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Abstract—Max-sliced mutual information (mSMI) was recently
proposed as a data-efficient measure of dependence. This measure
extends popular correlation-based methods and proves useful
in various machine learning tasks. In this paper, we extend
the notion of mSMI to discrete variables and investigate its
role in popular problems of information theory and statistics.
We use mSMI to propose a soft version of the Gacs-Korner
common information, which, due to the mSMI structure, natu-
rally extends to continuous domains and multivariate settings.
We then characterize the optimal growth rate in a horse race
with constrained side information. Additionally, we examine the
error of independence testing under communication constraints.
Finally, we study mSMI in communications. We characterize
the capacity of discrete memoryless channels with constrained
encoders and decoders, and propose an mSMI-based scheme
to decode information obtained through remote sensing. These
connections motivate the use of max-slicing in information theory,
and benefit from its merits.

I. INTRODUCTION

Information theory plays a key role in the characterization
and analysis across a myriad of fields that involve probabil-
ity and statistical inference. Specifically, mutual information
(MI) is used to analyze the shared information between two
dependent variables, being central to both classical [1], [2]
and contemporary methodologies [3], [4]. For example, MI
characterizes the utility of side-information, in compression
[5] and investment [6]. When a rate constraint is imposed
on the side information, or some statistical inference task is
performed under communication constraints, MI can be used
to characterize the performance in the resulting setting [7], [8].

Another objective of processing of dependent random vari-
ables is the extraction of common information [9]. This paper
focuses on the Gacs-Korner common information (GKCI)
between a pair (X,Y’), which seeks a maximum entropy
variable that can be deterministically extracted from both
X and Y. However, GKCI often results in trivial solutions
due to restrictive conditions. To address this, approximations
involve either extracting randomness from X with limited
disagreement with Y [10], [11] or using a genie-aided mech-
anism for common message generation [12], both relaxing
the functional constraint through the notion of controlled
rates. However, such rates are implicitly controlled by external
hyperparameters and can result in multiletter optimization
terms. Additionally, GKCI and its generalizations do not
seamlessly generalize to more than two users, and lack a
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proper setting for continuous spaces, making their adaptation
to data-driven settings challenging. For more information on
GKCI, see [13], which provides a comprehensive review and
draws connections to additional settings.

In this paper, we consider max-sliced MI (mSMI) [14],
which seeks the most informative projections of the pair
(X,Y) within a given function class. mSMI benefits from
well-defined structural properties, a closed form in the Gaus-
sian case and sharp neural estimation bounds. Additionally, it
was shown beneficial to contemporary machine learning tasks,
encompassing independence testing, multi-view representation
learning and generative modelling. By extending the notion of
mSMI to discrete spaces, we employ it for the characterization
and generalization of popular subjects in information theory
and statistics. The main contributions of the paper are

1) We show that mSMI serves as a soft generalization
of GKCI that focuses on the structural constraints of
the feasible set, rather than an implicit rate constraint.
This connection implies a possible extension of GKCI to
continuous spaces (Section III).

2) Using the relationship between mSMI and GKCI, we pro-
pose a tractable multivariate extension of both classical
and soft notions of GKCI (Section IV).

3) We use mSMI to characterize the optimal growth rate
in a horse race under computational constraints, which
relates to source coding under similar side-information
constraints (Section V).

4) We use mSMI to characterize the type-II error exponent
for the independence testing problem under constrained
communications (Section VI).

5) In communications, we use mSMI to study the capacity
under constrained, encoder decoder architectures. Addi-
tionally, we consider a constrained sensing problem, for
which we propose a two-stage strategy from which we
can decode the conveyed message in the channel only
through constrained sensors (Section VII).

II. MAX-SLICED MUTUAL INFORMATION

This section introduces mSMI, which seeks MI maximizing
functions of a given jointly distributed pair. Unless stated
otherwise, we consider discrete random variables X and Y,
defined over X and ), respectively. We adapt the definition of
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mSMI to discrete spaces and characterize its properties. mSMI
is formally given as follows

Definition 1 (Max-sliced mutual information). Let (X,Y) ~
Pxvy, let Fy, and Gy, be non-empty classes of mapping from X
and Y to U with [U| = k, respectively, and let Hi, = Fi X Gy
The mSMI between X and Y w.r.t. Hy, is given by

Shy (X,Y) = sup I(f(X);9(Y)). 1)
(f.9)€HK

When Hy, includes all mappings from X and Y to U we denote
Slk(Xa Y) = SIHk (X7 Y)

The authors of [14] investigated the structural properties of
mSMI. We state two properties that we later use in this work

Proposition 1 (Structural properties (partial)). Ler (X,Y) ~
Pxvy and let H be an arbitrary class of nonconstant functions
(f,9)- The following properties hold:

1) Bounds: For Hy C Hs:
Sl (X;Y) < Shy, (X;Y) <I(X;Y).

