Explainable artificial intelligence to interpret
spatially-explicit impacts of future climate change on
species distribution

Lei Song
Department of Geography
University of California
Santa Barbara, USA
Isong@ucsb.edu

Diyang Cui
Department of Geography
University of California
Santa Barbara, USA
diyang_cui@ucsb.edu

Amy E. Frazier
Department of Geography
University of California
Santa Barbara, USA
afrazier@ucsb.edu

Brian J. Enquist
Department of Ecology and
Evolutionary Biology
University of Arizona
Tucson, USA
The Santa Fe Institute

Peter Kedron
Department of Geography
University of California
Santa Barbara, USA
peterkedron@ucsb.edu

Brian Maitner
Department of Integrative
Biology
University of South Florida
St. Petersburg, USA
bmaitner@gmail.com

Diogo S. A. Araujo
Department of Civil and
Environmental Engineering
Rutgers University
Piscataway, USA
diogo.araujo@rutgers.edu

Cory Merow
Department of Ecology and
Evolutionary Biology
Eversource Energy Center
University of Connecticut
Storrs, USA

Santa Fe, USA
brianjenquist@gmail.com

Gabriel M. Moulatlet
Department of Ecology and

Efthymios 1. Nikolopoulos
Department of Civil and

Evolutionary Biology Environmental Engineering
University of Arizona Rutgers University
Tucson, USA

Piscataway, USA
efthymios.nikolopoulos@rutgers
.edu

mandaprogabriel@gmail.com

Abstract— Biodiversity is essential for maintaining ecosystem
balance and functionality, providing vital services such as climate
regulation. The rapid decline in biodiversity, driven by habitat
loss, habitat fragmentation, and climate change, poses significant
threats to ecosystems. Climate change, in particular, is
fundamentally altering habitats, leading to shifts in species
distributions. However, existing research often lacks decomposed
contribution analyses, particularly spatially, for a changing
individual environmental attributes when modeling species
distribution as an aggregate result of all factors and their
interactions. Such analyses are crucial for identifying climate
refugia and prioritizing conservation efforts. Taking endangered
mammal species as an example, this study addresses this gap by
employing species distribution modeling (SDM) and the post-hoc
interpretability method, Shapley values, to analyze how future
environmental variables are likely to reshape habitat suitability
spatially. Our findings indicate that by 2070, some regions in
North America, Europe, and Australia will become suitable for
many species due to changes in annual mean temperature, while
extensive areas in the Amazon and Congo rainforests will become
less suitable. Annual mean precipitation is also projected to drive
worsening conditions for local species, particularly in South
America and central Africa. Our analysis demonstrates the
effectiveness of explainable Al (xAl) techniques, such as Shapley
values, in elucidating the future impacts of climate change by
accounting for the interactions between environmental attributes.
We identify a spatial analysis tool to develop conservation

cory.merow(@gmail.com

Patrick R. Roehrdanz
Moore Center for Science
Conservation International

Arlington, USA
proehrdanz(@conservation.org

strategies targeted at the environmental attribute level, aimed at
mitigating the diverse impacts of climate change on global
biodiversity.
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I. INTRODUCTION

Species conservation plays a crucial role in maintaining the
balance and functionality of ecosystems[1]. Biodiversity is vital
for conservation as it ensures the resilience and adaptability of
ecosystems, supporting essential services such as nutrient
cycling[2], [3]. In recent decades, biodiversity has declined at an
alarming rate due to habitat loss and fragmentation,
overexploitation of natural resources, and climate change[4]. In
fact, climate change has emerged as one of the most significant
threats to global biodiversity[5]. Rising temperatures, changing
precipitation patterns, and the increasing frequency and intensity
of extreme weather events are fundamentally altering habitats
and ecosystems worldwide[6]. Understanding the impacts of
climate change on species distribution is critical for developing
effective conservation strategies and mitigating biodiversity loss
and the degradation of ecosystem services.

Despite numerous studies on climate change and species
distribution, the scientific community has yet to develop
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methods for spatially decomposing the contributions of
changing individual environmental factors in species
distribution models (SDMs). The absence of these studies from
the literature represents a critical gap in our collective
understanding of both species conservation and climate change
impacts. Greater spatial-, species-, and attribute-level detail is
needed to identify climate refugia—areas that remain suitable
for species despite changing climate conditions—and for
planning conservation actions that can enhance the resilience of
ecosystems[7]. Detailed, spatially explicit analyses are also
necessary for landscape features, such as land cover, to be
incorporated into forward-facing models to create a more
comprehensive picture of how species distributions might
shift[8]. Once developed, these analyses can help identify areas
where conservation efforts should be prioritized, ensuring that
resources are allocated efficiently to protect the most vulnerable
species and habitats[9].

