



Received 19 April 2025, accepted 1 May 2025, date of publication 6 May 2025, date of current version 15 May 2025. 

Digital Object Identifier 10.1109/ACCESS.2025.3567437 

Fast and Accurate Video Analysis and 
Visualization of Classroom Activities Using 
Multiobjective Optimization of Extremely 
Low-Parameter Models 
VENKATESH JATLA1, SRAVANI TEEPARTHI1, UGESH EGALA 1, SYLVIA CELEDÓN-PATTICHIS2, 
AND MARIOS S. PATTICHIS 1, (Senior Member, IEEE) 
1Image and Video Processing and Communications Laboratory, Department of Electrical and Computer Engineering, The University of New Mexico, 
Albuquerque, NM 87131, USA 
2Department of Curriculum and Instruction, The University of Texas at Austin, Austin, TX 78712, USA 

Corresponding author: Marios S. Pattichis (pattichi@unm.edu) 

This work was supported in part by the National Science Foundation under Grant 1949230. 

This work involved human subjects or animals in its research. Approval of all ethical and experimental procedures and protocols was 
granted by the UNM Offce of the IRB (OIRB). 

ABSTRACT The paper considers the problem of video activity recognition in real-life collaborative 
classroom learning environments. Video analysis of real-life collaborative classroom learning environments 
faces signifcant challenges not encountered in current, advanced video recognition datasets. In collaborative 
learning environments, students are arranged in small groups where they interact within their group. Video 
analysis needs to deal with long-term activity recognition (of one hour or more session videos), detect 
multiple simultaneous activities, rapid transitions between activities, occlusions, and numerous individuals 
performing similar activities in the background that are not part of the group being analyzed. Developing 
ground truth datasets for analyzing complex video datasets is prohibitively expensive. We dramatically 
reduce the requirement for large ground truth datasets by creating separate, custom datasets for object 
detection and video activity recognition. We then introduce a separable, extremely low-parameter system 
for video activity recognition that can be optimally trained using the derived datasets without the need for 
transfer learning from larger systems trained on large datasets. We further develop an interactive WebApp for 
visualizing the results over long video sessions. Overall, the extremely low-parameter activity classifcation 
model uses just 18.7K parameters for each activity, requiring 136.32 MB of memory. On a moderate GPU 
(RTX 5000), the activity classifcation model runs at an impressive 4,620 (154 × 30) frames per second. Our 
approach uses at least 1,000 fewer parameters than several well-established methods for video recognition. 
Our extremely low-parameter classifers can process 90 minutes of video in just 26 seconds. Furthermore, 
our models are much easier to train, they are much faster, and outperform comparable methods. 

INDEX TERMS Multi-objective optimization, extremely low-parameter neural networks, fast inference, 
separable models, video activity localization, educational video analysis. 

I. INTRODUCTION classrooms. Our focus on real-life datasets faces unique 
Our paper considers the development of video activity challenges that stem from the need to analyze complex 
recognition and visualization in real-life middle-school real-life classroom video sessions of 60 to 120 minutes. 

Overall, our objective is to help educational researchers 
The associate editor coordinating the review of this manuscript and to analyze classroom videos based on student participation. 

approving it for publication was Senthil Kumar . The videos record students working through an integrated 

2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. 
VOLUME 13, 2025 For more information, see https://creativecommons.org/licenses/by/4.0/ 81143 

https://orcid.org/0000-0002-9208-5085
https://orcid.org/0000-0002-1574-1827
https://orcid.org/0000-0002-8587-7017
https://creativecommons.org/licenses/by/4.0
mailto:pattichi@unm.edu


V. Jatla et al.: Fast and Accurate Video Analysis and Visualization of Classroom Activities 

FIGURE 1. Typing and writing activities and expected visualization. The interactive activity map with the activities associated with the person helps 
the user to get a better understanding of the detected activities. 

curriculum that integrates mathematics with Python pro-
gramming activities. The students engage in writing activ-
ities as they work through the mathematics exercises. 
They engage in typing activities as they work through 
the programming exercises. Thus, to help assess student 
participation, our goal is to recognize writing and typing 
activities. 

We present some of our real-life classroom dataset 
challenges in Fig. 1. In Figs. 1(a)-(b), we are focusing on two 
classroom activities: typing and writing. Our goal is to ana-
lyze the video so that we can determine the video segments 
where each activity is happening. In Figs. 1(a)-(b), we high-
light each activity using a green bounding box. To facilitate 
interactive video analysis over long videos (>60 minutes), we 
provide an interactive WebApp (see Fig. 1(c)) that includes 
links to the video where each activity is happening. Thus, 
the users can click on the links shown in Fig. 1(c) to bring 

back the video at the starting point of the activity as shown in 
Figs. 1(a)-(b). 

From our example in Fig. 1, we can see many of the 
challenges associated with analyzing real-life classroom 
videos. In Figs. 1(a) and 1(b), we note that our video analysis 
is focused on analyzing the group that is closest to the camera, 
appearing in the bottom half of the frame. To avoid confusion 
due to the complex scene environments, on the frst frame of 
each long video session, we ask the users to select the table 
and initial table regions associated with each student. This 
quick annotation on the frst frame is part of our interactive 
system design that allows the users to query the system for 
specifc activities by specifc students with minimal required 
effort by the users. Clearly, in the rare event that the students 
change their sitting arrangement, the users would be expected 
to reannotate the initial frame of the new scene arrangement. 
This is the only input provided to our system. Our goal is to 

81144 VOLUME 13, 2025 



V. Jatla et al.: Fast and Accurate Video Analysis and Visualization of Classroom Activities 

develop an effective video analysis that can process videos 
fast with moderate, relatively low-price, hardware. 

Signifcant challenges are associated with recognizing 
activities within the selected video scene. First, we note that 
we have multiple activities that occur simultaneously (see 
Fig. 1(b)). Second, once we recognize each activity, we need 
to attribute each activity to a specifc student within the 
group. In other words, we need to integrate the outputs in 
our interactive map of all recognized activities against time 
as shown in Fig. 1(c). In Fig. 1(c), we see that our goal is 
to process the raw videos so that we can show when each 
student performs each activity. To make it clear, in Fig. 1(c), 
each student’s activity is represented by a different row plot. 
Then, the time of each activity corresponds to the length of 
each bar. Third, from the plot, we note that we have relatively 
long activities performed by multiple people. Fourth, our 
videos are collected with low-cost cameras where everyone 
appears to be in focus. This accounts for structural noise 
where we do not beneft from background activities being out 
of focus. Fifth, it is clear that we have peripheral activities and 
occlusion that can occur at different locations in each video 
frame. 

To avoid biasing our methods, we train on long video 
sessions collected over one set of dates, validate on another 
set of dates, and then test on yet another set of dates. The 
training, validation, and testing dates are distinct. Thus, the 
testing datasets refect our goal of measuring generalization 
on completely unseen scenes and new camera setups. 

Modern datasets address some of the challenges that we 
have found with our real-life classroom videos. Most recently, 
Korban et al. [1] looked at classroom videos with multiple 
activities occurring simultaneously. Similarly, videos with 
simultaneous activities can be found in Dimitriadou and 
Lanitis in [2], the AVA 2.2 dataset [3], EPIC-Kitchen [3], 
JHMDB [4], and UCF101-24 [5]. Nevertheless, none of these 
datasets exhibit the entire range of challenges associated 
with our dataset. Specifcally, none of them require that 
we process raw (untrimmed) real-life videos that compute 
activity maps where each activity is mapped to a specifc 
person, as shown in Fig. 1(c). Furthermore, except for 
specialized sports videos, none of them were designed for 
processing long duration videos of 1 to 1.5 hours. 

For system design, we consider methods to minimize 
the required amount of ground truth, reduce training time, 
and model performance optimization. In what follows, 
we provide a summary of our approach. More details are 
provided in our methodology. 

We minimize the amount of required ground truth by 
considering each activity as a problem of detecting an 
object involved in the activity and then classifying activities 
associated with that object only. For our purposes, we will 
consider typing activities associated with locating a keyboard 
and writing activities associated with hand detection. As a 
result, for object detection, we only require a still image 
dataset that contains representative examples of keyboards 

and hands. Then, for each activity, we only need to classify 
short video segments over each detected object. For typing, 
we classify short video segments over the keyboard region. 
For writing, we classify short video segments over the hands 
regions. 

Our single-activity optimization framework provides fun-
damental advantages over the standard use of transfer 
learning from large-activity networks. First, we note that 
it is a lot easier to train for a single activity at a time 
as opposed to training large models on multiple activities. 
Second, our separable action recognition is inherently parallel 
since we can run each video activity detector separately. 
Third, it is a lot easier to debug and understand what a 
single activity detector is doing as opposed to understanding 
how a large video activity system processes any given single 
activity. Our approach eliminates the need to consider a 
multitude of large networks trained over different large 
datasets. Fourth, we note that our approach is scalable. 
We can easily develop larger networks to train and test on 
larger datasets that target all of the variations of our single 
activity approach. This is clearly a much more effcient 
approach than to keep growing larger models that target 
all possible activities so that we re-target them on a single 
activity. 

Training time is dramatically reduced by our approach. 
To see this, note that instead of training on a large video 
dataset, we only need to train on a small number of image 
examples and very short and small video segments over each 
object. Yet, for our fnal testing, we do report over entire 
videos. 

We adopt a multiobjective framework for optimizing 
our model. Activity detection is performed based on a 
Video Activity Proposal Network (VAPN) and a Video 
Activity Classifcation Network (VACN). Our VAPN uses 
optimized object detection and tracking to extract short 
video segments of possible activities of interest. In terms of 
our multiobjective framework, the goal of the VAPN is to 
minimize the false-negatives while tolerating false-positives. 
For VACN, our multiobjective optimization approaches 
selects an optimal framework over a family of 3D CNN 
networks that process the video segments at an optimized 
frame rate. Compared to the standard use of large networks, 
our optimized VACN uses 1000× or less parameters, perform 
better and run much faster. 

