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Abstract

We propose a method for automatically discovering likely program

invariants for persistent memory (PM), which is a type of fast and

byte-addressable storage device that can retain data after power

loss. The invariants, also called PM properties or PM requirements,

specify which objects of the program should be made persistent and

in what order. Our method relies on a combination of static and

dynamic analysis techniques. Specifically, it relies on static analysis

to compute dependence relations between LOAD/STORE instruc-

tions and instruments the information into the executable program.

Then, it relies on dynamic analysis of the execution traces and

counterfactual reasoning to infer PM properties. With precisely

computed dependence relations, the inferred properties are neces-

sary conditions for the program to behave correctly through power

loss and recovery; with imprecise dependence relations, these are

likely program invariants. We have evaluated our method on bench-

mark programs including eight persistent data structures and two

distributed storage applications, Redis and Memcached. The re-

sults show that our method can infer PM properties quickly and

these properties are of higher quality than those inferred by a state-

of-the-art technique. We also demonstrate the usefulness of the

inferred properties by leveraging them for PM bug detection, which

significantly improves the performance of a state-of-the-art PM

bug detection technique.
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1 Introduction

Persistent memory (PM) is a type of emerging storage device with

fast and direct access at the granularity of LOAD and STORE in-

structions. Since it can also retain data in the presence of power

failure, it bridges the gap between volatile DRAM and conventional

non-volatile storage devices such as solid-state disks. However,

writing software code that can utilize PM correctly and efficiently

remains a challenging task [18]. The current practice requires the

programmers to specify and enforce PM related program invariants.

These invariants must identify not only the objects that should be

made persistent but also the order in which they should be made

persistent. However, manually specifying such low-level properties
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can be difficult. While there are PM-specific libraries including Intel

PMDK [19] for programmers to enforce data persistency, the library

APIs may still be misused, thus leading to PM bugs.

The lack of PM property specifications can negatively affect

downstream software engineering tasks such as testing/verifica-

tion, fault localization, and program repair. As an example, consider

existing techniques for PM bug detection [4, 10–14, 24, 33], which

generally fall into two categories. The first category consists of tech-

niques that leverage heuristics or known bug patterns to search for

violations. The second category consists of techniques that leverage

more general and advanced search algorithms, such as symbolic

execution [27] and model checking [13]. However, regardless of the

underlying algorithms, existing PM bug detection techniques have

a common requirement: the intended PM properties must be speci-

fied before violations of these properties can be found. There are

similar requirements for PM related fault localization and program

repair techniques.

The current state of practice, which relies solely on programmers

to specify PM properties, has severe limitations. The process is not

only tedious and time-consuming but also error-prone. For example,

if programmers over-specify the set of persistent objects and/or the

ordering constraints, it may lead to degraded performance. In the ex-

treme case where every STORE to PM is immediately flushed from

cache and fenced in memory, the caching and buffering optimiza-

tions of the CPU and the memory subsystem will be disabled. On

the other hand, if programmers under-specify, meaning they miss

some persistent objects and/or ordering constraints that should

have been included, the program may have abnormal behavior

when it goes through power loss and recovery.

Instead of relying solely on programmers to specify PM proper-

ties, we propose a method for automatically inferring them. Our

method takes the source code of a C program as input, and re-

turns a set of PM properties as output. As shown in Figure 1, our

method relies on a combination of static and dynamic analysis

techniques. First, static analysis techniques are used to compute

the dependence relations of LOAD/STORE instructions inside the

LLVM compiler. Then, the dependence relations are instrumented

into the executable program, to generate the execution traces. Next,

dynamic analysis techniques are applied to the execution traces to

first infer themust-persist-before (MPB) requirements and then infer

the durability (DURA) and must-persist-atomically (MPA) require-

ments. Here, "%�(BC1, BC2) requires STORE BC1 to persist before

STORE BC2 in all possible executions; �*'�(BC1) is a special case of

MPB that requires BC1 to persist before the end of the program exe-

cution; and "%�(BC1, . . . , BC=) requires a set of STOREs to persist

atomically (either all or none).

To have a more intuitive understanding of these PM properties,

consider the example program in Figure 2, which inserts a node

to a singly-linked list. With the goal of retaining the list content

through power loss and recovery, both the existing nodes (A and
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Figure 1: Discovering persistent memory related program

invariants (PM properties) and checking them for violations.

C) and the new node (B) must be stored in PM. This is accom-

plished by the STORE operations in Lines 1, 2 and 6, together with

the CLFLUSHOPT and SFENCE instructions shown in green color.

Commenting out these green-colored instructions will lead to PM

bugs. First, STOREs to B->data, B->next and A->next at Lines 1-2

and 6 must satisfy the durability (DURA) property, meaning they

must persist before the end of the program. In addition, STORE to

B->next at Line 2 must persist before STORE to A->next at Line

6. This can be expressed as an MPB property, to ensure that the

list is always in a consistent state during node insertion, as shown

by Figure 2 (b). Together, the DURA and MPB properties form a

necessary condition for the list to remain consistent through power

loss and recovery. The reason is because power loss may strike

at any time during the program execution. If STORE to A->next

at Line 6 is allowed to persist before STORE to B->next at Line

2, as shown by Figure 2 (c), the content of the list may become

inconsistent in PM.

In addition to MPB and DURA, sometimes MPA is needed to

ensure that a set of STOREs persist atomically. For example, while

nodes in a singly-linked list are always traversed from left to right

following the next pointers as shown in Figure 2, in a doubly-linked

list, nodes may also be traversed from right to left following the

prev pointers (to be shown in Figure 3). They will create circular

requirements that can only be satisfied by updating the C->prev and

A->next pointers atomically. In the context of PM programming,

MPA may be enforced by a persistent transaction.

One notable difference between our method and dynamic invari-

ant generation techniques like Daikon [8] is that our method does

not rely on correlation; instead, it relies on causation discovered by

counterfactual reasoning. In logic, “if % then &” is equivalent to “if

& is false then % is false” and & is called a “necessary” condition for

% . Since our method relies on this type of counterfactual reasoning,

under the assumption that precise dependence relations are com-

puted, it guarantees that the inferred PM property is a true invariant.

In other words, if the property is violated, there exists a concrete

execution showing that the program can definitely go wrong during

power loss and recovery. Existing techniques like Daikon do not

provide such guarantees since they rely on correlation, which does

not always imply causation.

While the inferred PM properties may be useful in many ways,

in this work we demonstrate their usefulness in one specific down-

stream software engineering task, which is PM bug detection. As

shown at the bottom of Figure 1, we propose a trace-based anal-

ysis algorithm for computing persistent time intervals and then

leveraging these intervals to detect violations of the inferred prop-

erties. Consider the example program in Figure 2 again. If any of the

CLFLUSHOPT instructions is commented out, the corresponding

STORE will have a durability (DURA) violation. Furthermore, if

the SFENCE instruction at Line 5 is commented out, it will become

possible for STOREs at Lines 1-2 to persist after STORE at Line 6,

thus leading to MPB violations.

We have implemented our method in a software tool that lever-

ages the LLVM compiler to conduct static analysis and code in-

strumentation, and relies on Python to implement our method for

analyzing the execution traces, inferring properties, and checking

properties. Our tool has been evaluated on benchmark programs

consisting of eight persistent data structures (lists, array, queues,

and ring buffer) and two PM-enabled distributed storage appli-

cations (Redis and Memcached). The experimental results show

that our method can quickly infer PM properties, and the qual-

ity is significantly higher than those inferred by a state-of-the-art

technique [10]. We also leveraged the inferred properties for bug de-

tection and found that they significantly improved the performance

of a state-of-the-art PM bug detection technique [25].

