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ABSTRACT The paper considers the problem of video activity recognition in real-life collaborative
classroom learning environments. Video analysis of real-life collaborative classroom learning environments
faces significant challenges not encountered in current, advanced video recognition datasets. In collaborative
learning environments, students are arranged in small groups where they interact within their group. Video
analysis needs to deal with long-term activity recognition (of one hour or more session videos), detect
multiple simultaneous activities, rapid transitions between activities, occlusions, and numerous individuals
performing similar activities in the background that are not part of the group being analyzed. Developing
ground truth datasets for analyzing complex video datasets is prohibitively expensive. We dramatically
reduce the requirement for large ground truth datasets by creating separate, custom datasets for object
detection and video activity recognition. We then introduce a separable, extremely low-parameter system
for video activity recognition that can be optimally trained using the derived datasets without the need for
transfer learning from larger systems trained on large datasets. We further develop an interactive WebApp for
visualizing the results over long video sessions. Overall, the extremely low-parameter activity classification
model uses just 18.7K parameters for each activity, requiring 136.32 MB of memory. On a moderate GPU
(RTX 5000), the activity classification model runs at an impressive 4,620 (154 x 30) frames per second. Our
approach uses at least 1,000 fewer parameters than several well-established methods for video recognition.
Our extremely low-parameter classifiers can process 90 minutes of video in just 26 seconds. Furthermore,
our models are much easier to train, they are much faster, and outperform comparable methods.

INDEX TERMS Multi-objective optimization, extremely low-parameter neural networks, fast inference,
separable models, video activity localization, educational video analysis.

I. INTRODUCTION
Our paper considers the development of video activity
recognition and visualization in real-life middle-school

The associate editor coordinating the review of this manuscript and

approving it for publication was Senthil Kumar

classrooms. Our focus on real-life datasets faces unique
challenges that stem from the need to analyze complex
real-life classroom video sessions of 60 to 120 minutes.
Overall, our objective is to help educational researchers
to analyze classroom videos based on student participation.
The videos record students working through an integrated
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(a) Typing activity in collaborative learning environment. The key- (b) Writing activity in collaborative learnin
board is partially visible, and the students are very close to each
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(c) An activity map showing typing activity for a 1 hour 23 minute session. The asterisks are web-links that point to corresponding

time in the video.

FIGURE 1. Typing and writing activities and expected visualization. The interactive activity map with the activities associated with the person helps

the user to get a better understanding of the detected activities.

curriculum that integrates mathematics with Python pro-
gramming activities. The students engage in writing activ-
ities as they work through the mathematics exercises.
They engage in typing activities as they work through
the programming exercises. Thus, to help assess student
participation, our goal is to recognize writing and typing
activities.

We present some of our real-life classroom dataset
challenges in Fig. 1. In Figs. 1(a)-(b), we are focusing on two
classroom activities: typing and writing. Our goal is to ana-
lyze the video so that we can determine the video segments
where each activity is happening. In Figs. 1(a)-(b), we high-
light each activity using a green bounding box. To facilitate
interactive video analysis over long videos (>60 minutes), we
provide an interactive WebApp (see Fig. 1(c)) that includes
links to the video where each activity is happening. Thus,
the users can click on the links shown in Fig. 1(c) to bring
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back the video at the starting point of the activity as shown in
Figs. 1(a)-(b).

From our example in Fig. 1, we can see many of the
challenges associated with analyzing real-life classroom
videos. In Figs. 1(a) and 1(b), we note that our video analysis
is focused on analyzing the group that is closest to the camera,
appearing in the bottom half of the frame. To avoid confusion
due to the complex scene environments, on the first frame of
each long video session, we ask the users to select the table
and initial table regions associated with each student. This
quick annotation on the first frame is part of our interactive
system design that allows the users to query the system for
specific activities by specific students with minimal required
effort by the users. Clearly, in the rare event that the students
change their sitting arrangement, the users would be expected
to reannotate the initial frame of the new scene arrangement.
This is the only input provided to our system. Our goal is to
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develop an effective video analysis that can process videos
fast with moderate, relatively low-price, hardware.

Significant challenges are associated with recognizing
activities within the selected video scene. First, we note that
we have multiple activities that occur simultaneously (see
Fig. 1(b)). Second, once we recognize each activity, we need
to attribute each activity to a specific student within the
group. In other words, we need to integrate the outputs in
our interactive map of all recognized activities against time
as shown in Fig. 1(c). In Fig. 1(c), we see that our goal is
to process the raw videos so that we can show when each
student performs each activity. To make it clear, in Fig. 1(c),
each student’s activity is represented by a different row plot.
Then, the time of each activity corresponds to the length of
each bar. Third, from the plot, we note that we have relatively
long activities performed by multiple people. Fourth, our
videos are collected with low-cost cameras where everyone
appears to be in focus. This accounts for structural noise
where we do not benefit from background activities being out
of focus. Fifth, it is clear that we have peripheral activities and
occlusion that can occur at different locations in each video
frame.

To avoid biasing our methods, we train on long video
sessions collected over one set of dates, validate on another
set of dates, and then test on yet another set of dates. The
training, validation, and testing dates are distinct. Thus, the
testing datasets reflect our goal of measuring generalization
on completely unseen scenes and new camera setups.

Modern datasets address some of the challenges that we
have found with our real-life classroom videos. Most recently,
Korban et al. [1] looked at classroom videos with multiple
activities occurring simultaneously. Similarly, videos with
simultaneous activities can be found in Dimitriadou and
Lanitis in [2], the AVA 2.2 dataset [3], EPIC-Kitchen [3],
JHMDB [4], and UCF101-24 [5]. Nevertheless, none of these
datasets exhibit the entire range of challenges associated
with our dataset. Specifically, none of them require that
we process raw (untrimmed) real-life videos that compute
activity maps where each activity is mapped to a specific
person, as shown in Fig. 1(c). Furthermore, except for
specialized sports videos, none of them were designed for
processing long duration videos of 1 to 1.5 hours.

For system design, we consider methods to minimize
the required amount of ground truth, reduce training time,
and model performance optimization. In what follows,
we provide a summary of our approach. More details are
provided in our methodology.