We next provide a brief summary of popular Human 
Activity Recognition (HAR) methods that we will be 
comparing against. The Temporal Segment Network (TSN) 
[6] samples the input video through the extraction of equal 
video segments. It then processes each video segment 
using ConvNets and computes the fnal output using a 
consensus map. The Two-Stream Infated 3D ConvNet (I3d) 
[7] extends successful 2D image classifcation architec-
tures into 3D, aiming at the extraction of spatiotemporal 
features. The Temporal Shift Module (TSM) [8] aims at 
developing a high-performance video understanding system 

VOLUME 13, 2025 81145 



V. Jatla et al.: Fast and Accurate Video Analysis and Visualization of Classroom Activities 

by implementing 1D convolutions across frame channels by 
embedding the time-convolution operations inside effcient 
2D CNN networks. The SlowFast network [9] uses a slow and 
a fast stream to process videos at two different frame rates. 

Our approach develops a familty of 3D CNN architectures 
that operates at an optimized frame rate that needs to be 
learned during training. While we do not optimize for GPUs, 
we demonstrate that our approach is faster than all other 
methods (including TSM), is easier to train since we are 
using 1000× or fewer parameters, while performing at-least 
as good as any of these well-accepted methods. We achieve 
this performance because we are developing optimized 
architectures that only need to be trained for recognizing a 
single activity at a time. We demonstrate our approach on 
recognizing writing and typing activities. 

Preliminary elements of our video activity recognition 
system have appeared in conference papers [10] and [11]. 
Specifcally, the proposed hand detection method has frst 
appeared in [10] as a conference paper. In the current 
paper, we incorporate hand detection for writing recognition. 
However, we also introduce the use of keyboard detection for 
typing recognition. Earlier versions of the video activity clas-
sifcation system have appeared in [11] as a conference paper. 
The current paper covers the complete system, with extensive 
discussion on the optimization process, a signifcantly larger 
dataset, inference speed, performance, and video activity 
visualization over full video sessions. We also mention 
our related work focused on dynamic participant tracking 
reported in [12]. This earlier work built upon student recog-
nition reported in [13]. For the current paper, we specifcally 
avoid the need to recognize the students. Thus, our approach 
allows us to recognize student activities by working with fully 
anonymized datasets that avoid processing sensitive student 
information. 

In summary, the primary contributions of the paper 
include: 

• Real-life classroom datasets: As opposed to the 
standard end-to-end video datasets for everything, we 
introduce reduced training and validation datasets for 
training. At the same time, we test on real-life 90-minute 
videos. 

• An interactive system for localizing and visualizing 
typing and writing activities: Unlike other activity 
classifcation approaches, our system recognizes indi-
vidual activities and provides interactive visualization 
over the entire video. 

• A multiobjective optimization framework: We 
present a multiobjective optimization framework for 
jointly optimizing accuracy (or AUC), the number of 
parameters, and inference time. We present different 
optimization modes that can be used to prioritize 
different objectives (e.g., accuracy or inference time), 
or to produce models that balance all objectives. 

• Signifcant reduction of the number of parameters 
by 1000×: Our proposed approach for video activity 

classifcation gave better results using more than 
1000 times fewer parameters. Given the fact that our 
model is at least as accurate as any other model 
that we compare against, it has better generalization 
capabilities than the models that we compare against 
(e.g., see Chapter 7 in [14]). At the same time, our 
extremely low-parameter models are expected to have 
higher bias and lower variance than much larger models 
that would have required much larger training datasets 
(e.g., see bias-variance discussion in [14]). In terms of 
our multiobjective optimization framework, our use of 
extremely low parameter models results in fast inference 
times, a reduction in memory requirements, and faster 
training. 

• No need for pretraining: Unlike all other methods, our 
video activity classifcation network does not require 
any pretraining on large datasets. 

The remainder of this paper is organized into fve sections. 
We summarize our AOLME activity dataset in section II. 
We provide background information on related research 
in section III. We describe our proposed approach in 
section IV. We summarize our results in section V and 
provide concluding remarks in section VII. 

II. AOLME STUDENT DATASETS 
We provide several examples of our real-life classroom 
dataset in Fig. 2. Here, we can see how the students are 
arranged in different groups (e.g., see Fig. 2(f)). We need to 
attribute each activity to a specifc person as we demonstrate 
in Fig. 2(a). The videos were recorded using low-cost video 
cameras with small sensors that keep everything in focus, 
located at many different angles (see Figs. 2(b) and 2(d)). 
We have peripheral activities that can occur at the edges of 
the video (e.g., see Figs. 2(a), 2(b) with strong variations in 
lighting and appearance (see Figs. 2(a)-2(h)). We provide a 
comparative summary of our dataset against related modern 
datasets in Table 1. We will next describe the similarities and 
differences between our dataset and other datasets in more 
detail. 

A. VIDEO ACTION RECOGNITION DATASETS 
The UCF-101 dataset [5] provides a large collection of video 
clips that are commonly used for action recognition research. 
It contains 13,320 videos categorized into 101 different 
action classes, such as ‘‘Playing Guitar,’’ ‘‘Cricket Shot,’’ 
and ‘‘Soccer Penalty.’’ These videos were collected from 
YouTube, providing diversity in camera angles, lighting 
conditions, and background environments. The videos have 
a frame rate of 25 frames per second (fps), with a typical 
resolution of 320 × 240 pixels, and average duration of 
7 seconds. More recently, the UCF101-24 [5] provided a 
specialized subset of the UCF101 dataset that includes spatio-
temporal annotations covering 24 unique human activities. 
Unfortunately, UCF101-24 is primarily focused on videos 
characterized by a single activity. UCF101-24 lacks the 

81146 VOLUME 13, 2025 



V. Jatla et al.: Fast and Accurate Video Analysis and Visualization of Classroom Activities 

FIGURE 2. Figure showing variability in AOLME group interaction videos. 

complexity for describing long, simultaneous activities by 
multiple students (see Table 1). 

Unlike UCF-101, the JHMDB dataset [4] focuses on 
analyzing human activity using techniques like pup-
pet fow, puppet masks, and per-frame joint posi-
tions. As a result, each video in JHMDB is mostly 

centered around one actor and represents a single specifc 
activity. 

The AVA 2.1 dataset [15] contains 80 atomic visual actions 
across 430 15-minute movie clips, with actions localized in 
both space and time, leading to 1.62 million action labels. 
Multiple labels per person often occur, enabling the study of 

VOLUME 13, 2025 81147 



V. Jatla et al.: Fast and Accurate Video Analysis and Visualization of Classroom Activities 

TABLE 1. Comparison of recent datasets used for recognizing multiple video activities. Videos from different days refers to the requirement that training 
and testing videos should come from different days. Multiple activities refer to multiple people performing multiple activities. Long multiple activities 
implies that the videos are over 1 hour long. Low-cost cameras refer to the use of amateur video equipment that do not produce broadcast video quality. 
Datasets that do not satisfy the requirement are marked by ✗. Datasets that satisfy the requirement are marked by ✓. 

simultaneous actions. Unlike real-world videos, these videos 
are taken from movies which tend to primarily focus on 
the activity performed by the actor. In addition, the labeled 
actions are atomic actions that do not account for long-term, 
context-driven activities. 

The EPIC-Kitchen [3] dataset consists of 100 hours of 
recordings captured in Full HD (FHD) with 20 million 
frames, all recorded from a head-mounted camera. The 
dataset focuses on egocentric, frst-person activities in 
kitchen environments. EPIC-Kitchens does not involve multi-
ple people performing different activities simultaneously, nor 
does it capture interactions between actors. 

The Multisports dataset [16] is designed for action 
recognition, focusing on athletic activities across various 
sports. It includes high-quality video footage that captures a 
wide range of dynamic actions, often involving entire body 
movements. The dataset emphasizes brief, fast-paced actions 
within relatively short video segments, making it useful for 
analyzing complex, high-speed sports scenarios. However, 
the dataset lacks a clear temporal structure, which presents 
challenges in modeling and predicting action sequences 
based solely on time progression. The dataset is particularly 
suitable for tasks involving unstructured, full-body motion 
analysis. 

Dimitriadou et al. [2] worked with simulated videos 
where students performed specifc actions for 10 seconds. 
Each video captures one student, consistently centered on 
the screen. The dataset is carefully controlled, with minimal 
occlusions, and the subject is always in clear view. This 
dataset features only one person per video. This provides 
a well-organized and consistent environment for action 
recognition tasks. The videos do not capture interactions 
between the students. 

In Korban et al. [1], the authors describe a dataset consist-
ing of nearly 250 hours of classroom videos, collected from 
elementary mathematics and English language arts lessons. 

The dataset includes annotations for various instructional 
activities, such as whole class, small group, individual 
activities, and transitions. These videos were used to train 
neural networks to classify activities based solely on visual 
data, without relying on audio. The dataset provides fne-
grained labels for classroom interactions, making it highly 
suitable for machine learning applications in educational 
research and classroom activity recognition. While it offers 
insights into student group dynamics, it does not associate 
activities with individual students or provide long-term 
insights into the learning process. In our study, we aim to 
address this limitation by defning and associating student 
regions with activities. 

B. AOLME VIDEO DATASET PREPARATION 
Out of each camera, each video comes compressed at a spe-
cifc frame rate. We considered different video transcoding 
parameters to standardize the resolutions, the frame rate, and 
also to recompress the videos for online video streaming. 
We compressed a small video dataset at different rates and 
determined settings that did not compromise video quality 
while maintaining high-quality audio. Video quality was 
judged by reviewing the transcoded videos. We then selected 
the optimized transcoding parameters as described next. 

All videos are transcoded using ffmpeg as given by: 

f fmpeg − i < i n p u t video > \ 
−vf s c a l e =858:480 \ 
−c : v l i b x 264 \ 
−c : a mp3 −b : a 255k \ 
−b : v 2 . 5M \ 
−maxra t e 2 . 5M \ 
−b u f s i z e 1 .25M \ 
−r 30 \ 
−x264−params \ 
" k e y i n t =30:min−k e y i n t =30: no−s c e n e c u t " \ 

81148 VOLUME 13, 2025 



V. Jatla et al.: Fast and Accurate Video Analysis and Visualization of Classroom Activities 

< ou t p u t video > 

We next explain each parameter. Each video is resized 
to 858 × 480 pixels using -vf scale=858:480 
option. We specify the use of the H.264 video codec as 
given by -c:v libx264. To allow for wider access, 
we set the bitrate to 2.5Mbps using -b:v 2.5M option. 
We maintain high audio quality by setting the audio 
bitrate at 255Kbps using -b:a 255k. To ensure smooth 
video delivery during strong bitrate variations, we set 
the encoder’s buffer at 1.25M using -bufsize 1.25M. 
We standardize the video playback frame rate at 30 frames 
per second using -r 30. We use -x264-params 
"keyint=30:min-keyint=30:no-scenecut" to 
guarantee a keyframe at least once every second 
(min-keyint=30) and use no-scenecut to disable 
scene cut detection. Here, we note that by preventing scene 
cut detection, we maintain consistent visual quality across the 
video by avoiding abrupt changes in bitrate or quality due to 
detected scene changes. 

