Discovering Likely Program Invariants for Persistent Memory

Zunchen Huang
University of Southern California
Los Angeles, California, USA

Abstract

We propose a method for automatically discovering likely program
invariants for persistent memory (PM), which is a type of fast and
byte-addressable storage device that can retain data after power
loss. The invariants, also called PM properties or PM requirements,
specify which objects of the program should be made persistent and
in what order. Our method relies on a combination of static and
dynamic analysis techniques. Specifically, it relies on static analysis
to compute dependence relations between LOAD/STORE instruc-
tions and instruments the information into the executable program.
Then, it relies on dynamic analysis of the execution traces and
counterfactual reasoning to infer PM properties. With precisely
computed dependence relations, the inferred properties are neces-
sary conditions for the program to behave correctly through power
loss and recovery; with imprecise dependence relations, these are
likely program invariants. We have evaluated our method on bench-
mark programs including eight persistent data structures and two
distributed storage applications, Redis and Memcached. The re-
sults show that our method can infer PM properties quickly and
these properties are of higher quality than those inferred by a state-
of-the-art technique. We also demonstrate the usefulness of the
inferred properties by leveraging them for PM bug detection, which
significantly improves the performance of a state-of-the-art PM
bug detection technique.

ACM Reference Format:

Zunchen Huang, Srivatsan Ravi, and Chao Wang. 2024. Discovering Likely
Program Invariants for Persistent Memory. In 39th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE °24), October
27-November 1, 2024, Sacramento, CA, USA. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3691620.3695544

1 Introduction

Persistent memory (PM) is a type of emerging storage device with
fast and direct access at the granularity of LOAD and STORE in-
structions. Since it can also retain data in the presence of power
failure, it bridges the gap between volatile DRAM and conventional
non-volatile storage devices such as solid-state disks. However,
writing software code that can utilize PM correctly and efficiently
remains a challenging task [18]. The current practice requires the
programmers to specify and enforce PM related program invariants.
These invariants must identify not only the objects that should be
made persistent but also the order in which they should be made
persistent. However, manually specifying such low-level properties

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ASE °24, October 27-November 1, 2024, Sacramento, CA, USA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1248-7/24/10

https://doi.org/10.1145/3691620.3695544

Srivatsan Ravi
University of Southern California
Los Angeles, California, USA

Chao Wang
University of Southern California
Los Angeles, California, USA

can be difficult. While there are PM-specific libraries including Intel
PMDK [19] for programmers to enforce data persistency, the library
APIs may still be misused, thus leading to PM bugs.

The lack of PM property specifications can negatively affect
downstream software engineering tasks such as testing/verifica-
tion, fault localization, and program repair. As an example, consider
existing techniques for PM bug detection [4, 10-14, 24, 33], which
generally fall into two categories. The first category consists of tech-
niques that leverage heuristics or known bug patterns to search for
violations. The second category consists of techniques that leverage
more general and advanced search algorithms, such as symbolic
execution [27] and model checking [13]. However, regardless of the
underlying algorithms, existing PM bug detection techniques have
a common requirement: the intended PM properties must be speci-
fied before violations of these properties can be found. There are
similar requirements for PM related fault localization and program
repair techniques.

The current state of practice, which relies solely on programmers
to specify PM properties, has severe limitations. The process is not
only tedious and time-consuming but also error-prone. For example,
if programmers over-specify the set of persistent objects and/or the
ordering constraints, it may lead to degraded performance. In the ex-
treme case where every STORE to PM is immediately flushed from
cache and fenced in memory, the caching and buffering optimiza-
tions of the CPU and the memory subsystem will be disabled. On
the other hand, if programmers under-specify, meaning they miss
some persistent objects and/or ordering constraints that should
have been included, the program may have abnormal behavior
when it goes through power loss and recovery.

Instead of relying solely on programmers to specify PM proper-
ties, we propose a method for automatically inferring them. Our
method takes the source code of a C program as input, and re-
turns a set of PM properties as output. As shown in Figure 1, our
method relies on a combination of static and dynamic analysis
techniques. First, static analysis techniques are used to compute
the dependence relations of LOAD/STORE instructions inside the
LLVM compiler. Then, the dependence relations are instrumented
into the executable program, to generate the execution traces. Next,
dynamic analysis techniques are applied to the execution traces to
first infer the must-persist-before (MPB) requirements and then infer
the durability (DURA) and must-persist-atomically (MPA) require-
ments. Here, MPB(sty, st2) requires STORE st; to persist before
STORE st in all possible executions; DURA(st1) is a special case of
MPB that requires st to persist before the end of the program exe-
cution; and MPA(sty, ..., sty) requires a set of STOREs to persist
atomically (either all or none).

To have a more intuitive understanding of these PM properties,
consider the example program in Figure 2, which inserts a node
to a singly-linked list. With the goal of retaining the list content
through power loss and recovery, both the existing nodes (A and

ASE 24, October 27-November 1, 2024, Sacramento, CA, USA

PM D d Code
Program Analysis Instrumentation

[—

Execution
Traces -

PM Inferring Inferring
DURA/MPA MPB

Testing,
debugging, 4"
repair, efc.

Properties

i
— ¥

' — Checking Persistent
M’g PMBugs]| PM Properties Time Analysis

Figure 1: Discovering persistent memory related program
invariants (PM properties) and checking them for violations.

C) and the new node (B) must be stored in PM. This is accom-
plished by the STORE operations in Lines 1, 2 and 6, together with
the CLFLUSHOPT and SFENCE instructions shown in green color.
Commenting out these green-colored instructions will lead to PM
bugs. First, STOREs to B->data, B->next and A->next at Lines 1-2
and 6 must satisfy the durability (DURA) property, meaning they
must persist before the end of the program. In addition, STORE to
B->next at Line 2 must persist before STORE to A->next at Line
6. This can be expressed as an MPB property, to ensure that the
list is always in a consistent state during node insertion, as shown
by Figure 2 (b). Together, the DURA and MPB properties form a
necessary condition for the list to remain consistent through power
loss and recovery. The reason is because power loss may strike
at any time during the program execution. If STORE to A->next
at Line 6 is allowed to persist before STORE to B->next at Line
2, as shown by Figure 2 (c), the content of the list may become
inconsistent in PM.

In addition to MPB and DURA, sometimes MPA is needed to
ensure that a set of STOREs persist atomically. For example, while
nodes in a singly-linked list are always traversed from left to right
following the next pointers as shown in Figure 2, in a doubly-linked
list, nodes may also be traversed from right to left following the
prev pointers (to be shown in Figure 3). They will create circular
requirements that can only be satisfied by updating the C->prev and
A->next pointers atomically. In the context of PM programming,
MPA may be enforced by a persistent transaction.

One notable difference between our method and dynamic invari-
ant generation techniques like Daikon [8] is that our method does
not rely on correlation; instead, it relies on causation discovered by
counterfactual reasoning. In logic, “if P then Q” is equivalent to “if
Q is false then P is false” and Q is called a “necessary” condition for
P. Since our method relies on this type of counterfactual reasoning,
under the assumption that precise dependence relations are com-
puted, it guarantees that the inferred PM property is a true invariant.
In other words, if the property is violated, there exists a concrete
execution showing that the program can definitely go wrong during
power loss and recovery. Existing techniques like Daikon do not
provide such guarantees since they rely on correlation, which does
not always imply causation.

While the inferred PM properties may be useful in many ways,
in this work we demonstrate their usefulness in one specific down-
stream software engineering task, which is PM bug detection. As

Zunchen Huang, Srivatsan Ravi, and Chao Wang

shown at the bottom of Figure 1, we propose a trace-based anal-
ysis algorithm for computing persistent time intervals and then
leveraging these intervals to detect violations of the inferred prop-
erties. Consider the example program in Figure 2 again. If any of the
CLFLUSHOPT instructions is commented out, the corresponding
STORE will have a durability (DURA) violation. Furthermore, if
the SFENCE instruction at Line 5 is commented out, it will become
possible for STOREs at Lines 1-2 to persist after STORE at Line 6,
thus leading to MPB violations.

We have implemented our method in a software tool that lever-
ages the LLVM compiler to conduct static analysis and code in-
strumentation, and relies on Python to implement our method for
analyzing the execution traces, inferring properties, and checking
properties. Our tool has been evaluated on benchmark programs
consisting of eight persistent data structures (lists, array, queues,
and ring buffer) and two PM-enabled distributed storage appli-
cations (Redis and Memcached). The experimental results show
that our method can quickly infer PM properties, and the qual-
ity is significantly higher than those inferred by a state-of-the-art
technique [10]. We also leveraged the inferred properties for bug de-
tection and found that they significantly improved the performance
of a state-of-the-art PM bug detection technique [25].

To summarize, this paper makes the following contributions:

e We propose a method for automatically discovering PM prop-
erties based on a combination of static and dynamic analysis
techniques and, most notably, counterfactual reasoning.

e To demonstrate the usefulness of the inferred PM proper-
ties, we also conduct a trace-based analysis algorithm for
checking and detecting violations of these properties.

e We evaluate our method on a number of persistent data struc-
tures and two distributed storage applications to demonstrate
its advantages over state-of-the-art techniques.

The remainder of this paper is organized as follows. We provide
the technical background in Section 2, and present our top-level
procedure in Section 3. Then, we present our detailed algorithms
for inferring PM properties in Section 4 and for checking these
properties in Section 5. We present the experimental results in
Section 6. After reviewing the related work in Section 7, we give
our conclusions in Section 8.