We minimize the amount of required ground truth by
considering each activity as a problem of detecting an
object involved in the activity and then classifying activities
associated with that object only. For our purposes, we will
consider typing activities associated with locating a keyboard
and writing activities associated with hand detection. As a
result, for object detection, we only require a still image
dataset that contains representative examples of keyboards
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and hands. Then, for each activity, we only need to classify
short video segments over each detected object. For typing,
we classify short video segments over the keyboard region.
For writing, we classify short video segments over the hands
regions.

Our single-activity optimization framework provides fun-
damental advantages over the standard use of transfer
learning from large-activity networks. First, we note that
it is a lot easier to train for a single activity at a time
as opposed to training large models on multiple activities.
Second, our separable action recognition is inherently parallel
since we can run each video activity detector separately.
Third, it is a lot easier to debug and understand what a
single activity detector is doing as opposed to understanding
how a large video activity system processes any given single
activity. Our approach eliminates the need to consider a
multitude of large networks trained over different large
datasets. Fourth, we note that our approach is scalable.
We can easily develop larger networks to train and test on
larger datasets that target all of the variations of our single
activity approach. This is clearly a much more efficient
approach than to keep growing larger models that target
all possible activities so that we re-target them on a single
activity.

Training time is dramatically reduced by our approach.
To see this, note that instead of training on a large video
dataset, we only need to train on a small number of image
examples and very short and small video segments over each
object. Yet, for our final testing, we do report over entire
videos.

We adopt a multiobjective framework for optimizing
our model. Activity detection is performed based on a
Video Activity Proposal Network (VAPN) and a Video
Activity Classification Network (VACN). Our VAPN uses
optimized object detection and tracking to extract short
video segments of possible activities of interest. In terms of
our multiobjective framework, the goal of the VAPN is to
minimize the false-negatives while tolerating false-positives.
For VACN, our multiobjective optimization approaches
selects an optimal framework over a family of 3D CNN
networks that process the video segments at an optimized
frame rate. Compared to the standard use of large networks,
our optimized VACN uses 1000 x or less parameters, perform
better and run much faster.

We next provide a brief summary of popular Human
Activity Recognition (HAR) methods that we will be
comparing against. The Temporal Segment Network (TSN)
[6] samples the input video through the extraction of equal
video segments. It then processes each video segment
using ConvNets and computes the final output using a
consensus map. The Two-Stream Inflated 3D ConvNet (13d)
[7] extends successful 2D image classification architec-
tures into 3D, aiming at the extraction of spatiotemporal
features. The Temporal Shift Module (TSM) [8] aims at
developing a high-performance video understanding system
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by implementing 1D convolutions across frame channels by
embedding the time-convolution operations inside efficient
2D CNN networks. The SlowFast network [9] uses a slow and
a fast stream to process videos at two different frame rates.

Our approach develops a familty of 3D CNN architectures
that operates at an optimized frame rate that needs to be
learned during training. While we do not optimize for GPUs,
we demonstrate that our approach is faster than all other
methods (including TSM), is easier to train since we are
using 1000x or fewer parameters, while performing at-least
as good as any of these well-accepted methods. We achieve
this performance because we are developing optimized
architectures that only need to be trained for recognizing a
single activity at a time. We demonstrate our approach on
recognizing writing and typing activities.

Preliminary elements of our video activity recognition
system have appeared in conference papers [10] and [11].
Specifically, the proposed hand detection method has first
appeared in [10] as a conference paper. In the current
paper, we incorporate hand detection for writing recognition.
However, we also introduce the use of keyboard detection for
typing recognition. Earlier versions of the video activity clas-
sification system have appeared in [11] as a conference paper.
The current paper covers the complete system, with extensive
discussion on the optimization process, a significantly larger
dataset, inference speed, performance, and video activity
visualization over full video sessions. We also mention
our related work focused on dynamic participant tracking
reported in [12]. This earlier work built upon student recog-
nition reported in [13]. For the current paper, we specifically
avoid the need to recognize the students. Thus, our approach
allows us to recognize student activities by working with fully
anonymized datasets that avoid processing sensitive student
information.

In summary, the primary contributions of the paper
include:

« Real-life classroom datasets: As opposed to the
standard end-to-end video datasets for everything, we
introduce reduced training and validation datasets for
training. At the same time, we test on real-life 90-minute
videos.

« An interactive system for localizing and visualizing
typing and writing activities: Unlike other activity
classification approaches, our system recognizes indi-
vidual activities and provides interactive visualization
over the entire video.

« A multiobjective optimization framework: We
present a multiobjective optimization framework for
jointly optimizing accuracy (or AUC), the number of
parameters, and inference time. We present different
optimization modes that can be used to prioritize
different objectives (e.g., accuracy or inference time),
or to produce models that balance all objectives.

« Significant reduction of the number of parameters
by 1000x: Our proposed approach for video activity
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classification gave better results using more than
1000 times fewer parameters. Given the fact that our
model is at least as accurate as any other model
that we compare against, it has better generalization
capabilities than the models that we compare against
(e.g., see Chapter 7 in [14]). At the same time, our
extremely low-parameter models are expected to have
higher bias and lower variance than much larger models
that would have required much larger training datasets
(e.g., see bias-variance discussion in [14]). In terms of
our multiobjective optimization framework, our use of
extremely low parameter models results in fast inference
times, a reduction in memory requirements, and faster
training.

« No need for pretraining: Unlike all other methods, our
video activity classification network does not require
any pretraining on large datasets.

The remainder of this paper is organized into five sections.
We summarize our AOLME activity dataset in section II.
We provide background information on related research
in section III. We describe our proposed approach in
section IV. We summarize our results in section V and
provide concluding remarks in section VII.

Il. AOLME STUDENT DATASETS

We provide several examples of our real-life classroom
dataset in Fig. 2. Here, we can see how the students are
arranged in different groups (e.g., see Fig. 2(f)). We need to
attribute each activity to a specific person as we demonstrate
in Fig. 2(a). The videos were recorded using low-cost video
cameras with small sensors that keep everything in focus,
located at many different angles (see Figs. 2(b) and 2(d)).
We have peripheral activities that can occur at the edges of
the video (e.g., see Figs. 2(a), 2(b) with strong variations in
lighting and appearance (see Figs. 2(a)-2(h)). We provide a
comparative summary of our dataset against related modern
datasets in Table 1. We will next describe the similarities and
differences between our dataset and other datasets in more
detail.