C. AOLME DATASET DESIGN 
The greatest challenge with preparing real-life datasets comes 
from the need to limit the amount of required ground truth. 
This requirement is further complicated by our need to 
localize the activity by identifying where it is happening and 
the need to associate student participants with each activity. 

For this paper, we wanted to avoid the need for face 
recognition of each student. We refer to [12], [17], and [18] 
for a summary of our efforts to apply face recognition to 
real-life classroom videos. We note that recognizing typing 
and writing activities does not require face recognition and 
tracking. Instead, we use a simple initialization process that 
requires the users to defne rectangular hand regions over 
a single frame associated with each video scene. Here, 
we defne a video scene to be a particular scene arrangement 
of the students. On the infrequent occasions when the students 
get up and move to new positions, we require re-initialization 
over the frst frame of the new scene. We defer to future 
work on our efforts to automate scene initialization. However, 
even in future work, we will want to keep developing systems 
with humans in the loop to review the results, challenge 
assumptions, and provide for simple and effective scene re-
initializations. 

We built an effcient collection of ground truth datasets 
that supported our goal of processing unedited real-life 
classroom videos. To support activity localization, we asso-
ciated a single object with each activity. For typing 
activity detection, we selected keyboard detection. For 
writing activity detection, we selected hand detection. 
Our approach is simple. Object detection is used to 
provide video segments over which an activity can 
happen. 

Our approach of associating activities with a single object 
proved very effective. First, it allowed us to use fast 
and reliable object-detection methods to locate the video 

activities. Second, once the object was detected, over each 
object region, we extracted small and short video segments 
for further processing. Third, for the purposes of this section, 
our approach led to effcient methods for providing ground 
truth. 

By requiring object detection for video activity recogni-
tion, we were able to simplify the ground truth process into 
two basic problems. First, for object detection, we select 
representative image examples for each problem. Second, for 
activity recognition, we review short video segments over 
each representative object example. We describe the derived 
datasets in the following three subsections. 

D. AOLME-FULL VIDEO DATASET 
The AOLME project collected 987 hours of videos of student 
group interactions. We organized the videos into cohorts, 
levels, schools, and groups. We use cohort-1, cohort-2, and 
cohort-3 for videos collected in 2017, 2018, and 2019. Each 
cohort followed a different level of the curriculum. At each 
school, the students were organized into small groups, with 
2 to 5 students per group. We record ten to twelve video 
sessions per level per student group. 

We provide a compact labeling system to defne the origin 
of each video. Our video session labeling provides the cohort 
(C1, C2, C3), implementation level (restricted to L1 right 
now), school identifer (P or W), and group letter (A, B, C, 
D), and date (Month day). Thus, a video session labeled as 
C1L1P-A, Mar. 02 refers to Cohort 1, Level 1, P school, 
Group A, Mach 2nd. 

We reviewed the entire AOLME dataset to select repre-
sentative examples of effective teaching practices, ensuring 
diversity in cohorts, schools, groups, and instructional 
approaches. Based on our review, we chose 45 sessions for 
typing and 30 sessions for writing. To evaluate our method’s 
robustness, we split the dataset into training, validation, 
and testing groups based on sessions from different dates. 
Additionally, for validation and testing, we made sure to 
include sessions that hold greater signifcance for educational 
researchers. 

E. TYPING ACTIVITY DETECTION DATASETS: AOLME-T, 
AOLME-TP, AOLME-TC, AND AOLME-TD 
We designed the AOLME-T dataset to train, validate, and 
test typing activities (see Table 2). The dataset consists of 
332 video segments selected from 45 sessions, selected from 
three different cohors and 17 separate student groups. For 
each session, we randomly labeled typing and no-typing 
activities using bounding boxes that dynamically track the 
location of the keyboard over time. In total, we have 479,550 
frames, 4.4 hours of typing and 1,248,900 frames, 11.5 hours, 
of no-typing labels (see Table 4). Based on AOLME-T, 
we create the keyboard object detection dataset AOLME-
TP by selecting a number of keyboard instances to form 
typing proposals (TP). We use the keyboard instances to 
select video segments from AOLME-T to form the AOLME-
TC for training the typing activity classifers (TC). For fnal 

VOLUME 13, 2025 81149 



V. Jatla et al.: Fast and Accurate Video Analysis and Visualization of Classroom Activities 

TABLE 2. Summary of sessions used to train, validate and test typing 
activity. Validation sessions are shown in yellow background. 
Testing sessions are shown in green background. Full video sessions 

for which there is ground truth over the entire duration of the captured 
video are shown in boldface. The remaining unmarked sessions are used 
for training. 

testing of the entire system on raw videos, we select two 
complete sessions (AOLME-TD) as given in Table 2. 
We carefully reviewed the video sessions in AOLME-T 

to select representative keyboard examples for the AOLME-
TP dataset. Our approach was to consider keyboard image 
samples every minute of every video. We ended up with 
1,728,000 images (size = 858 × 480), summarized in 
Table 4. We then removed images where the keyboard is not 
visible. At the end, we selected 1,448 representative keyboard 
instances. The fnal AOLME-TP consisted of 700 images for 
training, 100 for validation, and 648 for testing, selected from 
different sessions. 

The AOLME-TP dataset was used to prepare short video 
segments for typing classifcation (see Table 4). We use the 
term AOLME-TC to refer to the video segments extracted 
from the general dataset (AOLME-T). This dataset includes 
typing and no-typing instances, each standardized to a 
duration of 3 seconds. We chose this duration based on 
the observed range, where typing instances varied from a 
maximum of 284 seconds to a minimum of 3 seconds. Using 
the minimum duration as a reference, we applied spatio-
temporal cropping. Spatial cropping involved computing 

FIGURE 3. AOLME-TC: The creation of typing/no-typing video segments 
based on temporal cropping around the representative keyboard sample. 

TABLE 3. Summary of sesssions used to train, validate and test writing 
activity. Validation sessions are shown in yellow background. 
Testing sessions are shown in green background. Full video sessions 

for which there is ground truth over the entire duration of the captured 
video are shown in boldface. The remaining unmarked sessions are used 
for training. 

the bounding box that contains the union of bounding 
boxes from the individual frames. Temporal cropping is 
centered around the keyboard image as described in Fig. 3. 
AOLME-TC consisted of a total of 405 typing and 398 no-
typing instances, which correspond to approximately 324,000 
typing frames and 817,200 no-typing frames. As for all of 
our datasets, training, testing, and validation are based on 
different sessions (dates) from AOLME-T. 

F. WRITING ACTIVITY DETECTION DATASETS: AOLME-W, 
AOLME-WP, AOLME-WC, AND AOLME-WD 
We provide a summary of the datasets associated with writing 
in Table 3. Writing detection requires that we label writing 
activities associated with 2 to 5 students in each session. 
The AOLME-W dataset consists of 166 videos selected from 
30 sessions, taken from three cohorts and 14 student groups. 
To train the classifers, we randomly selected writing and 
no-writing activities using dynamic tracking to track motions 
through time. In total, we selected 862,710 frames, 7.9 hours 

81150 VOLUME 13, 2025 



V. Jatla et al.: Fast and Accurate Video Analysis and Visualization of Classroom Activities 

FIGURE 4. AOLME-WD: Sessions used to test our writing detection system.On the left we have the first session (WS1) from group E of cohort 1(2017) 
and level 1. On the right we have the second session (TS2)from group C of cohort 3 (2019) and level 1. 

FIGURE 5. AOLME-WC: No-writing example segments. 

long for writing and 2,639,460 frames, 24.4 hours, for no-
writing segments (see Table 4). For writing, we relied on 
hand instances to extract video segments for training our 
writing activity classifers. Similarly, for the fnal testing, 
we labeled two complete raw sessions for the fnal system 
testing (AOLME-WD). (see Fig. 4). 

For hand detection, we developed the AOLME-WP 
dataset. We selected 1,803 hand instances for training, 714 for 
validation, and 2,031 for testing, extracted from different 
video sessions. 

We use the hand instances to defne short video segments 
to train the writing classifers. Each video segment was 3-
seconds long and extracted using spatio-temporal cropping 
as described for the typing dataset. We note that writing 
is a complex activity that may be confused with different 
movements (see Fig. 5). The full dataset, termed AOLME-
WC, consisted of 1,199 writing and 798 no-writing instances, 
corresponding to approximately 107,910 writing frames and 
71,820 no-writing frames. 

III. BACKGROUND 
A. OBJECT DETECTION AND TRACKING 
Several methods have been developed for object detec-
tion and tracking. Popular methods for object detection 

include Faster RCNN [19], Single Shot Detector [20], and 
YOLO [21]. These methods are widely available in Detec-
tron 2 [22] and OpenMMDetection [23] libraries. Popular 
methods for tracking include BOOSTING, MIL, KCF, TLD, 
MEDIANFLOW, GOTURN, MOSSE, and CSRT available 
in OpenCV [24]. We will consider all of these background 
methods for developing our video activity proposals. 

B. VIDEO ACTIVITY CLASSIFICATION 
We refer to [25] for a recent survey on human activity 
localization. Here, we provide a brief summary of popular 
video activity classifcation systems. In our results, we will 
compare against all of these popular methods. 

We begin with the Two-Stream Infated 3D ConvNet 
(I3D [7]). I3D extends successful 2D image classifcation 
architectures into 3D for classifying spatio-temporal features 
from video data. I3D accomplishes this by expanding 2D 
flters and pooling kernels into 3D layers, inserted between 
the original 2D layers. It uses two input streams—one for 
RGB data and another for optical fow— each initialized with 
2D network weights before expansion. I3D achieved 80.9% 
accuracy on HMDB-51 and 98.0% on UCF-101. Similar to 
I3D, we will be processing short 3D video segments extracted 
over regions of interest. 