To summarize, this paper makes the following contributions:

• We propose a method for automatically discovering PM prop-

erties based on a combination of static and dynamic analysis

techniques and, most notably, counterfactual reasoning.

• To demonstrate the usefulness of the inferred PM proper-

ties, we also conduct a trace-based analysis algorithm for

checking and detecting violations of these properties.

• We evaluate our method on a number of persistent data struc-

tures and two distributed storage applications to demonstrate

its advantages over state-of-the-art techniques.

The remainder of this paper is organized as follows. We provide

the technical background in Section 2, and present our top-level

procedure in Section 3. Then, we present our detailed algorithms

for inferring PM properties in Section 4 and for checking these

properties in Section 5. We present the experimental results in

Section 6. After reviewing the related work in Section 7, we give

our conclusions in Section 8.

2 Background

In this section, we review the basics of persistent memory (PM)

programs and PM related properties.

2.1 Persistent Memory

Since persistent memory provides the same byte-addressable LOAD

and STORE access as volatile DRAM, it may be mapped to the ad-

dress space of a program just like DRAM. However, the difference is

that data written to PM by a STORE instruction alone is not guaran-

teed to take effect immediately due to CPU hardware optimizations

such as caching and buffering. In the presence of power loss, which

may strike at any moment during the program execution, data

stored in volatile parts of the CPU will be lost permanently.

To ensure data persistency, programmers must add special in-

structions after a STORE to PM, to explicitly flush data from cache
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1 B->data = data;

2 B->next = A->next;

3 //CLFLUSHOPT(&B->data,sizeof(int));

4 //CLFLUSHOPT(&B->next,sizeof(Node*));

5 //SFENCE();

6 A->next = B;

7 //CLFLUSHOPT(&A->next,sizeof(Node*));

8 //SFENCE();

(a) persistent memory program (b) correct persistent order (c) incorrect persistent order

Figure 2: Inserting a node to a singly-linked list stored in persistent memory (PM). To ensure the correct persistent order shown

in subfigure (b), all CLFLUSHOPT and SFENCE statements in subfigure (a) are needed. Otherwise, after power failure (which

may strike at any moment), the PM state may be inconsistent as shown by the broken list in the middle of subfigure (c).

and insert a memory fence. For Intel CPUs built upon the per-

sistent x86 architecture [32], the flush and fence instructions are

CLFLUSHOPT (optimized cache line flush) and SFENCE (store mem-

ory fence), which have been used by the example program in Fig-

ure 3 (a).

A typical instruction sequence following a STORE to PM at

the address &v would be {v=data;CLFLUSHOPT(&v);SFENCE();}

which first flushes the cache line associated with the address (&v)

and then inserts the memory fence. Since CLFLUSHOPT is non-

blocking, meaning it may return before the cache line is written

to PM, the subsequent SFENCE is necessary. In other words, miss-

ing either CLFLUSHOPT or SFENCE would not guarantee data

persistency.

At the same time, it is beneficial to minimize the number of

SFENCEs used by a program due to their significant performance

overhead. In Figure 3 (a), for example, the SFENCE at Line 5 is

shared by the two STOREs at Lines 1 and 2.

2.2 PM Programs

In this work, we are concerned with programs that directly read

from and write to PM using LOAD and STORE instructions. Given

such a program % , where ()")B = {BC1, . . . , BC=} is the set of all

statements, we use ()$'�B ⊆ ()")B to represent the subset that

write to PM, and use !$��B ⊆ ()")B to represent the subset that

read from PM.

We use���% to represent the control dependence relation. That

is, ���% (BC, BC ′) holds if and only if program statement BC is con-

trol dependent on program statement BC ′. While a classic example

for ���% (BC, BC ′) would be if(x>0) y=1; else y=0; where the

STORE to ~ is control dependent on the LOAD from G , there are

more subtle examples.

For instance, in a singly-linked list, there will be a control depen-

dence relation in {A->next->prev = B;} since it has an implicit

LOAD from A->next before the STORE to A->next->prev, and

the STORE is control dependent on the LOAD. The reason is be-

cause if A->next is aliased to the object C, for instance, the STORE

would be directed to C->prev; but if A->next is aliased to B, the

STORE would be directed to B->prev, as illustrated by the example

program in Figure 2.

Similar to���% , we use���% to represent the data dependence

relation. That is, ���% (BC, BC ′) holds if and only if program state-

ment BC is data-dependent on the program statement BC ′. A classic

example for ���% (BC, BC ′) would be {y = x+1;} where the value

stored to ~ depends on the value read from G . Both control and data

dependence relations are crucial for inferring PM properties.

2.3 PM Properties

PM properties are a special type of correctness requirements con-

cerned with PM LOAD and STORE accesses. They are meant to

specify which objects should be made persistent and in what order.

2.3.1 Durability (DURA). DURA is a unary relation over the set

of program statements. �*'�(BC), where BC ∈ ()$'�B , means

that the STORE must persist in PM before the end of the program

execution. While CPU voluntarily flushes data from cache to PM,

the process is highly non-deterministic, and thus should not be

relied upon to ensure durability. To ensure durability, programmers

must add CLFLUSHOPT and SFENCE instructions to the program

both correctly and efficiently.

2.3.2 Must-Persist-Before (MPB). MPB is a binary relation over the

set of program statements. "%�(BC, BC ′), where BC, BC ′ ∈ ()$'�B ,

means that the first STORE (BC ) must persist before the second

STORE (BC ′). This property is often needed to ensure that the PM

program state remains consistent through potential power loss and

recovery. For example, in Figure 2, the STORE to B->next must

persist before the STORE to A->next.

Another example for the MPB property is a program that uses a

flag to indicate whether a data field is valid in PM. When recov-

ering from power loss, the program would read the flag first, and

then read the data field only if the flag is properly set. What it

requires is that, while writing to PM, the data field must always

persist before the flag field. Otherwise, while reading from PM,

the program will get a stale value from the data field.

2.3.3 Must-Persist-Atomically (MPA). MPA is a :-ary relation over

the set of program statements. That is, "%�(BC1, . . . , BC: ), where

BC1, . . . , BC: ∈ ()$'�B , means that these STOREs must persist atom-

ically. This property may be needed to ensure that a complex data

structure is always in a consistent state. Recall the doubly-linked list

example mentioned earlier, where the A->next and C->prev fields

must persist atomically. If the MPA property is not satisfied, the list

may get into a inconsistent state during power loss and recovery.

To enforce MPA, the notion of a persistent transaction is needed.

In existing PM libraries, such as Intel’s PMDK library, there are

dedicated APIs for persistent transactions. Typically, they include

TX_BEGIN(), TX_END() and TX_ADD(). As long as all STOREs in

a transaction are executed between TX_BEGIN() and TX_END(),
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and their addresses are registered using TX_ADD(&v), the STOREs

will persist atomically. We will show an example for persistent

transaction in the next section (Figure 3).

The three types of PM properties mentioned above are complete

in the sense that they cover all PM properties checked by existing

PM bug detection tools. In fact, most of the existing tools can detect

durability bugs, which are violations of DURA properties. Some

tools can detect crash consistency bugs, which are violations of MPB

properties. Very few can detect atomicity bugs, which are violations

of MPA properties. As for existing PM bug repair tools, to the best

of our knowledge, none of them can repair MPA violations: for

example, theHippocreates tool of Neal et al. [26] can repair DURA

violations only, while the PMBugAssist tool of Huang et al. [16]

can repair both DURA and MPB violations. Furthermore, in the

literature, PM bugs are often classified in a way that seems ad hoc.

