
Quantifying Cache Side-Channel Leakage by

Refining Set-Based Abstractions

Jacqueline L. Mitchell #

University of Southern California, Los Angeles, CA, USA

Chao Wang #

University of Southern California, Los Angeles, CA, USA

Abstract

We propose an improved abstract interpretation based method for quantifying cache side-channel

leakage by addressing two key components of precision loss in existing set-based cache abstractions.

Our method targets two key sources of imprecision: (1) imprecision in the abstract transfer function

used to update the abstract cache state when interpreting a memory access and (2) imprecision due to

the incompleteness of the set-based domain. At the center of our method are two key improvements:

(1) the introduction of a new transfer function for updating the abstract cache state which carefully

leverages information in the abstract state to prevent the spurious aging of memory blocks and (2) a

refinement of the set-based domain based on the finite powerset construction. We show that both

the new abstract transformer and the domain refinement enjoy certain enhanced precision properties.

We have implemented the method and compared it against the state-of-the-art technique on a

suite of benchmark programs implementing both sorting algorithms and cryptographic algorithms.

The experimental results show that our method is effective in improving the precision of cache

side-channel leakage quantification.

2012 ACM Subject Classification Software and its engineering → Software verification and validation;

Theory of computation → Program analysis

Keywords and phrases Abstract interpretation, side-channel, leakage quantification, cache

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2025.22

Related Version Extended version with appendices and extra details:

https://github.com/jlmitche23/ecoop25CacheQuantification [15]

Supplementary Material Software:

https://github.com/jlmitche23/ecoop25CacheQuantification [15]

Software (ECOOP 2025 Artifact Evaluation approved artifact):

https://doi.org/10.4230/DARTS.11.2.18

Funding This work was partially supported by the NSF grant CCF-2220345.

1 Introduction

Cache side-channel attacks, whereby adversaries gain information about secret data by

examining the footprint of program execution in the CPU cache, pose a significant threat

to computer security. Cache side-channel attacks have been demonstrated in many critical

infrastructure systems, ranging from cryptographic software in embedded devices [13, 30, 29,

1, 21, 19] to cloud computing applications where an adversary only needs remote access to

the victim’s hardware to successfully launch the attacks [5, 22, 6, 28]. Various techniques

have been proposed to mitigate such attacks, including constant-time programming [16] along

with verification techniques for proving the constant-time property [2, 4].

However, completely eliminating side-channel leakage is a challenging task since it

may result in too much computational overhead [8]; it may also be infeasible for certain

applications where some information leakage is required [24, 18, 27]. This motivates the

V1.1

A
rt
if

ac
ts Availa

b
le

ECOOP

F
u

n
ctional

V

1
.1

A
rt
if

ac
ts Evalua

te
d

ECOOP

© Jacqueline L. Mitchell and Chao Wang;
licensed under Creative Commons License CC-BY 4.0

39th European Conference on Object-Oriented Programming (ECOOP 2025).
Editors: Jonathan Aldrich and Alexandra Silva; Article No. 22; pp. 22:1–22:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jlm41510@usc.edu
mailto:wang626@usc.edu
https://doi.org/10.4230/LIPIcs.ECOOP.2025.22
https://github.com/jlmitche23/ecoop25CacheQuantification
https://github.com/jlmitche23/ecoop25CacheQuantification
https://github.com/jlmitche23/ecoop25CacheQuantification
https://github.com/jlmitche23/ecoop25CacheQuantification
https://doi.org/10.4230/DARTS.11.2.18
https://doi.org/10.4230/DARTS.11.2.18
https://doi.org/10.4230/DARTS.11.2.18
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

22:2 Quantifying Cache Side-Channel Leakage by Refining Set-Based Abstractions

development of mathematically rigorous techniques for quantifying side-channel leakage, to

allow programmers to audit the degree of leakage in software code. While the pioneering

work of Doychev et al. [12, 11] show that abstract interpretation [9] using a set-based cache

abstract domain is well-suited for quantifying cache side-channel leakage, the main limitation

is the loss of precision in the quantification results.

To overcome this limitation, we propose a new method for improving the precision of

abstract interpretation based static program analysis for quantifying cache side-channel

leakage. Static program analysis based on abstract interpretation has the advantages of

being sound, generally performant, and not requiring artificially-bounded loop iterations

as in unsound alternative techniques based on bounded model checking [20] or symbolic

execution [7]. However, these advantages of abstract interpretation may come at the cost

of precision loss. There are two key sources of precision loss in the context of cache side-

channel quantification. The first source is spuriously aging memory blocks in the cache

while applying the so-called abstract transfer function which interprets memory-accessing

instructions during the analysis. It does this by taking as input an abstract cache state and

returning another abstract state which overapproximates the effect of accessing a memory

block on any (concrete) cache state represented by the input abstract cache state. The

second source of imprecision is the spurious aging of memory blocks due to the inability to

express and leverage disjunctive invariants about the abstract cache states with respect to

the control flow of a program (in other words, the incompleteness of the set-based abstract

domain). Our new method is designed to mitigate these two key sources of precision loss.

At the center of our method is a novel abstract transfer function for the set-based abstract

domain and an automatic lifting of the domain to more accurately capture invariants about

the cache state. In this work, we have applied our method in the context of the abstract

domain used by CacheAudit [11], a state-of-the-art tool for quantifying cache side-channel

leakage. We denote this domain as C♯. An abstract state in the C♯ domain associates each

memory block with a set of possible ages, which describes the possible positions for a memory

block within the cache. The ages also determine how cache states are updated under a given

replacement policy, as the result of interpreting a memory-accessing instruction. During an

analysis step where abstract interpretation is used to compute the resulting abstract cache

state after an access to memory, we say that a memory block b is spuriously aged to an age a

if a is in the set of possible ages for b, and yet there is no valid concrete cache state in which

b is of age a in the ground truth. In some cases, applying the best abstract transformer [9],

which concretizes the abstract cache state to yield a set of concrete cache states, updates

each concrete cache state according to a replacement policy, and then re-abstracts the set

of updated concrete states into a new abstract cache state, can mitigate spurious aging.

However, even if the best abstract transformer is used, a memory block may still be spuriously

aged with respect to the collecting semantics, due to the incompleteness of C♯. Consider

two abstract cache states C and C ′ that arise due to a difference in the control flow of a

program (perhaps corresponding to two different branches of an if-statement). Even if the

best abstract transformer does not age b to a in both C and C ′, this may not be true of their

abstract union; we later provide an example in Section 4. This imprecision arises due to C♯’s

inability to express disjunctive invariants at the level of variations in control flow.

To address the first source of precision loss, we propose to carefully leverage information

in the abstract state regarding the ages of other memory blocks when deciding to age block

b, to more accurately update the abstract cache state for each memory-accessing instruction.

Instead of deciding to age b only based on b’s age and the age of the accessed memory block,

we use the ages of all the memory blocks in the cache to prevent the spurious aging of many

J. L. Mitchell and C. Wang 22:3

DM Leakage

SM Leakage

Fixpoint Engine

�(�#)

���∗
#,⊔,⊓,⊑

�#
Lifted Domain Operators

Domain Operators
Quantification

Step

x86 Program

Cache Size

Associativity

Line Size

Figure 1 Our method for quantifying cache side-channel leakage based on abstract interpretation.

SM corresponds to a shared memory adversary, where an attacker can observe which memory blocks

are in the cache. DM corresponds to a disjoint memory adversary, where an attacker can observe

which cache lines are occupied in the cache, but not the specific memory blocks occupying them.

memory blocks. As we describe later, we prove our improved transfer function improves upon

the baseline transfer function by refining it in such a way that removes cases of spurious

aging.

To address the second source of precision loss, we propose to parsimoniously leverage

disjunctions of abstract cache states that arise due to variations in control flow. This technique

can be implemented as a refinement of C♯, based on the powerset domain introduced by [3].

The powerset domain can refine any abstract domain by lifting its operators (partial order,

join, meet, widen) to operate on a lifted version of the abstract domain, whose elements are

a member of the powerset of elements of the abstract domain.

Figure 1 shows the overall flow of our method. The input to our method consists of a

program P and the cache parameters. The program P is represented in x86 binary code.

The cache parameters specify the total cache size, the associativity, and the cache line size.

The output of our method is the cache side-channel leakage measured in bits, for two kinds

of adversaries, explained in the following. The adversary type is either Shared Memory (SM)

or Disjoint Memory (DM). At the end of a program’s execution, the SM adversary is able to

observe the placement of memory blocks in the final cache state, along with which memory

blocks are in the various locations. In contrast, the DM adversary is only able to observe

which locations of the cache are occupied in the final cache state, but not the specific memory

blocks that occupy them. We note that other types of adversaries are possible; we have

simply chosen these adversaries to empirically evaluate our techniques. The techniques are

not specific to the two adversaries in the sense that other cache analyses may also depend on

such set-based abstractions. Internally, our method consists of two innovative components,

shown as the new transfer function Upd♯
∗ and the lifted domain which uses disjunctions,

highlighted in red, dashed boxes in Figure 1.

We have evaluated our method on a suite of 29 benchmark programs, which are imple-

mentations of various sorting algorithms and cryptographic algorithms. The baseline that

we use for comparison is CacheAudit [12]. We compared the two methods on all benchmark

programs, with various cache settings and adversary types. In addition to a side-by-side com-

parison of our method against CacheAudit, we also conducted an ablation study by enabling

each of the two new techniques and then comparing the performance. The goal is to check

how effective each of the two techniques is in isolation across various cache configurations, and

see if they have a synergistic effect when being used together. The experimental results show

that, overall, our method significantly outperforms the state-of-the-art method. Furthermore,

both of the two new techniques proposed in this paper are effective, and together, they have

a synergistic effect.

ECOOP 2025

22:4 Quantifying Cache Side-Channel Leakage by Refining Set-Based Abstractions

In summary, this paper makes the following contributions:

We propose a new method for more accurately quantifying cache side-channel leakage

based on abstract interpretation.

We introduce two novel techniques in our method. The first leverages a new abstract

transfer function to prevent spurious aging of memory blocks in the cache during the

analysis. The second leverages disjunctions parsimoniously to prevent spurious aging of

memory blocks due to the incompleteness of C♯.

We prove soundness and enhanced accuracy properties of the two novel techniques.

We implement the method and demonstrate its advantages over the state-of-the-art

technique on a suite of 29 benchmark programs.

The remainder of this paper is organized as follows. After providing the technical

background in Section 2, we illustrate the limitations of prior work in Section 3 using an

example. Then, we present our method in Section 4 and prove the soundness and accuracy

properties. We present the experimental results in Section 5. After reviewing the related

work in Section 6, we give our conclusion in Section 7.

2 Background

Unlike classic program analysis techniques that focus on functional properties, e.g., control

and data flows of a program, quantifying side-channel leakage also requires the modeling

and analysis of non-functional properties such as the cache state. Here, we introduce the

components required for abstractly modeling cache behavior.

2.1 Modeling the Cache

A cache is used to bridge the latency gap between the fast CPU and the slow main memory,

to reduce the overall execution time of a program. A cache is often divided into cache sets,

each of which is further divided into cache lines, where each cache line has a fixed size.

Formally, a cache with the size S, the associativity n, and the line size L is organized into

m = S/(L · n) cache sets. Each cache set consists of n cache lines. Each cache line holds a

contiguous block of L bytes. Throughout the paper, let B refer to the set of memory blocks

under consideration.

Each memory block in B belongs to one cache set. We define the function set : B →

{0, . . . , m − 1} that maps each memory block b ∈ B its cache set set(b) ∈ {0, . . . , m − 1}.

Given b1, b2 ∈ B, the condition set(b1) = set(b2) means that the two memory blocks map to

the same cache set, whereas set(b1) ̸= set(b2) means that they map to different cache sets.

When set(b1) ̸= set(b2), the two memory blocks map to different cache sets, and thus do not

interfere with each other.

A concrete cache state c maps each memory block in B to a specific age in the set

A = {0, ..., n} (recall, n is the associativity of the cache). Formally, c : B → A, where

c(b) = n means that the block is outside of the cache, and 0 ≤ c(b) ≤ n − 1 means the

block is inside the cache. The ages of memory blocks are determined by the so-called cache

replacement policy. For example, with the popular LRU (least-recently used) policy, the age

of a memory block b is determined by the number of other memory blocks accessed from the

last time that b was accessed during program execution.

Let C be the set of concrete cache states. From a concrete cache c ∈ C, executing an

instruction that accesses a memory block w ∈ B leads to a new cache state Upd(c, w) ∈ C.

Here, Upd : C × B → C is called the transfer function.