Species distribution modeling (SDM) is a widely used
technique for studying the interactions between species and
climate. However, many advanced models rely on ecologically
uninterpretable machine learning algorithms, making it
challenging to translate SDM results into actionable policies and
conservation strategies. Recently, post-hoc interpretability
methods, such as Shapley values[10] and Local Interpretable
Model-agnostic Explanations (LIME)[11], have been proposed
to enhance understanding of the contributions of different
predictors in these models[12]. However, they have seen limited
use in SDMs and have never been applied to future projections.
We aim to fill this critical gap by integrating SDM and the
Shapley value technique[10]. Integrating these methods is an
important step toward developing a comprehensive
understanding of how future environmental conditions are likely
to reshape biodiversity patterns spatially.

II. METHODS

We model the effects of climate change on the future
distribution of 145 endangered[13] mammal species using
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species occurrence data available in the Global Biodiversity
Information Facility (GBIF). The focus of our analysis is
mammals due to their well-documented studies, the availability
of sufficient occurrence records, and well-documented habitat
requirements, such as those provided by the ITUCN[13]. The
analysis consists of two major steps (Figure 1). First, we develop
a random forest-based species distribution model (SDM) that is
tailored to each species using occurrence data and current
environmental variables (e.g., bioclimatic, land cover,
topography, etc.). Second, post-hoc analysis is completed using
the Shapely value method to analyze the impact of climate
change on the current and future geographic distribution of
species. The Shapley method uses current and projected future
environmental variables to assess the spatial contribution of
each variable to each species’ distribution. Differences in
contributions between current and future scenarios provide an
indication of the potential impact of changes in specific
environmental variables.

A. Data processing

Species occurrences. SDMs are based on species
occurrence data, which include taxonomic observations
recorded at specific times and locations[14]. These data are used
to quantify patterns and determinants of biodiversity and for
predicting the responses of ecological systems to global change.
Various platforms host species occurrence data, including the
Global Biodiversity Information Facility (GBIF), iNaturalist,
eBird, and the Botanical Information and Ecology Network
(BIEN). We retrieved occurrence data for global
endangered[13] mammals from GBIF using the R package
rgbif[15] from the year 1981 onwards[16]. To improve model
accuracy and reliability, we used R package occTest[17] to
retain only those records that had valid geographic coordinates
by removing records with incomplete or invalid coordinates,
such as those with longitude values exceeding 180 in a
geographic coordinate system. We also excluded records with
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Fig. 1 Conceptual workflow of the climate change impact analysis. Black arrows indicate species distribution modeling
(SDM), red arrows indicate model explanation, and blue arrows indicate climate change impact analysis. SHAP (SHapley
Additive exPlanations) is the method to use Shapley values to interpret models.



suspicious coordinates, like exactly zero latitude or longitude, as
well as coordinates located at political centroids.

Environmental variables. Environmental covariates
included climate and land cover variables. We used climate
variables from CHELSA-BIOCLIM+ (climatologies at high
resolution for the Earth's land surface areas — bioclimatic
variables plus) due to its higher performance compared to
WorldClim data[18], [19]. CHELSA-BIOCLIM+ offers global
climate-related variables at 10km resolution, covering both
historical (1981-2010) and future projections (up to 2100).
Variables include temperature and precipitation, which are
crucial for ecological studies. The dataset is based on a
combination of downscaled climate data and state-of-the-art
modeling approaches, providing valuable insights into climate-
driven changes in ecosystems[19].

We selected CHELSA-BIOCLIM+ variables with low
Pearson correlations (< 0.7), including mean annual temperature
(BIO1), mean diurnal temperature range (BIO2), annual
precipitation (BIO12), precipitation seasonality (BIO15), and
precipitation in warmest quarter (BIO10) / (precipitation in
coldest quarter (BIO11) + precipitation in warmest quarter). We
used data from 1981 to 2010 to represent current environmental
conditions and projections for 2041 to 2070, simulated by the
GFDL-ESM4 model under the SSP370 scenario, to represent
near-future conditions[18].