We are the first to propose a unified and graph-theoretic framework

for classifying PM bugs (see Section 3.1).

2.4 Invariant Generation

In program analysis, the notion of program invariants goes far be-

yond PM-specific properties concerned in this work. In general, a

program invariant may be any logical assertion that always holds

during the execution of a program. Existing techniques for discov-

ering program invariants fall into two categories: some rely on

static analysis techniques such as abstract interpretation [5], while

the others like Daikon [7] rely on dynamic analysis techniques.

Both types of techniques tend to focus on values of the program

variables. In contrast, our method focuses solely on the ordering of

LOAD and STORE accesses of PM.

In parallel systems, happens-before relation [21] has been used

to define a partial order of concurrent events coming from different

threads or processes. However, it differs from ourmust-persist-before

relation. The reason is because there are three distinct problems:

(a) program order within a sequential program, (b) concurrency

control between parallel threads, and (c) data persistency during

power loss and recovery. These problems reside in three orthogo-

nal dimensions, in the sense that they may be either separated or

combined during program analysis. To the best of our knowledge,

our method is the only one for inferring PM-specific properties

using counterfactual reasoning.

3 Overview of Our Method

In this section, we first propose our unified graph-theoretic view

of PM properties and then present our top-level procedure.

3.1 The Unified View of PM properties

The seemingly isolated DURA, MPB, and MPA properties men-

tioned in the previous section are all related to each other, if we

take a certain graph-theoretic perspective. While this unified view

may seem intuitive (as shown by the remainder of this subsection),

to the best of our knowledge, it has not appeared elsewhere in the

literature.

At the center of this perspective is the MPB relation, which we

consider to be the most fundamental building block. In contrast,

DURA may be viewed as a special case of MPB, where the second

member of the MPB relation is an imaginary program statement

modeling program end. MPA may be viewed as a property implied

by a set of (otherwise-conflicting) MPB relations.

3.1.1 The Directed Graph. First, we define a directed graph � =

(+ , �) to represent the set of MPB relations. In this graph, the

nodes in + correspond to program statements, while the edges

in � correspond to the MPB relations. Specifically,"%�(BC, BC ′) is

represented by an edge from node BC to node BC ′.

3.1.2 From MPB to DURA. Next, we define DURA as a special case

of MPB, i.e., �*'�(BC) :="%�(BC, BClast ), where BClast is an imagi-

nary program statement modeling the program end; that is, BClast
is executed after all other statements in the program. Therefore,

"%�(BC, BClast ) means that STORE BC must persist eventually.

3.1.3 From MPB to MPA. Finally, we show how MPA may be im-

plied by a set of MPBs. Recall that all the MPBs are already rep-

resented as edges in the graph � . If there is a strongly connected

component (SCC) in� , the corresponding MPBs would represent a

set of conflicting requirements (the circular MPBs require a STORE

to persist before itself). The only way to reconcile these conflict-

ing requirements is to put all of the involved STOREs in a persis-

tent transaction. The persistent transaction guarantees that these

STOREs take effect atomically.

3.1.4 Another Running Example. Consider the example program

in Figure 3, which inserts a node in a doubly-linked list. It differs

from the singly-linked list example in Figure 2 in the sense that

both the prev and the next pointers are used. As mentioned earlier,

following the next pointers, MPBs will be generated from left to

right. Following the prev pointers, MPBs will also be generated

from right to left. As a result, there will be two sets of MPBs conflict-

ing with each other, unless the involved STOREs persist atomically,

as shown in subfigure (b). This leads to the inference of the MPA

shown in subfigure (c), together with the DURA and MPB relations.

3.2 The Top-Level Procedure

Algorithm 1 shows the top-level procedure of our method. The

input consists of the program % and a set of test cases for running

the program. The output is a set of inferred properties, stored in

the tuple 〈�*'�B,"%�B,"%�B〉.

Algorithm 1: Inferring PM Properties.

1 )A024B ← InstrumentedExecution (%,)4BC�0B4B)

2 "%�B ← { }

3 foreach) ∈ )A024B do
4 "%�B ← "%�B ∪ Infer_MPB_Reqirements () )

5 end foreach

6 �*'�B ← Infer_DURA_Reqirements ("%�B)

7 "%�B ← Infer_MPA_Reqirements ("%�B)

8 return 〈�*'�B,"%�B,"%�B 〉

Our procedure goes through three steps. First, it conducts static

analysis of the program % to compute the dependence relations and

then instruments the executable program to add the self-logging

capability, which means that running the instrumented program

with the test cases produces a set of execution traces (Line 1). Next,

our procedure conducts dynamic analysis of the execution traces,

one at a time, to infer the MPB relations (Lines 2-5). Finally, the
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1 B->data = data;

2 B->next = A->next;

3 B->prev = C->prev;

4 //CLFLUSHOPT(&B->data,sizeof(int));

5 //CLFLUSHOPT(&B->next,sizeof(Node*));

6 //CLFLUSHOPT(&B->prev,sizeof(Node*));

7 //SFENCE();

8 //TX_BEGIN();

9 //TX_ADD(&A->next);

10 //TX_ADD(&C->next);

11 A->next = B;

12 C->prev = B;

13 //TX_END();

(a) persistent memory program
(b) correct persistent order

//DURA:

(B->data=...@line 1), (B->next=...@line 2),

(B->prev=...@line 3), (A->next=...@line 11),

(C->prev=...@line 12)

//MPB:

(B->data=...@line 1, A->next=...@line 11)

(B->next=...@line 2, A->next=...@line 11)

(B->prev=...@line 3, A->next=...@line 11)

//MPA:

(A->next=...@line 11, C->prev=...@line 12)

...

(c) PM properties

Figure 3: Inserting a node to a doubly-linked list stored in persistent memory (PM). To ensure the correct persistent order

shown in subfigure (b), the TX_BEGIN(), TX_ADD(), and TX_END() statements in subfigure (a) are needed. Otherwise, after

power failure (which may strike at any moment), the PM state may be inconsistent.

inferred MPB relations, stored in"%�B , are used to infer the DURA

and MPA relations (Lines 6-7).

Algorithm 2: Checking PM Properties.

1 �D6B ← { }

2 foreach) ∈ )A024B do
3 %) ← Compute_PersistentTime_Intervals () )

4 �D6B ← �D6B ∪ Check_DURA_Reqirements (), %) , �*'�B)

5 �D6B ← �D6B ∪ Check_MPB_Reqirements (), %) ,"%�B)

6 �D6B ← �D6B ∪ Check_MPA_Reqirements (), %) ,"%�B)

7 end foreach

8 return �D6B

Once the PM properties are inferred, they may be used in vari-

ous downstream software engineering tasks. One task explored in

this work is to improve PM bug detection, where the inferred PM

properties are used as test oracles for detecting property violations.

This trace-based analysis technique is shown in Algorithm 2. For

each trace ) ∈ )A024B , we traverse the events in ) to compute a

persistent time interval %) [4E] for every STORE event 4E (Line 3).

Then, we leverage the computed %) to detect violations of DURA,

MPB, and MPA properties (Lines 4-6).

In the next two sections, we present our detailed algorithms for

inferring and checking PM properties.

4 Inferring PM Properties

We first explain our method for static analysis and trace generation,

then provide the intuition behind our method for inferring PM

properties, and finally present the detailed algorithm.