2 Background

In this section, we review the basics of persistent memory (PM)
programs and PM related properties.

2.1 Persistent Memory

Since persistent memory provides the same byte-addressable LOAD
and STORE access as volatile DRAM, it may be mapped to the ad-
dress space of a program just like DRAM. However, the difference is
that data written to PM by a STORE instruction alone is not guaran-
teed to take effect immediately due to CPU hardware optimizations
such as caching and buffering. In the presence of power loss, which
may strike at any moment during the program execution, data
stored in volatile parts of the CPU will be lost permanently.

To ensure data persistency, programmers must add special in-
structions after a STORE to PM, to explicitly flush data from cache

Discovering Likely Program Invariants for Persistent Memory

ASE 24, October 27-November 1, 2024, Sacramento, CA, USA

B->data = data;
B->next = A->next;
//CLFLUSHOPT (&B->data, sizeof (int));

| List ncmdl_'| A nexrlf Il C |nm|—> | List

-

//CLFLUSHOPT (&B->next, sizeof (Nodex*));

J/SFENCEQ) ; | List

3T R - [

A->next = B;
//CLFLUSHOPT (&A->next, sizeof (Node*));

L Y T S

//SFENCEQ) ; | List

lm.dl—’l A

il B e ¢ e | List

(a) persistent memory program

(b) correct persistent order

(c) incorrect persistent order

Figure 2: Inserting a node to a singly-linked list stored in persistent memory (PM). To ensure the correct persistent order shown
in subfigure (b), all CLFLUSHOPT and SFENCE statements in subfigure (a) are needed. Otherwise, after power failure (which
may strike at any moment), the PM state may be inconsistent as shown by the broken list in the middle of subfigure (c).

and insert a memory fence. For Intel CPUs built upon the per-
sistent x86 architecture [32], the flush and fence instructions are
CLFLUSHOPT (optimized cache line flush) and SFENCE (store mem-
ory fence), which have been used by the example program in Fig-
ure 3 (a).

A typical instruction sequence following a STORE to PM at
the address &v would be {v=data;CLFLUSHOPT (&v) ;SFENCE();}
which first flushes the cache line associated with the address (&v)
and then inserts the memory fence. Since CLFLUSHOPT is non-
blocking, meaning it may return before the cache line is written
to PM, the subsequent SFENCE is necessary. In other words, miss-
ing either CLFLUSHOPT or SFENCE would not guarantee data
persistency.

At the same time, it is beneficial to minimize the number of
SFENCEs used by a program due to their significant performance
overhead. In Figure 3 (a), for example, the SFENCE at Line 5 is
shared by the two STOREs at Lines 1 and 2.

2.2 PM Programs

In this work, we are concerned with programs that directly read
from and write to PM using LOAD and STORE instructions. Given
such a program P, where STMTs = {st1,..., st} is the set of all
statements, we use STOREs C STMTs to represent the subset that
write to PM, and use LOADs € STMTs to represent the subset that
read from PM.

We use CDEP to represent the control dependence relation. That
is, CDEP(st, st”) holds if and only if program statement st is con-
trol dependent on program statement st’. While a classic example
for CDEP(st,st’) would be if(x>0) y=1; else y=0; where the
STORE to y is control dependent on the LOAD from x, there are
more subtle examples.

For instance, in a singly-linked list, there will be a control depen-
dence relation in {A->next->prev = B;} since it has an implicit
LOAD from A->next before the STORE to A->next->prev, and
the STORE is control dependent on the LOAD. The reason is be-
cause if A->next is aliased to the object C, for instance, the STORE
would be directed to C->prev; but if A->next is aliased to B, the
STORE would be directed to B->prev, as illustrated by the example
program in Figure 2.

Similar to CDEP, we use DDEP to represent the data dependence
relation. That is, DDEP(st, st’) holds if and only if program state-
ment st is data-dependent on the program statement st’. A classic
example for DDEP(st, st’) would be {y = x+1;} where the value

stored to y depends on the value read from x. Both control and data
dependence relations are crucial for inferring PM properties.

2.3 PM Properties

PM properties are a special type of correctness requirements con-
cerned with PM LOAD and STORE accesses. They are meant to
specify which objects should be made persistent and in what order.

2.3.1 Durability (DURA). DURA is a unary relation over the set
of program statements. DURA(st), where st € STOREs, means
that the STORE must persist in PM before the end of the program
execution. While CPU voluntarily flushes data from cache to PM,
the process is highly non-deterministic, and thus should not be
relied upon to ensure durability. To ensure durability, programmers
must add CLFLUSHOPT and SFENCE instructions to the program
both correctly and efficiently.

2.3.2 Must-Persist-Before (MPB). MPB is a binary relation over the
set of program statements. MPB(st, st’), where st,st’ € STOREs,
means that the first STORE (st) must persist before the second
STORE (st’). This property is often needed to ensure that the PM
program state remains consistent through potential power loss and
recovery. For example, in Figure 2, the STORE to B->next must
persist before the STORE to A->next.

Another example for the MPB property is a program that uses a
flag to indicate whether a data field is valid in PM. When recov-
ering from power loss, the program would read the flag first, and
then read the data field only if the flag is properly set. What it
requires is that, while writing to PM, the data field must always
persist before the flag field. Otherwise, while reading from PM,
the program will get a stale value from the data field.

2.3.3 Must-Persist-Atomically (MPA). MPA is a k-ary relation over
the set of program statements. That is, MPA(sty, ..., st;), where
st1, ..., sty € STOREs, means that these STOREs must persist atom-
ically. This property may be needed to ensure that a complex data
structure is always in a consistent state. Recall the doubly-linked list
example mentioned earlier, where the A->next and C->prev fields
must persist atomically. If the MPA property is not satisfied, the list
may get into a inconsistent state during power loss and recovery.
To enforce MPA, the notion of a persistent transaction is needed.
In existing PM libraries, such as Intel’s PMDK library, there are
dedicated APIs for persistent transactions. Typically, they include
TX_BEGIN(), TX_END() and TX_ADD(). As long as all STOREs in
a transaction are executed between TX_BEGIN() and TX_END(),

ASE 24, October 27-November 1, 2024, Sacramento, CA, USA

and their addresses are registered using TX_ADD(&v), the STOREs
will persist atomically. We will show an example for persistent
transaction in the next section (Figure 3).

The three types of PM properties mentioned above are complete
in the sense that they cover all PM properties checked by existing
PM bug detection tools. In fact, most of the existing tools can detect
durability bugs, which are violations of DURA properties. Some
tools can detect crash consistency bugs, which are violations of MPB
properties. Very few can detect atomicity bugs, which are violations
of MPA properties. As for existing PM bug repair tools, to the best
of our knowledge, none of them can repair MPA violations: for
example, the HIPPOCREATES tool of Neal et al. [26] can repair DURA
violations only, while the PMBUGASsSIST tool of Huang et al. [16]
can repair both DURA and MPB violations. Furthermore, in the
literature, PM bugs are often classified in a way that seems ad hoc.
We are the first to propose a unified and graph-theoretic framework
for classifying PM bugs (see Section 3.1).

2.4 Invariant Generation

In program analysis, the notion of program invariants goes far be-
yond PM-specific properties concerned in this work. In general, a
program invariant may be any logical assertion that always holds
during the execution of a program. Existing techniques for discov-
ering program invariants fall into two categories: some rely on
static analysis techniques such as abstract interpretation [5], while
the others like Daikon [7] rely on dynamic analysis techniques.
Both types of techniques tend to focus on values of the program
variables. In contrast, our method focuses solely on the ordering of
LOAD and STORE accesses of PM.

In parallel systems, happens-before relation [21] has been used
to define a partial order of concurrent events coming from different
threads or processes. However, it differs from our must-persist-before
relation. The reason is because there are three distinct problems:
(a) program order within a sequential program, (b) concurrency
control between parallel threads, and (c) data persistency during
power loss and recovery. These problems reside in three orthogo-
nal dimensions, in the sense that they may be either separated or
combined during program analysis. To the best of our knowledge,
our method is the only one for inferring PM-specific properties
using counterfactual reasoning.

3 Overview of Our Method

In this section, we first propose our unified graph-theoretic view
of PM properties and then present our top-level procedure.

3.1 The Unified View of PM properties

The seemingly isolated DURA, MPB, and MPA properties men-
tioned in the previous section are all related to each other, if we
take a certain graph-theoretic perspective. While this unified view
may seem intuitive (as shown by the remainder of this subsection),
to the best of our knowledge, it has not appeared elsewhere in the
literature.

At the center of this perspective is the MPB relation, which we
consider to be the most fundamental building block. In contrast,
DURA may be viewed as a special case of MPB, where the second
member of the MPB relation is an imaginary program statement

Zunchen Huang, Srivatsan Ravi, and Chao Wang

modeling program end. MPA may be viewed as a property implied
by a set of (otherwise-conflicting) MPB relations.

3.1.1 The Directed Graph. First, we define a directed graph G =
(V,E) to represent the set of MPB relations. In this graph, the
nodes in V correspond to program statements, while the edges
in E correspond to the MPB relations. Specifically, MPB(st, st’) is
represented by an edge from node st to node st’.