VOLUME 13, 2025 81151 

https://system.On


V. Jatla et al.: Fast and Accurate Video Analysis and Visualization of Classroom Activities 

TABLE 4. Summary of typing and writing datasets. 

TSN [6] is a framework for video-based action recognition 
that emphasizes long-range temporal structure modeling. 
In TSN, videos are divided into K equal segments, with 
frames sampled from each segment and aggregated to make 
a fnal action prediction. TSN achieves 69.4% on HMDB51 
and 94.2% on UCF101. This sparse sampling approach works 
well for activities with distinct temporal patterns and defned 
starting and ending points. Unfortunately, our datasets do not 
have well-defned starting and ending points. 

The Temporal Shift Module (TSM [8]) claims effcient 3D 
CNN-level performance with the lower complexity of a 2D 
CNN. TSM performs temporal modeling by shifting a portion 
of the channels along the temporal axis. The design supports 
both offine and online video recognition. TSM achieved 
74.1% accuracy on Kinetics, 95.9% on UCF101, and 73.5% 
on HMDB51 offine, with similarly high performance online. 
While TSM is effcient, its pseudo-3D approach of shifting 
channels rather than performing full 3D convolution limits 
its ability to capture the fne-grained temporal details needed 
for intricate activities. 

The SlowFast model is a video analysis architecture 
with two pathways. The Slow pathway processes videos 
at a lower frame rate to capture spatial details. The Fast 
pathway processes videos at higher frame rates to capture 
video motions. This dual pathway enables SlowFast to 
excel in action classifcation and detection by extracting 
complementary spatio-temporal features. Motivated by the 
SlowFast model, in our approach, we will learn a single, 
optimal frame rate that is tuned to each specifc activity that 
we are interested in. 

IV. METHODOLOGY 
We provide a top-level diagram of the proposed system in 
Figure 6. We note that the input is a real-life classroom video 
session. We used independent streams for each activity. Our 
approach allowed us to optimize each stream for the specifcs 

of each activity. Videos are processed in three stages. First, the 
video activity proposal network (VAPN) generates candidate 
video segments for each type of activity. Second, a classifer 
is used to determine whether the activity is happening within 
the video segment. Third, we create a video visualization map 
for each activity. We have obtained informed consent from 
parents and assent from minors for processing the videos 
described in this paper. 

We describe the methodology using four separate sections. 
In section IV-A, we cover the full multiobjective optimization 
framework. In section IV-B, we describe the video activity 
proposal network. In section IV-C, we describe our video 
activity classifcation network. In section IV-D, we describe 
our approach for interactive visualization of video activity 
maps. 

A. A MULTIOBJECTIVE OPTIMIZATION APPROACH TO 
SYSTEM DESIGN 
In this section, we will develop a multiobjective optimiza-
tion approach for optimizing different requirements and 
components of our system. Firstly, we are interested in 
minimizing the amount of ground truth required to train our 
system. Secondly, we would like to minimize the amount 
of training time. Thirdly, we are interested in optimizing 
inference to produce a fast and accurate system that produces 
generalizable results. 

1) MINIMIZING THE REQUIRED AMOUNT OF GROUND 
TRUTH 
We begin with the requirement to minimize the required 
amount of ground truth. As discussed earlier, our approach 
is to train separately for each activity and each system 
component. Our approach is summarized in Table 5. We only 
need to train for our video activity proposal network (VAPN) 
and our video activity classifcation network (VACN). For 
VAPN, we only need ground truth on still image datasets 

81152 VOLUME 13, 2025 



V. Jatla et al.: Fast and Accurate Video Analysis and Visualization of Classroom Activities 

FIGURE 6. System diagram of activity detection system for typing andwriting in AOLME group interaction videos. 

TABLE 5. Component-based training to minimize the required amount of ground truth. 

where we annotate the object of interest (keyboards or hands). 
For VACN, we only need ground truth over short video 
segments of the keyboard and hand regions. Nevertheless, 
we still need ground truth over entire video sessions for 
end-to-end testing of the entire system. However, the key 
advantage of the proposed approach is that we do not require 
large ground truth datasets for end-to-end training. 

Our component-based training approach has signifcant 
advantages over the standard use of end-to-end training and 
testing. First, we note that our component-based approach 
requires signifcantly less amount of ground truth. To see this, 
we note that end-to-end training requires large video datasets 
that capture all possible variations and their combinations. 
Thus, note that the required number of ground truth examples 
grows as the product of the number of examples required for 
each considered variation. For example, to capture N object 
variations and M object motions, we need to generate ground 
truth for N · M videos. In contrast, our component-based 
approach uses N object images that capture object variations 
for training the video activity proposal network and M video 

segments for the video activity proposal networks. Clearly, 
our component-based approach grows as N + M where N 
represent still image examples. Second, our component-based 
approach is modular, easier to debug, and easier to optimize. 
In terms of modularity, we note that we can improve 
performance by simply replacing each component with a 
better version. In terms of debugging, we note that we can 
visualize the performance of each component separately, 
visualizing their successes as failures independent of any 
other component. In terms of optimizing, we note that we can 
optimize each component independendly. 

Our separable approach enabled us to perform precise 
troubleshooting and targeted improvements. For instance, 
when training keyboard detection using a public dataset, 
we observed that the detector underperformed for wireless 
keyboards. This was due to the public dataset initially 
containing more wired keyboard instances. By identifying 
this imbalance through modular debugging, we were able to 
add more wireless keyboard training examples, leading to 
improved detection performance. 

VOLUME 13, 2025 81153 



� 

V. Jatla et al.: Fast and Accurate Video Analysis and Visualization of Classroom Activities 

2) MINIMIZING TRAINING TIME 
We now turn to the problem of minimizing training time 
through the use of low-parameter models for component-
based training. We have already covered how our use of 
component-based training has dramatically reduced training 
dataset sizes. In turn, lower dataset sizes resulted in 
dramatically reduced time for training for a single epoch. 
Then, our use of low-parameter models requires signifcantly 
less epochs than what is typically needed for larger-parameter 
models. In addition, our use of low-parameter models 
required signifcantly less memory for training. As a result, 
we were able to use signifcantly larger batch sizes than the 
larger-parameter models that we were comparing against. 
Beyond using low-parameter systems, we also consider 
reducing the sampling rate of the input video. Thus, instead 
of processing the video at the original sampling rate of 
30 frames per second, we also consider processing the video 
at 10 and 20 frames per second. This approach leads to 
additional speed-up that is ideally proportional to the frame-
rate reduction. Thus, at 10 frames per second, we expect that 
the videos will get processed three times faster (=30/10). 
Overall, our low-parameter models required about 10 times 
less time to train as we document in the results. 

3) OPTIMIZING MODEL PERFORMANCE 
Beyond optimization training, we are also interested in 
optimizing model performance. More specifcally, given the 
large video durations, we are interested in fast and accurate 
inference. Here, once again, we beneft from our use of 
low-parameter systems. As for training, our low-parameter 
system requires signifcantly lower memory and can clearly 
process larger batches of video segments. Furthermore, our 
lower-parameter models are also less complex and run much 
faster. Of course, we also beneft from the use of lower 
sampling rates as we do for training. Naturally, we would 
like to develop our fast models without sacrifcing model 
performance. To effectively describe model performance at 
all possible operating points, we will use the area under the 
ROC curve (AUC). Our requirements lead us to consider 
multiobjective optimization, as we describe next. 

We summarize our approach for optimizing each com-
ponent in Algorithm 1. The goal of the algorithm is to 
jointly optimize for three different objectives: the number of 
parameters, AUC, and inference speed. Assuming everything 
else is equal, an architecture with a smaller number of 
parameters is preferred because it is expected to be better 
at generalization while leading to faster inference. Similarly, 
we are interested in systems that deliver the highest AUC and 
lowest inference time. Ideally, a system can optimize all three 
objectives at the same time. In this case, the optimal system 
uses the smallest number of parameters while also providing 
the highest AUC and requiring the minimum inference time. 
In this ideal scenario, the optimized architecture is better than 
any other architecture under consideration. 

In general, multiobjective optimization results in a collec-
tion of optimized architectures. We refer to the collection 
of optimized architectures as the Pareto front (refer to [26] 
for details on the Pareto front). In Algorithm 1, we present 
the general algorithm that computes the full Pareto front 
of optimal architectures, frame rates, and corresponding 
performance metrics (objectives). For the algorithm, Sys 
refers to a parametrized model that returns a different 
architecture based on an integer confguration parameter C. 
In addition to the model Sys, the algorithm accepts C_range 
that represents a list of all possible values of C that need 
to be considered. Furthermore, to speed up inference time, 
we again consider the sampling rate of the input video in 
terms of the number of frames per second (FPS) and the 
number of videos used in each batch (B). 

As shown in Algorithm 1, we initialize the Pareto front 
with the number of parameters, AUC, and inference time 
generated by all possible combinations of neural network 
levels and input video frame rates. We note that C also 
determines the number of parameters that will be used by the 
model. AUC and inference time are measured on the test set. 

The Pareto front is calculated through a process of removal 
of suboptimal confgurations. As shown in Algorithm 1, 
for each confguration on the Pareto front, we search for a 
better one that improves any one of the objectives without 
sacrifcing any other (see lines 1 to 1). If a better confguration 
is found, then the currently considered confguration is 
removed from the Pareto front. At the end, we are left with 
all of the confgurations that cannot be improved upon. They 
form the fnal Pareto front. 

More precisely, we can formulate our computation of the 
Pareto front using multiobjective optimization. Our algorithm 
computes the solution to: 

min Par(Sys(C)), 
C, FPS 

− AUC(Sys(C), FPS),� 
Inf(Sys(C), FPS, B) . (1) 

In (1), recall that the number of parameters is directly 
controlled by C. To achieve higher AUC, we place a negative 
sign in front of AUC so that the minimal values correspond 
to higher positive AUC values. On the other hand, AUC and 
inference speed depend both on the parameterized model and 
the input video frame rate. We assume that the AUC is not 
affected by the number of videos used in each batch (B). 
On the other hand, we note that the inference speed is affected 
by B. 

4) SELECTING OPTIMAL CONFIGURATIONS 
We now turn to the problem of determining optimal models 
for different scenarios. Optimal solutions are computed 
through a process of selecting a specifc confguration 
from the Pareto front that is computed using Algorithm 1. 
We begin with the standard approach of optimizing for a 
single objective and then consider the problem of balancing 
among the objectives. 