4.1 Static Analysis and Trace Generation

Our method starts with static analysis of the program to compute

the dependence relations. Our static analysis is implemented us-

ing the LLVM compiler to leverage its existing APIs for program

analysis. LLVM first constructs a program dependency graph for

the program, and then uses it to compute the control- and data-

dependencies. However, these dependencies are restricted to indi-

vidual functions; this is because by default LLVM only performs

intra-procedural analysis. We have extended LLVM to perform

inter-procedural analysis.

Next, we instrument the dependence relations into the executable

program, to add the self-logging capability. That is, while the in-

strumented program is executed, it generates an execution trace

annotated with the dependence relations, thus providing all of

the information our method needs to infer and check PM prop-

erties. Specifically, the dependence relations are defined over the

program statements, and are stored in a map which takes two pro-

gram statements BC ′ and BC as input and returns true, for example,

if ���% (BC ′, BC) holds.

While the instrumented program generates the execution trace,

it associates each event 4E with a field 4E .BC to represent the pro-

gram statement that generates the event. Thus, for any two LOAD

events (4E ′ and 4E) in the execution trace, we can quickly check

whether ���% (4E ′ .BC, 4E .BC) holds. It is worth noting that multiple

events may be generated by the same program statement, e.g., if the

statement is executed more than once. It is also worth noting that

the execution trace only contains instructions related to PM LOAD

and STORE accesses; DRAM related instructions are ignored.

Let) = 4E1, . . . , 4E= be an execution trace in)A024B , where each

event 4E8 has the following fields in addition to 4E8 .BC :

• 4E8 .C~?4 , which may be type LOAD, STORE, CLFLUSHOPT,

SFENCE, TX_BEGIN, TX_END, and TX_ADD.

• 4E8 .033A , which is the starting address for LOAD, STORE,

CLFLUSHOPT, and TX_ADD.

• 4E8 .B8I4 , which is the corresponding size for LOAD, STORE,

CLFLUSHOPT, and TX_ADD.

Other PM related CPU instructions, such as CLWB (cache line write

back) and CLFLUSH (unoptimized version of CLFLUSHOPT) for the

Px86 architecture, may be modeled by CLFLUSHOPT and SFENCE.

4.2 The Intuition behind Our Method

Our method traverses the execution trace ) ∈ )A024B to infer

the MPB relations first. To understand the intuition behind MPB

inference, it is helpful to take a look at the typical life cycle of a PM

program, shown in Figure 4. The classic example of a PM program

is shown on the right-hand side, which starts by checking a flag

to see if it needs to initialize PM for the very first time (Line 4) or

recover from power loss by reading data already stored in PM (Line

6). After that, the program proceeds to normal operation, which

may write to PM.
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1 int main() {

2 ...

3 if (!recovering)

4 Initialize_PM();

5 else {

6 ReadFrom_PM();

7 ...

8 WriteTo_PM()

9 ...

10 }

Figure 4: The life cycle of a PM program executed before and

after power loss (which may strike at any time) and recovery.

With this in mind, we can look at the figure on the left-hand

side of Figure 4, where a power loss induced program crash occurs

between two executions of the program. We call the execution

before the crash �12 , and call the execution after the crash �02 .

Note that there may be causal relations between STOREs in �12
and the corresponding LOADs in �02 .

Thus, we regard a PM property as a contract between these two

executions. Furthermore, our counterfactual reasoning relies on the

following observation:Unless STOREs in �12 satisfy the contract

demanded by LOADs in �02 , LOADs in �02 can definitely go

wrong. Based on this observation, our method focuses on analyz-

ing LOADs in �02 , to derive the contract, and then leveraging the

contract to infer MPBs over STOREs in �12 . Conceptually, this is

accomplished in the two steps below.

4.2.1 Step 1. Identifying the Contract from LOADs in �02 . In this

step, we search for two LOAD events in �02 , denoted 4E;3 and

4E ′
;3
, such that ���% (4E;3 .BC, 4E

′
;3
.BC) holds, meaning 4E;3 is con-

trol dependent on the preceding 4E ′
;3
. Together, they demand the

corresponding STOREs in �12 to persist in a certain order.

As an example, consider the singly-linked list in Figure 2 where

�02 may be any function that reads the list from PM. Since the list

nodes can only be traversed from left to right, the two LOADs may

come from {if(A->next!=NULL) node=A->next->next;} since

LOAD from A->next->next (which may be aliased to B->next) is

control dependent on LOAD from A->next. Together, they demand

that STORE to A->next->next always persists before STORE to

A->next. The reason is because, otherwise, �02 can definitely go

wrong since A->next->next may return a stale value.

4.2.2 Step 2. Mapping the Contract to STOREs in �12 . In this step,

we search for any two matching STORE events, 4EBC>A4 and 4E
′
BC>A4 ,

such that 4EBC>A4 .033A = 4E;3 .033A and 4E ′BC>A4 .033A = 4E ′
;3
.033A .

There may be multiple pairs of STOREs for each pair of LOAD

events. For each pair of matching STOREs, we infer a property

"%�(4EBC>A4 .BC, 4E
′
BC>A4 .BC).

Consider again the singly-linked list example in Figure 2, where

�12 may be any function that writes the list to PM, including the

insert() function. More specifically, the two matching STORE

events may come from Lines 2 and 6 of the example program in

Figure 2 (a), where A->next->next is aliased to B->next. Thus, we

infer MPB(B->next=...@line2,A->next=...@line6).

While the intuition behind our two-step method for inferring

MPBs from �12 and �02 may seem straightforward, we note that

it is only a simplified mental picture for ease of presentation. In

practice, there may be no clear separation between �12 and �02
in software code; instead, LOADs from PM and STOREs to PM

may be mixed together, either within a function or being scattered

in multiple functions. Furthermore, STOREs in one function may

correspond to LOADs in multiple other functions, and vice versa.

Therefore, having a fully automated technique for analysis and

inference is important.

4.2.3 Causation versus Correlation. It is important to note that our

method relies on the causal relationship between STOREs in �12
and the matching LOADs in �02 . This differentiates our method

from existing invariant generation techniques based solely on corre-

lation. Correlation does not always imply causation, and correlation

without causation leads to unsound results.

As an example, consider again the insert() function for doubly-

linked list in Figure 3. Based solely on the five STOREs shown in

Lines 1-3 and 11-12, it is impossible to know with certainty that the

two STOREs in Lines 11-12 must persist atomically, but the three

STOREs in Lines 1-3 do not need to persist atomically. Specifically,

just because two STOREs occur together does not imply that they

must persist atomically.

To correctly infer the MPA property for these STOREs, we must

analyze the matching LOADs, which are elsewhere in the code base.

For the example in Figure 3, in particular, the matching LOADs are

outside of the insert() function.

In general, even finding the matching LOADs for these STOREs

is a difficult problem in program analysis. Our proposed method

has made it easy, by generating annotated execution traces where

concrete PM addresses associated with the STOREs and LOADs

are made readily available. Thus, given any STOREs in ) ∈ )A024B ,

finding their matching LOADs in ) becomes easy.

4.3 The Inference Algorithm

Depending on the type of PM properties, i.e., whether they are

MPBs, DURAs or MPAs, our inference algorithm uses different

subroutines.

4.3.1 Inferring the MPBs. Algorithm 3 shows our subroutine for

inferring MPBs, which takes an execution trace) ∈ )A024B as input

and returns a set of MPBs as output. Internally, it goes through

two steps. First, it traverses LOAD events in ) to find every pair

(4E;3 , 4E
′
;3
) such that���% (4E;3 , 4E

′
;3
) holds. These pairs go into a

set named�>=CA02CB . Then, the subroutine traverses STORE events

in ) to find the matching pair such that 4EBC>A4 .033A = 4E;3 .033A

and 4E ′BC>A4 .033A = 4E ′
;3
.033A . Each of these matching pairs must

satisfy an MPB property.