3.1.2 From MPB to DURA. Next, we define DURA as a special case
of MPB, i.e., DURA(st) := MPB(st, st,s;), where sty is an imagi-
nary program statement modeling the program end; that is, stj,q
is executed after all other statements in the program. Therefore,
MPB(st, stj,s;) means that STORE st must persist eventually.

3.1.3 From MPB to MPA. Finally, we show how MPA may be im-
plied by a set of MPBs. Recall that all the MPBs are already rep-
resented as edges in the graph G. If there is a strongly connected
component (SCC) in G, the corresponding MPBs would represent a
set of conflicting requirements (the circular MPBs require a STORE
to persist before itself). The only way to reconcile these conflict-
ing requirements is to put all of the involved STOREs in a persis-
tent transaction. The persistent transaction guarantees that these
STORE:s take effect atomically.

3.1.4 Another Running Example. Consider the example program
in Figure 3, which inserts a node in a doubly-linked list. It differs
from the singly-linked list example in Figure 2 in the sense that
both the prev and the next pointers are used. As mentioned earlier,
following the next pointers, MPBs will be generated from left to
right. Following the prev pointers, MPBs will also be generated
from right to left. As a result, there will be two sets of MPBs conflict-
ing with each other, unless the involved STOREs persist atomically,
as shown in subfigure (b). This leads to the inference of the MPA
shown in subfigure (c), together with the DURA and MPB relations.

3.2 The Top-Level Procedure

Algorithm 1 shows the top-level procedure of our method. The
input consists of the program P and a set of test cases for running
the program. The output is a set of inferred properties, stored in
the tuple (DURAs, MPBs, MPAs).

Algorithm 1: Inferring PM Properties.

1 Traces < INSTRUMENTEDEXECUTION (P, TestCases)
MPBs « { }
foreach T € Traces do

‘ MPBs < MPBs U INFER_MPB_REQUIREMENTS (T)
end foreach
DURAs « INFER_DURA_REQUIREMENTS (MPBs)
MPAs « INFER_MPA_REQUIREMENTS (MPBs)
return (DURAs, MPBs, MPAs)

R - N R TN

Our procedure goes through three steps. First, it conducts static
analysis of the program P to compute the dependence relations and
then instruments the executable program to add the self-logging
capability, which means that running the instrumented program
with the test cases produces a set of execution traces (Line 1). Next,
our procedure conducts dynamic analysis of the execution traces,
one at a time, to infer the MPB relations (Lines 2-5). Finally, the

Discovering Likely Program Invariants for Persistent Memory

ASE 24, October 27-November 1, 2024, Sacramento, CA, USA

B->data

° = iata; NULL prev| A [next w—muu //DURA:
_> = A-> . | |
next next; (B->data=...@line 1), (B->next=...@line 2),

1
2

3 B->prev = C->prev;

4 //CLFLUSHOPT(8B->data, sizeof (int)); (B->prev=...€line 3), (A->next=...eline 11),
5 //CLFLUSHOPT(&B->next,sizeof (Nodex)); mm,o—'pm| A fnext .,m| B et |vr»\'| fel n«xAI—mULL (C->prev=...@line 12)

6 //CLFLUSHOPT (&B->prev, sizeof (Nodex*)) ; //MPB:

7 //SFENCE() ; - (B->data=...@line 1, A->next=...@line 11)

8 //TX_BEGINQ); W,_L,_ll,,,,‘ A ,,H,I‘—_'|pm I,ﬂ,l | 6 ..m'—'NUlL (B->next=...@line 2, A->next=...@line 11)

12 ;gi‘ﬁgggié::::g’ ;"‘ﬁ;ﬂ (B->prev=...@line 3, A->next=...@line 11)

11 A->next = B; ' Atomically //MPA:

12 C->prev = B; NULLO—||""| A nexslz'l. ----- | nexrl.__’l..mv C nexr|_’N'UT.T/ (A->next=...@line 11, C->prev=...@line 12)
13 //TX_END();

(a) persistent memory program

(b) correct persistent order

(c) PM properties

Figure 3: Inserting a node to a doubly-linked list stored in persistent memory (PM). To ensure the correct persistent order
shown in subfigure (b), the TX BEGIN(), TX_ADD(), and TX_END() statements in subfigure (a) are needed. Otherwise, after
power failure (which may strike at any moment), the PM state may be inconsistent.

inferred MPB relations, stored in MPBs, are used to infer the DURA
and MPA relations (Lines 6-7).

Algorithm 2: Checking PM Properties.

1 Bugs « { }

2 foreach T € Traces do

3 PT < CompUTE_PERSISTENTTIME_INTERVALS (1)

4 Bugs < Bugs U CHECK_DURA_REQUIREMENTS (T, PT, DURAs)
5

6

7

8

Bugs < Bugs U CHECK_MPB_REQUIREMENTS (T, PT, MPBs)
Bugs < Bugs U CHECK_MPA_REQUIREMENTS (T, PT, MPAs)
end foreach
return Bugs

Once the PM properties are inferred, they may be used in vari-
ous downstream software engineering tasks. One task explored in
this work is to improve PM bug detection, where the inferred PM
properties are used as test oracles for detecting property violations.
This trace-based analysis technique is shown in Algorithm 2. For
each trace T € Traces, we traverse the events in T to compute a
persistent time interval PT [ev] for every STORE event ev (Line 3).
Then, we leverage the computed PT to detect violations of DURA,
MPB, and MPA properties (Lines 4-6).

In the next two sections, we present our detailed algorithms for
inferring and checking PM properties.

4 Inferring PM Properties

We first explain our method for static analysis and trace generation,
then provide the intuition behind our method for inferring PM
properties, and finally present the detailed algorithm.

4.1 Static Analysis and Trace Generation

Our method starts with static analysis of the program to compute
the dependence relations. Our static analysis is implemented us-
ing the LLVM compiler to leverage its existing APIs for program
analysis. LLVM first constructs a program dependency graph for
the program, and then uses it to compute the control- and data-
dependencies. However, these dependencies are restricted to indi-
vidual functions; this is because by default LLVM only performs
intra-procedural analysis. We have extended LLVM to perform
inter-procedural analysis.

Next, we instrument the dependence relations into the executable
program, to add the self-logging capability. That is, while the in-
strumented program is executed, it generates an execution trace
annotated with the dependence relations, thus providing all of
the information our method needs to infer and check PM prop-
erties. Specifically, the dependence relations are defined over the
program statements, and are stored in a map which takes two pro-
gram statements st” and st as input and returns true, for example,
if CDEP(st’, st) holds.

While the instrumented program generates the execution trace,
it associates each event ev with a field ev.st to represent the pro-
gram statement that generates the event. Thus, for any two LOAD
events (ev’ and ev) in the execution trace, we can quickly check
whether CDEP(ev’ .st, ev.st) holds. It is worth noting that multiple
events may be generated by the same program statement, e.g., if the
statement is executed more than once. It is also worth noting that
the execution trace only contains instructions related to PM LOAD
and STORE accesses; DRAM related instructions are ignored.

Let T = evq,..., ev, be an execution trace in Traces, where each
event ev; has the following fields in addition to ev;.st:

e cvj.type, which may be type LOAD, STORE, CLFLUSHOPT,
SFENCE, TX BEGIN, TX_END, and TX_ADD.

e cvj.addr, which is the starting address for LOAD, STORE,
CLFLUSHOPT, and TX_ADD.

e cvj.size, which is the corresponding size for LOAD, STORE,
CLFLUSHOPT, and TX_ADD.

Other PM related CPU instructions, such as CLWB (cache line write
back) and CLFLUSH (unoptimized version of CLFLUSHOPT) for the
Px86 architecture, may be modeled by CLFLUSHOPT and SFENCE.

4.2 The Intuition behind Our Method

Our method traverses the execution trace T € Traces to infer
the MPB relations first. To understand the intuition behind MPB
inference, it is helpful to take a look at the typical life cycle of a PM
program, shown in Figure 4. The classic example of a PM program
is shown on the right-hand side, which starts by checking a flag
to see if it needs to initialize PM for the very first time (Line 4) or
recover from power loss by reading data already stored in PM (Line
6). After that, the program proceeds to normal operation, which
may write to PM.

ASE 24, October 27-November 1, 2024, Sacramento, CA, USA
int main() {
1F (!recovering)

Initialize_PM(); I Readfrom_FM();
Write"o_FM(); WriteTo_PM();
Initialize_PM();

1
2
3
4
’ E, 5 else {
6 ReadFrom_PM();
7
8
9
0

WriteTo_PM()

),H

Power loss may strike at any time 1
during the program execution

Figure 4: The life cycle of a PM program executed before and
after power loss (which may strike at any time) and recovery.

With this in mind, we can look at the figure on the left-hand
side of Figure 4, where a power loss induced program crash occurs
between two executions of the program. We call the execution
before the crash Ep., and call the execution after the crash Eqc.
Note that there may be causal relations between STOREs in Ep,
and the corresponding LOADs in Eg.

Thus, we regard a PM property as a contract between these two
executions. Furthermore, our counterfactual reasoning relies on the
following observation: Unless STORE:s in Ey,. satisfy the contract
demanded by LOADs in E,c, LOADs in E,: can definitely go
wrong. Based on this observation, our method focuses on analyz-
ing LOADs in Eg, to derive the contract, and then leveraging the
contract to infer MPBs over STOREs in Ep.. Conceptually, this is
accomplished in the two steps below.