A. VIDEO ACTION RECOGNITION DATASETS

The UCF-101 dataset [5] provides a large collection of video
clips that are commonly used for action recognition research.
It contains 13,320 videos categorized into 101 different
action classes, such as “Playing Guitar,” *“Cricket Shot,”
and “Soccer Penalty.” These videos were collected from
YouTube, providing diversity in camera angles, lighting
conditions, and background environments. The videos have
a frame rate of 25 frames per second (fps), with a typical
resolution of 320 x 240 pixels, and average duration of
7 seconds. More recently, the UCF101-24 [5] provided a
specialized subset of the UCF101 dataset that includes spatio-
temporal annotations covering 24 unique human activities.
Unfortunately, UCF101-24 is primarily focused on videos
characterized by a single activity. UCF101-24 lacks the
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ties.

(gg)I Video having male students sitting to the right side of the
table.

(a) Video with camera near the table with multiple writing activi-

(h) Video having female students sitting to the left side of table.

FIGURE 2. Figure showing variability in AOLME group interaction videos.

complexity for describing long, simultaneous activities by
multiple students (see Table 1).

Unlike UCF-101, the JHMDB dataset [4] focuses on
analyzing human activity using techniques like pup-
pet flow, puppet masks, and per-frame joint posi-
tions. As a result, each video in JHMDB is mostly
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centered around one actor and represents a single specific
activity.

The AVA 2.1 dataset [15] contains 80 atomic visual actions
across 430 15-minute movie clips, with actions localized in
both space and time, leading to 1.62 million action labels.
Multiple labels per person often occur, enabling the study of
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TABLE 1. Comparison of recent datasets used for recognizing multiple video activities. Videos from different days refers to the requirement that training
and testing videos should come from different days. Multiple activities refer to multiple people performing multiple activities. Long multiple activities
implies that the videos are over 1 hour long. Low-cost cameras refer to the use of amateur video equipment that do not produce broadcast video quality.
Datasets that do not satisfy the requirement are marked by x. Datasets that satisfy the requirement are marked by v.

Dataset Group-based Long multiple Multiple Low-cost Peripheral
person activities by activities cameras activities
attributed multiple persons at the same
activities time

UCF101-24 (2015) [5] X X X v v

JHMDB (2013) [4] X X X v Mostly X

AVA 2.1,2.2 (2018) [15] X X v X Mostly X

EPIC-Kitchen (2018) [3] X X X v X

Multisports (2021) [16] X X v X Mostly X

Dimitriadou er al. (2022) [2] X X X v X

Korban er al. (2024) [1] X X v v e

AOLME (Ours, 2024) v 4 4 v v

simultaneous actions. Unlike real-world videos, these videos
are taken from movies which tend to primarily focus on
the activity performed by the actor. In addition, the labeled
actions are atomic actions that do not account for long-term,
context-driven activities.

The EPIC-Kitchen [3] dataset consists of 100 hours of
recordings captured in Full HD (FHD) with 20 million
frames, all recorded from a head-mounted camera. The
dataset focuses on egocentric, first-person activities in
kitchen environments. EPIC-Kitchens does not involve multi-
ple people performing different activities simultaneously, nor
does it capture interactions between actors.

The Multisports dataset [16] is designed for action
recognition, focusing on athletic activities across various
sports. It includes high-quality video footage that captures a
wide range of dynamic actions, often involving entire body
movements. The dataset emphasizes brief, fast-paced actions
within relatively short video segments, making it useful for
analyzing complex, high-speed sports scenarios. However,
the dataset lacks a clear temporal structure, which presents
challenges in modeling and predicting action sequences
based solely on time progression. The dataset is particularly
suitable for tasks involving unstructured, full-body motion
analysis.

Dimitriadou et al. [2] worked with simulated videos
where students performed specific actions for 10 seconds.
Each video captures one student, consistently centered on
the screen. The dataset is carefully controlled, with minimal
occlusions, and the subject is always in clear view. This
dataset features only one person per video. This provides
a well-organized and consistent environment for action
recognition tasks. The videos do not capture interactions
between the students.

In Korban et al. [1], the authors describe a dataset consist-
ing of nearly 250 hours of classroom videos, collected from
elementary mathematics and English language arts lessons.
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The dataset includes annotations for various instructional
activities, such as whole class, small group, individual
activities, and transitions. These videos were used to train
neural networks to classify activities based solely on visual
data, without relying on audio. The dataset provides fine-
grained labels for classroom interactions, making it highly
suitable for machine learning applications in educational
research and classroom activity recognition. While it offers
insights into student group dynamics, it does not associate
activities with individual students or provide long-term
insights into the learning process. In our study, we aim to
address this limitation by defining and associating student
regions with activities.

B. AOLME VIDEO DATASET PREPARATION
Out of each camera, each video comes compressed at a spe-
cific frame rate. We considered different video transcoding
parameters to standardize the resolutions, the frame rate, and
also to recompress the videos for online video streaming.
We compressed a small video dataset at different rates and
determined settings that did not compromise video quality
while maintaining high-quality audio. Video quality was
judged by reviewing the transcoded videos. We then selected
the optimized transcoding parameters as described next.

All videos are transcoded using £ fmpeg as given by:

ffmpeg —i <input video> \
—vf scale=858:480 \
—c:v 1libx264 \
—c:a mp3 —b:a 255k \
—b:v 2.5M \
—maxrate 2.5M \
—bufsize 1.25M \
—r 30 \
—x264—params \
"keyint=30:min—keyint=30:no—scenecut" \
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<output video>

We next explain each parameter. Each video is resized
to 858 x 480 pixels using -vf scale=858:480
option. We specify the use of the H.264 video codec as
given by —c:v 1libx264. To allow for wider access,
we set the bitrate to 2.5Mbps using -b:v 2.5M option.
We maintain high audio quality by setting the audio
bitrate at 255Kbps using -b:a 255k. To ensure smooth
video delivery during strong bitrate variations, we set
the encoder’s buffer at 1.25M using -bufsize 1.25M.
We standardize the video playback frame rate at 30 frames
per second using -r 30. We use -x264-params
"keyint=30:min-keyint=30:no-scenecut" to
guarantee a keyframe at least once every second
(min-keyint=30) and use no-scenecut to disable
scene cut detection. Here, we note that by preventing scene
cut detection, we maintain consistent visual quality across the
video by avoiding abrupt changes in bitrate or quality due to
detected scene changes.