4.3.2 Inferring DURAs fromMPBs. While generating the execution

trace ) , we add an imaginary LOAD event 4E 5 8ABC at the start of

the trace, and assume that all subsequent LOAD events are control

dependent on it. We also add an imaginary STORE event 4Elast
at the end of the trace such that 4E .BC = BClast , representing the

program end. With these additions, DURAs are inferred as special

cases of MPBs. Thus, inside Algorithm 4, we only need to take them

out of"%�B and put them into �*'�B .

4.3.3 Inferring MPAs from MPBs. Algorithm 5 shows our subrou-

tine for inferring MPAs fromMPBs. Internally, it first represents the
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Algorithm 3: Infer_MPB_Reqirements() ).

1 �>=CA02CB ← { }

2 foreach 4E;3 ∈ ) and 4E′
;3
∈ ) do

3 if ���% (4E;3 .BC, 4E
′
;3
.BC ) ) then

4 �>=CA02CB ← �>=CA02CB ∪ { (4E;3 , 4E
′
;3
) }

5 end if

6 end foreach

7 "%�B ← { }

8 foreach 4EBC>A4 ∈ ) and 4E′
BC>A4

∈ ) do
9 foreach (4E;3 , 4E

′
;3
) ∈ �>=CA02CB do

10 if 4EBC>A4 .033A = 4E;3 .033A ∧ 4E
′
BC>A4

.033A = 4E′
;3
.033A then

11 "%�B ← "%�B ∪ { "%� (4EBC>A4 .BC, 4E
′
BC>A4

.BC ) }

12 end if

13 end foreach

14 end foreach

15 return"%�B

Algorithm 4: Infer_DURA_Reqirements("%�B).

1 �*'�B ← { }

2 foreach"%� (BC, BC ′ ) ∈ "%�B where BC ′ = BClast do
3 �*'�B ← �*'�B ∪ { �*'�(BC ) }

4 "%�B ← "%�B \ { "%� (BC, BC ′ ) }

5 end foreach

6 return �*'�B

set of MPBs using a directed graph, and then computes the strongly-

connected components (SCCs). Next, for each SCC, it creates an

MPA by including every statement BC involved in the SCC. At a

high level, the MPBs inside each SCC represent a set of conflicting

requirements. The conflict can only be resolved by including all

these STOREs in a persistent transaction.

Algorithm 5: Infer_MPA_Reqirements("%�B).

1 "%�B ← { }

2 let� be the graph where each"%� (BC, BC ′ ) is an edge from BC to BC ′

3 let (��B be the set of strongly-connected components in�

4 foreach (�� ∈ (��B do
5 "%�← {BC | BC is a node in SCC }

6 "%�B ← "%�B ∪ {"%�}

7 end foreach

8 return"%�B

4.4 The Correctness Guarantee

To a limited extent, our method guarantees correctness of the in-

ferred properties, i.e., when the control and data dependence rela-

tions are precise. This is captured by the following theorem.

Theorem 4.1. With precisely-computed dependence relations, our

inferred PM properties are necessary conditions for the program to

behave correctly through potential power loss and recovery. With

over-approximated dependence relations, they are likely program

invariants.

The reason why this theorem holds is because, based on counter-

factual reasoning, our method can always find a concrete execution

trace ) ∈ )A024B showing that, if an inferred property (over the

STOREs in ) ) is violated, the program (more specifically LOADs of

the program in ) ) can definitely go wrong due to inconsistent PM

content.

Precisely computing dependence relations is possible during

dynamic analysis, e.g., using Valgrind [28]; in fact, it is routinely

performed during taint tracking. However, it is computationally

expensive since it requires monitoring each and every instruction

in the program (not just PM instructions).

For a more practical implementation, we decide to use LLVM’s

static dependency analysis, which is orders-of-magnitude fast, but

the results are over-approximated, meaning the inferred proper-

ties are likely program invariants. Nevertheless, our experimental

evaluation (in Section 6) shows that the inferred PM properties are

almost always valid in practice.

While the inference of PM properties may be done entirely with

static analysis, in practice, it can be challenging for static analysis

to precisely compute the causal relationships between STOREs in

�12 and LOADs in �02 due to aliased expression. For example, when

A->next is alised to B in the software code, A->next->next refers to

B->next; but when A->next is aliased to C, A->next->next refers

to C->next. How to combine fast static techniques and accurate

dynamic techniques to precisely compute the dependence relations

is a research problem that we leave for future work.

It is also worth noting that, during the experimental evaluation,

we use the default unit tests of the benchmark programs to generate

program execution traces, from which our method infers the PM

properties. Thus, the quality of the inferred properties depend on

the quality of the test suite. While incomplete test suite may lead to

missing properties, it may never lead to wrong properties, as stated

in the above theorem. The reason is that, for each inferred property,

our method will find a concrete execution trace showing that, if

the property is violated, the program can definitely go wrong due

to some inconsistent data stored in PM.

5 Checking PM Properties

To detect violations of the inferred properties, we first traverse the

execution trace to compute the persistent time interval for each

STORE event 4E , denoted %) [4E], and then check it against the

DURA, MPB, and MPA properties.

5.1 Persistent Time Intervals

The notion of a persistent time interval [25] is as follows. For a

given STORE event 4E , the time when it takes effect in PM is repre-

sented by a window [5 A><, C>]. The window starts from 4E .C8<4 ,

which is the time when the STORE instruction is executed, and

ends after the corresponding CLFLUSHOPT and SFENCE instruc-

tions are executed. If any of the corresponding CLFLUSHOPT and

SFENCE instructions is missing, the window ends after the imagi-

nary 4Elast .C8<4 , which is when the program ends.

As an example, consider the STORE events 4E1 − 4E3 correspond-

ing to Lines 1-3 of the program in Figure 3. Since the program has

only 13 lines of code, we can set the imaginary 4E;0BC .C8<4 = 14.

Assuming that all the green-colored CLFLUSHOPT and SFENCE

instructions are included in the program, we have %) [4E1] = [1, 7]

meaning the STORE may take effect at any time between Line 1

and Line 7. In other words, %) [4E1] .5 A>< = 1 and %) [4E1] .C> = 7.

Similarly, we have %) [4E2] = [2, 7] and %) [4E3] = [3, 7].

Consider the STORE events 4E11 − 4E12 corresponding to Lines

11-12 of the program in Figure 3. Since these STORE events are
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protected by a persistent transaction using TX_ADD(), the persistent

time intervals will be computed differently. Specifically, since the

transaction starts at Line 8 and ends at Line 13, we have %) [4E11] =

[8, 13] and %) [4E13] = [8, 13]. Since the two intervals have the

same start time and end time, we say %) [4E11] = %) [4E13].

Assuming for now that all persistent time intervals have been

computed and stored in the map %) , we present our property check-

ing algorithm. We will present the algorithm for computing the

persistent time intervals at the end of this section.

5.2 The Checking Algorithm

Algorithm 6 shows our subroutine for checking durability prop-

erties. It traverses each execution trace ) ∈ )A024B and, for each

STORE event 4E such that�*'�(4E .BC) ∈ �*'�B , checks if the per-

sistent time is always less than 4Elast .C8<4 . If %) [4E] .C> < 4Elast .C8<4

does not hold, it reports a DURA violation. Note that %) [4E] .C> =

+∞ if the corresponding CLFLUSHOPT and SFENCE are missing.