4.2.1 Step 1. Identifying the Contract from LOADs in Eqc. In this
step, we search for two LOAD events in Eg4e, denoted ev;y and
ev; ;, such that CDEP(evyq.st, ev} ,.st) holds, meaning evyy is con-
trol dependent on the preceding ev; - Together, they demand the
corresponding STOREs in Ej,. to persist in a certain order.

As an example, consider the singly-linked list in Figure 2 where
Eqc may be any function that reads the list from PM. Since the list
nodes can only be traversed from left to right, the two LOADs may
come from {if (A->next!=NULL) node=A->next->next;} since
LOAD from A->next->next (which may be aliased to B->next) is
control dependent on LOAD from A->next. Together, they demand
that STORE to A->next->next always persists before STORE to
A->next. The reason is because, otherwise, E,. can definitely go
wrong since A->next->next may return a stale value.

4.2.2 Step 2. Mapping the Contract to STOREs in Ep,.. In this step,
we search for any two matching STORE events, evszore and vl
such that evssore.addr = evjy.addr and evy, ., .addr = evfd.addr.
There may be multiple pairs of STOREs for each pair of LOAD
events. For each pair of matching STOREs, we infer a property
MPB(evstore-st, €Vgsp0-St)-

Consider again the singly-linked list example in Figure 2, where
Ep. may be any function that writes the list to PM, including the
insert() function. More specifically, the two matching STORE
events may come from Lines 2 and 6 of the example program in
Figure 2 (a), where A->next->next is aliased to B->next. Thus, we

infer MPB(B->next=...@line2,A->next=...@line6).

While the intuition behind our two-step method for inferring
MPBs from Ep,. and E4c may seem straightforward, we note that
it is only a simplified mental picture for ease of presentation. In

Zunchen Huang, Srivatsan Ravi, and Chao Wang

practice, there may be no clear separation between Ej. and E4¢
in software code; instead, LOADs from PM and STOREs to PM
may be mixed together, either within a function or being scattered
in multiple functions. Furthermore, STOREs in one function may
correspond to LOADs in multiple other functions, and vice versa.
Therefore, having a fully automated technique for analysis and
inference is important.

4.2.3 Causation versus Correlation. It is important to note that our
method relies on the causal relationship between STOREs in Ep,
and the matching LOADs in E4c. This differentiates our method
from existing invariant generation techniques based solely on corre-
lation. Correlation does not always imply causation, and correlation
without causation leads to unsound results.

As an example, consider again the insert () function for doubly-
linked list in Figure 3. Based solely on the five STOREs shown in
Lines 1-3 and 11-12, it is impossible to know with certainty that the
two STOREs in Lines 11-12 must persist atomically, but the three
STOREs in Lines 1-3 do not need to persist atomically. Specifically,
just because two STOREs occur together does not imply that they
must persist atomically.

To correctly infer the MPA property for these STOREs, we must
analyze the matching LOADs, which are elsewhere in the code base.
For the example in Figure 3, in particular, the matching LOADs are
outside of the insert() function.

In general, even finding the matching LOADs for these STOREs
is a difficult problem in program analysis. Our proposed method
has made it easy, by generating annotated execution traces where
concrete PM addresses associated with the STOREs and LOADs
are made readily available. Thus, given any STOREs in T € Traces,
finding their matching LOADs in T becomes easy.

4.3 The Inference Algorithm

Depending on the type of PM properties, i.e., whether they are
MPBs, DURAs or MPAs, our inference algorithm uses different
subroutines.

4.3.1 Inferring the MPBs. Algorithm 3 shows our subroutine for
inferring MPBs, which takes an execution trace T € Traces as input
and returns a set of MPBs as output. Internally, it goes through
two steps. First, it traverses LOAD events in T to find every pair
(evjq, ev} ;) such that CDEP(evjq, ev} ;) holds. These pairs go into a
set named Contracts. Then, the subroutine traverses STORE events
in T to find the matching pair such that evs;ore.addr = ev;q.addr
and evl,,,...addr = ev;d.addr. Each of these matching pairs must

satisfy an MPB property.

4.3.2 Inferring DURAs from MPBs. While generating the execution
trace T, we add an imaginary LOAD event ev ;. at the start of
the trace, and assume that all subsequent LOAD events are control
dependent on it. We also add an imaginary STORE event evj,;
at the end of the trace such that ev.st = stj,, representing the
program end. With these additions, DURAs are inferred as special
cases of MPBs. Thus, inside Algorithm 4, we only need to take them
out of MPBs and put them into DURAs.

4.3.3 Inferring MPAs from MPBs. Algorithm 5 shows our subrou-
tine for inferring MPAs from MPBs. Internally, it first represents the

Discovering Likely Program Invariants for Persistent Memory

Algorithm 3: INFER_MPB_REQUIREMENTS(T).

1 Contracts « { }
2 foreach evyy € T andev); € T do

3 if CDEP(evyqy.st, ev;d.st)) then

4 ‘ Contracts « Contracts U { (evja, ev};) }

5 end if

6 end foreach

7 MPBs « { }

s foreach evg;ore € T and ev,,,, € T do

9 foreach (evyqy, ev;d) € Contracts do

10 if evgiore.addr = evig.addr A evl, . .addr = ev;d.addr then
1 ‘ MPBs « MPBs U { MPB(evssore-St, €04,,0-St) }
12 end if

13 end foreach

14 end foreach
15 return MPBs

Algorithm 4: INFER_DURA_REQUIREMENTS(MPBs).

1 DURAs «— { }

2 foreach MPB(st,st’) € MPBs where st’ = stj;q do
s | DURAs «— DURAsU { DURA(st) }

4 MPBs <« MPBs \ { MPB(st,st’) }
5
6

end foreach
return DURAs

set of MPBs using a directed graph, and then computes the strongly-
connected components (SCCs). Next, for each SCC, it creates an
MPA by including every statement st involved in the SCC. At a
high level, the MPBs inside each SCC represent a set of conflicting
requirements. The conflict can only be resolved by including all
these STOREs in a persistent transaction.

Algorithm 5: INFER_MPA_REQUIREMENTS(MPBs).

MPAs «— { }
let G be the graph where each MPB(st, st’) is an edge from st to st’
let SCCs be the set of strongly-connected components in G
foreach SCC € SCCs do
MPA « {st | st is anode in SCC }
MPAs «— MPAs U {MPA}
end foreach
return MPAs

® N e @ R ® N =

4.4 The Correctness Guarantee

To a limited extent, our method guarantees correctness of the in-
ferred properties, i.e., when the control and data dependence rela-
tions are precise. This is captured by the following theorem.

THEOREM 4.1. With precisely-computed dependence relations, our
inferred PM properties are necessary conditions for the program to
behave correctly through potential power loss and recovery. With
over-approximated dependence relations, they are likely program
invariants.

The reason why this theorem holds is because, based on counter-
factual reasoning, our method can always find a concrete execution
trace T € Traces showing that, if an inferred property (over the
STOREs in T) is violated, the program (more specifically LOADs of
the program in T) can definitely go wrong due to inconsistent PM
content.

ASE 24, October 27-November 1, 2024, Sacramento, CA, USA

Precisely computing dependence relations is possible during
dynamic analysis, e.g., using Valgrind [28]; in fact, it is routinely
performed during taint tracking. However, it is computationally
expensive since it requires monitoring each and every instruction
in the program (not just PM instructions).

For a more practical implementation, we decide to use LLVM’s
static dependency analysis, which is orders-of-magnitude fast, but
the results are over-approximated, meaning the inferred proper-
ties are likely program invariants. Nevertheless, our experimental
evaluation (in Section 6) shows that the inferred PM properties are
almost always valid in practice.

While the inference of PM properties may be done entirely with
static analysis, in practice, it can be challenging for static analysis
to precisely compute the causal relationships between STOREs in
Ep. and LOADs in E4 due to aliased expression. For example, when
A->next is alised to B in the software code, A->next->next refers to
B->next; but when A->next is aliased to C, A->next->next refers
to C->next. How to combine fast static techniques and accurate
dynamic techniques to precisely compute the dependence relations
is a research problem that we leave for future work.

It is also worth noting that, during the experimental evaluation,
we use the default unit tests of the benchmark programs to generate
program execution traces, from which our method infers the PM
properties. Thus, the quality of the inferred properties depend on
the quality of the test suite. While incomplete test suite may lead to
missing properties, it may never lead to wrong properties, as stated
in the above theorem. The reason is that, for each inferred property,
our method will find a concrete execution trace showing that, if
the property is violated, the program can definitely go wrong due
to some inconsistent data stored in PM.

5 Checking PM Properties

To detect violations of the inferred properties, we first traverse the
execution trace to compute the persistent time interval for each
STORE event ev, denoted PT[ev], and then check it against the
DURA, MPB, and MPA properties.

5.1 Persistent Time Intervals

The notion of a persistent time interval [25] is as follows. For a
given STORE event ev, the time when it takes effect in PM is repre-
sented by a window [from, to]. The window starts from ev.time,
which is the time when the STORE instruction is executed, and
ends after the corresponding CLFLUSHOPT and SFENCE instruc-
tions are executed. If any of the corresponding CLFLUSHOPT and
SFENCE instructions is missing, the window ends after the imagi-
nary evj,g.time, which is when the program ends.