To assess potential human impacts, we used current and
projected future land cover maps created by Chen et al.[20]. The
current land cover map, referencing the year 2015, served as the
current condition. For near-future conditions, we selected the
land cover map for the year 2070, simulated under the SSP370
scenario, to match with climatic variables. The layers were
resampled from a resolution of 1 km to 10 km using the nearest
neighbor interpolation method.

B. Species distribution modeling (SDM)

Domain selection. To fit and project the SDM for each
species, we modeled their possible distribution domain,
accounting for the limited dispersal abilities of mammals. For
each species, we extracted TNC terrestrial ecoregions[21]
overlapping with their native ranges defined by [UCN[13] and
also included neighboring ecoregions. All model fitting and
projections were conducted within the defined domain of each
species, assuming that the species can only disperse to suitable
climates in adjacent ecoregions.

Processing occurrence data. After cleaning the occurrence
data for geographic irregularities (as detailed above), we
removed occurrences outside of the defined domain and filtered
out those not covered by all environmental layers to ensure
consistency. If multiple records existed within the same 10km
grid cell, only one record was retained. To minimize spatial
autocorrelation, we applied spatial thinning to the occurrences
using the R package spThin[22], ensuring that all retained
records were at least 20km apart. However, in cases where fewer
than 20 records were available, we did not apply spatial thinning
to avoid excessively reducing the sample size. To reduce
extrapolation in model evaluation and address spatial
autocorrelation, we then spatially stratified occurrences into five
folds for cross-validation. This process involved computing k-
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means clusters on the occurrence coordinates to create 25
clusters. These clusters were then randomly assigned into five
folds. This process helps to reduce the impact of spatial
autocorrelation and ensures that no significant portion of the
environmental space is excluded from model fitting.

Model fitting. We employed the Random Forest
algorithm[23] to construct all SDMs using the R package
biomod2[24]. Pseudo-absences were randomly selected within
the defined domain, matching the number of processed
occurrences. The model's performance was evaluated using
overall accuracy, True Skill Statistic (TSS), and Area under
Receiver Operating Characteristic curves (AUC), with cross-
validation[25]. Subsequently, all available occurrences were
used to build a full model for projecting both current and future
conditions.

C. Shapley value and variable contribution

The Shapley value[10], derived from cooperative game
theory, is used to fairly allocate the payouts among players in a
game. In the context of SDM, the ‘payout’ is the species
distribution and the ‘players’ are the environmental variables.
Shapley values illustrate how each explanatory feature affects
the model's output by comparing it to the base value, which is
the average output over the training dataset[26]. Positive
Shapley values indicate a contribution toward presence, while
negative values indicate a contribution toward absence. The
magnitude of the Shapley value reflects the importance of the
feature. By calculating Shapley values for current environmental
variables across all grid cells, we can assess the spatially explicit
contribution of each variable to species distribution. Similarly,
using future environmental variables allows us to estimate the
contribution of future variables to future distributions, assuming
the species-environment relationships remain unchanged.

An extension to Shapley has been developed to explain
individual predictions using Shapley values called SHapley
Additive exPlanations, or SHAP[27]. For a given f(x) for a
single input x, the SHAP method explains the prediction as the
sum of the contributions from each feature value[27]:

M
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where g is the explanation model. x’ is the simplified x that
maps to the original x by function x = h,(x"). M is the number
of input features. @, is the constant value when all inputs are
missing, and @; € R is the feature attribution for feature i.
Shapley values are the unique solution to Eq.1, satisfying three

key  properties: local accuracy, missingness, and
consistency.[27]:
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where S is the set of all features in the model. Q is a subset
of S. fougy is @ model trained with feature i present and fj is a
model trained with feature i withheld. Thus, fQU{i}(xQU{L-}) -
fo(xq) represents the effects of including feature i on the
model. Because the effect of withholding a feature relies on



other features, @; calculates the weighted average of
fouriy(Xquiy) — fo (xg) of all possible subsets Q < S\{i}.

Several methods, such as Kernel SHAP and Linear
SHAP[26], [28], have been developed to approximate Shapley
values (Eq. 2). We used the fastshap package[29] to estimate
Shapley values, which efficiently implements a Monte Carlo
sampling approach[28]. This approach provides an efficient way
to compute the Shapley values, ensuring accurate and consistent
attribution of feature contributions in our models.