81154 VOLUME 13, 2025 



V. Jatla et al.: Fast and Accurate Video Analysis and Visualization of Classroom Activities 

Algorithm 1 Pareto Front Algorithm 
1: function OptSys, C_range, FPS_range, B_range 
▷ Multiobjective optimization framework for 
▷ simultaneously optimizing: 
▷ the number of system parameters, 
▷ AUC and inference time. 
▷ Input: 
▷ Sys represents the parametrized system 
▷ to be optimized. 
▷ C_range controls the system confgurations. 
▷ FPS_range provides a collection of frames per 
▷ second for the input video. 
▷ B_range provides the range of values for the 
▷ batch size. 
▷ Output: 
▷ ParetoFront that saves the optimal values of 
▷ Parameters, AUC, and inference time. 
2: ▷ Evaluate all confgurations 
3: for FPS, C, B in FPS_range, C_range, B_range do 
4: Train Sys(C) using B videos per batch 
5: sampled at FPS frames per second. 
6: Test Sys(C) using videos at FPS. 
7: Save Pars, Acc, Inf for given FPS, C, B. 
8: end for 
9: ▷ Compute Pareto Front 
10: Initialize ParetoFront with all Pars, Acc, Inf 
11: for Pars_i, AUC_i, Inf_i ∈ ParetoFront do 
12: Look for better Pars_j, AUC_j, Inf_j such that: 
13: (Par_j<Par_i)&(AUC_j≥AUC_i)&(Inf_j≤Inf_i) 
14: or 
15: (Par_j≤Par_i)&(AUC_j>AUC_i)&(Inf_j≤Inf_i) 
16: or 
17: (Par_j≤Par_i)&(AUC_j≥AUC_i)&(Inf_j<Inf_i) 

18: if better Pars_j, AUC_j, Inf_j found then 
19: Remove Pars_i, AUC_i, Inf_i 
20: from ParetoFront 
21: end if 
22: end for 
23: return ParetoFront 
24: end function 

Consider the problem of maximizing the validation Area 
Under the Curve (AUC). The standard approach is to select 
the model confguration that solves: 

max AUC(Sys(C), FPS). (2)
C, FPS 

Unfortunately, focusing on maximizing AUC alone can lead 
to unacceptably slow inference times or the requirement to 
train a large number of parameters over a large dataset. 
To avoid this scenario, we impose constraints on the maxi-
mum inference time and the number of system parameters. 
Let P_max denote the maximum number of parameters. Let 
Inf_max denote the maximum acceptable inference time. 

VOLUME 13, 2025 

We reformulate (2) as a constrained optimization problem 
using: 

max AUC(Sys(C), FPS)
C, FPS 

subject to: (Par(Sys(C) ≤ P_max) and 
(Inf(Sys(C), FPS, B) ≤ Inf_max) . (3) 

We refer to (3) as the maximum AUC confguration. Simi-
larly, we select the minimum inference time confguration 
using: 

min Inf(Sys(C), FPS, B)
C, FPS 

subject to: (Par(Sys(C)) ≤ P_max) and 
(AUC(Sys(C), FPS) ≥ AUC_min) (4) 

where AUC_min refers to the minimum acceptable testing 
AUC value. Then, the minimum parameter confguration 
is selected using: 

min Par(Sys(C)) 
C, FPS 

subject to: (Inf(Sys(C), FPS, B) ≤ Inf_max) and 
(AUC(Sys(C), FPS) ≥ AUC_min) . (5) 

Our optimal confgurations of equations (3), (5), and (4), can 
be computed by evaluating all possible confgurations of the 
Pareto front. 

Based on the established constraints, we also want to 
consider selecting a balanced confguration that takes into 
consideration tradeoffs between our three objectives. Once 
again, we want to impose objective constraints on the fnal 
confguration. Here, we consider a convex combination of the 
normalized objectives as given by 

Inf
−AUC + λInf Video_dur 

Par 
+ λPar ,

Par_min 
(6) 

where λInf refers to the weight assigned to the inference 
time, λPar refers to the weight assigned to the number of 
parameters, Video_dur refers to the duration of the video, and 
Par_min refers to the minimum number of parameters among 
all models. Our normalization is aimed at providing intuitive 
meaning to the weights. For example, an inference time that is 
the same as the duration of the video implies that we may be 
able to process and stream the results in real time. In reporting 
our results, we will refer to the ratio Inf/Video_dur as the 
inference speed (e.g., in the results discussed in Table 8). 
Also, we will refer to the ratio Par/Par_min as the parameter 
ratio (see Table 8). 

The full framework for selecting the balanced confgura-
tion is given by: 

min −AUC(Sys(C), FPS)
C, FPS 

Inf(Sys(C), FPS, B)
+ λInf Video_dur 

Par(Sys(C) 
+ λPar Par_min 

subject to: (Inf(Sys(C), FPS, B) ≤ Inf_max) and 

81155 



V. Jatla et al.: Fast and Accurate Video Analysis and Visualization of Classroom Activities 

(AUC(Sys(C), FPS) ≥ AUC_min) and 
(Par(Sys(C) ≤ P_max) . (7) 

Next, we will provide a short discussion about picking 
different parameters. Given our focus on processing long-
duration videos, we are interested in relatively fast inference 
times. This suggests that we want our inference times 
to be at-least as long as the duration of the video: 
Inf_max=Video_dur. For AUC, we want AUC to be well 
above 50%. We thus set AUC_min=0.6. To support training 
using common hardware without requiring large training 
datasets, we want to set the maximum number of possible 
parameters to about 100M. We note that much larger models 
can be loaded in memory with more recent hardware. 
Nevertheless, larger models require large ground truths for 
training or pre-training for transfer learning applications. 
Thus, we can set P_max=100M that will be satisfed by all 
of the models that we consider. For the weights, we note that 
λInf = λPar = 1 will produce a reasonable confguration that 
balances all of the objectives. To emphasize AUC, we can set 
λInf = λPar = 0.1. To emphasize inference speed, we can 
set λInf = 10 and λPar = 1. To emphasize minimizing the 
number of parameters, we can set λPar = 10 and λInf = 1. 

B. VIDEO ACTIVITY PROPOSAL NETWORK (VAPN) 
Our goal for the VAPN is to use fast object detection 
methods to detect regions of interest without compromising 
performance. To this end, we consider the use of methods 
that have been pre-optimized for speed. We note that the 
VAPN will provide the input to the VACN and hence, the 
VACN will not be able to detect any activities if the VAPN 
fails to detect a true object. On the other hand, if VAPN 
provides false positives, the VACN can be used to remove 
them. In terms of our multiobjective optimization framework, 
the VAPN is optimized to have a small number of false 
positives while allowing false negatives to be later handled 
by the VACN. In what follows, we summarize the different 
VAPN confgurations that were considered and explain how 
the fnal components were selected. We will not detail the full 
multiobjective optimization approach here. For more details, 
refer to [27]. 

For VAPN, we need to consider different confgurations 
for object detection, post-processing, tracking, and the 
operating frame rate. For object detection, we considered 
fast methods based on Faster RCNN [19], Single Shot 
Detector [20], and YOLO [21]. For both keyboard and 
hand detection, we found that Faster RCNN gave the best 
results, with a small number of false negatives and a 
reasonable number of false positives. To improve accuracy 
for hand detection, we averaged detections over 12 frames. 
Furthermore, after averaging, we removed detections with 
small areas (area opening) to reduce the number of 
false positives, without increasing the number of false 
negatives. 

Following object detection, we considered different meth-
ods for object tracking. We consider optimized methods for 

object tracking based on OpenCV: BOOSTING, MIL, KCF, 
TLD, MEDIANFLOW, GOTURN, MOSSE, and CSRT. 
Based on our testing, we got the best accuracy results using 
KCF [28]. As required by our multiobjective framework, 
we also determined optimal video sampling rates for each 
activity. For hand detection, we sample one frame per 
second. For keyboard detection, we sample one frame every 
5 seconds. 

To attribute an activity to a particular student, we compute 
the intersection over union (IoU) between the detected object 
and the rectangular regions associated with each student 
(initialized at the beginning of each scene). For IoU>50%, 
we associate an object detection with a specifc student. 

C. VIDEO ACTIVITY CLASSIFICATION NETWORKS (VACN) 
We are interested in implementing the full multi-objective 
optimization framework for VACN. In terms of our mul-
tiobjective optimization framework, we note that we are 
interested in fast, low-parameter systems that can operate 
at optimal frame rates. We are naturally led to consider 
the optimization of 3D CNN architectures as opposed to 
signifcantly higher-parameter transformer networks. Here, 
we also note our use of VAPN also eliminates the need 
for transformer models because we do not need to model 
global interactions. We simply need to use our VACN to 
classify short video segments over the objects detected 
by VAPN. 

We consider a family of 3D CNN architectures that uses 
3D max pooling at each level. As a result, as the number 
of convolutional levels increases, successful pooling also 
reduces the number of required parameters for the fnal fully 
connected layer. As we document in the results, our approach 
leads to a parametrized 3D CNN architecture that improves 
performance as the number of levels increases while reducing 
the number of parameters at the same time. Furthermore, 
our models sample the input videos at different frame rates 
in order to capture coarse temporal characteristics of each 
activity. Then, at the activity-specifc frame rate, we use a 
family of 3D CNNs to capture fne spatio-temporal features 
of each activity. 

We consider a family of different 3D CNN architectures 
parametrized by the number of Dyad networks as shown in 
Fig. 7. Each dyad consists of 3D-ConvNet kernels, batch 
normalization, ReLU activation, and 3D max-pooling. For 
the D-th dyad, we use 2D+1 3D-ConvNet kernels, as shown 
in fgure 7. The maximum depth, Dmax of our architecture 
depends on the size of the input video. For our dataset 
videos, which have a size of 3 × 224 × 224 × fr , where 
fr is the number of frames, the maximum depth that can be 
supported is 4. As shown in Fig. 7, we can support up to 
four depth levels. Overall, we explore three different rates 
at four depth levels for a total of 12 different processing 
models. 

We will use multiobjective optimization framework to 
select optimal models as described in the results. 