Algorithm6:Check_DURA_Reqirements(), %) , �*'�B).

1 �D6B ← { }

2 foreach STORE event 4E ∈ ) do
3 if �*'�(4E.BC ) ∈ �*'�B then
4 if ¬(%) [4E ] .C> < 4E;0BC .C8<4 ) then
5 �D6B ← �D6B ∪ {�*'�}

6 end if

7 end if

8 end foreach

9 return �D6B

Algorithm 7 shows our subroutine for checking MPB properties.

It traverses each execution trace ) ∈ )A024B and, for any two

STORE events such that"%�(4E .BC, 4E ′ .BC) ∈ "%�B , meaning that

4E .BC must persist before 4E ′ .BC , checks the persistent time intervals

%) [4E] and %) [4E ′]. If %) [4E] .C> < %) [4E ′] .5 A>< does not hold,

it reports an MPB violation.

Algorithm 7: Check_MPB_Reqirements(), %) ,"%�B ) .

1 �D6B ← { }

2 foreach pair of STORE events 4E ∈ ) and 4E′ ∈ ) do
3 if "%� (4E.BC, 4E′ .BC ) ∈ "%�B then
4 if ¬(%) [4E ] .C> < %) [4E′ ] .5 A><) then
5 �D6B ← �D6B ∪ {"%� (4E.BC, 4E′ .BC ) }

6 end if

7 end if

8 end foreach

9 return �D6B

Algorithm 8 shows our subroutine for checking MPA proper-

ties. It traverses each execution trace ) ∈ )A024B and, for any two

STORE events 4E, 4E ′ appearing in the same"%�, checks the persis-

tent time intervals %) [4E] and %) [4E ′]. If %) [4E] = %) [4E ′] does

not hold, it reports an MPA violation.

5.3 Computing Persistent Time Intervals

Algorithm 9 shows the subroutine for computing persistent time

intervals [25]. It takes an execution trace) as input and returns the

map %) as output. For each STORE event 4E ∈ ) , the corresponding

%) [4E] = (5 A><, C>) represents a time window.

Algorithm 8: Check_MPA_Reqirements(), %) ,"%�B ) .

1 �D6B ← { }

2 foreach STORE event 4E ∈ ) and STORE event 4E′ ∈ ) do
3 if 4E.BC ∈ "%� and 4E′ .BC ∈ "%� and"%� ∈ "%�B then
4 if ¬(%) [4E.BC ] = %) [4E′ .BC ] ) then
5 �D6B ← �D6B ∪ {"%�}

6 end if

7 end if

8 end foreach

9 return �D6B

Algorithm 9: Compute_Persistent_Interval() ).

1 %) ← {(4E, [−∞,+∞]) } ; // map 4E to a time window

2 CA0=B02C8>= ← �0;B4 ;

3 202ℎ43_BC>A4B ← ;8BC ( ) ; // STOREs outside of transaction

4 CG_BC>A4B ← B4C ( ) ; // STOREs inside transaction

5 CG_1468=_C8<4 ← 0 ;

6 CG_033_033AB ← B4C ( ) ;

7 foreach event 4E ∈ ) do
8 if 4E.C~?4 = ()$'� then
9 %) [4E ] .5 A>< ← 4E.C8<4 ; // set start time

10 if ¬CA0=B02C8>= then
11 202ℎ43_BC>A4B.033 (4E)

12 else
13 CG_BC>A4B.033 (4E)

14 else if 4E.C~?4 =�!�!*(�$%) then
15 foreach 4E′ ∈ cached_stores and ev′ .addr = ev.addr do
16 %) [4E′ ] .C> ← 4Elast .C8<4+1 ; // set end time

17 end foreach

18 else if 4E.C~?4 = (��#�� then
19 foreach 4E′ ∈ cached_stores and %) [4E′ ] .C> = 4Elast .time+1 do
20 %) [4E′ ] .C> ← 4E.C8<4 ; // finalize end time

21 202ℎ43_BC>A4B.A4<>E4 (BC )

22 end foreach

23 else if 4E.C~?4 =)-_����# then
24 CA0=B02C8>= ← )AD4

25 CG_1468=_C8<4 ← 4E.C8<4

26 else if 4E.C~?4 =)-_��� then
27 CG_033_033AB.033 (4E.033A )

28 else if 4E.C~?4 =)-_�#� then
29 CA0=B02C8>= ← �0;B4

30 foreach 4E′ ∈ CG_BC>A4B where 4E′ .033A ∈ CG_033_033AB do
31 %) [4E′ ] .5 A>< ← CG_1468=_C8<4 ; // set start time

32 %) [4E′ ] .C> ← 4E.C8<4 ; // set end time

33 end foreach

34 CG_BC>A4B.2;40A ( )

35 CG_033_033AB.2;40A ( )

36 end foreach

37 return %)

Internally, the subroutine starts by setting %) [4E] to [−∞,+∞]

for all events. Then, it traverses the events in ) sequentially and,

depending on the event type, updates the persistent time intervals

for the STORE events. At a high level, there are two cases depending

on whether a STORE is inside a persistent transaction.

The first case is when the STORE is outside of the persistent

transaction (Lines 8-22). In this case, the STORE event is held tem-

porarily in the list named 202ℎ43_BC>A4B until it is persisted in PM.

This takes three steps, by first setting the 5 A>< field of the time

window when STORE is executed, then setting the C> filed when

SFENCE is executed, and finally changing the C> field when SFENCE

is executed.

The second case is when the STORE is inside the persistent

transaction (Lines 23-35). In this case, the STORE event is held
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Table 1: Statistics of the benchmark programs (Columns 1-3)

and execution traces (Columns 4-9).

Program LoC Description Version
#

ST

#

LD

#

FL

#

FE

#

TR

cc_slist 2698 singly linked list [30] bad 166 244 103 64 19

ok 166 258 102 90 26

cc_list 3208 doubly linked list [30] bad 1466 3022 401 264 270

ok 1555 3443 401 300 285

cc_array 2171 array [30] bad 102 344 130 44 0

ok 102 344 84 75 20

cc_stack 612 stack [30] bad 27 84 24 8 0

ok 27 84 13 13 4

cc_deque 2575 double end queue [30] bad 181 565 201 104 0

ok 181 471 57 26 57

cc_queue 576 queue [30] bad 124 303 128 48 0

ok 124 271 68 20 24

cc_pqeque 618 priority queue [30] bad 70 367 0 0 0

ok 70 367 117 63 0

cc_ringbuf 316 ring buffer [30] bad 144 443 117 99 0

ok 144 443 118 118 3

redis 83864 PM Redis [17] default 367 558 8 8 N/A

memcached 27331 PM Memcached [23] default 230 1043 3 3 N/A

temporarily in the set named CG_BC>A4B until it is persisted in PM.

This takes a single step, by setting both 5 A>< and C> fields of the

time window when TX_END is executed.

6 Experiments

We have implemented our method in a software tool that lever-

ages the Clang/LLVM [22] compiler to parse the C code of a PM

program, compute the dependence relations, and instrument the

executable program. Running the executable program with existing

test cases will produce annotated execution traces, which are what

our method needs to infer and check PM properties. We implement

our algorithms for inferring and checking PM properties in Python,

by taking the execution traces as input and returning the inferred

properties and the detected violations as output, respectively.

6.1 Benchmark Programs

The benchmark programs used in our evaluation fall into two sets.