2) Tensorization: For mutually independent {(X;,Y;)}!"
Sle(X™,Y™) =) SIk(X3; Y5)
i=1

Beyond the above properties, mSMI was shown to identify
independence, to follow a sub-chain rule, and a KL repre-
sentation thereof was given. We note that the definition of SI
readily extends to range(f) # range(g).

In general, we could define the mSMI using stochastic

. . Py x Py y .

mappings, i.e., X X Uand Y 5 V. The corresponding
mSMI is given by

SE(X,Y):= max I(U;V),

Py x,Pv |y

where the maximization is over all transitional kernels P x
and Py|y such that |/| = V| = k. However, we can show
that optimizing over deterministic functions is sufficient

Lemma 1. Let (X,Y) ~ Pxy, then
ST (X, Y) = SIk(X,Y). @)

Finally, we define the one-sided mSMI by §§ and ﬁ;, which
are achieved by taking g(Y) =Y or f(X) = X respectively
in (1).

III. SOFT GACS-KORNER COMMON INFORMATION

The GKCI was proposed as a means for quantifying how
much randomness is shared between two dependent variables
(X,Y) ~ Pxy. Formally, it is given as follows

Definition 2 (Gacs-Korner Common Information). Let
(X,Y) ~ Pxy. The GKCI is given by the solution to the
Jollowing optimization problem

Ca(X,Y) = max H(U), st U= f(X) = g(Y), )

where U is the alphabet of U with |U| < min{|X|,|V|} and
the equality is with probability 1.

The main drawback of the GKCI is that the equality constraint
is too restrictive, resulting in Cgk(X,Y) = 0 for most
Pxy € P(X x Y). Specifically, [13] proposes the following
equivalence

Theorem 1 (Prop. 3.2.3, [13]). Let p(X,Y) =
supy , Cov(f(X),g(Y))/+/Var(f(X))Var(g(Y)) For
(X,Y) ~ Pxy, the following are equivalent
D pX,Y)=1
2) Cak(X,Y) >0
3) There exist a pair of non-constant functions (f,q) such
that f(X)=g(Y) Pxy-a.s.

In this work we consider a finer granularity of the GKCI and
define an alphabet-dependent version thereof. To this end, we
denote the size of &/ with k and define the kth GKCI function
class as

Hokx(Pxy) ={(f,9) : U= f(X)=g(Y),Pr e PU)},

i.e., the class of mappings to U that follow the GK con-
straint. Next, we omit the dependence on Pxy to avoid
heavy notation. This allows us to define Copx 1(X,Y) :=
max(¢,gyue o H (U). Consequently we have the following

Lemma 2. The following hold

]) Ifkl < kg, then CGK,kl (X. Y) < CGK,kg (X, Y)
2) Let kygy = min{|X|, |V|}, then

Cek(X,Y) = Cok e (X, Y).

A. Proposed Generalization

The canonical example under which GKCI does not trivially
nullify considers X and Y that decompose into (U, X’) and
(U,Y"), respectively, with X’ | Y’. In this case, the entire
MI is captured by both GKCI and mSM]I, i.e.,

Cek(X;Y) =5I(X,Y) = I(X;Y) = H(U).

We can extend the relation between GKCI and mSMI to the
general case through the following proposition.

Proposition 2 (mSMI generalizes GKCI). Let (X,Y) ~ Pxy,

E<min{|X|,|Y|}, F ={f: X = U}, Gy ={9:Y = U}
and set Hj, = Fi X Gi. Denote
Hicr = {(f,9) € Hp: f(X)=g(Y) wp. 1}
Then, B
SIHGK(X7 Y) = CGK(Xv Y)v “4)
and for any Hi O Hax

Proposition 2 poses mSMI as a generalization of GKCI.
In this sense, we interpret mSMI as soft GKCI, in the sense
that we relax the equivalence notion f(X) = ¢(Y) into the
notion of conditional entropy minimization, while both seek
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entropy maximization. This can be seen from the following
decomposition of mSMI

STy = max(H(f(X)) = min H(F(X)lg(¥)))

Using mSMI, we can capture the entire set of possible values
between Cgk(X.Y) and I(X;Y) by considering different
function classes H.

