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Abstract— Biodiversity is essential for maintaining ecosystem 

balance and functionality, providing vital services such as climate 
regulation. The rapid decline in biodiversity, driven by habitat 
loss, habitat fragmentation, and climate change, poses significant 
threats to ecosystems. Climate change, in particular, is 
fundamentally altering habitats, leading to shifts in species 
distributions. However, existing research often lacks decomposed 
contribution analyses, particularly spatially, for a changing 
individual environmental attributes when modeling species 
distribution as an aggregate result of all factors and their 
interactions. Such analyses are crucial for identifying climate 
refugia and prioritizing conservation efforts. Taking endangered 
mammal species as an example, this study addresses this gap by 
employing species distribution modeling (SDM) and the post-hoc 
interpretability method, Shapley values, to analyze how future 
environmental variables are likely to reshape habitat suitability 
spatially. Our findings indicate that by 2070, some regions in 
North America, Europe, and Australia will become suitable for 
many species due to changes in annual mean temperature, while 
extensive areas in the Amazon and Congo rainforests will become 
less suitable. Annual mean precipitation is also projected to drive 
worsening conditions for local species, particularly in South 
America and central Africa. Our analysis demonstrates the 
effectiveness of explainable AI (xAI) techniques, such as Shapley 
values, in elucidating the future impacts of climate change by 
accounting for the interactions between environmental attributes. 
We identify a spatial analysis tool to develop conservation 

strategies targeted at the environmental attribute level, aimed at 
mitigating the diverse impacts of climate change on global 
biodiversity.  

Keywords— Explainable machine learning, Shapley values, 
SHAP, SDM, climate change 

I. INTRODUCTION 
Species conservation plays a crucial role in maintaining the 

balance and functionality of ecosystems[1]. Biodiversity is vital 
for conservation as it ensures the resilience and adaptability of 
ecosystems, supporting essential services such as nutrient 
cycling[2], [3]. In recent decades, biodiversity has declined at an 
alarming rate due to habitat loss and fragmentation, 
overexploitation of natural resources, and climate change[4]. In 
fact, climate change has emerged as one of the most significant 
threats to global biodiversity[5]. Rising temperatures, changing 
precipitation patterns, and the increasing frequency and intensity 
of extreme weather events are fundamentally altering habitats 
and ecosystems worldwide[6]. Understanding the impacts of 
climate change on species distribution is critical for developing 
effective conservation strategies and mitigating biodiversity loss 
and the degradation of ecosystem services. 

Despite numerous studies on climate change and species 
distribution, the scientific community has yet to develop 
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methods for spatially decomposing the contributions of 
changing individual environmental factors in species 
distribution models (SDMs). The absence of these studies from 
the literature represents a critical gap in our collective 
understanding of both species conservation and climate change 
impacts. Greater spatial-, species-, and attribute-level detail is 
needed to identify climate refugia—areas that remain suitable 
for species despite changing climate conditions—and for 
planning conservation actions that can enhance the resilience of 
ecosystems[7]. Detailed, spatially explicit analyses are also 
necessary for landscape features, such as land cover, to be 
incorporated into forward-facing models to create a more 
comprehensive picture of how species distributions might 
shift[8]. Once developed, these analyses can help identify areas 
where conservation efforts should be prioritized, ensuring that 
resources are allocated efficiently to protect the most vulnerable 
species and habitats[9]. 

Species distribution modeling (SDM) is a widely used 
technique for studying the interactions between species and 
climate. However, many advanced models rely on ecologically 
uninterpretable machine learning algorithms, making it 
challenging to translate SDM results into actionable policies and 
conservation strategies. Recently, post-hoc interpretability 
methods, such as Shapley values[10] and Local Interpretable 
Model-agnostic Explanations (LIME)[11], have been proposed 
to enhance understanding of the contributions of different 
predictors in these models[12]. However, they have seen limited 
use in SDMs and have never been applied to future projections. 
We aim to fill this critical gap by integrating SDM and the 
Shapley value technique[10]. Integrating these methods is an 
important step toward developing a comprehensive 
understanding of how future environmental conditions are likely 
to reshape biodiversity patterns spatially. 