The first set consists of eight persistent data structures [30], imple-

menting various lists, queues, and ring buffers. These data struc-

tures come with unit test cases, which we have used to run the

instrumented programs to generate execution traces. The second

set consists of two PM-enabled distributed storage applications:

Redis [17] and Memcached [23]. The execution traces are generated

from the servers interacting with clients.

Table 1 shows the statistics of of each program, including the

name, the number of lines of code, and a short description of the

application in Columns 1-3. Column 4 shows the program ver-

sion. Each data structure has two versions: one good version, e.g.,

cc_list-ok, in which PM instructions have been properly added

and used; and one bad version, e.g., cc_list-bad, in which some

PM instructions are missing or misused. For Redis and Memcached,

only the default version is used. Columns 5-9 show the statistics of

the execution traces, including the number of STORE (ST), LOAD

(LD), CLFLUSHOPT (FL), SFENCE (FE) events and persistent trans-

action (TR) blocks.

6.2 Research Questions

Our experiments were designed to answer the following three

research questions (RQs):

RQ 1: Can our method infer PM properties automatically?

RQ 2: Are PM properties inferred by our method useful?

RQ 3: Are PM properties inferred by our method of high quality?

To answer RQ 1, we have applied ourmethod to all of the benchmark

programs. Our experiments were conducted on a computer with

AMD Ryzen 5 5600X CPU and 32GB memory on Ubuntu 20.04 with

DAX emulation for Persistent Memory.

To answer RQ 2, we have leveraged the PM properties inferred

by our method to detect PM bugs, and compared its performance

against the state-of-the-art PM bug detection technique described

in [25]. To answer RQ 3, we have compared the quality of our PM

properties with those inferred by the state-of-the-art technique

described in [10]. To ensure a fair comparison, we have taken the

effort to implement both existing techniques within our software

tool.

6.3 Experimental Results

We divide the results to three parts, one for each research question.

6.3.1 Results for RQ 1. We present the results for RQ 1 in Table 2,

where Column 1 shows the benchmark name, Column 2 shows the

time taken by our method to infer PM properties, and Columns

3-5 show the number of inferred DURA, MPB, and MPA properties,

respectively. In total, our method took 7.4 seconds to infer 386

DURA properties, 280 MPB properties, and 18 MPA properties. The

results show that our method can infer PM properties quickly and

automatically.

We have manually inspected all these properties and confirmed

that they are correct. Furthermore, for the data structure bench-

marks, regardless of which program version (ok or bad) is used,

the inferred properties are almost always the same. The only ex-

ceptions are cc_list-bad/ok and cc_deque-bad/ok, which have

different MPBs but the difference is small. This is consistent with

our expectation, because our inference method focuses on what

PM properties should be enforced and not on whether they have been

correctly enforced. In other words, our method relies on causal rela-

tions between LOADs and STOREs in the execution traces, and is

not affected by whether CLFLUSHOPT, SFENCE, and transaction

have been used correctly.

6.3.2 Results for RQ 2. Wepresent the results for RQ 2 in Columns 6-

13 of Table 2. Specifically, Columns 6-9 show the time taken by our

method to detect property violations, and the number of DURA,

MPB, and MPA violations detected. Columns 10-13 show the time

taken by the state-of-the-art technique [25], and the number of

DURA, MPB, and MPA violations detected. In total, our method

took 7.8 seconds to detect 79 DURA violations, 67 MPB violations,

and 9 MPA violations. In contrast, the existing technique only de-

tected 79 DURA violations, but no MPB or MPA violations. This

result is consistent with our expectation because, when the existing

technique is not accompanied by manually specified properties, it

can only detect the simplest type of bugs, i.e., DURA bugs.

A closer look at the results shows that, for the ok versions of

data structures, our method does not report any violation, which is
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Table 2: Evaluating our method for inferring properties and checking these properties for violations.

Our Method (infer) Our Method (check) Existing Method [25] (check)

Program Version Time (s) DURA MPB MPA Time (s) DURA MPB MPA Time (s) DURA MPB MPA

bugs bugs bugs bugs bugs bugs

cc_slist-bad 0.1 20 9 0 0.1 6 3 0 0.1 6 0 0

cc_slist-ok 0.1 20 9 0 0.1 0 0 0 0.1 0 0 0

cc_list-bad 2.4 44 45 3 2.5 5 10 1 2.4 5 0 0

cc_list-ok 2.8 44 39 3 3.0 0 0 0 2.9 0 0 0

cc_array-bad 0.1 16 15 1 0.1 3 9 1 0.1 3 0 0

cc_array-ok 0.1 16 15 1 0.1 0 0 0 0.1 0 0 0

cc_stack-bad 0.1 12 1 0 0.1 1 1 0 0.1 1 0 0

cc_stack-ok 0.1 12 1 0 0.1 0 0 0 0.1 0 0 0

cc_deque-bad 0.1 21 14 1 0.1 10 10 1 0.1 10 0 0

cc_deque-ok 0.1 21 13 1 0.1 0 0 0 0.1 0 0 0

cc_queue-bad 0.1 15 10 2 0.1 2 5 2 0.1 2 0 0

cc_queue-ok 0.1 15 10 2 0.1 0 0 0 0.1 0 0 0

cc_pqeque-bad 0.1 9 2 0 0.1 9 2 0 0.1 9 0 0

cc_pqeque-ok 0.1 9 2 0 0.1 0 0 0 0.1 0 0 0

cc_ring_buf-bad 0.1 14 8 0 0.1 2 3 0 0.1 2 0 0

cc_ring_buf-ok 0.1 14 8 0 0.1 0 0 0 0.1 0 0 0

redis 0.4 54 66 3 0.4 13 18 3 0.3 13 0 0

memcached 0.4 30 13 1 0.5 30 6 1 0.4 30 0 0

Total 7.4 386 280 18 7.8 79 67 9 7.4 79 0 0

consistent with expectation, because these properties are enforced

by the execution traces. For the bad versions of data structures, as

well as the default version of Redis and Memcached applications,

we have manually inspected the detected violations and confirmed

that they are real violations.

While the existing method [25] represents the state-of-the-art,

it has the same drawback as other PM bug detection tools. That

is, the intended PM properties must be manually specified before

violations of these properties can be detected. However, it is a

challenging task for developers to manually specify PM properties.

For example, even for the small code snippets in Figures 2 and 3,

correctly specifying the PM properties is not easy. That is exactly

where our contribution is – to automatically discover these PM

properties (which specify the objects of a program that should be

made persistent, and the order).

Note that, while Redis and Memcached has large code sizes, not

all program statements are PM related. Since we only record PM

related events in the execution traces and skip DRAM related events,

analyzing these traces does not take a long time. PM programs use

different memory allocators for different types of memory, e.g.,

malloc() for DRAM and PMmalloc() for PM. We use LLVM to

instrument the calls to PM-specific memory allocator. At run time,

we decide if a LOAD/STORE operation is for PM by checking if the

concrete memory address has been allocated by the PM-specific

memory allocator.

6.3.3 Results for RQ 3. There are two sets of results for RQ 3. We

present the first set in Table 3, which compares the quality of our

PM properties with those inferred by an existing technique [10].

While both methods inferred 386 DURA properties, our method

inferred significantly fewer MPB properties (280 vs. 1641) and MPA

properties (18 vs. 35). We have manually checked the inferred prop-

erties and found that many of the MPBs and MPAs inferred by the

existing method are not correct.

For some benchmarks, the number of MPBs inferred by the exist-

ingmethod ismore than 10 times, e.g., for cc_stack and Memcached.

This is also due to its unsound heuristic rules for generating MPBs.