B. Comparison with Approximate GKCI

The most related work to the proposed soft GKCI is [11],
where an approximate version of GKCI was proposed. The
approximation seeks a mapping f : X — U which maximizes
H(f(X)), while relaxing the equality constraint into a dis-
agreement constraint of H(f(X)|Y) < 4. Equivalently, the
proposed problem can be presented as

GA(X.Y) = max H(J(X)) = MI(Y|f(X)),

with range(f) < min{Xx’, Y+1}. The parameter A controls the
trade-off between minimizing disagreement and maximizing
entropy. The approximate GKCI coincides with GKCI through
the limit
)\lim G)\(X, Y) = CGK(X, Y)
— 00

The main difference between SI(X,Y) and G, (X,Y) is
through the notion of relaxation. For G»(X,Y’), the relaxation
represents the information rate which implicitly controls the
resulting set of functions we optimize over. SI(X,Y), on
the other hand, explicitly considers computational constraint
imposed on the system, which are manifested through the
structure of F and G.

C. Common Information in Continuous Spaces

In this section we consider absolutely continuous random
variables (X,Y"). In this case, finding functions f and g
that form a Pxy-a.s. equality becomes significantly more
challenging, implying a reduction in the set of distributions
for which the GKCI does not nullify. Thus, only discrete
distributions were considered in analysis of GKCI and its
relaxations. In contrast to GKCI, mSMI is properly defined
over continuous spaces [14]. As optimization over mappings
between continuous spaces introduces more structure to our
problem, we can choose the function classes to be the family
of linear projections into some k-dimensional space!, i.e.

Sl(X;Y) = I[(ATX;BTY),

max
(A,B)eSt(k,d;) xSt (k,dy)
where St(k,d) is the Stiefel manifold of d x k matrices with
orthonormal columns.

Being the focus of [14], continuous mSMI was shown
beneficial in several aspects. First, mSMI has a closed-form
expression in the Gaussian case, which stems from an equiv-
alence with canonical correlation analysis.

IThe definition remains the same for general function spaces [14].

Proposition 3 (Prop. 2, [14]). Let X ~ N(mx,¥Xx) and
Y ~ N(my,Yy) be d,— and d,~dimensional jointly Gaus-
sian vectors with nonsingular covariance matrices and cross-
covariance X xy. For any k < d; N\ dy, we have

k
— 1
SI(X;Y) = f§21og (1-0:i(Txv)?), (6)
where Txy = X5 Sxy 572 € RA=%dy and o4 (Txy) <
... <01(Txy) <1 are the top k singular values of Txy.

When the Gaussian assumption is violated, mSMI can be
estimated with parametric models. Building upon the literature
of neural estimation [15], a neural network-based estimator
can be formulated, which benefits from sharp estimation error
rates. In fact, every neural estimation methodology effectively
estimated a max-sliced version of the corresponding measure
[15], [16], as the limitation to specific neural network classes
imposes a constrained family of estimators. Consequently,
mSMI serves as the most viable generalization of the GKCI
to continuous spaces.

IV. MULTIVARIATE COMMON INFORMATION VIA MSMI

In this section we leverage the relation between mSMI and
GKCI to extend the notion of soft common information to the
multivariate case. We define the multivariate GKCI of X™
by a simple generalization of Cgk, as the entropy maximizing
variable which is given by a function of every X; in X™, i.e.,

ck(X™) = méle(U), st. U=f(X;), i=1,...m.
To define a multivariate generalization of mSMI, we con-
sider a popular multivariate notion of MI, termed total corre-

lation (TC) [17], [18].

Definition 3. Ler (Xi,...,X,,) ~
(f1,--+, fm). The TC of X™ is given by

Pxm and fm =

TC(X1;...;Xm) = Dk <PXm

Q7).
i=1
where @' | P, =P @ P, @+ Q Py,

K2

Consequently, the max-sliced TC (mSTC), is given by
TCu(X™)

1
=y pax TO(N(X)s 5 fm(Kim))
1 m
p—— DriL((f15- - -5 frn) g Pxcom || g(fi’#PXi))'

Equipped with the above definitions, we can state a multivari-
ate generalization of Proposition 2

Proposition 4. Let Hey ;. be the m-GK function class, i.e.
Hex k= U1 s filXG) = f(X5)
Then, ﬁygk (Xm) = TCGK(Xm).

&

Vi,j=1,...,m}
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Note that the proposed relation holds for both discrete and
continuous settings. Furthermore, a neural estimation of mSTC
is attainable via [19].