II. METHODS 
We model the effects of climate change on the future 

distribution of 145 endangered[13] mammal species using 

species occurrence data available in the Global Biodiversity 
Information Facility (GBIF). The focus of our analysis is 
mammals due to their well-documented studies, the availability 
of sufficient occurrence records, and well-documented habitat 
requirements, such as those provided by the IUCN[13]. The 
analysis consists of two major steps (Figure 1). First, we develop 
a random forest-based species distribution model (SDM) that is 
tailored to each species using occurrence data and current 
environmental variables (e.g., bioclimatic, land cover, 
topography, etc.). Second, post-hoc analysis is completed using 
the Shapely value method to analyze the impact of climate 
change on the current and future geographic distribution of 
species. The Shapley method uses current and projected future 
environmental variables to assess the spatial contribution of 
each variable to each species’ distribution. Differences in 
contributions between current and future scenarios provide an 
indication of the potential impact of changes in specific 
environmental variables. 

A. Data processing 
Species occurrences. SDMs are based on species 

occurrence data, which include taxonomic observations 
recorded at specific times and locations[14]. These data are used 
to quantify patterns and determinants of biodiversity and for 
predicting the responses of ecological systems to global change. 
Various platforms host species occurrence data, including the 
Global Biodiversity Information Facility (GBIF), iNaturalist, 
eBird, and the Botanical Information and Ecology Network 
(BIEN). We retrieved occurrence data for global 
endangered[13] mammals from GBIF using the R package 
rgbif[15] from the year 1981 onwards[16]. To improve model 
accuracy and reliability, we used R package occTest[17] to 
retain only those records that had valid geographic coordinates 
by removing records with incomplete or invalid coordinates, 
such as those with longitude values exceeding 180 in a 
geographic coordinate system. We also excluded records with 

Fig. 1 Conceptual workflow of the climate change impact analysis. Black arrows indicate species distribution modeling 
(SDM), red arrows indicate model explanation, and blue arrows indicate climate change impact analysis. SHAP (SHapley 

Additive exPlanations) is the method to use Shapley values to interpret models. 



suspicious coordinates, like exactly zero latitude or longitude, as 
well as coordinates located at political centroids. 

Environmental variables. Environmental covariates 
included climate and land cover variables. We used climate 
variables from CHELSA-BIOCLIM+ (climatologies at high 
resolution for the Earth's land surface areas – bioclimatic 
variables plus) due to its higher performance compared to 
WorldClim data[18], [19]. CHELSA-BIOCLIM+ offers global 
climate-related variables at 10km resolution, covering both 
historical (1981–2010) and future projections (up to 2100). 
Variables include temperature and precipitation, which are 
crucial for ecological studies. The dataset is based on a 
combination of downscaled climate data and state-of-the-art 
modeling approaches, providing valuable insights into climate-
driven changes in ecosystems[19]. 

We selected CHELSA-BIOCLIM+ variables with low 
Pearson correlations (< 0.7), including mean annual temperature 
(BIO1), mean diurnal temperature range (BIO2), annual 
precipitation (BIO12), precipitation seasonality (BIO15), and 
precipitation in warmest quarter (BIO10) / (precipitation in 
coldest quarter (BIO11) + precipitation in warmest quarter). We 
used data from 1981 to 2010 to represent current environmental 
conditions and projections for 2041 to 2070, simulated by the 
GFDL-ESM4 model under the SSP370 scenario, to represent 
near-future conditions[18]. 

To assess potential human impacts, we used current and 
projected future land cover maps created by Chen et al.[20]. The 
current land cover map, referencing the year 2015, served as the 
current condition. For near-future conditions, we selected the 
land cover map for the year 2070, simulated under the SSP370 
scenario, to match with climatic variables. The layers were 
resampled from a resolution of 1 km to 10 km using the nearest 
neighbor interpolation method. 

B. Species distribution modeling (SDM) 
Domain selection. To fit and project the SDM for each 

species, we modeled their possible distribution domain, 
accounting for the limited dispersal abilities of mammals. For 
each species, we extracted TNC terrestrial ecoregions[21] 
overlapping with their native ranges defined by IUCN[13] and 
also included neighboring ecoregions. All model fitting and 
projections were conducted within the defined domain of each 
species, assuming that the species can only disperse to suitable 
climates in adjacent ecoregions. 

Processing occurrence data. After cleaning the occurrence 
data for geographic irregularities (as detailed above), we 
removed occurrences outside of the defined domain and filtered 
out those not covered by all environmental layers to ensure 
consistency. If multiple records existed within the same 10km 
grid cell, only one record was retained. To minimize spatial 
autocorrelation, we applied spatial thinning to the occurrences 
using the R package spThin[22], ensuring that all retained 
records were at least 20km apart. However, in cases where fewer 
than 20 records were available, we did not apply spatial thinning 
to avoid excessively reducing the sample size. To reduce 
extrapolation in model evaluation and address spatial 
autocorrelation, we then spatially stratified occurrences into five 
folds for cross-validation. This process involved computing k-

means clusters on the occurrence coordinates to create 25 
clusters. These clusters were then randomly assigned into five 
folds. This process helps to reduce the impact of spatial 
autocorrelation and ensures that no significant portion of the 
environmental space is excluded from model fitting. 