C. AOLME DATASET DESIGN

The greatest challenge with preparing real-life datasets comes
from the need to limit the amount of required ground truth.
This requirement is further complicated by our need to
localize the activity by identifying where it is happening and
the need to associate student participants with each activity.

For this paper, we wanted to avoid the need for face
recognition of each student. We refer to [12], [17], and [18]
for a summary of our efforts to apply face recognition to
real-life classroom videos. We note that recognizing typing
and writing activities does not require face recognition and
tracking. Instead, we use a simple initialization process that
requires the users to define rectangular hand regions over
a single frame associated with each video scene. Here,
we define a video scene to be a particular scene arrangement
of the students. On the infrequent occasions when the students
get up and move to new positions, we require re-initialization
over the first frame of the new scene. We defer to future
work on our efforts to automate scene initialization. However,
even in future work, we will want to keep developing systems
with humans in the loop to review the results, challenge
assumptions, and provide for simple and effective scene re-
initializations.

We built an efficient collection of ground truth datasets
that supported our goal of processing unedited real-life
classroom videos. To support activity localization, we asso-
ciated a single object with each activity. For typing
activity detection, we selected keyboard detection. For
writing activity detection, we selected hand detection.
Our approach is simple. Object detection is used to
provide video segments over which an activity can
happen.

Our approach of associating activities with a single object
proved very effective. First, it allowed us to use fast
and reliable object-detection methods to locate the video
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activities. Second, once the object was detected, over each
object region, we extracted small and short video segments
for further processing. Third, for the purposes of this section,
our approach led to efficient methods for providing ground
truth.

By requiring object detection for video activity recogni-
tion, we were able to simplify the ground truth process into
two basic problems. First, for object detection, we select
representative image examples for each problem. Second, for
activity recognition, we review short video segments over
each representative object example. We describe the derived
datasets in the following three subsections.

D. AOLME-FULL VIDEO DATASET

The AOLME project collected 987 hours of videos of student
group interactions. We organized the videos into cohorts,
levels, schools, and groups. We use cohort-1, cohort-2, and
cohort-3 for videos collected in 2017, 2018, and 2019. Each
cohort followed a different level of the curriculum. At each
school, the students were organized into small groups, with
2 to 5 students per group. We record ten to twelve video
sessions per level per student group.

We provide a compact labeling system to define the origin
of each video. Our video session labeling provides the cohort
(C1, C2, C3), implementation level (restricted to L1 right
now), school identifier (P or W), and group letter (A, B, C,
D), and date (Month day). Thus, a video session labeled as
CI1L1P-A, Mar. 02 refers to Cohort 1, Level 1, P school,
Group A, Mach 2nd.

We reviewed the entire AOLME dataset to select repre-
sentative examples of effective teaching practices, ensuring
diversity in cohorts, schools, groups, and instructional
approaches. Based on our review, we chose 45 sessions for
typing and 30 sessions for writing. To evaluate our method’s
robustness, we split the dataset into training, validation,
and testing groups based on sessions from different dates.
Additionally, for validation and testing, we made sure to
include sessions that hold greater significance for educational
researchers.

E. TYPING ACTIVITY DETECTION DATASETS: AOLME-T,
AOLME-TP, AOLME-TC, AND AOLME-TD

We designed the AOLME-T dataset to train, validate, and
test typing activities (see Table 2). The dataset consists of
332 video segments selected from 45 sessions, selected from
three different cohors and 17 separate student groups. For
each session, we randomly labeled typing and no-typing
activities using bounding boxes that dynamically track the
location of the keyboard over time. In total, we have 479,550
frames, 4.4 hours of typing and 1,248,900 frames, 11.5 hours,
of no-typing labels (see Table 4). Based on AOLME-T,
we create the keyboard object detection dataset AOLME-
TP by selecting a number of keyboard instances to form
typing proposals (TP). We use the keyboard instances to
select video segments from AOLME-T to form the AOLME-
TC for training the typing activity classifiers (T'C). For final
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TABLE 2. Summary of sessions used to train, validate and test typing
activity. Validation sessions are shown in yellow background.
Testing sessions are shown in green background. Full video sessions

for which there is ground truth over the entire duration of the captured
video are shown in boldface. The remaining unmarked sessions are used
for training.

Group Dates

CI1L1P-A Apr. 06, Apr. 13, Feb. 16, Mar.
02, Mar. 09, Apr. 20, Feb. 25

CI1L1P-B Apr. 27, Mar. 09, May 06, Mar.
02, Mar. 30, Apr. 06, May 11,
May 04

CILIP-C Feb.25, Mar.09, Apr. 20,
May 04, Apr. 13, Mar. 02,
Mar. 30 , Feb. 16

CI1L1P-D Apr. 06, Mar. 09

CILIP-E Feb. 25, [Mar. 02

CILIW-A Feb. 28, Mar. 28, Feb. 21 , Apr.
25, Mar. 07

CIL1W-B May 06

CIL1IW-C Feb. 21

CILIW-D Feb. 28

C2L1P-B Feb. 23

C2L1P-C Apr. 12

C2L1P-D Mar. 08

C2L1IW-A Apr. 10

C2L1W-B Feb. 27

C3LI1P-C Apr. 11

C3LI1P-D Feb. 21

C3L1IW-D Mar. 19

testing of the entire system on raw videos, we select two
complete sessions (AOLME-TD) as given in Table 2.

We carefully reviewed the video sessions in AOLME-T
to select representative keyboard examples for the AOLME-
TP dataset. Our approach was to consider keyboard image
samples every minute of every video. We ended up with
1,728,000 images (size = 858 x 480), summarized in
Table 4. We then removed images where the keyboard is not
visible. At the end, we selected 1,448 representative keyboard
instances. The final AOLME-TP consisted of 700 images for
training, 100 for validation, and 648 for testing, selected from
different sessions.