As an example, consider the STORE events ev; — ev3 correspond-
ing to Lines 1-3 of the program in Figure 3. Since the program has
only 13 lines of code, we can set the imaginary evj,g;.time = 14.
Assuming that all the green-colored CLFLUSHOPT and SFENCE
instructions are included in the program, we have PT[ev;] = [1,7]
meaning the STORE may take effect at any time between Line 1
and Line 7. In other words, PT[ev1].from =1 and PT[ev;].to = 7.
Similarly, we have PT[evz] = [2,7] and PT[evs] = [3,7].

Consider the STORE events evj; — evq2 corresponding to Lines
11-12 of the program in Figure 3. Since these STORE events are

ASE 24, October 27-November 1, 2024, Sacramento, CA, USA

protected by a persistent transaction using TX_ADD (), the persistent
time intervals will be computed differently. Specifically, since the
transaction starts at Line 8 and ends at Line 13, we have PT[ev11] =
[8,13] and PT[ev13] = [8,13]. Since the two intervals have the
same start time and end time, we say PT[ev11] = PT[ev13].

Assuming for now that all persistent time intervals have been
computed and stored in the map PT, we present our property check-
ing algorithm. We will present the algorithm for computing the
persistent time intervals at the end of this section.

5.2 The Checking Algorithm

Algorithm 6 shows our subroutine for checking durability prop-
erties. It traverses each execution trace T € Traces and, for each
STORE event ev such that DURA(ev.st) € DURAs, checks if the per-
sistent time is always less than ev,s;.time. If PT [ev].to < evj,g.time
does not hold, it reports a DURA violation. Note that PT [ev].to =
+co0 if the corresponding CLFLUSHOPT and SFENCE are missing.

Algorithm 6: CHECk_DURA_REQUIREMENTS(T, PT, DURAEs).

1 Bugs « { }

2 foreach STORE eventev € T do

3 if DURA(ev.st) € DURAs then

4 if = (PT[ev].to < evjus;.time) then
5 | Bugs < Bugs U {DURA}
6

7

8

9

end if
end if
end foreach
return Bugs

Algorithm 7 shows our subroutine for checking MPB properties.
It traverses each execution trace T € Traces and, for any two
STORE events such that MPB(ev.st, ev’.st) € MPBs, meaning that
ev.st must persist before ev’.st, checks the persistent time intervals
PT[ev] and PT[ev’]. If PT[ev].to < PT[ev’].from does not hold,
it reports an MPB violation.

Algorithm 7: Cueck_MPB_Requirements (T, PT, MPBs).

1 Bugs «— { }

2 foreach pair of STORE eventsev € T and ev’ € T do
3 if MPB(ev.st,ev’.st) € MPBs then

4 if —(PT[ev].to < PT[ev'].from) then

5 ‘ Bugs « Bugs U {MPB(ev.st, ev’.st)}
6 end if

7 end if

8 end foreach

9 return Bugs

Algorithm 8 shows our subroutine for checking MPA proper-
ties. It traverses each execution trace T € Traces and, for any two
STORE events ev, ev” appearing in the same MPA, checks the persis-
tent time intervals PT [ev] and PT[ev’]. If PT[ev] = PT[ev’] does
not hold, it reports an MPA violation.

5.3 Computing Persistent Time Intervals

Algorithm 9 shows the subroutine for computing persistent time
intervals [25]. It takes an execution trace T as input and returns the
map PT as output. For each STORE event ev € T, the corresponding
PT[ev] = (from,to) represents a time window.

Zunchen Huang, Srivatsan Ravi, and Chao Wang

Algorithm 8: Curck_MPA_Reouirements(T, PT, MPAs).

1 Bugs « { }
2 foreach STORE eventev € T and STORE event ev’ € T do
if ev.st € MPA and ev’.st € MPA and MPA € MPAs then

3
4 if = (PT[ev.st] = PT[ev’.st]) then
5 | Bugs < Bugs U {MPA}

6 end if

7 end if

s end foreach
9 return Bugs

Algorithm 9: CoMPUTE_PERSISTENT_INTERVAL(T).

PT « {(ev,[—c0,+0])} ;
transaction «— False ;
cached_stores « list() ;
tx_stores « set() ;
tx_begin_time <« 0;
tx_add_addrs « set() ;
foreach eventev € T do

if ev.type = STORE then
PT[ev].from « ev.time;
if =transaction then

1 | cached_stores.add(ev)
12 else

// map ev to a time window

// STOREs outside of transaction
// STOREs inside transaction

% N A UM A W N =

// set start time

-
5

| tx_stores.add(ev)
14 else if ev.type = CLFLUSHOPT then

15 foreach ev’ € cached_stores and eV’ .addr = ev.addr do

16 ‘ PT[ev'].to « evjyy.time+1; // set end time
17 end foreach

18 else if ev.type = SFENCE then

19 foreach ev’ € cached_stores and PT|[ev’ |.to = evj,y.time+1do

PT[ev'].to « ev.time ; // finalize end time

cached_stores.remove(st)

22 end foreach
23 else if ev.type = TX_BEGIN then

24 transaction < True
tx_begin_time «— ev.time
26 else if ev.type = TX_ADD then

27 | tx_add_addrs.add(ev.addr)

28 else if ev.type = TX _END then

29 transaction < False

30 foreach ev’ € tx_stores where ev’.addr € tx_add_addrs do

PT[ev'].from « tx_begin_time; // set start time
PT[ed'].to « ev.time; // set end time

33 end foreach
34 tx_stores.clear()
35 tx_add_addrs.clear()

36 end foreach

37 return PT

Internally, the subroutine starts by setting PT [ev] to [—oo, +o0]
for all events. Then, it traverses the events in T sequentially and,
depending on the event type, updates the persistent time intervals
for the STORE events. At a high level, there are two cases depending
on whether a STORE is inside a persistent transaction.

The first case is when the STORE is outside of the persistent
transaction (Lines 8-22). In this case, the STORE event is held tem-
porarily in the list named cached_stores until it is persisted in PM.
This takes three steps, by first setting the from field of the time
window when STORE is executed, then setting the to filed when
SFENCE is executed, and finally changing the to field when SFENCE
is executed.

The second case is when the STORE is inside the persistent
transaction (Lines 23-35). In this case, the STORE event is held

Discovering Likely Program Invariants for Persistent Memory

Table 1: Statistics of the benchmark programs (Columns 1-3)
and execution traces (Columns 4-9).

A . # # # # #

Program LoC | Description Version ST w | rL | FE | TR
cc_slist 2698 | singly linked list [30] | bad 166 | 244 | 103 | 64 19
ok 166 258 | 102 | 90 26
cc_list 3208 | doubly linked list [30] | bad 1466 | 3022 | 401 | 264 | 270
ok 1555 | 3443 | 401 | 300 | 285

cc_array 2171 | array [30] bad 102 | 344 | 130 | 44 0
ok 102 344 84 75 20

cc_stack 612 | stack [30] bad 27 84 24 8 0
ok 27 84 13 13 4

cc_deque 2575 | double end queue [30] | bad 181 | 565 | 201 | 104 | ©
ok 181 471 57 26 57

cc_queue 576 | queue [30] bad 124 | 303 | 128 | 48 0
ok 124 271 68 20 24

cc_pgeque 618 | priority queue [30] bad 70 367 | 0 0 0
ok 70 367 | 117 | 63 0

cc_ringbuf 316 | ring buffer [30] bad 144 | 443 | 117 | 99 0
ok 144 443 | 118 | 118 3

[redis [83864 | PM Redis [17] | default 8 [N/A |

[367 [558 [8 |
‘ memcached ‘ 27331 ‘ PM Memcached [23] ‘ default ‘ 230 ‘ 1043 ‘ 3 ‘ 3 ‘ N/A ‘

temporarily in the set named tx_stores until it is persisted in PM.
This takes a single step, by setting both from and to fields of the
time window when TX_END is executed.

6 Experiments

We have implemented our method in a software tool that lever-
ages the Clang/LLVM [22] compiler to parse the C code of a PM
program, compute the dependence relations, and instrument the
executable program. Running the executable program with existing
test cases will produce annotated execution traces, which are what
our method needs to infer and check PM properties. We implement
our algorithms for inferring and checking PM properties in Python,
by taking the execution traces as input and returning the inferred
properties and the detected violations as output, respectively.

6.1 Benchmark Programs

The benchmark programs used in our evaluation fall into two sets.
The first set consists of eight persistent data structures [30], imple-
menting various lists, queues, and ring buffers. These data struc-
tures come with unit test cases, which we have used to run the
instrumented programs to generate execution traces. The second
set consists of two PM-enabled distributed storage applications:
Redis [17] and Memcached [23]. The execution traces are generated
from the servers interacting with clients.

Table 1 shows the statistics of of each program, including the
name, the number of lines of code, and a short description of the
application in Columns 1-3. Column 4 shows the program ver-
sion. Each data structure has two versions: one good version, e.g.,
cc_list-ok, in which PM instructions have been properly added
and used; and one bad version, e.g., cc_list-bad, in which some
PM instructions are missing or misused. For Redis and Memcached,
only the default version is used. Columns 5-9 show the statistics of
the execution traces, including the number of STORE (ST), LOAD
(LD), CLFLUSHOPT (FL), SFENCE (FE) events and persistent trans-
action (TR) blocks.