Model fitting. We employed the Random Forest 
algorithm[23] to construct all SDMs using the R package 
biomod2[24]. Pseudo-absences were randomly selected within 
the defined domain, matching the number of processed 
occurrences. The model's performance was evaluated using 
overall accuracy, True Skill Statistic (TSS), and Area under 
Receiver Operating Characteristic curves (AUC), with cross-
validation[25]. Subsequently, all available occurrences were 
used to build a full model for projecting both current and future 
conditions. 

C. Shapley value and variable contribution 
The Shapley value[10], derived from cooperative game 

theory, is used to fairly allocate the payouts among players in a 
game. In the context of SDM, the ‘payout’ is the species 
distribution and the ‘players’ are the environmental variables. 
Shapley values illustrate how each explanatory feature affects 
the model's output by comparing it to the base value, which is 
the average output over the training dataset[26]. Positive 
Shapley values indicate a contribution toward presence, while 
negative values indicate a contribution toward absence. The 
magnitude of the Shapley value reflects the importance of the 
feature. By calculating Shapley values for current environmental 
variables across all grid cells, we can assess the spatially explicit 
contribution of each variable to species distribution. Similarly, 
using future environmental variables allows us to estimate the 
contribution of future variables to future distributions, assuming 
the species-environment relationships remain unchanged. 

An extension to Shapley has been developed to explain 
individual predictions using Shapley values called SHapley 
Additive exPlanations, or SHAP[27]. For a given 𝑓𝑓(𝑥𝑥) for a 
single input 𝑥𝑥, the SHAP method explains the prediction as the 
sum of the contributions from each feature value[27]: 

𝑔𝑔(𝑥𝑥′) = ∅0 + �∅𝑖𝑖𝑥𝑥𝑖𝑖′
𝑀𝑀

𝑖𝑖=1

 (1) 

where 𝑔𝑔 is the explanation model. 𝑥𝑥′ is the simplified 𝑥𝑥 that 
maps to the original 𝑥𝑥 by function 𝑥𝑥 = ℎ𝑥𝑥(𝑥𝑥′). 𝑀𝑀 is the number 
of input features. ∅0 is the constant value when all inputs are 
missing, and ∅𝑖𝑖 ∈ ℝ  is the feature attribution for feature 𝑖𝑖 . 
Shapley values are the unique solution to Eq.1, satisfying three 
key properties: local accuracy, missingness, and 
consistency.[27]:  

∅𝑖𝑖 = �
|𝑄𝑄|! (|𝑆𝑆| − |𝑄𝑄| − 1)!

|𝑆𝑆|!
𝑄𝑄⊆𝑆𝑆\{𝑖𝑖}

[𝑓𝑓𝑄𝑄∪{𝑖𝑖}�𝑥𝑥𝑄𝑄∪{𝑖𝑖}�

− 𝑓𝑓𝑄𝑄(𝑥𝑥𝑄𝑄)] 
(2) 

where 𝑆𝑆 is the set of all features in the model. 𝑄𝑄 is a subset 
of 𝑆𝑆. 𝑓𝑓𝑄𝑄∪{𝑖𝑖} is a model trained with feature 𝑖𝑖 present and 𝑓𝑓𝑄𝑄 is a 
model trained with feature 𝑖𝑖  withheld. Thus, 𝑓𝑓𝑄𝑄∪{𝑖𝑖}�𝑥𝑥𝑄𝑄∪{𝑖𝑖}� −
𝑓𝑓𝑄𝑄(𝑥𝑥𝑄𝑄) represents the effects of including feature 𝑖𝑖  on the 
model. Because the effect of  withholding a feature relies on 
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other features, ∅𝑖𝑖  calculates the weighted average of 
𝑓𝑓𝑄𝑄∪{𝑖𝑖}�𝑥𝑥𝑄𝑄∪{𝑖𝑖}� − 𝑓𝑓𝑄𝑄(𝑥𝑥𝑄𝑄) of all possible subsets 𝑄𝑄 ⊆ 𝑆𝑆\{𝑖𝑖}. 

Several methods, such as Kernel SHAP and Linear 
SHAP[26], [28], have been developed to approximate Shapley 
values (Eq. 2). We used the fastshap package[29] to estimate 
Shapley values, which efficiently implements a Monte Carlo 
sampling approach[28]. This approach provides an efficient way 
to compute the Shapley values, ensuring accurate and consistent 
attribution of feature contributions in our models. 