81156 VOLUME 13, 2025 



V. Jatla et al.: Fast and Accurate Video Analysis and Visualization of Classroom Activities 

FIGURE 7. Video activity classification networks based on dyadic architectures. A family of 4 low-parameter architectures 
were considered for determining whether an activity was present in each video segment. 

D. INTERACTIVE VISUALIZATION OF VIDEO ACTIVITY 
MAPS 
Our interactive visualization of video activity maps is 
designed to be applicable to any number of activities. 
However, as stated in the introduction, we focus on recog-
nizing writing and typing activities. We present the WebApp 
interface to visualize all typing activities over the entire video 
in Fig. 8. 

The WebApp takes the original input with bounding boxes 
and time stamps that mark the activity within each video 
session. It then generates an interactive activity map with 
links back to the original input video. The WebApp associates 
a student pseudonym with each activity. For each student, 
we use a different row to summarize the results. Along each 
row, a sequence of bars marks the beginning and the ending 
of each activity. 

The WebApp is highly interactive. When a user hovers over 
each bar, they can view the activity time interval. They can 
then click on each bar to activate a link that loads the video 
hosted on our AOLME server, allowing users to review the 
activity in question. 

The Webapp provides controlled access. To access the 
WebApp, users must frst register with the AOLME website. 
The system supports multiple concurrent users. 

We provide an example in Figure 8b. The Figure shows 
several features of the interactive WebApp. We note that the 
displayed activity maps also provide zoom-in and zoom-out 
so that the users can focus on specifc intervals. 

V. RESULTS 
In this section, we provide detailed results on the 
optimization of the video activity classifcation net-
work, comparisons against other methods, and interactive 
visualization of the results. In terms of performance, 
we used an Intel Xeon CPU running at 2.10 GHz 
and 128 GB of RAM. Our system used an Nvidia 
Quadro RTX 5000 GPU with 16 GB of video memory, 
which is considered to be lower-end according to standard 
benchmarks [29]. 

A. VAPN RESULTS 
We present results from VAPN in Fig. 9. In what fol-
lows, we present results for keyboard and hand detections 
separately. 

We note that training on wired and wireless keyboard 
examples worked well. As seen in Fig. 9(a), the VAPN 
can successfully detect wired and wireless keyboards under 
signifcant occlusions. On the other hand, the VAPN failed 

VOLUME 13, 2025 81157 



V. Jatla et al.: Fast and Accurate Video Analysis and Visualization of Classroom Activities 

FIGURE 8. System diagram and example of interactive activity map. 

FIGURE 9. VAPN results for keyboard detection (top images) and hand detection (bottom images). 

to detect keyboards under signifcant appearance changes Fig. 9(b)). Overall, we achieved an average precision (AP) 
(see left image and in Fig. 9(b)). The VAPN also confused of 0.92 and average recall of 0.676 at 0.5 intersection over 
a dark notebook for a keyboard (see the right image and in union (IOU). 

81158 VOLUME 13, 2025 



V. Jatla et al.: Fast and Accurate Video Analysis and Visualization of Classroom Activities 

TABLE 6. Multiobjective optimization results for VACN architectures in 
terms of the number of parameters, test-set accuracy, and inference 
speed. In this table, we report accuracy over the test-set. This accuracy 
increased with the test-set AUC. Inference speed is controlled in terms of 
the frame rate and the number of parameters. FPS refers to the number 
of frames per second of the input video. Thus, at 10 FPS, the network is 
applied to the video sampled at 10 frames per second. The number of 
parameters is controlled in terms of the number of dyads. We choose the 
highlighted configuration as the most balanced configuration (see text). 

Hand detection without the use of projections pro-
duced many false positives as shown in Fig. 9(c). 
On the other hand, our use of projection-based flter-
ings reduced most of the false positives as shown in 
Fig. 9(d). Overall, hand detection achieved an average 
precision of 0.72 at 0.5 IOU. Refer to [27] for more 
details. 

In terms of our overall system, we recall that the VACN can 
reduce the number of false positives by correctly classifying 
the activity over the wrong objects. On the other hand, our 
system cannot reduce the number of false negatives since they 
are not input to the VACN. 

B. VACN TRAINING 
For training, we use the Adam optimizer with an initial 
learning rate of 0.001, and use early stopping and video data 
augmentation techniques to prevent overftting. During train-
ing, we apply data augmentation with 50% probability. Thus, 
for half the video segments, we apply uniformly random 
shearing (shearing factor between −0.05 and 0.05), rescaling 
(scaling factor between 0.9 and 1.2), rotation (angle between 
−7 and 7 degrees), translation between −5 and +5 pixels, 
and horizontal fips. Furthermore, we train each model for a 
minimum of 50 epochs and a maximum of 100 epochs, with 
early stopping applied after 50 epochs. The early stopping 
uses a patience of 5 epochs. In other words, after 50 epochs, 
we select the best model and terminate training if perfor-
mance over the validation set does not improve after 5 epochs. 
Here, we note that our early stopping is used to avoid 
overftting. 

TABLE 7. Fast training using small and short video segments over regions 
of interest proposed by VAPN. The proposed CNN approach is the fastest, 
with a batch size of 16. 

FIGURE 10. Inference speed optimization based on batch size.The 
optimal batch size is achieved at batch size=16.Inference speed is 
measured as the ratio of the output video frame rate divided by the input 
video frame rate. The optimal inference speed is at 154× which 
corresponds to 4,620 frames per second. 

C. MULTIOBJECTIVE OPTIMIZATION OF VACN 
We performed multiobjective optimization to select an 
optimal VACN for each activity. As described in the 
methodology, we selected the optimal model-based on the 
test-set AUC, the number of parameters and inference speed. 

We present results from our multiobjective optimization 
of the VACN architectures in Table 6. In terms of our 
multiobjective frameworks, we select the maximum AUC 
confguration mode that is represented by the maximum 
accuracy mode in Table 6. For typing, we achieved a test 
AUC of 0.95 and for writing, we achieved an AUC of 0.84. 
In terms of constraints, we note that at sampling at 10 frames 
per second, our chosen confguration is the fastest possible 
because it processes a smaller number of frames per second. 
In terms of the number of parameters, we note that we are 
using just 18.7K parameters which is a very small number 
(but more than the 7.8K for 3 dyads). Overall, in terms of 
balancing the constraints, we sacrifce an increase in the 
number of parameters to achieve signifcant improvements 
in the test-set accuracy. 

We further consider inference speed optimization by 
varying the batch size. The results are shown in Fig. 10. 
Here, batch size refers to the number of video segments. 

VOLUME 13, 2025 81159 



V. Jatla et al.: Fast and Accurate Video Analysis and Visualization of Classroom Activities 

TABLE 8. Comparative results for video activity classification in terms of the number of parameters, inference speed, and memory requirements. The 
model performance is measured using AUC and accuracy. We measure inference speed based on the original video playback speed (playback speed = 
1×). The best performance is highlighted against a green background. The proposed approach uses over a 1000 times less parameters, requires far less 
memory, runs faster, and performs better than all other methods. 

FIGURE 11. Multiobjective optimization results for typing (top images) and writing (bottom images).The results demonstrate that the optimized VACN is 
significantly better in terms of the number of parameters,testing accuracy (error rates), and inference time.To facilitate visualization, we plot three 
combinations of any two objectives. For all objectives, lower values are better. 

We measure the inference speed as a ratio of the output frame 
rate to the input frame rate. Thus, in Fig. 10, an inference 
speed of 1× implies real-time video processing where the 
output frame rate is the same as the input frame rate. The 
optimal network can perform inference at 4,620 frames 
per second (4,620=154*30) of 154 × 30 pixels per frame. 

D. TRAINING PERFORMANCE COMPARISONS 
Our optimization approach led to very fast training times (see 
Table 7). We note that this is primarily due to the fact that 

we train on small and short video segments over hand and 
keyboard regions. 

Our fast training results demonstrate the advantages of 
our approach. First, we recall that our approach does not 
require any pre-training. Despite the fact that we initialize 
from random values, our optimized VACN trained faster than 
any other method. Here, unlike all other methods, we did 
not perform GPU-based video decoding. Instead, we are 
only using CPU-based video decoding, which is somewhat 
slower. Yet, we still outperform every other method during 
training. 

81160 VOLUME 13, 2025 



V. Jatla et al.: Fast and Accurate Video Analysis and Visualization of Classroom Activities 

FIGURE 12. Typing classification examples over 90-minute sessions from AOLME-TD dataset. 

E. INFERENCE MODEL COMPARISONS 
We compare our model against several popular state-of-
the-art methods in Table 8 and Fig. 11. For comparison, 
we have trained all models on the same datasets. Fur-
thermore, as described earlier, we performed inference 
speed optimization by varying the batch size for each 
method. As before, we measure performance using AUC 
and accuracy (for IoU=0.5). We also compare the number of 
trainable parameters, Graphical Processing Unit memory, and 
inference speed. 

From the results, we note that our classifers use extremely 
low parameter models. At just 18.7k, the proposed model 
uses 1252× to 1437× fewer parameters than any other 
model. Overall, the proposed models require 20× to 28× 
less memory than any other popular model considered in the 
literature. 

Our proposed models outperform every other model in 
terms of inference speed and classifcation performance. 
Over our full session datasets, our AUC results are signif-
cantly better than any other model. For typing, we achieved 

an AUC of 0.83. For writing, we achieved an AUC of 0.59, 
which is much lower. Nevertheless, our writing classifcation 
performance is signifcantly higher than any other model. 
In terms of our combined performance, we note that no 
other classifer gets close to our performance and speed. 
For example, TSM is much slower and achieved AUCs of 
0.77 and 0.41 (compared against 0.83 and 0.59 for our 
models). 

We demonstrate the signifcant advantages of our proposed 
approach in the Pareto plots of Fig. 11. For each plot, 
we note that our proposed approach is plotted in the lower-left 
corner. This implies that our approach outperforms all other 
methods in terms of every possible combination of inference 
speed, accuracy (given by 1 - error rate), or the number of 
parameters. 