J. L. Mitchell and C. Wang 22:5

▶ Definition 1. The transfer function Upd(c, w) for an LRU cache state c ∈ C and accessed

memory block w ∈ B is defined as follows:

Upd(c, w) := λb ∈ B.



































c(b) when set(b) ̸= set(w)

c(b) when set(b) = set(w) ∧ b ̸= w ∧ c(b) = n

c(b) when set(b) = set(w) ∧ b ̸= w ∧ c(b) > c(w)

c(b) + 1 when set(b) = set(w) ∧ b ̸= w ∧ c(b) < c(w)

0 when set(b) = set(w) ∧ b = w

That is, the age of any memory block in a different cache set remains unchanged, as indicated

by set(b) ̸= set(w). Within the same cache set, the age of the accessed memory block

(b = w) is set to 0, the age of any memory block previously younger than the accessed block

(c(b) < c(w)) increases by 1, and the age of any other memory block remains unchanged. In

particular, c(b) = n means the memory block b is already outside of the cache, and remains

there upon an access to w. We note that following the LRU policy, any two memory blocks

which belong to the same cache set cannot have the same age.

2.2 Abstract Interpretation of the Cache

Recall that A is a set of possible ages. Let P(A) be the powerset (set of all subsets) of A,

such that any element in P(A) represents a set of ages. Following Doychev et al. [11], we

define the abstract cache state as a function C : B → P(A) that maps a block b ∈ B to a set

of ages C(b) ∈ P(A). This is in contrast with the concrete state c : B → A, which maps b to

a single age c(b).

Let C♯ be the set of abstract cache states. From an abstract cache state C ∈ C♯, executing

an instruction that accesses a memory block w ∈ B leads to a new abstract cache state

Upd♯(C, w) ∈ C♯. Here, Upd♯ : C♯ × B → C♯ is called the abstract transfer function. Before

defining Upd♯, we need to define C ⇂w 7→cw
, which is a restriction of the abstract cache state C

such that the age of block w is set to cw ∈ C(w). That is, C ⇂w 7→cw
is an underapproximation

of C where, since w occupies the age cw, no other block can have the same age cw, unless

cw = n (meaning that w is outside of the cache), as is true in LRU caches. In the following,

we define the abstract transfer function for a cache which follows the LRU replacement policy.

▶ Definition 2. The abstract transfer function Upd♯(C, w) for a cache state C ∈ C♯ and

accessed memory block w ∈ B is defined as follows [11]:

Upd♯(C, w) := λb ∈ B.















C(b) when set(b) ̸= set(w)

On⟨w⟩ ∪ O>⟨w⟩ ∪ O<⟨w⟩ when set(b) = set(w) ∧ b ̸= w

{0} when set(b) = set(w) ∧ b = w

where On⟨w⟩ ∪ O>⟨w⟩ ∪ O<⟨w⟩ computes a set of ages of block b ∈ B for each possible age

cw ∈ C(w):

On⟨w⟩ :=
⋃

cw∈C(w){cb | cb = n ∧ cb ∈ C ⇂w 7→cw
(b)} has the ages equal to n,

O>⟨w⟩ :=
⋃

cw∈C(w){cb | cb > cw ∧ cb ∈ C ⇂w 7→cw
(b)} has the ages older than cw,

O<⟨w⟩ :=
⋃

cw∈C(w){cb + 1 | cb < cw ∧ cb ∈ C ⇂w 7→cw
(b)} increments ages younger than

cw.

The sets On⟨w⟩, O>⟨w⟩ and O<⟨w⟩ in Definition 2 directly correspond to the three cases

c(b) = n, c(b) > c(w) and c(b) < c(w) in Definition 1.

ECOOP 2025

22:6 Quantifying Cache Side-Channel Leakage by Refining Set-Based Abstractions

Abstract Domain (C♯): The universe is the set of abstract cache states. Element ⊤ (top) is a state

C ∈ C♯ such that ∀b ∈ B . C(b) = A. Element ⊥ (bottom) is a state C ∈ C♯ such that ∀b ∈ B . C(b) = {}.

Partial Order (⊑C♯): Given two abstract cache states C, C′ ∈ C♯, the ordering relation C ⊑C♯ C′

holds if and only if ∀b ∈ B . C(b) ⊆ C′(b).

Join (⊔C♯): Given two abstract cache states C, C′ ∈ C♯, the join is defined as
C ⊔C♯ C′ := λb ∈ B . C(b) ∪ C′(b).

Meet (⊓C♯): Given two abstract cache states C, C′ ∈ C♯, the meet is defined as C ⊓C♯ C′ := λb ∈
B . C(b) ∩ C′(b).

Figure 2 The abstract domain C♯ and its partial order, join, and meet operators.

For example, consider C = {a 7→ {0, 1}, b 7→ {1, 4}, c 7→ {0, 2, 4}}, accessed memory block

b, and n = 4. We have C ⇂b 7→1:= {a 7→ {0}, b 7→ {1}, c 7→ {0, 2, 4}} because, when the age of b

is 1, the age of a can no longer be 1. However, C ⇂b 7→4:= {a 7→ {0, 1}, b 7→ {4}, c 7→ {0, 2, 4}}

because multiple blocks can have the age 4 (meaning they are outside of the cache). Finally,

Upd♯(C, b) returns the abstract cache state {a 7→ {1, 2}, b 7→ {0}, c 7→ {1, 2, 4}}.

2.3 The Baseline Algorithm

The baseline algorithm for quantifying cache side-channel leakage using abstract interpretation

consists of two steps. The analysis step uses the abstract transfer function to compute an

abstract cache state at each program location, to overapproximate the set of concrete cache

states at that location. The quantification step leverages the abstract cache state C at the

program exit point to compute the total number of concrete cache states, which is an upper

bound of the information leakage (measured in bits).

The Analysis Step. An iterative procedure using abstract interpretation and the domain

operations of C♯ is used to compute an abstract cache state at each program location. The

procedure assumes that all memory blocks are outside of the cache initially, i.e., ∀b ∈

B . C(b) = {n}. Then, it applies the abstract transfer function to the abstract cache state

C at each program location to compute a new abstract cache state C ′. Then, it conducts

standard fixpoint iteration with the abstract transfer function and the domain operations.

Fixpoint iteration is required to ensure that the abstract cache computed for each program

location is an invariant, i.e., that it soundly overapproximates the set of possible concrete

cache states at a given program location.

Figure 2 shows the abstract domain C♯ and its partial order (⊑C♯), join (⊔C♯) and

meet (⊓C♯) operators. Consider abstract cache states C1, C2, C3, C4 ∈ C♯ as examples. If

C1 = {a 7→ {0, 1}, b 7→ {1, 2}} and C2 = {a 7→ {0, 1, 4}, b 7→ {1, 4}}, then C1 ⊔C♯ C2 =

{a 7→ {0, 1, 4}, b 7→ {1, 2, 4}} and C1 ⊓C♯ C2 = {a 7→ {0, 1}, b 7→ {1}}. However, if C3 =

{a 7→ {0}, b 7→ {1}} and C4 = {a 7→ {1}, b 7→ {0}}, then C3 ⊓C♯ C4 = {a 7→ {}, b 7→ {}},

which equals the bottom element of C♯, ⊥. The domain operations are used in the process

of fixpoint iteration. For instance, when control flow paths in the program merge, the

analysis must combine abstract states using the join operator (⊔C♯), to remain a conservative

overapproximation of the true set of cache states. Furthermore, the partial order ⊑C♯ is used

to detect if a fixpoint has been reached.

The Quantification Step. The abstract cache state C at the program exit point is used

to compute the number of concrete cache states. This is accomplished by first mapping C

from the abstract domain C♯ to the concrete domain P(C). Let γC♯ be the concretization

J. L. Mitchell and C. Wang 22:7

function, and γC♯(C) be the set of concrete cache states. The cardinality |γC♯(C)| represents

the number of concrete cache states. In this case, log2|γC♯(C)| represents the maximum

amount of information leakage measured in bits, according to Shannon’s information theory.1

We note that in our work, we assume that the leakage of each bit is equally valuable to the

attacker, which motivates our use of Shannon entropy, as in CacheAudit [11].

▶ Definition 3. The concretization function γC♯ : C♯ → P(C) computes the set γC♯(C) of

concrete cache states for the abstract cache state C as follows: γC♯(C) :=

{c ∈ C | ∀b ∈ B : c(b) ∈ C(b) ∧

∀b1, b2 ∈ B : set(b1) = set(b2) ∧ b1 ̸= b2 =⇒ c(b1) ̸= c(b2) ∨ c(b1) = c(b2) = n ∧

∀b1 ∈ B : 0 < c(b1) < n =⇒ ∃b2 ∈ B. set(b1) = set(b2) ∧ (b1 ̸= b2) ∧ c(b2) = c(b1) − 1}

The first condition ∀b ∈ B : c(b) ∈ C(b) takes the Cartesian product of the set of possible ages

for each memory block b ∈ B, while the last two conditions eliminate the obviously-invalid

concrete cache states, according to the following two properties of LRU caches:

No-collision within each cache set: If a cache line (age) is assigned to a memory

block, it cannot be assigned to another memory block that belongs to the same cache

set. Thus, if b1 and b2 belong to the same cache set (set(b1) = set(b2)) and b1 ≠ b2, then

c(b1) ̸= c(b2) ∨ c(b1) = c(b2) = n, meaning that the two blocks are either in different

cache lines (ages) or are both outside of the cache.

No-gap within each cache set: If a younger cache line (age) is available, an older

cache line cannot be assigned to a memory block in a given cache set. Thus, when c(b1) ∈

{1, ..., n−1}, there exists b2 ∈ B such that set(b1) = set(b2)∧ (b1 ̸= b2)∧ c(b2) = c(b1)−1.

3 Limitations of Prior Work

While the baseline algorithm presented in Section 2 represents the state of the art, it has

two main limitations in terms of the precision of its abstract transfer function and abstract

domain. In this section, we use an example program to illustrate these limitations and then

motivate our work on developing the new method.

3.1 The Example Program

Figure 3 shows the example program, which has a while loop containing an if-else statement.

While the program has many variables, only four of them (a, b, c, and d) are being read. The

two branches of the if-else statement differ in that the then-branch reads b and d whereas

the else-branch reads c and d. This difference is sufficient to demonstrate the limitations of

prior work and the advantages of our new method.

The Assumptions. For the sake of demonstration, we assume that all program variables

in Figure 3 map to the same cache set. Furthermore, the cache set has only 4 cache lines.

Finally, each variable occupies an entire cache line. With all of these assumptions, we have

B = {a, b, c, d}, set(a) = set(b) = set(c) = set(d) and n = 4.

The reason why we focus only on these four variables is because, here, we assume that

the cache is a read-through, write-direct cache as in Intel CPU’s Data Direct I/O technology.

That is, data is first read from main memory into the cache on a read operation, but when

1 The Shannon entropy H = Σc p(c) log2
1

p(c) is maximized when each concrete cache state c ∈ γC♯ (C)

has an equal probability p(c) = 1
|γ

C♯ (C)| , thus reducing H to log2
1

p(c) = log2|γC♯ (C)|.

ECOOP 2025

22:8 Quantifying Cache Side-Channel Leakage by Refining Set-Based Abstractions

1 void foo (unsigned int d) {
2 unsigned int a, b, c, g, h = 0;
3

4 d = a + d; //read {a,d}
5

6 while (d >= 1 && d < 5) { //read {d}
7 if (d < 3) { //read {d}
8 h = b + 1; //read {b}
9 d--; //read {d}

10 }
11 else {
12 g = c + 1; //read {c}
13 d--; //read {d}
14 }
15 }
16

17 }

a, b, c, g, h = 0;

d = a +d;

d >= 1 && d < 5

d < 3

End

h = b + 1;

d--;

g = c + 1

d--

Start

Figure 3 A program on the left-hand side and its control flow graph on the right-hand side.

writing data, it is directly written to the main memory without first updating the cache,

effectively bypassing the cache for writes and prioritizing direct access to system memory.

This aims to minimize unnecessary memory accesses. Under these assumptions, only read

operations change the cache state.

Ground Truth. At the end of the program execution, there are only three valid concrete

cache states: c1 = {a 7→ 1, b 7→ 4, c 7→ 4, d 7→ 0}, c2 = {a 7→ 3, b 7→ 1, c 7→ 2, d 7→ 0}, and

c3 = {a 7→ 2, b 7→ 1, c 7→ 4, d 7→ 0}. These three concrete cache states correspond to the

following set of executions. State c1 corresponds to the case where the body of the while

loop is never entered, leaving c and b uncached (having age 4). State c2 corresponds with

executions in which the while loop is entered, and both branches of the if-statement are

executed. (We note that due to the guards of both the while-loop and the if-statement, the

then-branch is always executed after the else-branch when both are executed (when d ≥ 3 at

the beginning of the program), causing the cache line age of b to be younger than the cache

line age of c. State c3 corresponds to the case where only the then-branch of the if-statement

is executed (when d < 3 at the beginning of the program), causing c to be uncached. With

three possible concrete cache states, there is a maximum leakage of log2(3) bits.