BIOA1

III. RESULTS

Climate change is expected to exert different impacts on
various regions and species. Extensive regions of the world are
projected to experience annual mean temperatures that will
become unsuitable for local species by 2070, particularly in the
Amazon and Congo rainforests (Figure 2B). Even more
concerning is that the annual mean precipitation in these regions
is also expected to become unsuitable for these species by 2070
(Figure 2B). On a positive note, numerous areas where the

BlO12

LC

Fig. 2 Number of endangered mammal species experiencing environmental changes from (A) non-suitable to suitable and (B) suitable to non-
suitable conditions by 2070. Variables shown include changes in contributions of BIO1 (annual mean temperature), BIO12 (annual mean
precipitation), and LC (land cover).

D. Climate change impact analysis

We retained only those SDMs with an average AUC above
0.7, ensuring the reliability of our climate change analysis. For
each environmental variable, we created spatial contribution
maps for both current and future conditions. The impact of
climate change was assessed by analyzing the direction and
magnitude of changes in each climate-related variable
contribution. As described above, Shapley values are signed,
with negative values indicating contributions to species absence
and positive values indicating contributions to presence. The
changes in direction over time can be categorized as negative to
negative, negative to positive, positive to negative, and positive
to positive. Changes in the direction of contributions can signal
significant shifts, such as a potential habitat crisis (from positive
to negative) or the emergence of new possible habitats (from
negative to positive). Even when the direction remains
consistent, the magnitude of the variable's contribution can
change, affecting species distribution by making conditions
more or less suitable. To capture these variations, we calculated
the quantitative differences between the contributions of
variables under current and future conditions.

annual mean temperature is currently unsuitable are projected to
become suitable for over half of the local species by 2070,
including regions in North America, Europe, and Australia.

The modeled impacts of land cover change on species
distribution are relatively fragmented. Many species' habitats,
such as those in African countries and China, are projected to
degrade for almost all local species due to deforestation or
urbanization (Figure 2B). Notably, the areas south of the Sahara
Desert are predicted to become suitable for approximately 30%
of associated species by 2070 (Figure 2A). Additionally, South
America is also expected to experience habitat recovery,
offering improved land cover conditions for species distribution.

Many areas are also expected to experience gradual impacts
of climate change. Regions currently characterized by suitable
annual mean temperatures are projected to become generally
less suitable by 2070, particularly in the Amazon and Congo
rainforests (Figure 3A). In contrast, only a few regions are
expected to become more suitable for species habitation in terms
of annual mean temperature by 2070. However, areas that are
currently unsuitable are anticipated to become even more
unsuitable for species by 2070, particularly in North America,
Europe, and South America (Figure 3B). Annual mean



precipitation is predicted to become less suitable for species in
South America and central Africa, affecting these regions
widely.

IV. DISCUSSION

the complexities of interactions among predictors, limiting their
effectiveness in certain contexts[12]. Given that different
species respond variably to climatic conditions, our future work
will include an examination of a broader range of species,
including plant species. We will also apply various climate

Shapley value
change

0.25
0.20
0.15

0.10
0.05
0.00
-0.05
-0.10
-0.15

B 020

Fig. 3 Magnitude of contribution change of BIOI (annual mean temperature) on the suitability of an area to support
endangered mammal species by 2070 for (4) areas that are currently suitable, and (B) areas that are currently not
suitable. Positive Shapley value change indicates the increasing contribution.

The projected climate changes, including shifts in annual
mean temperature and precipitation, alongside land cover
alterations, pose significant challenges for species distribution.
By 2070, regions like the Amazon and Congo rainforests are
expected to become less suitable for endangered, local mammal
species, with annual precipitation declines exacerbating habitat
stress. Conversely, areas south of the Sahara and parts of South
America may experience habitat recovery. However, land cover
changes due to deforestation and urbanization, particularly in
African countries and China, will likely fragment habitats.
These findings provide conservative suggestions to mitigate the
diverse impacts of climate change on global biodiversity.

By explaining the environmental variables in the SDMs
using the Shapley values, we accounted for the interactions
between these variables and quantified their changing
contributions to species distribution. The results provide
spatially explicit insights into how climate and land cover are
likely to influence biodiversity now and into the future,
highlighting areas of critical concern and potential resilience
under future climate scenarios. The application of XAl
techniques can help interpret what have previously been black-
box SDMs and significantly improve our understanding of what
aspects of future climate change will impact species
distributions[12]. However, XAl techniques like Shapley values
can be computationally intensive and may not always capture

scenarios to obtain a comprehensive understanding of the
spatially explicit impacts of climate change on biodiversity.
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