The AOLME-TP dataset was used to prepare short video
segments for typing classification (see Table 4). We use the
term AOLME-TC to refer to the video segments extracted
from the general dataset (AOLME-T). This dataset includes
typing and no-typing instances, each standardized to a
duration of 3 seconds. We chose this duration based on
the observed range, where typing instances varied from a
maximum of 284 seconds to a minimum of 3 seconds. Using
the minimum duration as a reference, we applied spatio-
temporal cropping. Spatial cropping involved computing
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Ground truth
1.5sec., 45 Representative 1.5 sec., 45
frames sample frames

FIGURE 3. AOLME-TC: The creation of typing/no-typing video segments
based on temporal cropping around the representative keyboard sample.

TABLE 3. Summary of sesssions used to train, validate and test writing
activity. Validation sessions are shown in yellow background.
Testing sessions are shown in green background. Full video sessions

for which there is ground truth over the entire duration of the captured
video are shown in boldface. The remaining unmarked sessions are used
for training.

Group Dates

CILIP-B Mar. 03

CILIP-C Mar. 30, Apr. 06, Apr. 13,
Feb. 16, Feb.25, Mar. 09,
Apr. 20, May 04, May 11

CI1L1P-D Mar. 09, Mar. 02, Mar. 30,
Apr. 06

CIL1P-E Mar. 02

CILIW-A Feb. 14, Feb. 21 , Feb. 28, Apr.
04

C2L1P-B Feb. 23

C2L1P-C Apr. 12

C2L1P-D Mar. 08

C2LI1P-E Apr. 12

C2L1W-A Feb. 20, Apr. 10

C2L1W-B Feb. 27

C3L1P-C Apr. 11

C3L1P-D Feb. 21, Feb. 14

C3L1W-D Mar. 19

the bounding box that contains the union of bounding
boxes from the individual frames. Temporal cropping is
centered around the keyboard image as described in Fig. 3.
AOLME-TC consisted of a total of 405 typing and 398 no-
typing instances, which correspond to approximately 324,000
typing frames and 817,200 no-typing frames. As for all of
our datasets, training, testing, and validation are based on
different sessions (dates) from AOLME-T.

F. WRITING ACTIVITY DETECTION DATASETS: AOLME-W,
AOLME-WP, AOLME-WC, AND AOLME-WD

We provide a summary of the datasets associated with writing
in Table 3. Writing detection requires that we label writing
activities associated with 2 to 5 students in each session.
The AOLME-W dataset consists of 166 videos selected from
30 sessions, taken from three cohorts and 14 student groups.
To train the classifiers, we randomly selected writing and
no-writing activities using dynamic tracking to track motions
through time. In total, we selected 862,710 frames, 7.9 hours
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DR
Hand regions

FIGURE 4. AOLME-WD: Sessions used to test our writing detection system.On the left we have the first session (WS1) from group E of cohort 1(2017)
and level 1. On the right we have the second session (TS2)from group C of cohort 3 (2019) and level 1.

g
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(a) Example images of samples illustrating the absence of writing.

i

(b) Challenging examples of samples illustrating the absence of writing. As can be observed in the figure, these samples feature hands

executing movements similar to those associated with writing.

FIGURE 5. AOLME-WC: No-writing example segments.

long for writing and 2,639,460 frames, 24.4 hours, for no-
writing segments (see Table 4). For writing, we relied on
hand instances to extract video segments for training our
writing activity classifiers. Similarly, for the final testing,
we labeled two complete raw sessions for the final system
testing (AOLME-WD). (see Fig. 4).

For hand detection, we developed the AOLME-WP
dataset. We selected 1,803 hand instances for training, 714 for
validation, and 2,031 for testing, extracted from different
video sessions.

We use the hand instances to define short video segments
to train the writing classifiers. Each video segment was 3-
seconds long and extracted using spatio-temporal cropping
as described for the typing dataset. We note that writing
is a complex activity that may be confused with different
movements (see Fig. 5). The full dataset, termed AOLME-
WC, consisted of 1,199 writing and 798 no-writing instances,
corresponding to approximately 107,910 writing frames and
71,820 no-writing frames.

lll. BACKGROUND

A. OBJECT DETECTION AND TRACKING

Several methods have been developed for object detec-
tion and tracking. Popular methods for object detection

VOLUME 13, 2025

include Faster RCNN [19], Single Shot Detector [20], and
YOLO [21]. These methods are widely available in Detec-
tron 2 [22] and OpenMMDetection [23] libraries. Popular
methods for tracking include BOOSTING, MIL, KCF, TLD,
MEDIANFLOW, GOTURN, MOSSE, and CSRT available
in OpenCV [24]. We will consider all of these background
methods for developing our video activity proposals.

B. VIDEO ACTIVITY CLASSIFICATION

We refer to [25] for a recent survey on human activity
localization. Here, we provide a brief summary of popular
video activity classification systems. In our results, we will
compare against all of these popular methods.

We begin with the Two-Stream Inflated 3D ConvNet
(I3D [7]). I3D extends successful 2D image classification
architectures into 3D for classifying spatio-temporal features
from video data. I3D accomplishes this by expanding 2D
filters and pooling kernels into 3D layers, inserted between
the original 2D layers. It uses two input streams—one for
RGB data and another for optical flow— each initialized with
2D network weights before expansion. I3D achieved 80.9%
accuracy on HMDB-51 and 98.0% on UCF-101. Similar to
13D, we will be processing short 3D video segments extracted
over regions of interest.

81151


https://system.On

IEEE Access

V. Jatla et al.: Fast and Accurate Video Analysis and Visualization of Classroom Activities

TABLE 4. Summary of typing and writing datasets.

AOLME-T AOLME-TP AOLME-TC
Typing No-Typing Keyboard Typing No-Typing
#frames #inst. Dur. #frames #inst. Dur. #inst. #frames #inst. #frames #inst.
Training | 325,230 405 10,841 816,900 398 27,230 | 700 36,450 405 35,820 398
Validation| 79,050 72 2,635 90,870 45 3,029 100 6,480 72 4,050 45
Testing 75,270 150 2,509 341,130 202 11,371 | 648 13,500 150 18,180 202
Total 479,550 627 15,985 1,248,900 645 41,630 | 1,448 56,430 627 58,050 645
AOLME-W AOLME-WP AOLME-WC
Writing No-Writing Hand Writing No-Writing
#frames #inst. Dur. #frames #inst. Dur. #inst. #frames #inst. #frames #inst.
Training | 467,760 727 15,592 1,108,590 311 36,953 | 1,803 65,430 727 27,990 311
Validation| 133,890 189 4,463 334,620 89 11,154 | 714 17,010 189 8,010 89
Testing 261,060 283 8,702 1,196,250 398 39,875 | 2,031 25,470 283 35,820 398
Total 862,710 1,199 28,757 2,639,460 798 87,982 | 4,548 107,910 1199 71,820 798

TSN [6] is a framework for video-based action recognition
that emphasizes long-range temporal structure modeling.
In TSN, videos are divided into K equal segments, with
frames sampled from each segment and aggregated to make
a final action prediction. TSN achieves 69.4% on HMDBS51
and 94.2% on UCF101. This sparse sampling approach works
well for activities with distinct temporal patterns and defined
starting and ending points. Unfortunately, our datasets do not
have well-defined starting and ending points.