Baseline Algorithm. The abstract cache state at the last location of the program computed

by the baseline algorithm in Section 2 is CLast := {a 7→ {1, 2, 3, 4}, b 7→ {1, 2, 4}, c 7→

{1, 2, 3, 4}, d 7→ {0}}, which corresponds to 14 possible concrete cache states, where

|γC♯(CLast)| = 14 (for reference, all 14 concrete cache states are featured in the appendix

of the extended version [15]). This leads to a maximum leakage of log2(14) bits, which

is significantly higher than the ground truth log2(3). As mentioned earlier, the baseline

algorithm has two sources of imprecision, one of which is in the abstract transfer function

Upd♯ and the other is in the abstract domain C♯.

3.2 Imprecision of Abstract Transfer Function Upd♯

To see the imprecision in Upd♯, consider the following abstract state C, which occurs prior

to the third fixpoint iteration (using loop unrolling) of the while loop in Figure 3 using the

baseline algorithm. That is, C := {a 7→ {2, 3}, b 7→ {1, 2, 4}, c 7→ {1, 2, 4}, d 7→ {0}}.

J. L. Mitchell and C. Wang 22:9

{d}

{b, c}

{a, b, c}

{a}

{b}

{d}

{a, c}

{a, c}

{b}

{d}

{a, c}

{a}

{b, c} {a, c} {c}

0

1

2

3

4

���∗
#	(�, �)	���#(�, �)	�����	�	

Figure 4 Differences in (baseline and new) abstract transfer functions, applied to abstract cache

state C ∈ C♯ and the accessed memory block b ∈ B.

The inverse of C, which maps from ages to memory blocks (variables), is shown in the

left-most state of Figure 4.

Given abstract cache state C, consider the case of accessing (reading) variable b. As

a result, the transfer function will return the abstract cache state Upd♯(C, b) := {a 7→

{2, 3, 4}, b 7→ {0}, c 7→ {2, 3, 4}, d 7→ {1}}. Note that, due to spurious aging, the age 4 has

become possible for a, and that the age 3 has become possible for c. However, according to

the ground truth, there is no valid concrete cache state where a is outside of the cache, and

there is no valid concrete cache state where c occupies the third cache line either.

In this work, we want to design a new transfer function Upd♯
∗ to eliminate such contra-

dictory cache states. Intuitively, Upd♯
∗(C, b) works as follows: when considering incrementing

3 ∈ C(a) to 4, Upd♯
∗ capitalizes on the fact that when a is of age 3, the set of variables

with possible ages younger than 3 are {b, c, d}, as seen in the leftmost abstract cache state

in Figure 4. Because there are only three such variables, and b is one of them, b must

be younger than a when a is of age 3. Thus, it is unnecessary to increment 3 ∈ C(a)

to 4 when accessing b, as b will already be younger than a. Similarly, 2 ∈ C(c) is not

incremented to 3. Therefore, Upd♯
∗(C, b) := {a 7→ {2, 3}, b 7→ {0}, c 7→ {2, 4}, d 7→ {1}},

which corresponds to the rightmost abstract state in Figure 4. We shall explain more

formally in Section 4.1 that, by replacing Upd♯ with Upd♯
∗ in the iterative procedure used

to analyze the program in Figure 3, our method will compute a better final abstract cache

state, CLast :={a 7→ {1, 2, 3}, b 7→ {1, 2, 4}, c 7→ {1, 2, 4}, d 7→ {0}}, which corresponds to

seven (instead of 14) concrete cache states at the end of program execution.

3.3 Imprecision of Abstract Domain C♯

To understand the limitation of the C♯ domain, consider the final abstract cache state

CLast := {a 7→ {1, 2, 3}, b 7→ {1, 2, 4}, c 7→ {1, 2, 4}, d 7→ {0}} computed at the exit point of

the example program in Figure 3 by using Upd♯
∗. As mentioned earlier, this abstract cache

state corresponds to seven concrete cache states. Compared to the ground truth, which has

three concrete cache states c1, c2 and c3 (defined in the previous subsection), the abstract

cache state CLast has 4 more (spurious) concrete cache states shown below: c4 = {a 7→ 3, b 7→

2, c 7→ 1, d 7→ 0}, c5 = {a 7→ 2, b 7→ 4, c 7→ 1, d 7→ 0}, c6 = {a 7→ 1, b 7→ 4, c 7→ 2, d 7→ 0}, and

c7 = {a 7→ 1, b 7→ 2, c 7→ 4, d 7→ 0}. These spurious cache states are due to the fact that C♯

is not capable of precisely capturing disjunctive invariants that arise due to variations in

control flow.

Specifically, these spurious states result from an inability of C♯ to distinguish between

when the while loop is entered or not, and whether the else branch is entered at least once in

the program in Figure 3. To see why, consider the final abstract cache state CLast , where 1 is

ECOOP 2025

22:10 Quantifying Cache Side-Channel Leakage by Refining Set-Based Abstractions

a possible age for a, 0 is a possible age for d, 2 is a possible age for c, and 4 is a possible age

for b, thus allowing the concrete cache state c6 = {a 7→ 1, b 7→ 4, c 7→ 2, d 7→ 0}. However, a

is of age 1 only when the loop is not entered, but c being in the cache indicates that c was

accessed in Line 12 of the program, and that the loop body was entered.

In this work, we want to remove these spurious states by leveraging the finite powerset

framework of Bagnara et al. [3], which computes a bounded set of states (instead of a single

state) at each program location. We shall explain in Section 4.2 that, in the context of cache

side-channel analysis, this is accomplished by lifting the abstract domain C♯ to the powerset

domain P(C♯) where each element has a cardinality of less than or equal to K. In practice,

the bound K may be a small number, e.g., K = 10.

For the example program in Figure 3, K = 3 would be sufficient. That is, by using an

abstract domain whose elements consist of a set of at most three elements of C♯ (as opposed

to a single abstract state) to conduct fixpoint iteration with a lifted version of Upd♯
∗, we end

up with the following abstract state: {{a 7→ {1}, b 7→ {4}, c 7→ {4}, d 7→ {0}}, {a 7→ {3}, b 7→

{1}, c 7→ {2}, d 7→ {0}}, {a 7→ {2}, b 7→ {1}, c 7→ {4}, d 7→ {0}}}, which corresponds to the

three valid concrete cache states in the ground-truth.

We also emphasize that maintaining disjunctive invariants is able to prevent spurious

aging caused by merging two abstract cache states. To see this, consider the following minor

modification of code: suppose that the statement h = g is added between lines 8 and 9,

indicating that g is read at that program location, in the then-branch of the if-statement. In

the first iteration of analyzing the code with loop unrolling, the abstract states to be merged at

the end of the if-statement are CThen := {a 7→ {3}, b 7→ {2}, c 7→ {4}, d 7→ {0}, g 7→ {1}} and

CElse := {a 7→ {2}, b 7→ {4}, c 7→ {1}, d 7→ {0}, g 7→ {4}}. Then, consider in the next iteration

accessing variable b; Upd♯(CThen, b) := {a 7→ {3}, b 7→ {0}, c 7→ {4}, d 7→ {1}, g 7→ {2}}.

Upd♯(CElse, b) := {a 7→ {3}, b 7→ {0}, c 7→ {2}, d 7→ {1}, g 7→ {4}}. Notice that in either case,

a is not aged to 4. Now consider CBoth := CThen ⊔C♯ CElse = {a 7→ {2, 3}, b 7→ {2, 4}, c 7→

{1, 4}, d 7→ {0}, g 7→ {1, 4}}. We can see that Upd♯(CBoth, b) ages a from 3 to 4. Thus,

maintaining disjunctive invariants (avoiding merging CThen and CElse) at this point can also

prevent spurious aging. As we describe in more detail in Section 4, Upd♯
∗ is also unable to

prevent spurious aging in this case, necessitating disjunctive invariants.

4 Our Method

We now present the two new techniques of our method for overcoming limitations of prior

work. The first is a new abstract transfer function that prevents spurious aging of memory

blocks in the cache. The second is a technique that lifts the abstract domain C♯ of states to

sets of abstract cache states, to prevent spurious combinations of cache states.

4.1 The Abstract Transfer Function Upd#
∗

Given an abstract cache state C ∈ C♯ and the accessed memory block w ∈ B, we want to

define Upd#
∗ (C, w) such that it is significantly more accurate than the baseline Upd♯(C, w)

defined in Section 2.3. Here, the focus is on eliminating contradictory cache states due to

spurious aging of memory blocks, to tighten the gap between Upd♯ and the best abstract

transformer for C♯, which concretizes the abstract state C using γC♯ , applies the concrete

update function Upd to each concrete state, and abstracts the resulting set of concrete states.

J. L. Mitchell and C. Wang 22:11

4.1.1 The Intuition

To this end, recall that for the example program in Figure 3, when b is the accessed memory

block and C := {a 7→ {2, 3}, b 7→ {1, 2, 4}, c 7→ {1, 2, 4}, d 7→ {0}}, the spurious aging of a to

4 and the spurious aging of c to 3 will occur in Upd♯(C, b) when considering the case where b

is of age 4 in C, meaning that, previously, b was outside of the cache.

Increasing the age of a from 3 to 4 is spurious aging because, when a is of age 3, to avoid

a gap in the cache, the younger cache lines (with ages 0, 1, and 2) must hold b, c and d.

Since the age of b is either 1 or 2, accessing b should not increase the age of a from 3 to 4.

Increasing the age of c from 2 to 3 is also spurious aging because, when c is of age 2, to avoid

a gap in the cache, the younger cache lines (with ages 0 and 1) must hold b and d. Since the

age of b must be 1, accessing b should not increase the age of c from 2 to 3.

Leveraging the above reasoning, we want the new transfer function to return Upd♯
∗(C, b) :=

{a 7→ {2, 3}, b 7→ {0}, c 7→ {2, 4}, d 7→ {1}}. It is more accurate than Upd♯(C, b) as shown

by the middle and right-most states in Figure 4 where the spurious ages in Upd♯(C, b) are

highlighted in red. In fact, this is the best result that any transfer function can possibly

achieve; that is, even if we concretize the abstract state C, apply Upd(c, b) for every concrete

state c, then re-abstract these concrete states, we will get the same abstract state. However,

applying the aforementioned “best” abstract transformer will not be computationally efficient.

In the subsections that follow, we introduce two core components of our new transfer function,

Upd♯
∗, defined in Definition 4, to capitalize on the intuition.

4.1.2 The Function Var(C, cb, b)

We first define Var : C♯ × A × B → P(B) as a function that takes an abstract cache state

C ∈ C♯, an age cb ∈ A, and a memory block b ∈ B as input and returns the set of memory

blocks belonging to the same cache set as b which are possibly younger than cb in C. Formally,

Var(C, cb, b) := {b′ ∈ B | ∃c′
b ∈ C(b′) . c′

b < cb ∧ set(b) = set(b′)}.

For example, consider C := {a 7→ {2, 3}, b 7→ {1, 2, 4}, c 7→ {1, 2, 4}, d 7→ {0}} (for the

ease of demonstration, we assume that all memory blocks map to the same cache set). If

cb = 3, the set of memory blocks that are possibly younger are {a, b, c, d}; thus, we have

Var(C, 3, b) = {a, b, c, d}. However, if cb = 2, we have Var(C, 2, b) = {b, c, d}.

Given memory block c of age 2, we use Var(C, 2, c) to represent the set of memory

blocks (in the same cache set as c) which are possibly younger than 2 in C, and then use

Var(C, 2, c) \ {c} to remove the memory block c itself. To decide if another block b (such that

set(b) = set(c)) may be younger than c, we check b ∈ Var(C, 2, c) \ {c}. For our running

example, where Var(C, 2, c) = {b, c, d} and Var(C, 2, c) \ {c} = {b, d}, the check passes,

meaning that b may be younger than c (when c is of age 2).

To summarize, the above discussion shows that, in general, the condition w ∈

Var(C, cb, b) \ {b} checks if block w ∈ B may be younger than block b ∈ B, when b is

of age cb ∈ C(b) and set(b) = set(w). In the next subsection, we show how to convert this

“may” information into “must” information, to understand when a memory block b must be

younger than a certain cache line age.