V. GAMBLING WITH LIMITED SIDE INFORMATION

In this section, following the setting from [8], we charac-
terize the optimal growth rate in a horse race with constrained
side information using one-sided mSMI. An example for such
model is an investor, which has access to the entire internet
as side information, but has limited computational capabilities
in processing such information through their hardware.

Formally, we consider a horse race, which comprises a vari-
able X ~ p, where p(i) is the winning probability of the ith
horse, a simplex vector b, termed portfolio, and a payoff o €
leol, such that the investor receives o; dollars for each dollar
invested in horse i. We are interested in the optimal growth
rate of the gambler, given by W* = max;, W (b, p), with
W(b,p) = E [longX’], where X’ = (0,...,0,0;,0,...,0)
is a one-hot encoding of X', thus following the same distri-
bution.

Kelly [6] showed that W* = Z‘li{‘l pilogo; — H(X) and
the optimal portfolio is given by b* = p. Additionally, in the
presence of side information Y, the increase in growth rate
is given by A = I(X;Y). We consider a constrained version
of the side information, given by ¢(Y') with g € G, and we
look for the best optimal growth rate w.r.t. G. We have the
following result

Proposition 5. Let V' be the side information in the horse-
race, where the portfolio b is calculated from g(Y'). Then, the
optimal growth rate is given by

Ag =Sy (X:Y).

This result follows directly from the work of Erkip [8],
which showed that under rate constrained side information the
optimal growth rate is given by the maximization of the set
of rate constrained random variables.

Building on the relation to the result of [8], we can
attain further interpretation of mSMI. As studied by [8],
Gambling in a horse race with constrained side information
has similar characteristics to the problem of source coding
with constrained side information. Specifically, the minimum
descriptive complexity of X given a description g(Y") with rate
R> H(g(Y)) is given by

C(G) = min H(X|[g(Y)) @)
g€eg
Consequently, as noted by [8],
=Y
H(X) - C(G) = A(G) = Sy (X.Y),
where G is the set of all ¢ whose entropy is upper bounded
by R.
VI. DOUBLY CONSTRAINED INDEPENDENCE TESTING

This section considers a hypothesis test against indepen-
dence under communications constraints [7]. The hypothesis

test is given by
HO . (X,Y) ~ PXY
Hi: (X,Y)~Px® Py, )]

i.e., we are interested in testing whether (X,Y") are sampled
from the joint distribution, or the product of marginals. Due
to Stein [20], the exponent of the type-II error, given by

Bln,e) = {(Px ® Py)P"(A)|PER(A) 21— ¢},

behaves as

min
AcXn xYn

lim_log f(n, ¢) = ~I(X;Y),

for any € € (0,1). Ahlswede and Csiszér [7] studied the
hypothesis test (8) under communication constraints, i.e.,
when X™ is processed through f(X™) whose range is upper
bounded with some R > 0, i.e. f € Fg, such that

Fr= {15 tow ronge(1)) < 1t
To this end, define the function dependent exponent as
Bn,e, f) = {Prixey ® PPM(A)
Prixnyyn(A) > 1— €},

and let Br(n, e) = infrer, B(n, e, f) be the range-dependent
exponent. Under this setting, [7] showed that

min
Aef(Xm)xYyn

lim log Br(n,¢€)
n—oo

= sup (%DKL(Pf(X’*)Y’“”Pf(Xk)PY‘“'))'
kEN,fEFr,
Furthermore, [7] showed that this relation extends to doubly-
constrained communications, i.e., when both X™ and Y are
processed through f(X™) and g(Y™), The resulting exponent
is given by the following KL term,

lim log g, ,r, (1, €)
n—ro0

1
=-  sup (;DKL(PﬂXk)g(Yk) ||Pf(Xk>Pg<Yk))> :
(f,9)€EF R, XGRy
keN

€))

Unfortunately, the expression (9) is a multiletter expression
and was not further analysed. In fact, the authors of [7] note
that reducing the above term into a single-letter expression is
mathematically challenging.

Due to the tensorization of mSMI (Proposition 1), we can
reduce (9) into a single-letter expression under appropriate
functional constraints. We have the following

Lemma 3. Let 8y be the type-II error of the hypothesis test
(8) under doubly constrained communications. Then. for any

e € (0,1), we have
lim log B (n,€) = —Sly(X,Y). (10)
n—oo

As discussed in [7] application of Stein’s lemma does not
depend on the constraints imposed on the sets of F and G.
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Thus the proof immediately follows from [7]. A similar result
holds for one-sided mSMI holds by taking F (or G) that
contains the identity mapping in (10).