The Temporal Shift Module (TSM [8]) claims efficient 3D
CNN-level performance with the lower complexity of a 2D
CNN. TSM performs temporal modeling by shifting a portion
of the channels along the temporal axis. The design supports
both offline and online video recognition. TSM achieved
74.1% accuracy on Kinetics, 95.9% on UCF101, and 73.5%
on HMDBS51 offline, with similarly high performance online.
While TSM is efficient, its pseudo-3D approach of shifting
channels rather than performing full 3D convolution limits
its ability to capture the fine-grained temporal details needed
for intricate activities.

The SlowFast model is a video analysis architecture
with two pathways. The Slow pathway processes videos
at a lower frame rate to capture spatial details. The Fast
pathway processes videos at higher frame rates to capture
video motions. This dual pathway enables SlowFast to
excel in action classification and detection by extracting
complementary spatio-temporal features. Motivated by the
SlowFast model, in our approach, we will learn a single,
optimal frame rate that is tuned to each specific activity that
we are interested in.

IV. METHODOLOGY

We provide a top-level diagram of the proposed system in
Figure 6. We note that the input is a real-life classroom video
session. We used independent streams for each activity. Our
approach allowed us to optimize each stream for the specifics
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of each activity. Videos are processed in three stages. First, the
video activity proposal network (VAPN) generates candidate
video segments for each type of activity. Second, a classifier
is used to determine whether the activity is happening within
the video segment. Third, we create a video visualization map
for each activity. We have obtained informed consent from
parents and assent from minors for processing the videos
described in this paper.

We describe the methodology using four separate sections.
In section IV-A, we cover the full multiobjective optimization
framework. In section IV-B, we describe the video activity
proposal network. In section IV-C, we describe our video
activity classification network. In section IV-D, we describe
our approach for interactive visualization of video activity
maps.

A. A MULTIOBJECTIVE OPTIMIZATION APPROACH TO
SYSTEM DESIGN

In this section, we will develop a multiobjective optimiza-
tion approach for optimizing different requirements and
components of our system. Firstly, we are interested in
minimizing the amount of ground truth required to train our
system. Secondly, we would like to minimize the amount
of training time. Thirdly, we are interested in optimizing
inference to produce a fast and accurate system that produces
generalizable results.

1) MINIMIZING THE REQUIRED AMOUNT OF GROUND
TRUTH

We begin with the requirement to minimize the required
amount of ground truth. As discussed earlier, our approach
is to train separately for each activity and each system
component. Our approach is summarized in Table 5. We only
need to train for our video activity proposal network (VAPN)
and our video activity classification network (VACN). For
VAPN, we only need ground truth on still image datasets
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FIGURE 6. System diagram of activity detection system for typing andwriting in AOLME group interaction videos.

TABLE 5. Component-based training to minimize the required amount of ground truth.

Method Typing Activity Recognition Datasets Writing Activity Recognition Datasets
See Sec. II-E. See Sec. II-F

Activity Prop. (VAPN) | AOLME-TP: keyboards annotated AOLME-WP: hands annotated
using sampled video frames using sampled video frames
for training and validation. for training and validation.

Classif. Net (VACN) AOLME-TC: short video segments AOLME-WC: short video segments

over keyboard regions
for training and validation.

System Visualization
for typing visualization and
end-to-end testing.

AOLME-TD: full classroom videos

over hands regions
for training and validation.

AOLME-WD: full classroom videos
for typing visualization and
end-to-end testing.

where we annotate the object of interest (keyboards or hands).
For VACN, we only need ground truth over short video
segments of the keyboard and hand regions. Nevertheless,
we still need ground truth over entire video sessions for
end-to-end testing of the entire system. However, the key
advantage of the proposed approach is that we do not require
large ground truth datasets for end-to-end training.

Our component-based training approach has significant
advantages over the standard use of end-to-end training and
testing. First, we note that our component-based approach
requires significantly less amount of ground truth. To see this,
we note that end-to-end training requires large video datasets
that capture all possible variations and their combinations.
Thus, note that the required number of ground truth examples
grows as the product of the number of examples required for
each considered variation. For example, to capture N object
variations and M object motions, we need to generate ground
truth for N - M videos. In contrast, our component-based
approach uses N object images that capture object variations
for training the video activity proposal network and M video
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segments for the video activity proposal networks. Clearly,
our component-based approach grows as N + M where N
represent still image examples. Second, our component-based
approach is modular, easier to debug, and easier to optimize.
In terms of modularity, we note that we can improve
performance by simply replacing each component with a
better version. In terms of debugging, we note that we can
visualize the performance of each component separately,
visualizing their successes as failures independent of any
other component. In terms of optimizing, we note that we can
optimize each component independendly.

Our separable approach enabled us to perform precise
troubleshooting and targeted improvements. For instance,
when training keyboard detection using a public dataset,
we observed that the detector underperformed for wireless
keyboards. This was due to the public dataset initially
containing more wired keyboard instances. By identifying
this imbalance through modular debugging, we were able to
add more wireless keyboard training examples, leading to
improved detection performance.
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2) MINIMIZING TRAINING TIME

We now turn to the problem of minimizing training time
through the use of low-parameter models for component-
based training. We have already covered how our use of
component-based training has dramatically reduced training
dataset sizes. In turn, lower dataset sizes resulted in
dramatically reduced time for training for a single epoch.
Then, our use of low-parameter models requires significantly
less epochs than what is typically needed for larger-parameter
models. In addition, our use of low-parameter models
required significantly less memory for training. As a result,
we were able to use significantly larger batch sizes than the
larger-parameter models that we were comparing against.
Beyond using low-parameter systems, we also consider
reducing the sampling rate of the input video. Thus, instead
of processing the video at the original sampling rate of
30 frames per second, we also consider processing the video
at 10 and 20 frames per second. This approach leads to
additional speed-up that is ideally proportional to the frame-
rate reduction. Thus, at 10 frames per second, we expect that
the videos will get processed three times faster (=30/10).
Overall, our low-parameter models required about 10 times
less time to train as we document in the results.