4.1.3 The Cardinality |Var(C, cb, b) \ {b}|

Since Var(C, cb, b) \ {b} is the set of blocks in the same cache set which are younger than

b ∈ B, when b is of age cb ∈ C(b), the cardinality of the set is the number of such younger

blocks. When |Var(C, cb, b)\{b}| ≤ cb, to avoid gaps in the cache, the younger cache lines (of

ECOOP 2025

22:12 Quantifying Cache Side-Channel Leakage by Refining Set-Based Abstractions

ages 0, . . . , cb − 1) must be filled with these younger blocks. Thus, if w ∈ Var(C, cb, b) \ {b}

also holds, the age of block w is younger than the age of block b, when b is of age cb. Thus,

accessing block w should not increase the age of block b when b is of age cb.

The above condition holds in the running example when b is the accessed memory block

and a is of age 3. Since Var(C, 3, a) \ {a} = {b, c, d} and |Var(C, 3, a) \ {a}| = 3, both

conditions |Var(C, 3, a) \ {a}| ≤ 3 and b ∈ (Var(C, 3, a) \ {a}) hold, meaning that the age

of b is younger than the age of a, when a is of age 3. Thus, accessing b should not increase

the age of a, when a is of age 3. We emphasize that if the condition |Var(C, 3, a) \ {a}| ≤ 3

does not hold, i.e., |Var(C, 3, a) \ {a}| > 3, we would not be able to ascertain that b must

be younger than 3. This comes down to the “pigeon-hole” principle, where we know that if

there are 4 variables for 3 possible cache lines, then b is not guaranteed to be younger than 3.

4.1.4 The Algorithm for Computing Upd♯
∗(C, w)

We define Upd♯
∗(C, w) by revising the sets O>⟨w⟩ and O<⟨w⟩ shown in Definition 2 for Upd♯.

▶ Definition 4 (Upd♯
∗). The abstract transfer function Upd♯

∗(C, w) for cache state C ∈ C♯

and accessed memory block w ∈ B is defined as follows:

Upd♯
∗(C, w) := λb ∈ B.















C(b) when set(b) ̸= set(w)

On⟨w⟩ ∪ O>⟨w⟩ ∪ O<⟨w⟩ when set(b) = set(w) ∧ b ̸= w

{0} when set(b) = set(w) ∧ b = w

where On⟨w⟩ ∪ O>⟨w⟩ ∪ O<⟨w⟩ computes a set of ages of block b ∈ B for each possible age

cw ∈ C(w):
On⟨w⟩ :=

⋃

cw∈C(w){cb | cb = n ∧ cb ∈ C ⇂w 7→cw
(b)} has the ages equal to n,

O>⟨w⟩ :=
⋃

cw∈C(w){cb | (cb > cw∨(|Var(C, cb, b) \ {b}| ≤ cb ∧ w ∈ Var(C, cb, b) \ {b})) ∧ cb ∈

C ⇂w 7→cw
(b)} has the ages older than cw,

O<⟨w⟩ :=
⋃

cw∈C(w){cb + 1 | (cb < cw∧(¬(|Var(C, cb, b) \ {b}| ≤ cb ∧ w ∈ Var(C, cb, b) \ {b}))) ∧

cb ∈ C ⇂w 7→cw
(b)} represents the effect on ages younger than cw.

The sets O>⟨w⟩ and O<⟨w⟩ are revised such that, when the highlighted condition in

O>⟨w⟩ is satisfied, we avoid incrementing the age of block b. The condition holds when the

number of variables (excluding b) younger than cb is less than or equal to cb, and the accessed

block w is one of the younger blocks. This is to prevent the spurious aging of block b.

For the example in Figure 3, in particular, the newly added conditions to O>⟨b⟩ and

O<⟨b⟩ avoid the spurious aging of a from 3 to 4 and c from 2 to 3, as shown in Figure 4. Thus,

by replacing Upd♯ with Upd♯
∗ in the iterative procedure, the final abstract cache state at the

end of the program in Figure 3 becomes {a 7→ {1, 2, 3}, b 7→ {1, 2, 4}, c 7→ {1, 2, 4}, d 7→ {0}},

which corresponds to seven (instead of 14) concrete cache states.

4.1.5 The Soundness Property

This technique is sound in that it computes an overapproximation of the concrete cache

states. Recall that Upd(c, w) is the concrete transfer function for a concrete cache state c

and the accessed memory block w, and γC♯ is the concretization function. To streamline

notation in the following sections, we denote Updw as a function which takes as input a

concrete cache state, and returns the cache state after having accessed w. (This can be

thought of as currying the w argument in Definition 1).

To prove soundness, we will show that Upd♯
∗ subsumes the result of the best abstract

transformer. To prove this, we first explicitly define the corresponding abstraction function

αC♯ : P(C) → C♯, which takes as input a set of concrete cache states and returns an abstract

cache state overapproximating the set.

J. L. Mitchell and C. Wang 22:13

▶ Definition 5 (αC♯). Let S denote some set of concrete cache states. Then, αC♯(S) := λb ∈

B.{c(b) | c ∈ S}

We now state the formal claim of soundness in the following theorem:

▶ Theorem 6. Upd♯
∗ is sound in that, for any w ∈ B and C ∈ C♯, αC♯ · Updw · γC♯(C)

⊑C♯ Upd♯
∗(C, w).

Proof. In the interest of space, we defer the full proof to the appendix of the extended

version [15], and instead provide a proof sketch here. In the following, let b refer to some

memory block in B whose ages are being updated a result of accessing memory block w.

1. We prove the soundness of Upd♯
∗ by showing that it subsumes the result of the best

abstract transformer.

2. We show this by proving that if there is some concrete state c′ that is the result of

applying Updw to some state c ∈ γC♯(C), where c′(b) = a′, then a′ ∈ Upd♯
∗(C, w)(b).

3. If b = w, then for all concrete states c ∈ γC♯(C), c(b) = 0. It is clear to see that

0 ∈ Upd♯
∗(C, w)(b).

4. Otherwise, if b ≠ w, there are three cases. First, if there is some state c, where c(b) = n,

then c′(b) = n. It is clear from the definition of Upd♯
∗, that n ∈ Upd♯

∗(C, w)(b) (Case

On⟨w⟩). Second, we show that if there is a concrete state c where block b is older than w,

that c(b) ∈ Upd♯
∗(C, w)(b) (Case O>⟨w⟩). Third, we show that if there is a concrete state

c where b is younger than w, then c(b) + 1 ∈ Upd♯
∗(C, w)(b) (Case O<⟨w⟩).

5. By showing that 3-4 hold, we have proved our claim. ◀

4.1.6 The Accuracy Property

We now argue that Upd♯
∗, as defined in Definition 4, is a refinement of Upd♯, as defined in

Definition 2. More formally stated, αC♯ · Updw · γC♯ ⊑ Upd♯
∗(·, w) ⊑ Upd♯(·, w). We now

present the key theorem, describing the refinement relationship between the two transformers.

▶ Theorem 7. The abstract transformer Upd♯
∗ is always more precise than, or equal to the

abstract transformer Upd♯.

Proof. To show this, we will proceed by demonstrating that given abstract cache state C,

and a memory block w to be accessed, for all b ∈ B, Upd♯
∗(C, w)(b) ⊆ Upd♯(C, w)(b). We will

proceed by cases.

1. Case set(b) ̸= set(w). In this case, Upd♯
∗(C, w)(b) = C(b) and Upd♯(C, w)(b) = C(b)

by their respective definitions. Thus, Upd♯
∗(C, w)(b) ⊆ Upd♯(C, w)(b) follows immediately.

2. Case set(b) = set(w). In the case where w and b belong to the same cache set, we

split up the proof into the following two cases:

a. w = b. In this case, memory block b is the block being accessed. Therefore

Upd♯
∗(C, w)(b) = {0} and Upd♯(C, w)(b) = {0}, by definition. Thus, the subset

relationship follows immediately.

b. w ̸= b. In this case, we will use O∗
n⟨w⟩, O∗

>⟨w⟩, O∗
<⟨w⟩, and On⟨w⟩,

O>⟨w⟩, O<⟨w⟩ to refer to the corresponding components of Upd♯
∗ and

Upd♯, respectively. For the sake of brevity, let M refer to the predicate

|Var(C, cb, b) \ {b}| ≤ cb ∧ w ∈ Var(C, cb, b) \ {b} . To prove the claim, we will

show that O∗
n⟨w⟩ ∪ O∗

>⟨w⟩ ∪ O∗
<⟨w⟩ ⊆ On⟨w⟩ ∪ O>⟨w⟩ ∪ O<⟨w⟩.

It follows by definition that O∗
n⟨w⟩ ⊆ On⟨w⟩.

To see why O∗
<⟨w⟩ ⊆ O<⟨w⟩, it can be shown that for any cb, cw, that {cb + 1 | (cb <

cw ∧ ¬M) ∧ cb ∈ C ⇂w 7→cw
(b)} ⊆ {cb + 1 | (cb < cw) ∧ cb ∈ C ⇂w 7→cw

(b)}. This simply

follows from the fact that cb < cw ∧ ¬M =⇒ cb < cw.

ECOOP 2025

22:14 Quantifying Cache Side-Channel Leakage by Refining Set-Based Abstractions

{d}

{b, e}

{a, b, e}

{a}

{d}

{b, g}

{a, b, g}

{a}

{d}

{b, e, g}

{a, b, e, g}

{a}

{b, e, g} {b, e, g} {b, e, g}

0

1

2

3

4

���∗
#(�′′, �)	

{b}

{d}

{a, e, g}

{a, e, g}

{a, e, g}

{d}

{b, e}

{a, b, e}

{a}

{b, e, g}

0

1

2

3

4

{b}

{d}

{a, e}

{a}

{e, g}

{b}

{d}

{a, g}

{a}

{e, g}

{d}

{b, g}

{a, b, g}

{a}

{b, e, g}

⊔

���∗
#	(�′, �)	���∗

#	(�, �)	

Figure 5 Merging two cache states which leads to spurious aging.

Finally, it can be shown that O∗
>⟨w⟩ ⊆ O>⟨w⟩. Let cb ∈ O∗

>⟨w⟩. Then, either of the

two conditions hold:

i. ∃cw . cb > cw. If cb > cw holds, then cb ∈ O>⟨w⟩, by definition of Upd♯.

ii. M. If M holds, then this implies that w ∈ Var(C, cb, b) \ {b}. This in turn

implies that there exists some c′
w such that c′

w < cb. If this is the case, then

cb ∈ {cb | (cb > c′
w) ∧ cb ∈ C ⇂w 7→c′

w
(b)}. Therefore, cb ∈ O>⟨w⟩, by definition.

Given the fact that O∗
n⟨w⟩ ⊆ On⟨w⟩, O∗

>⟨w⟩ ⊆ O>⟨w⟩, and O∗
<⟨w⟩ ⊆ O<⟨w⟩, it follows

that O∗
n⟨w⟩ ∪ O∗

>⟨w⟩ ∪ O∗
<⟨w⟩ ⊆ On⟨w⟩ ∪ O>⟨w⟩ ∪ O<⟨w⟩.

Therefore, in any case, Upd♯
∗(C, w)(b) ⊆ Upd♯(C, w)(b). ◀

4.2 Refining the C♯ Abstract Domain

We now present the technique for extending the abstract domain to a finite powerset domain,

through the framework of Bagnara et al. [3] to improve the precision of the analysis.

4.2.1 The Intuition

We first use examples to illustrate the benefit of maintaining disjunctive invariants and show

how to instantiate the framework in the context of cache analysis, which leverages it to

maintain a set of elements of C♯, rather than a single element of C♯.

▶ Example 8. As an example of why refining C♯ is useful, consider the example in Figure 5,

a case where Upd♯
∗ is unable to prevent precision loss. For both the blue and green abstract

cache states, when applying Upd♯
∗(·, b) on both states individually (the bottom row of the

figure), we can see that it is not possible for a be age 4, nor is it possible for e or g to be

age 3. However, this is not the case in their abstract join. We emphasize that applying the

best abstract transformer on the joined state does not prevent this either. This indicates an

imprecision of the abstract domain C♯ as opposed to sub-optimality of C♯’s operators. Thus,

it is desirable to keep these two abstract states separate. More explicitly, it is desirable to

have an abstract domain which maintains a set of elements of C♯, e.g. {C, C ′}.

J. L. Mitchell and C. Wang 22:15

Cache-Based Merging Operator (ΩC♯

R : VC♯ → VC♯). ΩC♯

R takes in an abstract state S and merges
any two elements of S if they have the same abstract cache state.

Subsumption Operator (ΩV♯×C♯

: VC♯ → VC♯). ΩV♯×C♯

takes in an abstract state S and removes

elements of S if they are subsumed by some other state in S. ΩV♯×C♯

R (S) 7→ S′, where S′ := S\{s ∈
S | s = ⊥VC♯ ∨ ∃s′ ∈ S.s ⊏V♯×C♯ s′}.

Figure 6 The subsumption and merging operators with respect to ⊑V♯×C♯ and ⊑C♯ .