D. Climate change impact analysis 
We retained only those SDMs with an average AUC above 

0.7, ensuring the reliability of our climate change analysis. For 
each environmental variable, we created spatial contribution 
maps for both current and future conditions. The impact of 
climate change was assessed by analyzing the direction and 
magnitude of changes in each climate-related variable 
contribution. As described above, Shapley values are signed, 
with negative values indicating contributions to species absence 
and positive values indicating contributions to presence. The 
changes in direction over time can be categorized as negative to 
negative, negative to positive, positive to negative, and positive 
to positive. Changes in the direction of contributions can signal 
significant shifts, such as a potential habitat crisis (from positive 
to negative) or the emergence of new possible habitats (from 
negative to positive). Even when the direction remains 
consistent, the magnitude of the variable's contribution can 
change, affecting species distribution by making conditions 
more or less suitable. To capture these variations, we calculated 
the quantitative differences between the contributions of 
variables under current and future conditions. 

III. RESULTS 
Climate change is expected to exert different impacts on 

various regions and species. Extensive regions of the world are 
projected to experience annual mean temperatures that will 
become unsuitable for local species by 2070, particularly in the 
Amazon and Congo rainforests (Figure 2B). Even more 
concerning is that the annual mean precipitation in these regions 
is also expected to become unsuitable for these species by 2070 
(Figure 2B). On a positive note, numerous areas where the 

annual mean temperature is currently unsuitable are projected to 
become suitable for over half of the local species by 2070, 
including regions in North America, Europe, and Australia. 

The modeled impacts of land cover change on species 
distribution are relatively fragmented. Many species' habitats, 
such as those in African countries and China, are projected to 
degrade for almost all local species due to deforestation or 
urbanization (Figure 2B). Notably, the areas south of the Sahara 
Desert are predicted to become suitable for approximately 30% 
of associated species by 2070 (Figure 2A). Additionally, South 
America is also expected to experience habitat recovery, 
offering improved land cover conditions for species distribution. 

Many areas are also expected to experience gradual impacts 
of climate change. Regions currently characterized by suitable 
annual mean temperatures are projected to become generally 
less suitable by 2070, particularly in the Amazon and Congo 
rainforests (Figure 3A). In contrast, only a few regions are 
expected to become more suitable for species habitation in terms 
of annual mean temperature by 2070. However, areas that are 
currently unsuitable are anticipated to become even more 
unsuitable for species by 2070, particularly in North America, 
Europe, and South America (Figure 3B). Annual mean 

Fig. 2 Number of endangered mammal species experiencing environmental changes from (A) non-suitable to suitable and (B) suitable to non-
suitable conditions by 2070. Variables shown include changes in contributions of BIO1 (annual mean temperature), BIO12 (annual mean 

precipitation), and LC (land cover). 



precipitation is predicted to become less suitable for species in 
South America and central Africa, affecting these regions 
widely. 

IV. DISCUSSION 

The projected climate changes, including shifts in annual 
mean temperature and precipitation, alongside land cover 
alterations, pose significant challenges for species distribution. 
By 2070, regions like the Amazon and Congo rainforests are 
expected to become less suitable for endangered, local mammal 
species, with annual precipitation declines exacerbating habitat 
stress. Conversely, areas south of the Sahara and parts of South 
America may experience habitat recovery. However, land cover 
changes due to deforestation and urbanization, particularly in 
African countries and China, will likely fragment habitats. 
These findings provide conservative suggestions to mitigate the 
diverse impacts of climate change on global biodiversity. 

By explaining the environmental variables in the SDMs 
using the Shapley values, we accounted for the interactions 
between these variables and quantified their changing 
contributions to species distribution. The results provide 
spatially explicit insights into how climate and land cover are 
likely to influence biodiversity now and into the future, 
highlighting areas of critical concern and potential resilience 
under future climate scenarios. The application of xAI 
techniques can help interpret what have previously been black-
box SDMs and significantly improve our understanding of what 
aspects of future climate change will impact species 
distributions[12]. However, xAI techniques like Shapley values 
can be computationally intensive and may not always capture 

the complexities of interactions among predictors, limiting their 
effectiveness in certain contexts[12]. Given that different 
species respond variably to climatic conditions, our future work 
will include an examination of a broader range of species, 
including plant species. We will also apply various climate 

scenarios to obtain a comprehensive understanding of the 
spatially explicit impacts of climate change on biodiversity. 
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