoretical
and practical side. One of the most important practical questions is how to extend these results when the
set of classifiers F is some parametric family, for example, neural networks. In particular, one would
like to specify the properties a parametric family must satisfy in order to approximate robust classifiers
to some desired degree of accuracy. In the case of neural networks, one might ask for the number of
neurons or number of layers that are required for robust classification.

Related to the above practical question is the following geometric/theoretical question: given an opti-
mal robust classifier f $, can we give a characterisation of the regularity of f $ as in [15]? In particular,
one would like to quantify the smoothness of the interfaces between the different classes. In general,
we cannot guarantee that f $ is a hard classifier, thus, this problem is best posed as a question about the
smoothness of the level sets of f $. Since optimal classifiers need not be unique, one can also pose the
more general question of when it is possible to find at least one optimal Borel robust classifier with some
specified regularity property. Due to the connection between approximation and regularity, answering
this question will provide insights to the previous question of how well one can approximate optimal
robust classifiers using certain parametric families.

A final question is how to extend our framework to other more general settings. In this paper, we have
assumed throughout that the loss function is the 0–1 loss. However, most practitioners prefer strongly
convex loss functions, for example, the cross entropy function, which allows for faster optimisation and
has other desirable properties. As a result, one would like to establish the analogue of these results in this
more general setting. This would be crucial for bringing these theoretical insights closer to the models
favoured by working practitioners.
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Appendix A. Weak⋆ topology
Definition 2 (Weak$ topology). Let µ = (µ1, . . . , µK) ∈∏K

i=1 M+(X ). For a sequence {hn}n∈N ⊆∏
i∈Y L∞(X ;µi), we say that {hn} weak$-converges to h ∈∏i∈Y L∞(X ;µi) if for any q ∈∏
i∈Y L1(X ;µi), it holds that

lim
n→∞

∫

X

hn
i (x)qi(x)dµi(x) =

∫

X

hi(x)qi(x)dµi(x) (A1)

for all i ∈ Y .

Remark A.1. Note that for a Borel positive measure ρ, which is either finite or σ -finite over a Polish
space, the dual of L1(ρ) is L∞(ρ), which justifies the definition (1).

The following lemma is the weak$ precompactness of the closed unit ball of the dual space X +. In
our case, X = L1(X ;µi) and X + = L∞(X ;µi) with weak$ topology.

Lemma A.2. (Banach–Alaoglu theorem). If X is a normed space, then the closed unit ball in the
continuous dual space X + (endowed with its usual operator norm) is compact with respect to the weak$

topology.

Lemma A.3. Suppose {gn
i }n∈N is a sequence of measurable real-valued functions over X satisfying

0 ≤ gn
i ≤ 1 for every n ∈N. Suppose that gn

i converges in the weak$ topology of L∞(X ;µi) towards gi,
where µi is a finite positive measure. Then, for µi-a.e. x ∈ X, we have

lim sup
n→∞

gn
i (x) ≥ gi(x).

Proof. Let E be a measurable subset of X . Then∫

X

( lim sup
n→∞

gn
i (x) − gi(x))1E(x)dµi(x) ≥ lim sup

n→∞

∫

X

(gn
i (x) − gi(x))1E(x)dµi(x) = 0,

by the reverse Fatou inequality and the assumption that the sequence {gn
i }n∈N converges in the weak$

sense towards gi. Since E was arbitrary, the result follows.

Appendix B. c-transform
c-transform has an important role in optimal transport theory. One can characterise an optimiser of a
dual problem by iterating c-transform: see [38, 39] for more details.

Definition 3 (39, Definition 5.2 and Definition 5.8). Let X , X + be measurable spaces, and let c:X ×
X + → ( − ∞, ∞]. Given a measurable function h:X →R∪ {∞, −∞}, its c-transform is defined as:

hc(x+) := inf
x∈X

{h(x) + c(x, x+)}.

Similarly, for g:X + →R∪ {∞, −∞}, its c-transform is defined as:
gc(x) := sup

x
+∈X

+
{g(x+) − c(x, x+)}.

Proposition B.1. For any mearurable functions h over X and g over X +, and cost function c:X ×
X + → ( − ∞, ∞], it holds that for every (x, x+) ∈ X × X +,

hc(x+) − h(x) ≤ c(x, x+), g(x+) − gc(x) ≤ c(x, x+).
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Theorem B.2. [39, Theorem 5.10] Let X be a Polish space and c(·, ·) be a cost function bounded from
below and lower semi-continuous. Then, for ν, ν̃ ∈ P(X ),

inf
πi∈'(ν ,̃ν)

∫

X ×X

c(x, x̃)dπi(x, x̃) = sup
gi ,fi∈Cb ,gi−fi≤c

{∫

X

gi(x)dν(x) −
∫

X

fi(̃x)d̃ν (̃x)
}

= sup
fi∈L1(̃ν)

{∫

X

(fi)c(x)dν(x) −
∫

X

fi (̃x)d̃ν (̃x)
}

= sup
gi∈L1(ν)

{∫

X

gi(x)dν(x) −
∫

X

(gi)c(̃x)d̃ν (̃x)
}

.

Furthermore, the infimum is indeed a minimum. However, the supremum may not be achieved.

Appendix C. Decomposition of universally measurable functions
The following lemma is a well known fact about measure theory. For the sake of completeness, we write
the full proof.

Lemma C.1. Let X be a polish space, and let µ and µ̃ be a Borel probability measure and its
extension to the universal σ -algebra, respectively. Let f be a universally measurable function for
which

∫
X

|f (x)|dµ(x) < ∞. Then there exists a Borel measurable function g such that f = g µ-almost
everywhere. Also,

∫

X

f (x)dµ(x) =
∫

X

g(x)dµ(x). (C1)

Proof. Without the loss of generality, we can assume that f ≥ 0. Since f is universally measurable, we
can write

f (x) = lim
n→∞

fn(x) := lim
n→∞

n∑

k=1

cn
k1An

k
(x),

for positive coefficients cn
1, . . . , cn

n and An
1, . . . , An

n universally measurable and pairwise disjoint sets. By
the definition of universally measurable sets, for each An

k , there exists a Borel set Bn
k such that µ(An

k \
Bn

k) = 0. Hence, for each n ∈N, we can write

fn(x) =
n∑

k=1

cn
k1Bn

k
(x) +

n∑

k=1

cn
k1Cn

k
(x),

where Cn
k = An

k \ Bn
k . We conclude that

f (x) = g(x) + h(x) := lim sup
n→∞

n∑

k=1

cn
k1Bn

k
(x) + lim inf

n→∞

n∑

k=1

cn
k1Cn

k
(x)

where g is Borel measurable, h is universally measurable and h = 0 µ-almost everywhere.
Since f = g µ-almost everywhere and g is Borel measurable, then

∫

X

f (x)dµ(x) =
∫

X

g(x)dµ(x) =
∫

X

g(x)dµ(x),

from which (1) follows.

Cite this article: García Trillos N., Jacobs M. and Kim J. On the existence of solutions to adversarial training in multiclass
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