Furthermore, the refinement can be conducted when a main-channel (program values)

analysis is conducted simultaneously with a side-channel (cache states) analysis. We refer

to the abstract domain used in the main-channel analysis as V♯. Let V be some numerical

abstract domain which approximates a numerical domain (P(Z)) (for instance, V may be

the domain of intervals or a domain of integer-valued sets). Let V be the set of program

variables. Then, we assume V♯ := V → V is the abstract domain for the set of variables in

the program which consists of maps from variables to an abstract value representation V.

In this case, the abstract domain to be refined is the abstract domain which has elements

of tuples of an abstract state in V♯ and an abstract state in C♯. The respective abstract

domain operators are applied, independently, pointwise. The domain is denoted by V♯ × C♯.

In fact, refinement at the level of both the program value and cache abstractions can be

useful, because if the value abstractions are more precise, then certain paths in the control of

the program (and subsequently, memory accesses) may be eliminated, possibly leading to

abstract cache states that are more precise. We write the rest of the section with this in

mind (and it corresponds to the set-up in our evaluation). Therefore, in the remainder of

this section we consider the concrete domain to be P(V → Z) × P(C).

4.2.2 The Finite Powerset Domain

In this section, we introduce the finite powerset domain. We first begin by introducing

relevant notation and operators.

The maximum number of abstract states of type V♯ × C♯ allowed in the aforementioned

set, denoted k, is pre-defined by the user. We refer to elements of such a set as disjuncts. In

our case, the finite powerset framework can be thought of taking V♯ ×C♯, which approximates

P(V → Z) × P(C), and replacing it with an abstract domain which still approximates

P(V → Z) × P(C), but using a set of abstract values in V♯ × C♯, that is, an element of

the powerset of V♯ × C♯, P(V♯ × C♯). With a slight abuse of notation, let V♯ × C♯ :=

⟨V♯ ×C♯, ⊑V♯×C♯ , ⊥V♯×C♯ , ⊤V♯×C♯ , ⊔V♯×C♯ , ⊓V♯×C♯⟩ denote the abstract domain V♯ ×C♯, along

with its operators. We say that an element S ∈ P(V♯ × C♯) is non-redundant with respect

to ⊑V♯×C♯ if and only if ⊥V♯×C♯ /∈ S and ∀s1, s2 ∈ S.s1 ⊑V♯×C♯ s2 =⇒ s1 = s2. Non-

redundancy ensures that a set of abstract states does not contain unnecessary elements that

are already represented by other elements in the set.

A subsumption operator serves to normalize an element S ∈ P(V♯ × C♯) by removing

redundant elements. The formal definition of the subsumption operator is in Figure 6.

The ΩV♯×C♯

R operator removes redundant states based on both abstract program states and

abstract cache states. The ΩC♯

R operator merges abstract states which share the same abstract

cache states; we emphasize that ΩC♯

R does not remove any states based on redundancy, it

simply merges abstract states which share the same abstract cache states. As we will see

later on, the subsumption operator is used in the definition of the join, meet, and widening

operators, while ΩC♯

R is used in the definition of the join operator.

ECOOP 2025

22:16 Quantifying Cache Side-Channel Leakage by Refining Set-Based Abstractions

Let Pfn(k)(V
♯ × C♯, ⊑V♯×C♯) denote the set of all elements of P(V♯ × C♯) which have a

cardinality of at most k. Formally, Pfn(k)(V
♯ × C♯, ⊑V♯×C♯) := {S ∈ P(V♯ × C♯) | |S| ≤ k},

where every element S is non-redundant according to ⊑V♯×C♯ . With this in place, we now

formally define the finite powerset domain:

▶ Definition 9 (Finite Powerset Domain VC♯). Let VC♯ := ⟨Pfn(k)(V
♯ × C♯, ⊑V♯×C♯), ⊑VC♯

, ⊥VC♯ , ⊤VC♯ , ⊕VC♯ , ⊓VC♯⟩ denote the finite powerset domain. Here, ⊥VC♯ = ∅ and ⊤VC♯ =

{⊤V♯×C♯}. ⊑VC♯ is defined as: S ⊑VC♯ S′ ⇐⇒ ∀s ∈ S : ∃s′ ∈ S′.s ⊑V♯×C♯ s′, as in [3].

S ⊕VC♯ S′ is defined to be ΩV♯×C♯

R (S ∪ S′).

VC♯ is related to the concrete domain P(V → Z) × P(C), with the following concretization

function: γ : VC♯ → (P(V → Z) × P(C)), where γ(S) 7→
⋃

{(v, c) ∈ γV♯×C♯(s) | s ∈ S}.

In summary, Definition 9 states that the lifted abstract domain VC♯ consists of sets of

elements of V♯ × C♯, where S ∈ VC♯ is lower than S′ ∈ VC♯ w.r.t. the partial order ⊑VC♯ if

every element in S is subsumed by some element in S′, according to ⊑V♯×C♯ . VC♯ relates to

the concrete domain via the concretization function γ that takes an abstract element S and

returns the union of the concretization of each element of S w.r.t. V♯ × C♯.

We now introduce each of the necessary domain operations for VC♯. We begin by

introducing the lifted versions of the abstract transfer functions and the meet operator, and

relegate join to its own subsection.

Abstract Transfer Functions. For both instructions that impact program values as well

as the abstract cache state, we lift the application of the transfer function to be element-

wise. Let s[C] and s[V] denote the cache abstraction and value abstraction components,

respectively. Let TV♯ be a transfer function that affects the abstract state correspond-

ing to the program values. Then, the lifted version for VC♯ is a function such that

S 7→ ΩV♯×C♯

R {(TV♯(s[V]), s[C]) | s ∈ S}. Similarly, let TC♯ be a transfer function that

affects the part of the abstract state corresponding to the abstract cache state. Then, the

lifted version for VC♯ is a function such that S 7→ ΩV♯×C♯

R {(s[V], TC♯(s[C])) | s ∈ S}.

The Meet Operator. Meet is defined by taking the pairwise meet w.r.t. ⊓V♯×C♯ . Specifically,

if S, S′ ∈ VC♯, then S ⊓VC♯ S′ is defined as ΩV♯×C♯

R ({s ⊓V♯×C♯ s′ | s ∈ S, s′ ∈ S′}). We note

that this set may be larger than k. In this case, we can view the meet operator as replacing

Line 1 of the algorithm for join (Algorithm 1) with ΩV♯×C♯

R ({s ⊓V♯×C♯ s′ | s ∈ S, s′ ∈ S′}).

The justification for the validity of the meet operator is in the appendix of the extended

version [15].

Now, in the next section, we introduce our join operator.

4.2.3 The Join Operator

We now present the abstract join operator, which is the key novelty of our technique. In

effect, this will replace the role of ⊕VC♯ in Definition 9 to ensure that the number of disjuncts

remains at most k when the join operator is applied by the analysis. Typically, deciding how

to maintain and manage the disjunctive components in techniques like trace-partitioning [23],

disjunctive completion [10], and the finite powerset framework is a key challenge in effectively

implementing these techniques. In order to do so, we first consider when it is necessary to

maintain certain disjuncts to prevent spurious aging:

▶ Example 10. Consider the two following abstract cache states for a fully-associative cache

(all blocks map to one cache set) which can store four memory blocks (associativity = 4):

C = {d 7→ {0, 1}, b 7→ {1, 2, 4}, c 7→ {0, 1, 2}, a 7→ {3}} (green) and C ′ = {d 7→ {0}, b 7→

J. L. Mitchell and C. Wang 22:17

{c, d}

{b, c, d}

{b, c}

{a}

{b}

{d}

{b, c}

{b, c}

{a}

{b, c}

{c, d}

{b, c, d}

{b, c}

{a}

{b, c}

{b}

{c, d}

{c, d}

{a}

{c}

{c, d}

{b, c, d}

{b, c}

{a}

{b}

{b}

{c, d}

{c, d}

{a}

{}

{d}

{b, c}

{b, c}

{a}

{b, c}

{b}

{d}

{c}

{a}

{c}

⊔

���∗
#(�′′, �)	

���∗
#	(�, �)	 ���∗

#	(�′, �)	

0

1

2

3

4

0

1

2

3

4

Figure 7 Merging two cache states does not cause spurious aging.

{1, 2, 4}, c 7→ {1, 2, 4}, a 7→ {3}} (blue), depicted in Figure 7. We can see that upon an access

to variable b, Upd♯
∗ will not increment 3 ∈ C(a) to 4, meaning that a is definitely in the

cache.

We can also see that this is true for their abstract join C ′′ = C ⊔C♯ C ′ = {d 7→ {0, 1}, b 7→

{1, 2, 4}, c 7→ {0, 1, 2, 4}, a 7→ {3}}, where 4 /∈ Upd♯
∗(C ′′, b)(a). In this example, we can see

that merging the blue and green cache states did not impact the ability of Upd♯
∗ to prevent

spuriously aging a from 3 to 4. Despite neither abstract state being subsumed by the other,

the reason why Upd♯
∗ is able to prevent spurious aging on the union of both states is that the

set of concrete cache states represented by the blue abstract state is a subset of the concrete

states represented by the green state. This, combined with the fact that Upd♯
∗ prevents a

from spuriously aging in either state, means that the same holds for the joined state.

The scenario referred to in Example 10, is a sufficient, but not necessary condition. To

see why, consider another example, in which the set of valid concrete states of C and C ′ do

not subsume one another, as in the following example:

▶ Example 11. Consider the two following abstract cache states: C = {d 7→ {0, 1}, b 7→

{1, 2, 4}, c 7→ {0, 2}, a 7→ {2, 3}} and C ′ = {d 7→ {0, 1}, b 7→ {0, 2, 4}, c 7→ {1, 3}, a 7→ {2, 3}}.

We can see that the set of concrete states represented by C and C ′ are not subsumed by

one-another. (For example, {c 7→ 0, d 7→ 1, b 7→ 2, a 7→ 3} ∈ γC♯(C), but is not in γC♯(C ′) and

{d 7→ 0, c 7→ 1, b 7→ 2, a 7→ 3} ∈ γC♯(C ′), but is not in γC♯(C).) However, in their abstract

join, C ′′ = {d 7→ {0, 1}, b 7→ {0, 1, 2, 4}, c 7→ {0, 1, 2, 3}, a 7→ {2, 3}}, the following concrete

state becomes possible: {b 7→ 0, d 7→ 1, c 7→ 2, a 7→ 3}, which is not a valid cache state in

either C or C ′. But, Upd♯
∗(C ′′, b) is still able to avoid spuriously aging a from 3 to 4.

The scenarios described by Example 10 and Example 11 are in contrast with the example

in Figure 5. In the Figure 5 example, a concrete cache state which is not possible in either

cache state becomes possible in their abstraction union, and a memory block was spuriously

aged as a result. In the case of Example 10 no new (valid) concrete cache state is introduced

by the result of the join of the two abstract states. However, in Example 11, a new concrete

cache state is introduced by the result of their join, but spurious aging was prevented. Having

such a wide range of possibilities motivates the search for understanding when to merge

abstract cache states, and when not to. If computational resources were no limit, only

ECOOP 2025

22:18 Quantifying Cache Side-Channel Leakage by Refining Set-Based Abstractions

merging abstract cache states such that γC♯ is distributive over the two cache states is ideal,

meaning that no infeasible concrete cache states will be introduced. However, this is not

applicable in practice due to being too costly, for two reasons. The first is that the number

of disjuncts needed to be maintained may be very large (perhaps infinite in certain cases,

depending on the control flow of the program, taking us out of the scope of the finite powerset

construction), and the second is that checking the abstract states by concretizing them each

time may lead to a large computational overhead.

Therefore, instead, we aim to maintain a reasonable number of disjunctions while retaining

some precision, by carefully merging abstract states. To do so, we introduce our join operator

to replace ⊕VC♯ in Definition 9.

The Algorithm for Join. The abstract join is parameterized by the maximum number of

disjuncts allowed, as well as a similarity relation ∼R, to merge states when the number of

allowed disjuncts is exceeded. The similarity relation takes in two states s, s′ ∈ V♯ × C♯ and

returns true or false, depending on whether they should be merged.

Algorithm 1 Join Operation ⊕∗
VC♯ ⟨k : N+, ∼R: (V♯ × C♯) × (V♯ × C♯) → {tt, ff}⟩.