ASE 24, October 27-November 1, 2024, Sacramento, CA, USA

6.2 Research Questions

Our experiments were designed to answer the following three
research questions (RQs):

RQ 1: Can our method infer PM properties automatically?
RQ 2: Are PM properties inferred by our method useful?
RQ 3: Are PM properties inferred by our method of high quality?

To answer RQ 1, we have applied our method to all of the benchmark
programs. Our experiments were conducted on a computer with
AMD Ryzen 5 5600X CPU and 32GB memory on Ubuntu 20.04 with
DAX emulation for Persistent Memory.

To answer RQ 2, we have leveraged the PM properties inferred
by our method to detect PM bugs, and compared its performance
against the state-of-the-art PM bug detection technique described
in [25]. To answer RQ 3, we have compared the quality of our PM
properties with those inferred by the state-of-the-art technique
described in [10]. To ensure a fair comparison, we have taken the
effort to implement both existing techniques within our software
tool.

6.3 Experimental Results

We divide the results to three parts, one for each research question.

6.3.1 Results for RQ 1. We present the results for RQ 1 in Table 2,
where Column 1 shows the benchmark name, Column 2 shows the
time taken by our method to infer PM properties, and Columns
3-5 show the number of inferred DURA, MPB, and MPA properties,
respectively. In total, our method took 7.4 seconds to infer 386
DURA properties, 280 MPB properties, and 18 MPA properties. The
results show that our method can infer PM properties quickly and
automatically.

We have manually inspected all these properties and confirmed
that they are correct. Furthermore, for the data structure bench-
marks, regardless of which program version (ok or bad) is used,
the inferred properties are almost always the same. The only ex-
ceptions are cc_list-bad/ok and cc_deque-bad/ok, which have
different MPBs but the difference is small. This is consistent with
our expectation, because our inference method focuses on what
PM properties should be enforced and not on whether they have been
correctly enforced. In other words, our method relies on causal rela-
tions between LOADs and STOREs in the execution traces, and is
not affected by whether CLFLUSHOPT, SFENCE, and transaction
have been used correctly.

6.3.2 Results for RQ 2. We present the results for RQ 2 in Columns 6-
13 of Table 2. Specifically, Columns 6-9 show the time taken by our
method to detect property violations, and the number of DURA,
MPB, and MPA violations detected. Columns 10-13 show the time
taken by the state-of-the-art technique [25], and the number of
DURA, MPB, and MPA violations detected. In total, our method
took 7.8 seconds to detect 79 DURA violations, 67 MPB violations,
and 9 MPA violations. In contrast, the existing technique only de-
tected 79 DURA violations, but no MPB or MPA violations. This
result is consistent with our expectation because, when the existing
technique is not accompanied by manually specified properties, it
can only detect the simplest type of bugs, i.e., DURA bugs.

A closer look at the results shows that, for the ok versions of
data structures, our method does not report any violation, which is

ASE 24, October 27-November 1, 2024, Sacramento, CA, USA

Zunchen Huang, Srivatsan Ravi, and Chao Wang

Table 2: Evaluating our method for inferring properties and checking these properties for violations.

Our Method (infer) Our Method (check) Existing Method [25] (check)
Program Version Time (s) DURA | MPB | MPA || Time (s) DURA MPB MPA Time (s) DURA MPB MPA
‘ ‘ ‘ bugs bugs ‘ bugs bugs bugs bugs
cc_slist-bad 0.1 20 9 0 0.1 6 3 0 0.1 6 0 0
cc_slist-ok 0.1 20 9 0 0.1 0 0 0 0.1 0 0 0
cc_list-bad 24 44 45 3 2.5 5 10 1 24 5 0 0
cc_list-ok 2.8 44 39 3 3.0 0 0 0 29 0 0 0
cc_array-bad 0.1 16 15 1 0.1 3 9 1 0.1 3 0 0
cc_array-ok 0.1 16 15 1 0.1 0 0 0 0.1 0 0 0
cc_stack-bad 0.1 12 1 0 0.1 1 1 0 0.1 1 0 0
cc_stack-ok 0.1 12 1 0 0.1 0 0 0 0.1 0 0 0
cc_deque-bad 0.1 21 14 1 0.1 10 10 1 0.1 10 0 0
cc_deque-ok 0.1 21 13 1 0.1 0 0 0 0.1 0 0 0
cc_queue-bad 0.1 15 10 2 0.1 2 5 2 0.1 2 0 0
cc_queue-ok 0.1 15 10 2 0.1 0 0 0 0.1 0 0 0
cc_pgeque-bad 0.1 9 2 0 0.1 9 2 0 0.1 9 0 0
cc_pgeque-ok 0.1 9 2 0 0.1 0 0 0 0.1 0 0 0
cc_ring_buf-bad 0.1 14 8 0 0.1 2 3 0 0.1 2 0 0
cc_ring_buf-ok 0.1 14 8 0 0.1 0 0 0 0.1 0 0 0
redis 0.4 54 66 3 0.4 13 18 3 0.3 13 0 0
memcached 0.4 30 13 1 0.5 30 6 1 0.4 30 0 0
[Total [74] 38 [280 [18 [[73 79 [67 [9 [74 [79] o | o |

consistent with expectation, because these properties are enforced
by the execution traces. For the bad versions of data structures, as
well as the default version of Redis and Memcached applications,
we have manually inspected the detected violations and confirmed
that they are real violations.

While the existing method [25] represents the state-of-the-art,
it has the same drawback as other PM bug detection tools. That
is, the intended PM properties must be manually specified before
violations of these properties can be detected. However, it is a
challenging task for developers to manually specify PM properties.
For example, even for the small code snippets in Figures 2 and 3,
correctly specifying the PM properties is not easy. That is exactly
where our contribution is — to automatically discover these PM
properties (which specify the objects of a program that should be
made persistent, and the order).

Note that, while Redis and Memcached has large code sizes, not
all program statements are PM related. Since we only record PM
related events in the execution traces and skip DRAM related events,
analyzing these traces does not take a long time. PM programs use
different memory allocators for different types of memory, e.g.,
malloc() for DRAM and PMmalloc() for PM. We use LLVM to
instrument the calls to PM-specific memory allocator. At run time,
we decide if a LOAD/STORE operation is for PM by checking if the
concrete memory address has been allocated by the PM-specific
memory allocator.

6.3.3 Results for RQ 3. There are two sets of results for RQ 3. We
present the first set in Table 3, which compares the quality of our
PM properties with those inferred by an existing technique [10].
While both methods inferred 386 DURA properties, our method
inferred significantly fewer MPB properties (280 vs. 1641) and MPA
properties (18 vs. 35). We have manually checked the inferred prop-
erties and found that many of the MPBs and MPAs inferred by the
existing method are not correct.

For some benchmarks, the number of MPBs inferred by the exist-
ing method is more than 10 times, e.g., for cc_stack and Memcached.
This is also due to its unsound heuristic rules for generating MPBs.

Furthermore, unlike our method, which infers MPAs from conflict-
ing MPBs, the existing method uses yet another set of unsound
heuristics rules to infer MPAs. As a result, although the set of MPBs
inferred by our method is a strict subset of their MPBs, the MPAs
are not as clearly related as the MPBs.

For example, for the data structures, our method inferred MPAs
only for cc_list, cc_array, cc_deque, and cc_queue. This result
is consistent with expectation because only circular MPBs may lead
to MPAs, but cc_slist (a singly-linked list) does not have circular
MPBs, and thus should not have MPAs. However, using unsound
heuristic rules, the existing method generated bogus MPAs even
for data structures like cc_slist.

Finally, we present the remaining experimental results for RQ
3 in Table 4, which compares the detected violations by using the
inferred properties as test oracles. Since the two property infer-
ence methods lead to the same DURA violations, this table only
compares the MPB and MPA violations. Both methods reported
67 MPB violations. However, the existing method missed 8 MPA
violations in cc_array-bad, cc_deque-bad, cc_queue-bad, Redis,
and Memcached. As for the bogus violations, our method reported
none, but the existing method reported 27 bogus MPB violations
and 23 bogus MPA violations.

The higher quality of our inferred properties as shown in Table 4
is not surprising because our method focuses on what PM properties
should be enforced instead of whether these properties are correctly
enforced. Furthermore, our method will not report the property (or
the violation) unless there exists a concrete execution trace that can
serve as evidence, based on our counterfactual reasoning. That is,
if the inferred property (over PM STOREs) is violated, the program
execution (more specifically PM LOADs) can definitely go wrong,
due to the use of some stale data stored in PM.

7 Related Work

Our method is the first one for inferring PM properties using a
combination of static and dynamic analysis techniques together
with counterfactual reasoning. With precisely computed control

Discovering Likely Program Invariants for Persistent Memory

Table 3: Comparing the properties inferred by our method
and the properties inferred by an existing method [10].