Remark 1. Even though mSMI primarily focuses on func-
tional constraints, there are cases where understanding the
underlying rate constraint is beneficial. This may be advanta-
geous on the block-level analysis, i.e., when we study mappings
f X" — X*._ We note that when mSMI is generalized
to act on blocks X", Y™ with range k < n, it no longer
vields a single-letter formula. However, the resulting class
H can be considered a subset of the rate constrained set
(f,9) : H(F(X™), H(g(Y™)) < R with R = k/n.

VII. MSMI IN COMMUNICATIONS

In this section we consider two operational problems in
communications. These problems consider some constraints
on the computational capabilities of some of the users in the
system. We will show that the communication rates in these
cases can be characterized with mSMI.

A. Constrained Communications

We consider a discrete memoryless channel, with a con-
strained encoder decoder pair, whose constraints are realized
by f € F and g € G, respectively. One example is resolution
reduction of the channel input due to computational restric-
tions of the encoder and decoder units hardware, or amplifier
specifications. The communication scheme is described in
Figure 1. In this case, we can consider the effective channel
inputs and outputs as (X;, V;) = (f(U;), g(Yz7)), respectively,
where U™ (M) is the encoder outputs. In this setting we have
the following result

Proposition 6. Fix H. The capacity of the communication
constrained channel is given by Cy; := supp,, Sly/(UY).

Note that the constraints f(U) and g(Y) induce a new
DMC. Consequently, the proof follows by standard random
coding arguments for the induced DMC. We note that as a
byproduct, a similar result holds when only the encoder or
decoder are constrained, by taking the appropriate one-sided
mSMI term in (6).

Constraint v ‘ Dec M
‘ g€G ‘ ‘

n n
u ‘Channel‘ Y

/ n
M EHC ‘ X anslrainl
Y|X ’

e

Fig. 1: Constrained communications. Encoder output enters
f: X — U and the channel output enters g : ) — V.

B. Constrained Sensing of Remote Communications

Consider a remote communication channel described by a
fixed (encoder, channel, decoder) triplet. The encoder conveys
a message M € [1 : 2"F], thus sending X™(M), which is
transformed into Y ~ Py |x. This setting is considered remote
in the sense that we can only sample the channel input and
outputs through sensors f € F and g € G. This setting is

visualized in Figure 2. It is motivated by sensing problems of
biological channels, e.g., measuring information exchange in
the brain through an external electrode apparatus.

To successfully recover the transmitted message, we propose
a two-stage supervised strategy. First, we learn a codebook by
observing a set of messages M and their corresponding sensed
outputs U™(M). Then, equipped with the modified codebook,
we decode the message from the sensed channel outputs, i.e.
M = M(V™). These two stages can be conceptualized as a
single-step process involving a training phase and inference.
We propose the following

Proposition 7. Under the aforementioned strategy, any rate
R < I(f(X);9(Y)) is achievable.

This result follows directly from the achievability of the
corresponding DMC Py ¢(x)-

By selecting (f*, %) € argmax ;o) cq L(f(X);9(Y)), we
can extend the range of achievable rates. However, we note that
changing f induces a new codebook. Additionally, we note
that, under the random coding scheme, we require approx-
imately 2"(/(f(X):9(¥))) message observations. Finally, note
that universal decoding schemes such as maximum (sliced)

MI decoding [21] may be used and therefore obviate the need
‘

to know the latent channel distribution Py-|x.
a—'
; U’n, Vﬂ

Fig. 2: Constrained sensing. node U" = f(X") (dashed) is
used to learn a codebook on the first stage, and node V" =
g(Y™) is used to decode the sensed output given the learned
codebook.

—_—

VIII. CONCLUSION

This paper explored various interpretations of mSMI in pop-
ular problems of information theory and statistics. Specifically,
we used mSMI to generalize the notion of GKCI, providing us
with a new continuous generalization and a multivariate exten-
sion thereof. Then, we showed the role of mSMI in gambling
and compression under constrained side information. Finally,
we showed the utility of mSMI to hypothesis testing, channel
coding, and remote sensing under communication constraints.
These connections provide new insights and capabilities to
known problems, while benefiting from the well-established
properties and implementations of mSMI. Future work consists
of expanding the set of problems mSMI characterizes and
drawing a connection with the Hirschfeld-Gebelein—Rényi
(HGR) maximum correlation [22]-[24], which is a popular
and intimately related measure of dependence.
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