Input: S, S′ ∈ VC♯ // ⊕∗
VC♯ : VC♯ × VC♯ → VC♯

Output: Joined state set S′′

1. Set S′′ := ΩV♯×C♯

R (S ∪ S′)

2. if |S′′| ≤ k then

return S′′

3. else

a. Set S′′ := ΩC♯

R (S′′)

b. if |S′′| ≤ k then

return ΩV♯×C♯

R (S′′)

c. else

i. while |S′′| > k and ∃s1, s2 ∈ S′′ : s1 ∼R s2 do

Merge states s1 and s2 where s1 ∼R s2

ii. while |S′′| > k do

Arbitrarily merge any pair of states

iii. return ΩV♯×C♯

R (S′′)

The join operator begins by combining the disjuncts in S, S′ and removes redundant

elements w.r.t. the value and cache abstractions. If, after doing this step, the cardinality

of the resulting set is less than or equal to k, we stop. This choice is motivated by the fact

that preserving disjunctive information that differs on the value domain may lead to more

precise control-flow information, and thus, possibly result in fewer spurious memory accesses.

Otherwise, the join operator aims to merge elements which share the same abstract cache

states, using ΩC♯

R . After this, the subsumption operator is applied to ensure non-redundancy.

If the number of disjuncts are within limit, the join operator returns the resulting abstract

state. However, if the number of disjuncts still exceeds the number of those which are allowed,

the join operator merges pairs of states which satisfy ∼R. Merging via ∼R is done as much

as possible until the number of disjuncts remaining are at most k. If all states satisfying ∼R

have been merged pairwise and the number of disjuncts exceeds k, then states are merged

arbitrarily pairwise, until the number of disjuncts is at most k. After this is complete, the

subsumption operator is applied to ensure non-redundancy. We show that the join operator

is valid in the appendix of the extended version [15]. In the next section, we discuss the

possibilities for ∼R.

J. L. Mitchell and C. Wang 22:19

4.2.4 The Merging Strategies

Recall that in Example 11, the concrete cache state {b 7→ 0, d 7→ 1, c 7→ 2, a 7→ 3} is captured

by the abstract cache state C ′′, but not by C or C ′, but we can still prevent the spurious aging

of a from 3 to 4 by applying Upd♯
∗ to the abstract state C ′′. The key factor in Upd♯

∗(C ′′, b)

being able to avoid spuriously aging a from 3 to 4 is that the set of variables younger than

age 3 (excluding a) is the same across C, C ′, C ′′ – the set being {d, b, c}. This corresponds

with the second condition from the definition of O>⟨w⟩ in Upd♯
∗. Thus, it is of interest to

preserve that property whenever we can.

To this end, we consider a condition under which merging two abstract states preserves

the ability of Upd♯
∗ to prevent spurious aging of a given memory block when accessing some

memory block w on the two abstract states separately. Specifically, we consider when two

abstract cache states C and C ′ can be merged such that if Upd♯
∗(C, w) and Upd♯

∗(C ′, w) do

not age a memory block b from t to t + 1, then Upd♯
∗(C ⊔C♯ C ′, w) does not age memory block

b from t to t + 1, where t is some possible cache line age between 1 and n − 1. If they satisfy

the property that the set of memory blocks who have ages younger than t are the same in C

and C ′, then if Upd♯
∗(C, w) and Upd♯

∗(C ′, w) do not spuriously age block b from t to t + 1,

then Upd♯
∗(C ′′, w) where C ′′ = C ⊔C♯ C ′ does not age block b from t to t + 1 spuriously.

We first introduce a helper function used in the proceeding Lemma that formalizes the

aforementioned property. Let max<t(A) be a function that takes a set of integers (A), and

returns the maximum value that is less than t. If no such value exists, it returns −∞. For

example, max<4({1, 2, 3, 4}) returns 3, while max<5({5, 6, 7}) returns −∞. We now state

the Lemma:

▶ Lemma 12. Let C, C ′ ∈ C♯. Let w ∈ B be the memory block being accessed. Let

t ∈ {1, ..., n − 1} be some cache line age, where n is the associativity of the cache. If for each

b ∈ B, max<t(C(b)) = max<t(C
′(b))(⋆), then, if Upd♯

∗(C, w) and Upd♯
∗(C ′, w) do not age b

from t to t + 1, then Upd♯
∗(C ⊔C♯ C ′, w) does not age b from t to t + 1.

Proof. For the proof, please refer to the appendix of the extended version [15]. ◀

Lemma 12 yields two key corollaries for our purposes. The first states that if the universe

of concrete cache states are partitioned using a set of abstract cache states based on groups

of states which satisfy (⋆) pairwise, then there will be no spurious aging of memory blocks

caused by combining states with the abstract join operator. The second one states a special

case of the lemma, which prevents memory blocks from being spuriously uncached as a result

of combining states with the abstract join operator. (We note that there is still possible

imprecision due to the gap between Upd♯
∗ and the best abstract transformer.)

▶ Corollary 13. Merging abstract cache states based on the strategy of only merging abstract

cache states C, C ′ that satisfy the following formula ∀t ∈ {1, ..., n−1}.∀b ∈ B. max<t(C(b)) =

max<t(C
′(b)) will result in no block being spuriously aged, purely due to combining abstract

cache states with the join operator.

Proof. If only pairs of disjuncts which satisfy this property are merged, then for any block

b ∈ B, if b is not aged in either disjunct, then it will not be aged in their abstract union.

This corresponds to the case where there is no precision loss due to using the C♯ abstract

domain compared to P(C♯). ◀

▶ Corollary 14. If t = n − 1, then merging based on the aforementioned strategy will prevent

a memory block from becoming possibly uncached as a result of merging two abstract states.

Proof. This is just a special case of Lemma 12, where t = n − 1. ◀

ECOOP 2025

22:20 Quantifying Cache Side-Channel Leakage by Refining Set-Based Abstractions

Egli-Milner Partial Order ⊑EM (⊑EM : Pfn(V♯ ×C♯)×Pfn(V♯ ×C♯) → {tt, ff}). The Egli-Milner
partial order is defined as follows: S ⊑EM S′ ⇐⇒ S = ∅ ∨ (∀s ∈ S . ∃s′ ∈ S′ . s ⊑V♯×C♯ s′ ∧ ∀s′ ∈
S′.∃s ∈ S.s ⊑V♯×C♯ s′).

k-Collapsor (⇑k: P(V♯ × C♯) → VC♯). Given S ∈ VC♯ such that S is non-redunandant according to

⊑V♯×C♯ , a k-Collapsor ⇑k (S) yields S′ ∈ VC♯ such that S ⊑EM S′ and, moreover, |S′| ≤ k.

∇-Reduction Map (Ω∇ : P(V♯ × C♯) → Pfn(V♯ × C♯)). The ∇-Reduction map is defined recursively:

Ω∇(S) := ite(∃s, s′ ∈ S . s ⊏V♯×C♯ s′, Ω∇((S \ {s, s′}) ∪ {s∇V♯×C♯ s′}), S).

Widen for Pfn(V♯ × C♯) (k∇P : Pfn(V♯ × C♯) × Pfn(V♯ × C♯) → Pfn(V♯ × C♯)). Given

S, S′ ∈ Pfn(V♯ × C♯) such that S ⊏Pfn(V♯×C♯) S′, Sk∇P S′ := Ω∇(S ∪ S′′), where S′′ :=⇑k (S′).

Widen for VC♯ (k∇P : VC♯ × VC♯ → VC♯). Given S, S′ ∈ VC♯ such that S ⊏VC♯ S′, Sk∇P S′′ :=

Ω∇(S ∪ S′′), where S′′ := S′ =⇑k (S′), by virtue of |S′| ≤ k, as it is a member of VC♯.

Figure 8 Details of the widening operator.

The two corollaries could lead to two different merging strategies to serve as similarity

relations in the definition of the abstract join operator. The first being to prevent the spurious

aging of any memory block as a result of merging two abstract cache states, and the second

being to prevent any block from becoming spuriously uncached in the same scenario. While

the two merging strategies have properties that are desirable, they have their limitations

in terms of their utility in practice. First, it may require many disjuncts to be able to

merge only according to the strategy suggested by Corollary 13. Second, using the strategy

suggested by Corollary 14, the number of disjuncts required may be large, but furthermore,

the user is forced to pick a specific t (n − 1).

Therefore, in practice, we merge two states according to the following similarity relation:

∀b ∈ B. max ̸=n(C(b)) = max ̸=n(C ′(b)). That is, if there is no memory block whose maximum

(non-associativity) age differs between C and C ′, then we merge the two abstract states.

The goal is to encourage falling into either of the two cases where Lemma 12 indicates that

the merging will not lead to spurious aging, while still keeping the number of disjunctions

manageable by enforcing less stringent requirements than suggested by either Corollary 13

or Corollary 14. Of course, many other relations could be used, including strategies based on

the syntax and semantics of the program, which we intend to explore in future work.

4.2.5 The Widening Operator

Finally, the last domain operation to be defined is the widening operator. A widening

operator serves to enforce termination of analyses which use abstract domains with infinitely

increasing chains, or to speed up the analysis, regardless of the abstract domain. Given that

C♯ has finite height, no widening is required for it. However, V♯ abstracts program values and

therefore may not be of finite height; thus we must introduce a widening operator for VC♯.

One way to instantiate a widening operator for the finite powerset domain is the through

the use of a cardinality-based widening [3], which is what we do in our instantiation of

the framework. The formal details of the cardinality-based widening (written as slight

adaptations from the details in [3]) are shown in Figure 8. In a nutshell, cardinality-based

widening ensures termination by first ensuring that the cardinality of the widening argument

is bounded by a fixed (user-specified) size k. Then, a reduction map, which takes a set of

elements and removes and replaces pairs of elements where one strictly subsumes the other

by the widening of these two elements, is applied in a recursive manner until the set no

longer changes. Together, the two form a ∇-connected extrapolation heuristic [3], which lifts

the base-level widening ∇V♯×C♯ to the powerset domain, while preventing unbounded growth,

guaranteeing termination.

J. L. Mitchell and C. Wang 22:21

In the case of the finite powerset domain of non-redundant (w.r.t. ⊑V♯×C♯) sets without a

restriction on the cardinality sets (whose elements are denoted, with a slight abuse of notation,

by Pfn(V♯ × C♯) in Figure 8), the two steps are accomplished by a using a k-Collapsor (⇑k)

and the reduction map Ω∇. The k-Collapsor takes an element of Pfn(V♯ ×C♯), S, and returns

an element S′ ∈ Pfn(V♯ × C♯), such that |S′| ≤ k and S ⊑EM S′. The Elgi-Milner partial

order (S ⊑EM S′) means that for two sets S, S′, every element in S is overapproximated by

an element in S′ AND every element in S′ overapproximates some element in S. There are

many ways to define a k-Collapsor [3], but it is worth noting that our join operator defined in

Algorithm 1, can be used to define a k-Collapsor, e.g., S 7→ S ⊕∗
V♯×C♯ S. By construction, the

resulting set is of size less than or equal to k. Furthermore, since elements of S are merged,

every element in the resulting set subsumes some element in S, enforcing S ⊑EM S ⊕∗
V♯×C♯ S.

In our abstract domain, VC♯, where each set is restricted to be of size at most k, the

widening operator for VC♯ can be defined as shown at the bottom of Figure 8. That is,

the k-Collapsor is the identity function, as all elements in the domain are bounded by

cardinality k. The termination and soundness guarantees follow from the results established

in [3].

5 Experiments

We have implemented our method in a static program analyzer designed for quantifying

cache side-channel leakage. Our analyzer is written in OCaml and built upon the CacheAudit

analysis framework, the state-of-the-art tool for computing upper bounds of cache side-

channel leakage via abstract interpretation. Our techniques are implemented as functors for

the existing CacheAudit abstract domains, transforming the existing abstract interpreter to

gain precision in the key ways we identified.

5.1 Experimental Setup

We conducted all experiments on a computer with an Intel Xeon W-2245 CPU and 128 GB

RAM, running Ubuntu 20.04 operating system. The experiments were designed to answer

the following questions:

RQ1. Do the upper bounds computed by our method improve upon the state-of-the-art?

RQ2. Do the two innovative techniques presented in Section 4 have a synergistic effect

in practice?

Our benchmark consists of 29 C programs that implement a variety of sorting algorithms

and cryptographic functions. For every sorting algorithm, we introduce a “structured” version,

meaning that the elements of the arrays to be sorted are data structure types, consisting

of several other components: character arrays and integers. This set-up reflects real-world

applications of algorithms that carry some “informational payload”.

Each sorting algorithm was assumed to run on an array of size 24. While loop unrolling

is not strictly necessary for abstract interpretation based methods, it was required for certain

programs (independent of the technique used), and thus, we allowed a loop unrolling limit of

1024 for those programs, as recommended by the tool. We limit the maximum number of

disjunctions to 10.

5.2 Results for Answering RQ1

To answer RQ1, i.e., do the upper bounds computed by our method improve upon the

state-of-the-art, we compare the results of our method and the existing method on all 29

benchmark programs. The results are shown in Table 1. Column 1 shows the name of the

ECOOP 2025

22:22 Quantifying Cache Side-Channel Leakage by Refining Set-Based Abstractions

Table 1 Comparing existing methods (B [11]) and our new method (NM) on a 32KB cache with

associativity 8 and line size 32.