Program Version ‘ Our Method (infer) ‘ Existing[10] (infer) H
| DURA _MPB __ MPA | DURA _MPB__ MPA
cc_slist-bad 20 9 0 20 81 2
cc_slist-ok 20 9 0 20 81 2
cc_list-bad 44 45 3 44 245 5
cc_list-ok 44 39 3 44 217 5
cc_array-bad 16 15 1 16 50 1
cc_array-ok 16 15 1 16 48 1
cc_stack-bad 12 1 0 12 13 0
cc_stack-ok 12 1 0 12 12 0
cc_deque-bad 21 14 1 21 110 5
cc_deque-ok 21 13 1 21 121 5
cc_queue-bad 15 10 2 15 37 2
cc_queue-ok 15 10 2 15 34 2
cc_pgeque-bad 9 2 0 9 14 0
cc_pgeque-ok 9 2 0 9 12 0
cc_ringbuf-bad 14 8 0 14 23 1
cc_ringbuf-ok 14 8 0 14 23 1
redis 54 66 3 54 357 2
memcached 30 13 1 30 177 1
[Total [[386 280 18 [386 1641 35 |

Table 4: Comparing the detected violations using properties
inferred by our method and an existing method [10].

Real Violations Bogus Violations
Program Version Ours [Existingl[10] Ours [Existingl[1e]
MPB_MPA | MPB__MPA || MPB_MPA | MPB__ MPA
cc_slist-bad 3 0 3 0 0 0 2 2
cc_slist-ok 0 0 0 0 0 0 0 2
cc_list-bad 10 1 10 1 0 0 0 2
cc_list-ok 0 0 0 0 0 0 0 2
cc_array-bad 9 1 9 0 0 0 0 1
cc_array-ok 0 0 0 0 0 0 0 1
cc_stack-bad 1 0 1 0 0 0 0 0
cc_stack-ok 0 0 0 0 0 0 0 0
cc_deque-bad 10 1 10 0 0 0 1 5
cc_deque-ok 0 0 0 0 0 0 0 3
cc_queue-bad 5 2 5 0 0 0 1 2
cc_queue-ok 0 0 0 0 0 0 0 1
cc_pgeque-bad 2 0 2 0 0 0 0 0
cc_pgeque-ok 0 0 0 0 0 0 0 0
cc_ringbuf-bad 3 0 3 0 0 0 0 1
cc_ringbuf-ok 0 0 0 0 0 0 0 1
redis 18 3 18 2 0 0 18 0
memcached 6 3 6 0 0 0 6 1
[Total [67 1 [67 3][o o [27 23 |

and data dependence relations, it guarantees that the inferred prop-
erties are correct. Even in a practical implementation that sacrifices
the accuracy of dependency analysis for efficiency, it can still infer
high-quality properties, as confirmed by our experimental evalu-
ation. In this sense, it is better than techniques that use unsound
heuristic rules [10], which belong to a larger body of work on dis-
covering likely invariants, including Daikon [6, 7] and its follow-up
work [2, 3, 8, 31].

Our method is related to existing techniques for detecting PM
bugs [4, 10-14, 24, 33]. Besides PMTEST [25], which is a tool that
provides a flexible user interface to take in a wide range of PM prop-
erties and can check them for violations, JAARU [13] is a technique
for detecting certain types of persistency bugs such as missing
flushes with model checking. PMFuzz [24] is a recent technique
built upon AFL++[9] by incorporating PM related heuristics to
generate test cases for PM programs.

ASE 24, October 27-November 1, 2024, Sacramento, CA, USA

There are also techniques for detecting PM bugs in concurrent
software. For example, both PMRACE [4] and YASHME [14] are able to
detect PM bugs caused by thread interleaving, while DURINN [11] is
a tool for checking durable linearizability, an API-level correctness
criterion for concurrent data structures. While these existing PM
bug detection techniques are related, they do not directly help
programmers specify PM properties.

Another line of related work is automated PM program repair.
HIpPPOCRATES [26] is a technique for repairing durability (DURA)
bugs; it first searches for known syntactic bug patterns and then
applies predefined program transforms. PMBUGASsIST [16] is a
more general technique that relies on SMT solver based symbolic
program analysis to search for repairs. Therefore, it works for
previously unknown bug patterns, and can handle both DURA
and MPB violations. However, automated repair techniques still
require correctness specifications, and our method for inferring PM
properties can provide such specifications.

We infer PM properties using a combination of static and dy-
namic analyses. Similar trace-based analysis techniques have been
used in other applications, e.g., for diagnosing concurrency bugs [1,
20, 34] and analyzing side-channel leaks [15]. In some of these cases,
symbolic reasoning techniques based on SMT solvers have been
used to amplify the coverage of dynamic analysis techniques, e.g.,
as in symbolic predictive analysis [35].

In general, all dynamic program analysis techniques including
ours share a limitation: they require high-quality test cases to gener-
ate execution traces as input. One way to overcome this limitation
is using automated testing to diversify the test cases and hence the
execution traces. Another way to overcome this limitation is using
static techniques to verify the dynamically inferred invariants, e.g.,
as in Nimmer et al. [29]. While static techniques may also directly
generate true invariants [36], for PM related properties, we are
not aware of such prior work. Nevertheless, these are interesting
research problems that we leave for future work.

8 Conclusion

We have presented a method for inferring PM properties from ex-
isting software code. Our method relies on a combination of static
and dynamic analysis techniques, where static analysis is used to
compute dependence relations and instrument the executable pro-
gram, and dynamic analysis of the program’s execution traces is
used to infer and check PM properties. Our method leverages a
unified graph-theoretic perspective and counterfactual reasoning
to generate high-quality PM properties. Our experimental evalua-
tion on eight persistent data structures and two distributed storage
applications shows that the method can infer PM properties quickly
and automatically. We also demonstrate the usefulness of the in-
ferred PM properties, by leveraging them to significantly improve
the performance of a state-of-the-art PM bug detection technique.

Acknowledgments

This research was supported in part by the U.S. National Science
Foundation (NSF) under grant CCF-2220345. We thank the anony-
mous reviewers for their constructive feedback.

ASE

’24, October 27-November 1, 2024, Sacramento, CA, USA

References

(1]

[2

[

(3

=

=

)

[10

[11]

[12]

[13]

[14]

[15]

Mitra Tabaei Befrouei, Chao Wang, and Georg Weissenbacher. 2016. Abstraction
and mining of traces to explain concurrency bugs. Formal Methods Syst. Des. 49,
1-2 (2016), 1-32. https://doi.org/10.1007/S10703-015-0240-5

Ivan Beschastnikh, Yuriy Brun, Michael D. Ernst, and Arvind Krishnamurthy.
2014. Inferring models of concurrent systems from logs of their behavior with
CSight. In 36th International Conference on Software Engineering, ICSE 14, Hyder-
abad, India - May 31 - June 07, 2014, Pankaj Jalote, Lionel C. Briand, and André
van der Hoek (Eds.). ACM, 468-479. https://doi.org/10.1145/2568225.2568246
Ivan Beschastnikh, Yuriy Brun, Sigurd Schneider, Michael Sloan, and Michael D.
Ernst. 2011. Leveraging existing instrumentation to automatically infer invariant-
constrained models. In SIGSOFT/FSE’11 19th ACM SIGSOFT Symposium on the
Foundations of Software Engineering (FSE-19) and ESEC’11: 13th European Software
Engineering Conference (ESEC-13), Szeged, Hungary, September 5-9, 2011, Tibor
Gyimothy and Andreas Zeller (Eds.). ACM, 267-277. https://doi.org/10.1145/
2025113.2025151

Zhangyu Chen, Yu Hua, Yongle Zhang, and Luochangqi Ding. 2022. Efficiently
detecting concurrency bugs in persistent memory programs. In ASPLOS °22:
27th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Lausanne, Switzerland, 28 February 2022 - 4
March 2022, Babak Falsafi, Michael Ferdman, Shan Lu, and Thomas F. Wenisch
(Eds.). ACM, 873-887.

Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Conference Record of the Fourth ACM Symposium on Principles of
Programming Languages, Los Angeles, California, USA, January 1977, Robert M.
Graham, Michael A. Harrison, and Ravi Sethi (Eds.). ACM, 238-252. https:
//doi.org/10.1145/512950.512973

Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. 2001. Dy-
namically Discovering Likely Program Invariants to Support Program Evolution.
IEEE Trans. Software Eng. 27, 2 (2001), 99-123. https://doi.org/10.1109/32.908957
Michael D. Ernst, Adam Czeisler, William G. Griswold, and David Notkin. 2000.
Quickly detecting relevant program invariants. In Proceedings of the 22nd Inter-
national Conference on on Software Engineering, ICSE 2000, Limerick Ireland, June
4-11, 2000, Carlo Ghezzi, Mehdi Jazayeri, and Alexander L. Wolf (Eds.). ACM,
449-458. https://doi.org/10.1145/337180.337240

Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant, Carlos
Pacheco, Matthew S. Tschantz, and Chen Xiao. 2007. The Daikon system for
dynamic detection of likely invariants. Sci. Comput. Program. 69, 1-3 (2007), 35-45.
https://doi.org/10.1016/j.scic0.2007.01.015

Andrea Fioraldi, Dominik Christian Maier, Heiko Eif3feldt, and Marc Heuse.
2020. AFL++ : Combining Incremental Steps of Fuzzing Research. In 14th USENIX
Workshop on Offensive Technologies, WOOT 2020, August 11, 2020, Yuval Yarom and
Sarah Zennou (Eds.). USENIX Association. https://www.usenix.org/conference/
woot20/presentation/fioraldi

Xinwei Fu, Wook-Hee Kim, Ajay Paddayuru Shreepathi, Mohannad Ismail, Sunny
Wadkar, Dongyoon Lee, and Changwoo Min. 2021. Witcher: Systematic Crash
Consistency Testing for Non-Volatile Memory Key-Value Stores. In SOSP °21: ACM
SIGOPS 28th Symposium on Operating Systems Principles, Virtual Event / Koblenz,
Germany, October 26-29, 2021, Robbert van Renesse and Nickolai Zeldovich (Eds.).
ACM, 100-115.