While other methods may approach our models’ perfor-
mance in any one objective, this comes at a signifcant cost at 
the other two objectives. And of-course, as mentioned earlier, 
without any pre-training on larger datasets, our proposed 
approach outperformed every other method while using more 

VOLUME 13, 2025 81161 



V. Jatla et al.: Fast and Accurate Video Analysis and Visualization of Classroom Activities 

FIGURE 13. Writing classification examples over 90-minute sessions of the AOLME-WD dataset. 

than 1000× fewer parameters. In terms of inference speed, 
we note that TSM is also fast (e.g., see right plots in Fig. 11). 
However, we note that the TSM’s error rate is signifcantly 
worse than our proposed approach (e.g., by 10 percent or 
more). Similarly, in terms of accuracy, TSN, although it is 
slightly worse, approaches our error rate for writing (see 
bottom-right plot in Fig. 11). However, we signifcantly 
outperform TSN in terms of accuracy for typing classifcation 
(see top-right plot in Fig. 11). At the same time, we are more 
than 38× faster in terms of inference speed! As shown in 
the multiobjective plots of Fig. 11, in terms of objectives, 
the remaining models perform signifcantly worse in every 
objective. 

VI. FULL-SESSION VIDEO EXAMPLES (90 MINUTES) 
A. TYPING CLASSIFICATION 
We present several typing classifcation examples in Fig. 12. 
The examples come from testing over 90-minute video 
sessions from the AOLME-TD dataset. 

We note the strong diversity of our examples. In the 
majority of our examples, keyboards are highly occluded. 
We also present some examples where hands are severely 
occluded. Our examples also include complicated hand 
motions over keyboards. Overall, we note that our dataset 

captures the strong diversity of angles, positions, and 
occlusions associated with typing activities. 

Our VACN correctly detects typing in a variety of complex 
scenarios. For example, in Fig. 12(a), we have examples of 
hand presence over keyboards that were correctly classifed 
as true negatives due to the lack of typing motions. Similarly, 
despite strong occlusions, typing movements were correctly 
classifed as true positives in Fig. 12(b). We also present 
complex examples of misclassifcations in Fig. 12(c) and 
Fig. 12(d). In Fig. 12(c), we present examples of hand 
movements that resembled typing that were misclassifed as 
typing. In Fig. 12(d), we present examples of typing under 
occlusion that were missed. In the fourth image from the left 
of Fig. 12(d), we note that the fngers associated with typing 
fell outside the VAPN detection region. 

Overall, our method performed very well in cases with 
strong occlusions where typing remained clearly visible. Our 
method performed badly in cases with severe occlusion with 
limited visibility of the fngers involved in the typing action. 
We have also found a limited number of cases where fnger 
motions over the keyboard region were misclassifed as false 
positives. To improve performance for such cases, there is 
a need to include training examples with non-typing fnger 
motions located over the keyboard region. In terms of our 

81162 VOLUME 13, 2025 



V. Jatla et al.: Fast and Accurate Video Analysis and Visualization of Classroom Activities 

FIGURE 14. AOLME-TD visualization for typing. The interactive WebApp interface is shown in the top figure. Results against ground truth are 
shown in the bottom figure. For the bottom figure, we have run a 10-second median filter to reflect the intended use of our system. For the bottom 
figure, TP refers to true positives, FP refers to false positives, FN refers to false negatives. Note that everything else represents a true negative. 

overall system, we hope that false positives will be identifed We note the diversity of testing examples in the AOLME-
during the fnal review using interactive visualization. WD dataset. Regarding placement, we note severe occlu-

sions, pose variations, and strong variations in camera angles. 
In terms of motions, in addition to writing, we had strong 

B. WRITING CLASSIFICATION variations, including students playing with their pencils and 
We present several examples of writing activity classifcation making different gestures. 
in Fig. 13. The examples come from testing over 90-minute The VACN correctly rejected cases with little or no 
writing sessions from the AOLME-WD dataset. hand movements as true negatives (see Fig. 13(a)). Despite 

VOLUME 13, 2025 81163 



V. Jatla et al.: Fast and Accurate Video Analysis and Visualization of Classroom Activities 

FIGURE 15. AOLME-TD: Typing detection results visualization over real-life classroom videos. Our system was able to detect and track two 
different types of keyboards. 

FIGURE 16. Typing activity detection visualization examples. 

occlusions and strong pose variations, the VACN correctly 
labeled writing movements as true positives (see Fig. 13(b)). 
Yet, the VACN incorrectly classifed students playing with 
their pencils and other complex hand movements as writing 
activities (see Fig. 13(c)). The VACN also missed writing 
activities in cases of extreme occlusions or large writing 
movements (see Fig. 13(d)). 

Overall, our method performed well in cases where writing 
is associated with relatively slow hand movements that are 
visible despite severe occlusions. We missed cases where 
writing is associated with large movements (e.g., drawing) 
and cases where the majority of hand movements were 
severely occluded. To improve performance for such cases, 
as before, there is a need to extend the training dataset 
to include examples of complex hand motions that are 
not associated with writing (e.g., drawing, playing with 
the pencil, etc). As before, we hope to identify these 
false positives during the fnal review using interactive 
visualization. 

C. INTERACTIVE VIDEO ACTIVITY VISUALIZATION USING 
ACTIVITY MAPS 
We present typing activity results over a 90-minute video in 
Fig. 14. The users can zoom in and out in different parts 

of the video and click to inspect specifc portions of the 
video activity as demonstrated in 15 and 16. Our interactive 
system allows users to review educational activity patterns 
and recognize collaborative learning patterns within each 
student group. Here, we focus on interpreting the video 
activity recognition results. 

We analyze the global typing activity recognition results 
using Fig. 14. In the top plot of Fig. 14, we can visualize 
typing patterns over 90 minutes of real-life classroom videos. 
The users can then click on the map to verify the results. 
The bottom plot of Fig. 14 displays a detailed comparison 
of the detected typing activity against ground truth. From the 
results, it is clear that our system is able to recognize the 
general typing patterns. We note that false positives can be 
easily removed during the interactive review process. Even 
for our false negatives, we note that there is often a small 
number of nearby true positives that will direct the users’ 
attention to the general video segment where the activity 
is happening. Hence, during the interactive review process, 
we can eliminate several of our false negatives by reviewing 
longer video segments around our true positives. 

We also present results during our interactive review 
process in Figs. 15 and 16. In Fig. 15, we can see that 
our system successfully detected typing activity around a 
compact wireless keyboard (on the left) and a full size wired 
keyboard (on the right). 

We interactively zoom in to visualize specifc results as 
demonstrated in Figs. 15 and 16. In Fig. 15, we can see 
that the system successfully detected two types of keyboards 
under partial occlusion. We show more examples in Fig. 16. 
We note that our proposed system was able to detect typing 
activities in challenging scenarios (e.g., see Figs. 16(a)-(b)). 
An example of failure to detect a typing activity is shown in 
Fig. 16(c). In this example, our system could not identify a 
keyboard for which the keys were not visible. In Fig. 16(d), 
we show an example of hand activity being classifed as 
typing. 

VII. CONCLUSION 
Our paper described the development of a video activity 
recognition system that can effciently process 

81164 VOLUME 13, 2025 



V. Jatla et al.: Fast and Accurate Video Analysis and Visualization of Classroom Activities 

90-minute real-life classroom video sessions. Our approach 
focused on the development of separable video activity 
recognition systems that use an extremely low-number 
of trainable parameters. At 18.7k, our optimized video 
activity classifcation system uses more than 1,000 times 
less parameters than any of the popular state-of-the-art video 
activity recognition systems. At the same time, our proposed 
system runs signifcantly faster and performs signifcantly 
better than any of the popular state-of-the-art video activity 
recognition systems. The key idea here is that our proposed 
approach allows us to optimize processing frame rates 
and minimize parameters that allows us to target specifc 
activities, as opposed to the standard practice of using transfer 
learning from large-scale video activity recognition systems. 
Furthermore, we have developed an interactive WebApp that 
allows educational researchers to visualize video activity 
patterns over very long (90-minute) real-life classroom 
videos. 

REFERENCES 
[1] M. Korban, S. T. Acton, P. Youngs, and J. Foster, ‘‘Instructional activity 

recognition using a transformer network with multi-semantic attention,’’ 
in Proc. IEEE Southwest Symp. Image Anal. Interpretation (SSIAI), 
Mar. 2024, pp. 113–116. 

[2] E. Dimitriadou and A. Lanitis, ‘‘Using Student action recognition to 
enhance the effciency of tele-education,’’ in Proc. 17th Int. Joint 
Conf. Comput. Vis., Imag. Comput. Graph. Theory Appl., 2022, 
pp. 543–549. 

[3] D. Damen, H. Doughty, G. M. Farinella, S. Fidler, A. Furnari, E. Kazakos, 
D. Moltisanti, J. Munro, T. Perrett, W. Price, and M. Wray, ‘‘Scaling 
egocentric vision: The EPIC-KITCHENS dataset,’’ in Proc. Eur. Conf. 
Comput. Vis. (ECCV), Jan. 2018, pp. 720–736. 

[4] H. Jhuang, J. Gall, S. Zuff, C. Schmid, and M. J. Black, ‘‘Towards 
understanding action recognition,’’ in Proc. IEEE Int. Conf. Comput. Vis., 
Dec. 2013, pp. 3192–3199. 

[5] K. Soomro, A. Roshan Zamir, and M. Shah, ‘‘UCF101: A dataset of 101 
human actions classes from videos in the wild,’’ 2012, arXiv:1212.0402. 

[6] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. Van Gool, 
‘‘Temporal segment networks for action recognition in videos,’’ IEEE 
Trans. Pattern Anal. Mach. Intell., vol. 41, no. 11, pp. 2740–2755, 
Nov. 2019. 

[7] J. Carreira and A. Zisserman, ‘‘Quo vadis, action recognition? A new 
model and the kinetics dataset,’’ in Proc. IEEE Conf. Comput. Vis. Pattern 
Recognit. (CVPR), Jul. 2017, pp. 4724–4733. 

[8] J. Lin, C. Gan, and S. Han, ‘‘TSM: Temporal shift module for effcient 
video understanding,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), 
Oct. 2019, pp. 7082–7092. 

[9] C. Feichtenhofer, H. Fan, J. Malik, and K. He, ‘‘SlowFast networks for 
video recognition,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), 
Oct. 2019, pp. 6201–6210. 

[10] S. Teeparthi, V. Jatla, M. S. Pattichis, S. Celedón-Pattichis, and 
C. LópezLeiva, ‘‘Fast hand detection in collaborative learning environ-
ments,’’ in Proc. 19th Int. Conf. CAIP, Jan. 2021, pp. 445–454. 