Program Leakage Quantification Time (s)

B (SM / DM) NM (SM / DM) Comp. B NM

bingosort 1.0 / 1.0 0.0 / 0.0 ✔ 4 18

bingosortstruct 25.0 / 25.0 23.0 / 23.0 ✔ 101 227

bubblesort_opt 3.0 / 3.0 1.0 / 1.0 ✔ 0 1

bubblesort_opt_struct 25.0 / 25.0 1.0 / 1.0 ✔ 2 8

bubblesort_struct 1.0 / 1.0 0.0 / 0.0 ✔ 2 5

cocktailsort 0.0 / 0.0 0.0 / 0.0 ✔ 17 45

cocktailsortstruct 1.0 / 1.0 0.0 / 0.0 ✔ 108 284

gnomesort 2.0 / 2.0 2.0 / 2.0 same 3 9

gnomesortstruct 23.0 / 23.0 19.0 / 19.0 ✔ 38 75

iterativeheapify 2.0 / 2.0 1.0 / 1.0 ✔ 11 21

iterativeheapifystruct 22.0 / 22.0 21.0 / 21.0 ✔ 92 146

odd_even_sort 0.0 / 0.0 0.0 / 0.0 ✔ 8 20

odd_even_sort_struct 1.0 / 1.0 0.0 / 0.0 ✔ 54 148

shellsort 0.0 / 0.0 0.0 / 0.0 ✔ 0 1

shellsortstruct 1.0 / 1.0 1.0 / 1.0 same 1 4

defensive_gather 96.0 / 96.0 1.0 / 1.0 ✔ 14 38

scatter_gather_openssl_1_0_2 97.0 / 97.0 1.0 / 1.0 ✔ 2 3

window_mod_exp_libgcrypt_161 2.0 / 2.0 1.5 / 1.5 ✔ 1 1

window_mod_exp_libgcrypt_163 0.0 / 0.0 0.0 / 0.0 ✔ 1 1

rabbit 0.0 / 0.0 0.0 / 0.0 ✔ 4 14

salsa 0.0 / 0.0 0.0 / 0.0 ✔ 4 10

aes-128-preloading 15.6 / 0.0 14.5 / 0.0 ✔ 14 51

aes-192-preloading 15.6 / 0.0 15.0 / 0.0 ✔ 16 82

aes-256-preloading 16.5 / 0.0 16.0 / 0.0 ✔ 23 123

aes-128-rom 142.5 / 132.7 141.5 / 132.6 ✔ 23 63

aes-192-rom 142.6 / 132.6 142.1 / 132.6 ✔ 26 92

aes-256-rom 143.2 / 132.6 142.6 / 132.6 ✔ 34 114

sosemanuk 64.0 / 64.0 64.0 / 64.0 same 90 191

hc-128 29.0 / 0.0 29.0 / 0.0 same 2242 3853

benchmark program. Columns 2-4 compare leakage quantification results for two types of

adversaries: SM stands for the shared-memory adversary and DM stands for the disjoint-

memory adversary. In general, the leakage for DM is smaller than or equal to the leakage for

SM . In both cases, the quantification results of the existing and new methods are measured

in bits – a smaller number means a better result (less leakage). In Column 4, the ✔symbol

means that our method obtains a better result, and the ✔symbol means that our method

obtains the best-possible result (e.g., when the leakage is already 0). Columns 5-6 compare

the total analysis time in seconds. In general, we find that in most cases the running time is

about twice as long compared to the baseline methodology. This is expected due to the extra

domain operations required due to refining the C♯ domain to use sets of abstract states.

Table 1 shows that the new method obtains either better or the best-possible quantification

results on 13/15 benchmark programs that implement various sorting algorithms. For example,

the quantification results for cocktailsortstruct and shellsort are the best-possible because

J. L. Mitchell and C. Wang 22:23

the leakages obtained by our method are equal to 0. On the other 2/15 benchmark programs

(gnomesort and shellsortstruct), the new method obtains quantification results that are

as good as those of the existing method. As for the benchmark programs that implement

cryptographic algorithms, the new method obtains either better quantification results on

9/14 of them, and obtains the same results as the existing method on 5/14 of them. We

note that the results are also dependent on the cache configuration used. For example,

using a 32K cache with associativity 16, and line size 32, on sosemanuk and hc-128, in

particular, the precision of the leakage improves by close to 10 bits and 13 bits by using our

method, corresponding to elimination of 1024 and 8192 spurious cache states, respectively.

Overall, the results show that the upper bounds computed by our method improve upon the

state-of-the-art significantly.

Figure 9 Evaluating the impact of the two new techniques in our method, by comparing them

against the existing method. CA is the existing method (CacheAudit), Technique 1 is the first

new technique in our method (the new abstract transfer function), Technique 2 is the second new

technique in our method (refining the C♯ domain), and Both Techniques is our method with both of

the two new techniques. The scatter plots on top are for the SM adversaries, while the scatter plots

at the bottom are for the DM adversaries. In all of these scatter plots, points below the diagonal

line (y = x) are winning cases for our method against the existing method.

5.3 Results for Answering RQ2

To answer RQ2, i.e., do the two techniques presented in Section 4 have a synergistic effect

in practice, we conducted an ablation study, by enabling each individual technique and

comparing it against the state-of-the-art. These comparisons were conducted on all 29

benchmarks programs, with various cache settings. That is, we set the cache size S to 4KB,

ECOOP 2025

22:24 Quantifying Cache Side-Channel Leakage by Refining Set-Based Abstractions

8KB, 16KB, 32KB and 64KB, the associativity n to 4, 8, and 16, and the cache line size L

to 32 and 64 bytes. While we recognize that 16 is not a common associativity for real-world

caches, our goal was to stress-test our abstract transformer under higher associativities. The

results are shown as scatter plots in Figure 9. In each scatter plot, the x-axis is the leakage

(in bits) obtained by the state-of-the-art method, and the y-axis is the leakage (in bits)

obtained by our method (with one or both techniques enabled). Thus, the diagonal line

represents the cases where our method is tied with the existing method, whereas points below

the diagonal line are winning cases for our method.

In Figure 9, the two scatter plots on the left-hand side show the effectiveness of the new

abstract transfer function. While most of the points are on the diagonal line, meaning that

the two methods are tied, there are some points that are significantly below the diagonal

line, indicating the effectiveness of the proposed technique for these cases. The two scatter

plots on the right-hand side show the effectiveness of using disjunctions. Many of the points

are below the diagonal line, which are the winning cases for our method. The two scatter

plots in the middle show that using both the new abstract transfer function and leveraging

disjunctions together perform very well, with even more points below the diagonal line.

Table 2 Evaluating the impact of the two new techniques in our method on the benchmark

program scatter_gather_openssl_1_0_2 using various cache settings. S is the cache size in bytes,

n is the associativity level, and L is the cache line size in bytes.

Cache Setting Leakage Quantification Time (s)

(S, n, L) Technique-1
(SM / DM)

Ours (both)
(SM / DM)

Technique-2
(SM / DM)

Tech-1 Ours (both) Tech-2

(4096, 4, 32) 64.3 / 64.3 1.0 / 1.0 33.0 / 1.0 5 6 3

(4096, 4, 64) 32.3 / 32.3 1.0 / 1.0 17.0 / 1.0 3 3 3

(4096, 8, 32) 45.2 / 45.1 1.0 / 1.0 84.7 / 1.0 8 9 3

(4096, 8, 64) 22.6 / 22.6 1.0 / 1.0 43.3 / 1.0 5 5 4

(8192, 4, 32) 83.3 / 83.3 1.0 / 1.0 1.0 / 1.0 3 4 2

(8192, 4, 64) 41.9 / 41.9 1.0 / 1.0 1.0 / 1.0 2 2 2

(8192, 8, 32) 64.3 / 64.3 1.0 / 1.0 33.0 / 1.0 5 5 2

(8192, 8, 64) 32.3 / 32.3 1.0 / 1.0 17.0 / 1.0 3 3 3

(16384, 4, 32) 97.0 / 97.0 1.0 / 1.0 1.0 / 1.0 3 4 3

(16384, 4, 64) 49.0 / 49.0 1.0 / 1.0 1.0 / 1.0 2 2 3

(16384, 8, 32) 83.3 / 83.3 1.0 / 1.0 1.0 / 1.0 3 4 2

(16384, 8, 64) 41.9 / 41.9 1.0 / 1.0 1.0 / 1.0 2 2 3

(32768, 4, 32) 97.0 / 97.0 1.0 / 1.0 1.0 / 1.0 4 6 2

(32768, 4, 64) 49.0 / 49.0 1.0 / 1.0 1.0 / 1.0 2 4 1

(32768, 8, 32) 97.0 / 97.0 1.0 / 1.0 1.0 / 1.0 3 3 3

(32768, 8, 64) 49.0 / 49.0 1.0 / 1.0 1.0 / 1.0 2 3 2

(64512, 4, 32) 97.0 / 97.0 1.0 / 1.0 1.0 / 1.0 5 5 2

(64512, 4, 64) 49.0 / 49.0 1.0 / 1.0 1.0 / 1.0 3 3 3

(64512, 8, 32) 97.0 / 97.0 1.0 / 1.0 1.0 / 1.0 4 5 2

(64512, 8, 64) 49.0 / 49.0 1.0 / 1.0 1.0 / 1.0 2 4 1

We also collected detailed results of the experimental comparison, which are shown in

Table 2. Various cache settings were used in the experiments, as shown in Column 2. For

brevity, we only show these detailed results for a representative benchmark program named

scatter_gather.

J. L. Mitchell and C. Wang 22:25

Overall, the results show that each of the two techniques is effective in isolation; further-

more, when the two techniques are used together, they often have a synergistic effect in

terms of improving the precision of leakage quantification.

6 Related Work

As mentioned earlier, the most closely related work is that of Doychev et al. [11], which

we regard as the baseline algorithm for quantifying cache side-channel leakage. The key

difference in our work is a new abstract transfer function and a disjunctive refinement for

increasing the precision of abstract interpretation.

Doychev et al. [11] support other adversaries, including trace-based and timing adversaries.

Given that our abstractions fundamentally improve the precision of the abstract cache states

in an abstract domain that is specialized for quantification, we expect that our techniques

will help improve quantification results on downstream static analyses that rely on abstract

cache states.

Kopf et al. [17] target cache-based adversaries, and conduct quantification via counting

formulae, combined with an abstract interpreted-based static analysis. They recognize that

trace partitioning [23] during the static analysis led to increased precision in the quantification

results. However, trace-partitioning was conducted by manual program transformation,

whereas our method is automated via abstract interpretation to parsimoniously leverage

disjunctive information. Beyond abstract interpretation, which is a sound analysis technique,

there are methods based on alternative analysis techniques such as bounded modeling

checking [20] or symbolic execution [7]. However, their results may not be sound.

There are also methods targeting other kinds of adversaries. In the case of trace-based

adversaries, it is assumed that a malicious attacker may observe the sequences of memory

accesses throughout program execution; thus, quantification techniques aim to compute an

upper bound on the number of distinct memory access traces possible. Various tools have

been developed to compute an upper bound for the number of possible distinct memory

access traces. Ma et al. [20] introduce an abstraction known as differential set that tracks,

for each memory access, all possible addresses that might be accessed by that operation or

its “sibling” operations in other control flows. Their abstraction is combined with bounded

model-counting to compute a sound upper bound of information leakage. Other works

leverage techniques such as symbolic execution to compute these upper bounds.

Beyond quantification, there are methods for cache hit/miss classification [26, 25, 14]. In

particular, Touzeau et al. [25] combine abstract interpretation with model checking to classify

memory accesses in LRU caches as “always hit”, “always miss”, or “definitely unknown”.

Touzeau et al. [26] also introduce a method that represents cache states using anti-chains of

minimal/maximal elements rather than full state sets, thus enabling efficient computation

while preserving precision. Gysi et al. [14] introduce symbolic techniques to count cache

misses without having to enumerate all memory accesses, making the analysis practical

through a hybrid approach that combines symbolic computation with selective enumeration.

However, these works are not designed for quantifying cache side-channel leakage.

7 Conclusion

We have presented a method for significantly improving the precision of abstract interpretation

based static analysis for quantifying cache side-channel leakage. The method uses a new

abstract transfer function to prevent spurious aging and abstract domain refinement during

the analysis step, which uses disjunctions parsimoniously to prevent spurious combinations

of cache states. Our experimental evaluation on benchmark programs consisting of sorting

ECOOP 2025

22:26 Quantifying Cache Side-Channel Leakage by Refining Set-Based Abstractions

and cryptographic algorithms shows that the method is more accurate in quantifying cache

side-channel leakage than the state-of-the-art technique. Furthermore, both of the two new

techniques in our method contribute to the performance improvement.