Xinwei Fu, Dongyoon Lee, and Changwoo Min. 2022. DURINN: Adversarial
Memory and Thread Interleaving for Detecting Durable Linearizability Bugs. In
16th USENIX Symposium on Operating Systems Design and Implementation (OSDI
22). Carlsbad, CA, 195-211.

Jodo Gongalves, Miguel Matos, and Rodrigo Rodrigues. 2023. Mumak: Effi-
cient and Black-Box Bug Detection for Persistent Memory. In Proceedings of
the Eighteenth European Conference on Computer Systems, EuroSys 2023, Rome,
Italy, May 8-12, 2023, Giuseppe Antonio Di Luna, Leonardo Querzoni, Alexandra
Fedorova, and Dushyanth Narayanan (Eds.). ACM, 734-750. https://doi.org/10.
1145/3552326.3587447

Hamed Gorjiara, Guoqing Harry Xu, and Brian Demsky. 2021. Jaaru: efficiently
model checking persistent memory programs. In ASPLOS °21: 26th ACM Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems, Virtual Event, USA, April 19-23, 2021, Tim Sherwood, Emery D.
Berger, and Christos Kozyrakis (Eds.). ACM, 415-428.

Hamed Gorjiara, Guoging Harry Xu, and Brian Demsky. 2022. Yashme: detecting
persistency races. In ASPLOS °22: 27th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, Lausanne,
Switzerland, 28 February 2022 - 4 March 2022, Babak Falsafi, Michael Ferdman,
Shan Lu, and Thomas F. Wenisch (Eds.). ACM, 830-845.

Zunchen Huang and Chao Wang. 2022. Symbolic Predictive Cache Analysis for
Out-of-Order Execution. In Fundamental Approaches to Software Engineering - 25th
International Conference, FASE 2022, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022,
Proceedings (Lecture Notes in Computer Science, Vol. 13241), Einar Broch Johnsen
and Manuel Wimmer (Eds.). Springer, 163-183. https://doi.org/10.1007/978-3-

[16]

=
=

[21

[22

&
&

[24

[25

Iy
2

[27

[28

[30

[31]

[32

[33

[34

Zunchen Huang, Srivatsan Ravi, and Chao Wang

030-99429-7_10

Zunchen Huang and Chao Wang. 2024. Constraint Based Program Repair for
Persistent Memory Bugs. In Proceedings of the 46th IEEE/ACM International Con-
ference on Software Engineering, ICSE 2024, Lisbon, Portugal, April 14-20, 2024.
ACM, 91:1-91:12. https://doi.org/10.1145/3597503.3639204

Intel. 2021. A version of Redis that uses persistent memory. https://github.com/
pmem/pmem-redis.

Intel. 2022. Discover Persistent Memory Programming Errors with Pmem-
check. https://www.intel.com/content/www/us/en/developer/articles/technical/
discover-persistent-memory-programming-errors- with-pmemcheck.html.
Intel. 2022. Persistent Memory Development Kit (PMDK). https://https://pmem.
io/pmdk/.

Markus Kusano, Arijit Chattopadhyay, and Chao Wang. 2015. Dynamic Genera-
tion of Likely Invariants for Multithreaded Programs. In 37th IEEE/ACM Interna-
tional Conference on Software Engineering, ICSE 2015, Florence, Italy, May 16-24,
2015, Volume 1, Antonia Bertolino, Gerardo Canfora, and Sebastian G. Elbaum
(Eds.). IEEE Computer Society, 835-846. https://doi.org/10.1109/ICSE.2015.95
Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a Distributed
System. Commun. ACM 21, 7 (1978), 558-565. https://doi.org/10.1145/359545.
359563

Chris Lattner and Vikram S. Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In 2nd IEEE / ACM International
Symposium on Code Generation and Optimization (CGO 2004), 20-24 March 2004,
San Jose, CA, USA. IEEE Computer Society, 75-88. https://doi.org/10.1109/CGO.
2004.1281665

Lenovo. 2018. Lenovo modifications to Linux memcached for enhanced persistent
memory support. https://github.com/lenovo/memcached-pmem.

Sihang Liu, Suyash Mahar, Baishakhi Ray, and Samira Manabi Khan. 2021. PM-
Fuzz: test case generation for persistent memory programs. In ASPLOS °21:
26th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, Virtual Event, USA, April 19-23, 2021, Tim
Sherwood, Emery D. Berger, and Christos Kozyrakis (Eds.). ACM, 487-502.
https://doi.org/10.1145/3445814.3446691

Sihang Liu, Yizhou Wei, Jishen Zhao, Aasheesh Kolli, and Samira Manabi Khan.
2019. PMTest: A Fast and Flexible Testing Framework for Persistent Memory
Programs. In Proceedings of the Twenty-Fourth International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems, ASPLOS
2019, Providence, RI, USA, April 13-17, 2019, Iris Bahar, Maurice Herlihy, Emmett
Witchel, and Alvin R. Lebeck (Eds.). ACM, 411-425.

Tan Neal, Andrew Quinn, and Baris Kasikci. 2021. Hippocrates: healing persistent
memory bugs without doing any harm. In ASPLOS °21: 26th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems, Virtual Event, USA, April 19-23, 2021, Tim Sherwood, Emery D. Berger,
and Christos Kozyrakis (Eds.). ACM, 401-414. https://doi.org/10.1145/3445814.
3446694

Tan Neal, Ben Reeves, Ben Stoler, Andrew Quinn, Youngjin Kwon, Simon Peter,
and Baris Kasikei. 2020. AGAMOTTO: How Persistent is your Persistent Memory
Application?. In 14th USENIX Symposium on Operating Systems Design and Imple-
mentation, OSDI 2020, Virtual Event, November 4-6, 2020. USENIX Association,
1047-1064. https://www.usenix.org/conference/osdi20/presentation/neal
Nicholas Nethercote and Julian Seward. 2007. Valgrind: a framework for heavy-
weight dynamic binary instrumentation.. In PLDI, Jeanne Ferrante and Kathryn S.
McKinley (Eds.). ACM, 89-100. http://dblp.uni-trier.de/db/conf/pldi/pldi2007.
html#NethercoteS07

Jeremy W. Nimmer and Michael D. Ernst. 2001. Static verification of dynamically
detected program invariants: Integrating Daikon and ESC/Java. In Workshop on
Runtime Verification, RV 2001, in connection with CAV 2001, Paris, France, July 23,
2001. 255-276. https://doi.org/10.1016/S1571-0661(04)00256-7

Srdan Pani¢. 2023. Collections-C: A library of generic data structures. https:
//github.com/srdja/Collections-C.

Jeff H. Perkins and Michael D. Ernst. 2004. Efficient incremental algorithms for
dynamic detection of likely invariants. In Proceedings of the 12th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, 2004, Newport
Beach, CA, USA, October 31 - November 6, 2004, Richard N. Taylor and Matthew B.
Dwyer (Eds.). ACM, 23-32. https://doi.org/10.1145/1029894.1029901

Azalea Raad, John Wickerson, Gil Neiger, and Viktor Vafeiadis. 2020. Persistency
semantics of the Intel-x86 architecture. Proc. ACM Program. Lang. 4, POPL (2020),
11:1-11:31.

Benjamin Reidys and Jian Huang. 2022. Understanding and detecting deep
memory persistency bugs in NVM programs with DeepMC. In PPoPP ’22: 27th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
Seoul, Republic of Korea, April 2 - 6, 2022, Jaejin Lee, Kunal Agrawal, and Michael F.
Spear (Eds.). ACM, 322-336.

Arnab Sinha, Sharad Malik, Chao Wang, and Aarti Gupta. 2011. Predictive
analysis for detecting serializability violations through Trace Segmentation.
In 9th IEEE/ACM International Conference on Formal Methods and Models for
Codesign, MEMOCODE 2011, Cambridge, UK, 11-13 July, 2011, Satnam Singh,
Barbara Jobstmann, Michael Kishinevsky, and Jens Brandt (Eds.). IEEE, 99-108.

Discovering Likely Program Invariants for Persistent Memory ASE 24, October 27-November 1, 2024, Sacramento, CA, USA

https://doi.org/10.1109/MEMCOD.2011.5970516 (Eds.). Springer, 256-272. https://doi.org/10.1007/978-3-642-05089-3_17

[35] Chao Wang, Sudipta Kundu, Malay K. Ganai, and Aarti Gupta. 2009. Symbolic [36] Jingbo Wang and Chao Wang. 2022. Learning to Synthesize Relational Invariants.
Predictive Analysis for Concurrent Programs. In FM 2009: Formal Methods, Second In 37th IEEE/ACM International Conference on Automated Software Engineering,
World Congress, Eindhoven, The Netherlands, November 2-6, 2009. Proceedings ASE 2022, Rochester, MI, USA, October 10-14, 2022. ACM, 65:1-65:12. https:

(Lecture Notes in Computer Science, Vol. 5850), Ana Cavalcanti and Dennis Dams //doi.org/10.1145/3551349.3556942