Furthermore, unlike our method, which infers MPAs from conflict-

ing MPBs, the existing method uses yet another set of unsound

heuristics rules to infer MPAs. As a result, although the set of MPBs

inferred by our method is a strict subset of their MPBs, the MPAs

are not as clearly related as the MPBs.

For example, for the data structures, our method inferred MPAs

only for cc_list, cc_array, cc_deque, and cc_queue. This result

is consistent with expectation because only circular MPBs may lead

to MPAs, but cc_slist (a singly-linked list) does not have circular

MPBs, and thus should not have MPAs. However, using unsound

heuristic rules, the existing method generated bogus MPAs even

for data structures like cc_slist.

Finally, we present the remaining experimental results for RQ

3 in Table 4, which compares the detected violations by using the

inferred properties as test oracles. Since the two property infer-

ence methods lead to the same DURA violations, this table only

compares the MPB and MPA violations. Both methods reported

67 MPB violations. However, the existing method missed 8 MPA

violations in cc_array-bad, cc_deque-bad, cc_queue-bad, Redis,

and Memcached. As for the bogus violations, our method reported

none, but the existing method reported 27 bogus MPB violations

and 23 bogus MPA violations.

The higher quality of our inferred properties as shown in Table 4

is not surprising because our method focuses on what PM properties

should be enforced instead of whether these properties are correctly

enforced. Furthermore, our method will not report the property (or

the violation) unless there exists a concrete execution trace that can

serve as evidence, based on our counterfactual reasoning. That is,

if the inferred property (over PM STOREs) is violated, the program

execution (more specifically PM LOADs) can definitely go wrong,

due to the use of some stale data stored in PM.

7 Related Work

Our method is the first one for inferring PM properties using a

combination of static and dynamic analysis techniques together

with counterfactual reasoning. With precisely computed control
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Table 3: Comparing the properties inferred by our method

and the properties inferred by an existing method [10].

Program Version Our Method (infer) Existing[10] (infer)

DURA MPB MPA DURA MPB MPA

cc_slist-bad 20 9 0 20 81 2

cc_slist-ok 20 9 0 20 81 2

cc_list-bad 44 45 3 44 245 5

cc_list-ok 44 39 3 44 217 5

cc_array-bad 16 15 1 16 50 1

cc_array-ok 16 15 1 16 48 1

cc_stack-bad 12 1 0 12 13 0

cc_stack-ok 12 1 0 12 12 0

cc_deque-bad 21 14 1 21 110 5

cc_deque-ok 21 13 1 21 121 5

cc_queue-bad 15 10 2 15 37 2

cc_queue-ok 15 10 2 15 34 2

cc_pqeque-bad 9 2 0 9 14 0

cc_pqeque-ok 9 2 0 9 12 0

cc_ringbuf-bad 14 8 0 14 23 1

cc_ringbuf-ok 14 8 0 14 23 1

redis 54 66 3 54 357 2

memcached 30 13 1 30 177 1

Total 386 280 18 386 1641 35

Table 4: Comparing the detected violations using properties

inferred by our method and an existing method [10].

Real Violations Bogus Violations

Program Version Ours Existing[10] Ours Existing[10]

MPB MPA MPB MPA MPB MPA MPB MPA

cc_slist-bad 3 0 3 0 0 0 2 2

cc_slist-ok 0 0 0 0 0 0 0 2

cc_list-bad 10 1 10 1 0 0 0 2

cc_list-ok 0 0 0 0 0 0 0 2

cc_array-bad 9 1 9 0 0 0 0 1

cc_array-ok 0 0 0 0 0 0 0 1

cc_stack-bad 1 0 1 0 0 0 0 0

cc_stack-ok 0 0 0 0 0 0 0 0

cc_deque-bad 10 1 10 0 0 0 1 5

cc_deque-ok 0 0 0 0 0 0 0 3

cc_queue-bad 5 2 5 0 0 0 1 2

cc_queue-ok 0 0 0 0 0 0 0 1

cc_pqeque-bad 2 0 2 0 0 0 0 0

cc_pqeque-ok 0 0 0 0 0 0 0 0

cc_ringbuf-bad 3 0 3 0 0 0 0 1

cc_ringbuf-ok 0 0 0 0 0 0 0 1

redis 18 3 18 2 0 0 18 0

memcached 6 3 6 0 0 0 6 1

Total 67 11 67 3 0 0 27 23

and data dependence relations, it guarantees that the inferred prop-

erties are correct. Even in a practical implementation that sacrifices

the accuracy of dependency analysis for efficiency, it can still infer

high-quality properties, as confirmed by our experimental evalu-

ation. In this sense, it is better than techniques that use unsound

heuristic rules [10], which belong to a larger body of work on dis-

covering likely invariants, including Daikon [6, 7] and its follow-up

work [2, 3, 8, 31].

Our method is related to existing techniques for detecting PM

bugs [4, 10–14, 24, 33]. Besides PMTest [25], which is a tool that

provides a flexible user interface to take in a wide range of PM prop-

erties and can check them for violations, Jaaru [13] is a technique

for detecting certain types of persistency bugs such as missing

flushes with model checking. Pmfuzz [24] is a recent technique

built upon AFL++[9] by incorporating PM related heuristics to

generate test cases for PM programs.

There are also techniques for detecting PM bugs in concurrent

software. For example, both PMRace [4] and Yashme [14] are able to

detect PM bugs caused by thread interleaving, whileDURINN [11] is

a tool for checking durable linearizability, an API-level correctness

criterion for concurrent data structures. While these existing PM

bug detection techniques are related, they do not directly help

programmers specify PM properties.

Another line of related work is automated PM program repair.

Hippocrates [26] is a technique for repairing durability (DURA)

bugs; it first searches for known syntactic bug patterns and then

applies predefined program transforms. PMBugAssist [16] is a

more general technique that relies on SMT solver based symbolic

program analysis to search for repairs. Therefore, it works for

previously unknown bug patterns, and can handle both DURA

and MPB violations. However, automated repair techniques still

require correctness specifications, and our method for inferring PM

properties can provide such specifications.

We infer PM properties using a combination of static and dy-

namic analyses. Similar trace-based analysis techniques have been

used in other applications, e.g., for diagnosing concurrency bugs [1,

20, 34] and analyzing side-channel leaks [15]. In some of these cases,

symbolic reasoning techniques based on SMT solvers have been

used to amplify the coverage of dynamic analysis techniques, e.g.,

as in symbolic predictive analysis [35].

In general, all dynamic program analysis techniques including

ours share a limitation: they require high-quality test cases to gener-

ate execution traces as input. One way to overcome this limitation

is using automated testing to diversify the test cases and hence the

execution traces. Another way to overcome this limitation is using

static techniques to verify the dynamically inferred invariants, e.g.,

as in Nimmer et al. [29]. While static techniques may also directly

generate true invariants [36], for PM related properties, we are

not aware of such prior work. Nevertheless, these are interesting

research problems that we leave for future work.

8 Conclusion

We have presented a method for inferring PM properties from ex-

isting software code. Our method relies on a combination of static

and dynamic analysis techniques, where static analysis is used to

compute dependence relations and instrument the executable pro-

gram, and dynamic analysis of the program’s execution traces is

used to infer and check PM properties. Our method leverages a

unified graph-theoretic perspective and counterfactual reasoning

to generate high-quality PM properties. Our experimental evalua-

tion on eight persistent data structures and two distributed storage

applications shows that the method can infer PM properties quickly

and automatically. We also demonstrate the usefulness of the in-

ferred PM properties, by leveraging them to significantly improve

the performance of a state-of-the-art PM bug detection technique.
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