References

1 Onur Aciiçmez and Jean-Pierre Seifert. Cheap hardware parallelism implies cheap security.

In Luca Breveglieri, Shay Gueron, Israel Koren, David Naccache, and Jean-Pierre Seifert,

editors, Fourth International Workshop on Fault Diagnosis and Tolerance in Cryptography,

2007, FDTC 2007: Vienna, Austria, 10 September 2007, pages 80–91. IEEE Computer Society,

2007. doi:10.1109/FDTC.2007.4318988.

2 José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François Dupressoir, and Michael

Emmi. Verifying constant-time implementations. In Thorsten Holz and Stefan Savage, editors,

25th USENIX Security Symposium, USENIX Security 16, Austin, TX, USA, August 10-12,

2016, pages 53–70. USENIX Association, 2016. URL: https://www.usenix.org/conference/

usenixsecurity16/technical-sessions/presentation/almeida.

3 Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. Widening operators for power-

set domains. Int. J. Softw. Tools Technol. Transf., 9(3-4):413–414, 2007. doi:10.1007/

S10009-007-0029-Y.

4 Sandrine Blazy, David Pichardie, and Alix Trieu. Verifying constant-time implementations by

abstract interpretation. J. Comput. Secur., 27(1):137–163, 2019. doi:10.3233/JCS-181136.

5 Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen, Srdjan Capkun,

and Ahmad-Reza Sadeghi. Software grand exposure: SGX cache attacks are practical. In

William Enck and Collin Mulliner, editors, 11th USENIX Workshop on Offensive Technologies,

WOOT 2017, Vancouver, BC, Canada, August 14-15, 2017. USENIX Association, 2017. URL:

https://www.usenix.org/conference/woot17/workshop-program/presentation/brasser.

6 Jo Van Bulck, Frank Piessens, and Raoul Strackx. Sgx-step: A practical attack framework for

precise enclave execution control. In Proceedings of the 2nd Workshop on System Software for

Trusted Execution, SysTEX@SOSP 2017, Shanghai, China, October 28, 2017, pages 4:1–4:6.

ACM, 2017. doi:10.1145/3152701.3152706.

7 Sudipta Chattopadhyay, Moritz Beck, Ahmed Rezine, and Andreas Zeller. Quantifying the

information leakage in cache attacks via symbolic execution. ACM Trans. Embed. Comput.

Syst., 18(1):7:1–7:27, 2019. doi:10.1145/3288758.

8 Bart Coppens, Ingrid Verbauwhede, Koen De Bosschere, and Bjorn De Sutter. Practical

mitigations for timing-based side-channel attacks on modern x86 processors. In 30th IEEE

Symposium on Security and Privacy (SP 2009), 17-20 May 2009, Oakland, California, USA,

pages 45–60. IEEE Computer Society, 2009. doi:10.1109/SP.2009.19.

9 Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for

static analysis of programs by construction or approximation of fixpoints. In Robert M.

Graham, Michael A. Harrison, and Ravi Sethi, editors, Conference Record of the Fourth ACM

Symposium on Principles of Programming Languages, Los Angeles, California, USA, January

1977, pages 238–252. ACM, 1977. doi:10.1145/512950.512973.

10 Patrick Cousot and Radhia Cousot. Systematic design of program analysis frameworks. In

Alfred V. Aho, Stephen N. Zilles, and Barry K. Rosen, editors, Conference Record of the Sixth

Annual ACM Symposium on Principles of Programming Languages, San Antonio, Texas, USA,

January 1979, pages 269–282. ACM Press, 1979. doi:10.1145/567752.567778.

11 Goran Doychev, Dominik Feld, Boris Köpf, Laurent Mauborgne, and Jan Reineke. Cacheaudit:

A tool for the static analysis of cache side channels. In Samuel T. King, editor, Proceedings of the

22th USENIX Security Symposium, Washington, DC, USA, August 14-16, 2013, pages 431–446.

USENIX Association, 2013. URL: https://www.usenix.org/conference/usenixsecurity13/

technical-sessions/paper/doychev.

https://doi.org/10.1109/FDTC.2007.4318988
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/almeida
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/almeida
https://doi.org/10.1007/S10009-007-0029-Y
https://doi.org/10.1007/S10009-007-0029-Y
https://doi.org/10.3233/JCS-181136
https://www.usenix.org/conference/woot17/workshop-program/presentation/brasser
https://doi.org/10.1145/3152701.3152706
https://doi.org/10.1145/3288758
https://doi.org/10.1109/SP.2009.19
https://doi.org/10.1145/512950.512973
https://doi.org/10.1145/567752.567778
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/doychev
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/paper/doychev

J. L. Mitchell and C. Wang 22:27

12 Goran Doychev and Boris Köpf. Rigorous analysis of software countermeasures against cache

attacks. In Albert Cohen and Martin T. Vechev, editors, Proceedings of the 38th ACM

SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2017,

Barcelona, Spain, June 18-23, 2017, pages 406–421. ACM, 2017. doi:10.1145/3062341.

3062388.

13 David Gullasch, Endre Bangerter, and Stephan Krenn. Cache games - bringing access-based

cache attacks on AES to practice. In 32nd IEEE Symposium on Security and Privacy, SP

2011, 22-25 May 2011, Berkeley, California, USA, pages 490–505. IEEE Computer Society,

2011. doi:10.1109/SP.2011.22.

14 Tobias Gysi, Tobias Grosser, Laurin Brandner, and Torsten Hoefler. A fast analytical

model of fully associative caches. In Kathryn S. McKinley and Kathleen Fisher, editors,

Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019, pages 816–829. ACM,

2019. doi:10.1145/3314221.3314606.

15 Chao Wang Jacqueline Mitchell. Quantifying cache side-channel leakage by re-

fining set-based abstractions (extended version). https://github.com/jlmitche23/

ecoop25CacheQuantification, 2025.

16 Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and other

systems. In Neal Koblitz, editor, Advances in Cryptology - CRYPTO ’96, 16th Annual

International Cryptology Conference, Santa Barbara, California, USA, August 18-22, 1996,

Proceedings, volume 1109 of Lecture Notes in Computer Science, pages 104–113. Springer,

1996. doi:10.1007/3-540-68697-5_9.

17 Boris Köpf, Laurent Mauborgne, and Martín Ochoa. Automatic quantification of cache

side-channels. In P. Madhusudan and Sanjit A. Seshia, editors, Computer Aided Verification -

24th International Conference, CAV 2012, Berkeley, CA, USA, July 7-13, 2012 Proceedings,

volume 7358 of Lecture Notes in Computer Science, pages 564–580. Springer, 2012. doi:

10.1007/978-3-642-31424-7_40.

18 Robert Kotcher, Yutong Pei, Pranjal Jumde, and Collin Jackson. Cross-origin pixel stealing:

timing attacks using CSS filters. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung,

editors, 2013 ACM SIGSAC Conference on Computer and Communications Security, CCS’13,

Berlin, Germany, November 4-8, 2013, pages 1055–1062. ACM, 2013. doi:10.1145/2508859.

2516712.

19 Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee. Last-level cache

side-channel attacks are practical. In 2015 IEEE Symposium on Security and Privacy, SP

2015, San Jose, CA, USA, May 17-21, 2015, pages 605–622. IEEE Computer Society, 2015.

doi:10.1109/SP.2015.43.

20 Cong Ma, Dinghao Wu, Gang Tan, Mahmut Taylan Kandemir, and Danfeng Zhang. Quanti-

fying and mitigating cache side channel leakage with differential set. Proc. ACM Program.

Lang., 7(OOPSLA2):1470–1498, 2023. doi:10.1145/3622850.

21 Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and countermeasures: The

case of AES. In David Pointcheval, editor, Topics in Cryptology - CT-RSA 2006, The

Cryptographers’ Track at the RSA Conference 2006, San Jose, CA, USA, February 13-17,

2006, Proceedings, volume 3860 of Lecture Notes in Computer Science, pages 1–20. Springer,

2006. doi:10.1007/11605805_1.

22 Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. Hey, you, get off of

my cloud: exploring information leakage in third-party compute clouds. In Ehab Al-Shaer,

Somesh Jha, and Angelos D. Keromytis, editors, Proceedings of the 2009 ACM Conference on

Computer and Communications Security, CCS 2009, Chicago, Illinois, USA, November 9-13,

2009, pages 199–212. ACM, 2009. doi:10.1145/1653662.1653687.

23 Xavier Rival and Laurent Mauborgne. The trace partitioning abstract domain. ACM Trans.

Program. Lang. Syst., 29(5):26, 2007. doi:10.1145/1275497.1275501.

ECOOP 2025

https://doi.org/10.1145/3062341.3062388
https://doi.org/10.1145/3062341.3062388
https://doi.org/10.1109/SP.2011.22
https://doi.org/10.1145/3314221.3314606
https://github.com/jlmitche23/ecoop25CacheQuantification
https://github.com/jlmitche23/ecoop25CacheQuantification
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/978-3-642-31424-7_40
https://doi.org/10.1007/978-3-642-31424-7_40
https://doi.org/10.1145/2508859.2516712
https://doi.org/10.1145/2508859.2516712
https://doi.org/10.1109/SP.2015.43
https://doi.org/10.1145/3622850
https://doi.org/10.1007/11605805_1
https://doi.org/10.1145/1653662.1653687
https://doi.org/10.1145/1275497.1275501

22:28 Quantifying Cache Side-Channel Leakage by Refining Set-Based Abstractions

24 Isabell Schmitt and Sebastian Schinzel. Waffle: Fingerprinting filter rules of web applic-

ation firewalls. In Elie Bursztein and Thomas Dullien, editors, 6th USENIX Workshop

on Offensive Technologies, WOOT’12, August 6-7, 2012, Bellevue, WA, USA, Proceedings,

pages 34–40. USENIX Association, 2012. URL: http://www.usenix.org/conference/woot12/

waffle-fingerprinting-filter-rules-web-application-firewalls.

25 Valentin Touzeau, Claire Maïza, David Monniaux, and Jan Reineke. Ascertaining uncertainty

for efficient exact cache analysis. In Rupak Majumdar and Viktor Kuncak, editors, Computer

Aided Verification - 29th International Conference, CAV 2017, Heidelberg, Germany, July

24-28, 2017, Proceedings, Part II, volume 10427 of Lecture Notes in Computer Science, pages

22–40. Springer, 2017. doi:10.1007/978-3-319-63390-9_2.

26 Valentin Touzeau, Claire Maïza, David Monniaux, and Jan Reineke. Fast and exact analysis for

LRU caches. Proc. ACM Program. Lang., 3(POPL):54:1–54:29, 2019. doi:10.1145/3290367.

27 Tom van Goethem, Wouter Joosen, and Nick Nikiforakis. The clock is still ticking: Timing

attacks in the modern web. In Indrajit Ray, Ninghui Li, and Christopher Kruegel, editors,

Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security,

Denver, CO, USA, October 12-16, 2015, pages 1382–1393. ACM, 2015. doi:10.1145/2810103.

2813632.

28 Yuan Xiao, Mengyuan Li, Sanchuan Chen, and Yinqian Zhang. STACCO: differentially

analyzing side-channel traces for detecting SSL/TLS vulnerabilities in secure enclaves. In

Bhavani Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, Proceedings

of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS

2017, Dallas, TX, USA, October 30 - November 03, 2017, pages 859–874. ACM, 2017.

doi:10.1145/3133956.3134016.

29 Yuval Yarom, Daniel Genkin, and Nadia Heninger. Cachebleed: a timing attack on openssl

constant-time RSA. J. Cryptogr. Eng., 7(2):99–112, 2017. doi:10.1007/S13389-017-0152-Y.

30 Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. Cross-vm side channels

and their use to extract private keys. In Ting Yu, George Danezis, and Virgil D. Gligor,

editors, the ACM Conference on Computer and Communications Security, CCS’12, Raleigh,

NC, USA, October 16-18, 2012, pages 305–316. ACM, 2012. doi:10.1145/2382196.2382230.

http://www.usenix.org/conference/woot12/waffle-fingerprinting-filter-rules-web-application-firewalls
http://www.usenix.org/conference/woot12/waffle-fingerprinting-filter-rules-web-application-firewalls
https://doi.org/10.1007/978-3-319-63390-9_2
https://doi.org/10.1145/3290367
https://doi.org/10.1145/2810103.2813632
https://doi.org/10.1145/2810103.2813632
https://doi.org/10.1145/3133956.3134016
https://doi.org/10.1007/S13389-017-0152-Y
https://doi.org/10.1145/2382196.2382230