[11] V. Jatla, S. Teeparthi, M. S. Pattichis, S. Celedón-Pattichis, and 
C. LópezLeiva, ‘‘Long-term human video activity quantifcation of 
Student participation,’’ in Proc. 55th Asilomar Conf. Signals, Syst., 
Comput., Oct. 2021, pp. 1132–1135. 

[12] W. Shi, P. Tran, S. Celedón-Pattichis, and M. S. Pattichis, ‘‘Long-
term human participation assessment in collaborative learning envi-
ronments using dynamic scene analysis,’’ IEEE Access, vol. 12, 
pp. 53141–53157, 2024. 

[13] P. Tran, M. S. Pattichis, S. Celedón-Pattichis, and C. LópezLeiva, ‘‘Facial 
recognition in collaborative learning videos,’’ in Proc. Int. Conf. Comput. 
Anal. Images Patterns, Jan. 2021, pp. 252–261. 

[14] T. Hastie, The Elements of Statistical Learning: Data Mining, Inference, 
and Prediction, 2nd ed., Cham, Switzerland: Springer, 2009. 

[15] C. Gu, C. Sun, D. A. Ross, C. Vondrick, C. Pantofaru, Y. Li, 
S. Vijayanarasimhan, G. Toderici, S. Ricco, R. Sukthankar, C. Schmid, 
and J. Malik, ‘‘AVA: A video dataset of spatio-temporally localized atomic 
visual actions,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 
Jun. 2018, pp. 6047–6056. 

[16] Y. Li, L. Chen, R. He, Z. Wang, G. Wu, and L. Wang, ‘‘MultiSports: 
A multi-person video dataset of spatio-temporally localized sports 
actions,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2021, 
pp. 13516–13525. 

[17] W. Shi, M. S. Pattichis, S. Celedón-Pattichis, and C. LópezLeiva, 
‘‘Robust head detection in collaborative learning environments using 
AM-FM representations,’’ in Proc. IEEE Southwest Symp. Image Anal. 
Interpretation (SSIAI), Apr. 2018, pp. 1–4. 

[18] W. Shi, M. S. Pattichis, S. Celedón-Pattichis, and C. LópezLeiva, 
‘‘Dynamic group interactions in collaborative learning videos,’’ in Proc. 
52nd Asilomar Conf. Signals, Syst., Comput., Oct. 2018, pp. 1528–1531. 

[19] S. Ren, K. He, R. Girshick, and J. Sun, ‘‘Faster R-CNN: Towards real-
time object detection with region proposal networks,’’ IEEE Trans. Pattern 
Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149, Jun. 2017. 

[20] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and 
A. C. Berg, ‘‘SSD: Single shot MultiBox detector,’’ in Proc. Eur. Conf. 
Comput. Vis., Jan. 2016, pp. 21–37. 

[21] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, ‘‘You only look once: 
Unifed, real-time object detection,’’ in Proc. IEEE Conf. Comput. Vis. 
Pattern Recognit. (CVPR), Jun. 2016, pp. 779–788. 

[22] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick. (2019). Detec-
tron2. [Online]. Available: https://github./facebookresearch/detectron2 

[23] K. Chen et al., ‘‘MMDetection: Open MMLab detection toolbox and 
benchmark,’’ 2019, arXiv:1906.07155. 

[24] G. Bradski, ‘‘The OpenCV library,’’ Dr. Dobb’s J. Softw. Tools, vol. 25, 
pp. 120–125, Jan. 2000. 

[25] E. Vahdani and Y. Tian, ‘‘Deep learning-based action detection in 
untrimmed videos: A survey,’’ IEEE Trans. Pattern Anal. Mach. Intell., 
vol. 45, no. 4, pp. 4302–4320, Apr. 2023. 

[26] S. P. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.: 
Cambridge Univ. Press, 2004. 

[27] S. Teeparthi, ‘‘Long-term video object detection and tracking in collabo-
rative learning environments,’’ Master’s thesis, Dept. Elect. Comput. Eng., 
Univ. New Mex., Albuquerque, NM, USA, 2021. 

[28] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, ‘‘Exploiting the 
circulant structure of tracking-by-detection with kernels,’’ in Proc. ECCV, 
Florence, Italy. Cham, Switzerland: Springer, Oct. 2012, pp. 702–715. 

[29] Lambda Labs. Deep Learning Gpu Benchmarks. Accessed: Apr. 1, 2023. 
[Online]. Available: https://lambdalabs.com/gpu-benchmarks 

VENKATESH JATLA received the Ph.D. degree 
in electrical and computer engineering from The 
University of New Mexico. He has a profound 
background in video activity quantifcation, image 
processing, machine learning, and video compres-
sion standards. His diverse research experiences, 
including human activity recognition and video 
compression, are well-supported by his work in 
both academic and industry settings, notably at 
MediaTek and UNM. His contributions to the feld 

are documented through numerous publications in esteemed journals and 
participation in NSF-funded projects, showcasing his technical prowess in 
neural networks, video analysis, and a range of programming languages. 

VOLUME 13, 2025 81165 

https://lambdalabs.com/gpu-benchmarks
https://github./facebookresearch/detectron2


V. Jatla et al.: Fast and Accurate Video Analysis and Visualization of Classroom Activities 

SRAVANI TEEPARTHI received the Master of 
Science degree in computer engineering from 
The University of New Mexico, specializes in 
image and video processing, boasting a CGPA of 
4.17/4.0. Her extensive experience encompasses 
roles in data science, machine learning, and 
data engineering across various organizations, 
including the Fralin Biomedical Research Institute 
and Cadent. She has developed innovative machine 
learning models for computational neuroscience 

and has contributed to the advancement of data pipelines and analytics. Her 
research, recognized for excellence in video object detection and tracking 
within collaborative learning environments, has been published in notable 
conferences and journals. 

UGESH EGALA received the M.S. degree in 
electrical and computer engineering from The 
University of New Mexico, Albuquerque, NM, 
USA, specializing in screen activity quantifcation 
in collaborative learning environments. His aca-
demic journey is marked by a strong focus on 
image processing, computer vision, and machine 
learning. His research contributions, aimed at 
enhancing learning experiences and analyzing 
nonverbal communication patterns, have led to 

publications in recognized journals. His professional experience spans 
both academic research and software engineering roles, showcasing a 
commitment to advancing educational technologies and collaborative 
learning analysis. 

SYLVIA CELEDÓN-PATTICHIS was a Senior 
Associate Dean for Research and Community 
Engagement and the Director of the Center for 
Collaborative Research and Community Engage-
ment, College of Education, The University of 
New Mexico. She is currently a Professor of 
bilingual/bicultural education with the Department 
of Curriculum and Instruction, The University 
of Texas at Austin. She prepares elementary 
pre-service teachers in the bilingual/ESL cohort to 

teach mathematics and teaches graduate level courses in bilingual education. 
She taught mathematics at Rio Grande City High School in Rio Grande 
City, TX, USA, for four years. She was a Co-Principal Investigator (PI) of 
the National Science Foundation (NSF)-funded Center for the Mathematics 
Education of Latinos/as (CEMELA). Her current work is a special issue 
on Teaching and Learning Mathematics and Computing in Multilingual 
Contexts through Teachers College Record. She co-edited three books 
published by the National Council of Teachers of Mathematics titled Access 
and Equity: Promoting High Quality Mathematics in Grades PreK-2 and 
Grades 3-5 and Beyond Good Teaching: Advancing Mathematics Education 
for ELLs. Her research interests focus on studying linguistic and cultural 
infuences on the teaching and learning of mathematics, particularly with 
bilingual students. 

Ms. Celedón-Pattichis serves as a national advisory board member for 
several NSF-funded projects and as an Editorial Board Member for the 
Bilingual Research Journal, Journal of Latinos and Education, and Teachers 
College Record. 

MARIOS S. PATTICHIS (Senior Member, IEEE) 
received the B.Sc. degree (Hons.) in computer 
sciences, the B.A. degree (Hons.) in mathematics, 
the M.S. degree in electrical engineering, and the 
Ph.D. degree in computer engineering from The 
University of Texas at Austin, Austin, TX, USA, 
in 1991, 1991, 1993, and 1998, respectively. 

He was a fellow of the Center for Collaborative 
Research and Community Engagement, UNM 
College of Education, from 2019 to 2020. He is 

currently a Professor and the Director of online programs with the 
Department of Electrical and Computer Engineering, The University of New 
Mexico (UNM). At UNM, he is also the Director of the Image and Video 
Processing and Communications Laboratory (ivPCL). His current research 
interests include digital image and video processing, video communications, 
dynamically reconfgurable hardware architectures, and biomedical and 
space image-processing applications. 

Dr. Pattichis was elected as a fellow of the European Alliance of Medical 
and Biological Engineering and Science (EAMBES) for his contributions to 
biomedical image analysis. He was elected a Senior Member of the National 
Academy of Inventors. He was a recipient of the 2016 Lawton-Ellis and 
the 2004 Distinguished Teaching Awards from the Department of Electrical 
and Computer Engineering, UNM. For his development of the digital logic 
design laboratories with UNM, he was recognized by Xilinx Corporation, 
in 2003. He was also recognized with the UNM School of Engineering’s 
Harrison Faculty Excellence Award, in 2006. He was the General Chair of 
the 2008 IEEE Southwest Symposium on Image Analysis and Interpretation 
(SSIAI) and the General Co-Chair of SSIAI, in 2020 and 2024. He was also 
the General Chair of the 20th Conference on Computer Analysis of Images 
and Patterns, in 2023. He has served as a Senior Associate Editor for IEEE 
TRANSACTIONS ON IMAGE PROCESSING and IEEE SIGNAL PROCESSING LETTERS, 
an Associate Editor for IEEE TRANSACTIONS ON IMAGE PROCESSING and IEEE 
TRANSACTIONS ON INDUSTRIAL INFORMATICS, and a Guest Associate Editor for 
two additional special issues published in IEEE TRANSACTIONS ON INFORMATION 

TECHNOLOGY IN BIOMEDICINE, a Special Issue published by Teachers College 
Record, a Special Issue published by IEEE JOURNAL OF BIOMEDICAL AND 

HEALTH INFORMATICS, and a Special Issue published in Biomedical Signal 
Processing and Control. 

81166 VOLUME 13, 2025 