3) OPTIMIZING MODEL PERFORMANCE

Beyond optimization training, we are also interested in
optimizing model performance. More specifically, given the
large video durations, we are interested in fast and accurate
inference. Here, once again, we benefit from our use of
low-parameter systems. As for training, our low-parameter
system requires significantly lower memory and can clearly
process larger batches of video segments. Furthermore, our
lower-parameter models are also less complex and run much
faster. Of course, we also benefit from the use of lower
sampling rates as we do for training. Naturally, we would
like to develop our fast models without sacrificing model
performance. To effectively describe model performance at
all possible operating points, we will use the area under the
ROC curve (AUC). Our requirements lead us to consider
multiobjective optimization, as we describe next.

We summarize our approach for optimizing each com-
ponent in Algorithm 1. The goal of the algorithm is to
jointly optimize for three different objectives: the number of
parameters, AUC, and inference speed. Assuming everything
else is equal, an architecture with a smaller number of
parameters is preferred because it is expected to be better
at generalization while leading to faster inference. Similarly,
we are interested in systems that deliver the highest AUC and
lowest inference time. Ideally, a system can optimize all three
objectives at the same time. In this case, the optimal system
uses the smallest number of parameters while also providing
the highest AUC and requiring the minimum inference time.
In this ideal scenario, the optimized architecture is better than
any other architecture under consideration.
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In general, multiobjective optimization results in a collec-
tion of optimized architectures. We refer to the collection
of optimized architectures as the Pareto front (refer to [26]
for details on the Pareto front). In Algorithm 1, we present
the general algorithm that computes the full Pareto front
of optimal architectures, frame rates, and corresponding
performance metrics (objectives). For the algorithm, Sys
refers to a parametrized model that returns a different
architecture based on an integer configuration parameter C.
In addition to the model Sys, the algorithm accepts C_range
that represents a list of all possible values of C that need
to be considered. Furthermore, to speed up inference time,
we again consider the sampling rate of the input video in
terms of the number of frames per second (FPS) and the
number of videos used in each batch (B).

As shown in Algorithm 1, we initialize the Pareto front
with the number of parameters, AUC, and inference time
generated by all possible combinations of neural network
levels and input video frame rates. We note that C also
determines the number of parameters that will be used by the
model. AUC and inference time are measured on the test set.

The Pareto front is calculated through a process of removal
of suboptimal configurations. As shown in Algorithm 1,
for each configuration on the Pareto front, we search for a
better one that improves any one of the objectives without
sacrificing any other (see lines 1 to 1). If a better configuration
is found, then the currently considered configuration is
removed from the Pareto front. At the end, we are left with
all of the configurations that cannot be improved upon. They
form the final Pareto front.

More precisely, we can formulate our computation of the
Pareto front using multiobjective optimization. Our algorithm
computes the solution to:

in (P
Jnin, (Par(Sys(C)),

— AUC(Sys(C), FPS),
Inf(Sys(C), FPS, B)). )

In (1), recall that the number of parameters is directly
controlled by C. To achieve higher AUC, we place a negative
sign in front of AUC so that the minimal values correspond
to higher positive AUC values. On the other hand, AUC and
inference speed depend both on the parameterized model and
the input video frame rate. We assume that the AUC is not
affected by the number of videos used in each batch (B).
On the other hand, we note that the inference speed is affected
by B.

4) SELECTING OPTIMAL CONFIGURATIONS

We now turn to the problem of determining optimal models
for different scenarios. Optimal solutions are computed
through a process of selecting a specific configuration
from the Pareto front that is computed using Algorithm 1.
We begin with the standard approach of optimizing for a
single objective and then consider the problem of balancing
among the objectives.
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Algorithm 1 Pareto Front Algorithm

1: function OptSys, C_range, FPS_range, B_range
> Multiobjective optimization framework for

> simultaneously optimizing:

> the number of system parameters,

> AUC and inference time.

> Input:

> Sys represents the parametrized system

> to be optimized.

> C_range controls the system configurations.

> FPS_range provides a collection of frames per

> second for the input video.

> B_range provides the range of values for the

> batch size.

> Output:

> ParetoFront that saves the optimal values of

> Parameters, AUC, and inference time.

2: > Evaluate all configurations

3: for FPS,C,B in FPS_range, C_range, B_range do
4: Train Sys(C) using B videos per batch

5: sampled at FPS frames per second.

6: Test Sys(C) using videos at FPS.

7 Save Pars, Acc, Inf for given FPS, C, B.

8: end for

9: > Compute Pareto Front

10: Initialize ParetoFront with all Pars, Acc, Inf

11: for Pars_i, AUC_i, Inf_i € ParetoFront do

12:  Look for better Pars_j, AUC_j, Inf_j such that:
13:  (Par_j<Par_i)&(AUC_j>AUC_i)&(Inf_j<Inf_i)
14: or

15:  (Par_j<Par_i)&(AUC_j>AUC_i)&(Inf_j<Inf_i)
16: or

17:  (Par_j<Par_i)&(AUC_j>AUC_i)&(Inf_j<Inf i)

18: if better Pars_j, AUC_j, Inf_j found then
19: Remove Pars_i, AUC_i, Inf_i

20: from ParetoFront
21: endif
22: end for

23: return ParetoFront
24: end function

Consider the problem of maximizing the validation Area
Under the Curve (AUC). The standard approach is to select
the model configuration that solves:

AUC(Sys(C), FPS). 2
glggs (Sys(C) ) )

Unfortunately, focusing on maximizing AUC alone can lead
to unacceptably slow inference times or the requirement to
train a large number of parameters over a large dataset.
To avoid this scenario, we impose constraints on the maxi-
mum inference time and the number of system parameters.
Let P_max denote the maximum number of parameters. Let
Inf_max denote the maximum acceptable inference time.
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We reformulate (2) as a constrained optimization problem
using:

AUC(Sys(C), FPS
él,l?ﬁ‘s (Sys(C) )

subject to:  (Par(Sys(C) < P_max) and

(Inf(Sys(C), FPS, B) < Inf_max). (3)

We refer to (3) as the maximum AUC configuration. Simi-
larly, we select the minimum inference time configuration
using:

in  Inf(Sys(C), FPS, B
Jmin nf(Sys(C) )

subject to:  (Par(Sys(C)) < P_max) and

(AUC(Sys(C), FPS) > AUC_min) (4)

where AUC_min refers to the minimum acceptable testing
AUC value. Then, the minimum parameter configuration
is selected using:

in  Par(Sys(C
Jmin ar(Sys(C))

subject to:  (Inf(Sys(C), FPS, B) < Inf_max) and

(AUC(Sys(C), FPS) > AUC_min).  (5)

Our optimal configurations of equations (3), (5), and (4), can
be computed by evaluating all possible configurations of the
Pareto front.

Based on the established constraints, we also want to
consider selecting a balanced configuration that takes into
consideration tradeoffs between our three objectives. Once
again, we want to impose objective constraints on the final
configuration. Here, we consider a convex combination of the
normalized objectives as given by

Par

Inf
—AUC + )\Inf— + )\vPar IR
Par_min

Video_dur ©
where A refers to the weight assigned to the inference
time, Apyr refers to the weight assigned to the number of
parameters, Video_dur refers to the duration of the video, and
Par_min refers to the minimum number of parameters among
all models. Our normalization is aimed at providing intuitive
meaning to the weights. For example, an inference time that is
the same as the duration of the video implies that we may be
able to process and stream the results in real time. In reporting
our results, we will refer to the ratio Inf/Video_dur as the
inference speed (e.g., in the results discussed in Table 8).
Also, we will refer to the ratio Par/Par_min as the parameter
ratio (see Table 8).

The full framework for selecting the balanced configura-
tion is given by:

min  —AUC(Sys(C), FPS)
C,FPS

Inf(Sys(C), FPS, B)
Video_dur
Par(Sys(C)
Par_min
(Inf(Sys(C), FPS, B) < Inf_max) and

+ Alnf

Par

subject to:
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(AUC(Sys(C), FPS) > AUC_min) and
(Par(Sys(C) < P_max) . @)

Next, we will provide a short discussion about picking
different parameters. Given our focus on processing long-
duration videos, we are interested in relatively fast inference
times. This suggests that we want our inference times
to be at-least as long as the duration of the video:
Inf_max=Video_dur. For AUC, we want AUC to be well
above 50%. We thus set AUC_min=0.6. To support training
using common hardware without requiring large training
datasets, we want to set the maximum number of possible
parameters to about 100M. We note that much larger models
can be loaded in memory with more recent hardware.
Nevertheless, larger models require large ground truths for
training or pre-training for transfer learning applications.
Thus, we can set P_max=100M that will be satisfied by all
of the models that we consider. For the weights, we note that
Alnf = Apar = 1 will produce a reasonable configuration that
balances all of the objectives. To emphasize AUC, we can set
Amf = Apar = 0.1. To emphasize inference speed, we can
set A = 10 and Apyy = 1. To emphasize minimizing the
number of parameters, we can set Apyy = 10 and Apyr = 1.

B. VIDEO ACTIVITY PROPOSAL NETWORK (VAPN)

Our goal for the VAPN is to use fast object detection
methods to detect regions of interest without compromising
performance. To this end, we consider the use of methods
that have been pre-optimized for speed. We note that the
VAPN will provide the input to the VACN and hence, the
VACN will not be able to detect any activities if the VAPN
fails to detect a true object. On the other hand, if VAPN
provides false positives, the VACN can be used to remove
them. In terms of our multiobjective optimization framework,
the VAPN is optimized to have a small number of false
positives while allowing false negatives to be later handled
by the VACN. In what follows, we summarize the different
VAPN configurations that were considered and explain how
the final components were selected. We will not detail the full
multiobjective optimization approach here. For more details,
refer to [27].

For VAPN, we need to consider different configurations
for object detection, post-processing, tracking, and the
operating frame rate. For object detection, we considered
fast methods based on Faster RCNN [19], Single Shot
Detector [20], and YOLO [21]. For both keyboard and
hand detection, we found that Faster RCNN gave the best
results, with a small number of false negatives and a
reasonable number of false positives. To improve accuracy
for hand detection, we averaged detections over 12 frames.
Furthermore, after averaging, we removed detections with
small areas (area opening) to reduce the number of
false positives, without increasing the number of false
negatives.

Following object detection, we considered different meth-
ods for object tracking. We consider optimized methods for
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object tracking based on OpenCV: BOOSTING, MIL, KCF,
TLD, MEDIANFLOW, GOTURN, MOSSE, and CSRT.
Based on our testing, we got the best accuracy results using
KCF [28]. As required by our multiobjective framework,
we also determined optimal video sampling rates for each
activity. For hand detection, we sample one frame per
second. For keyboard detection, we sample one frame every
5 seconds.

To attribute an activity to a particular student, we compute
the intersection over union (IoU) between the detected object
and the rectangular regions associated with each student
(initialized at the beginning of each scene). For IoU>50%,
we associate an object detection with a specific student.

C. VIDEO ACTIVITY CLASSIFICATION NETWORKS (VACN)
We are interested in implementing the full multi-objective
optimization framework for VACN. In terms of our mul-
tiobjective optimization framework, we note that we are
interested in fast, low-parameter systems that can operate
at optimal frame rates. We are naturally led to consider
the optimization of 3D CNN architectures as opposed to
significantly higher-parameter transformer networks. Here,
we also note our use of VAPN also eliminates the need
for transformer models because we do not need to model
global interactions. We simply need to use our VACN to
classify short video segments over the objects detected
by VAPN.

We consider a family of 3D CNN architectures that uses
3D max pooling at each level. As a result, as the number
of convolutional levels increases, successful pooling also
reduces the number of required parameters for the final fully
connected layer. As we document in the results, our approach
leads to a parametrized 3D CNN architecture that improves
performance as the number of levels increases while reducing
the number of parameters at the same time. Furthermore,
our models sample the input videos at different frame rates
in order to capture coarse temporal characteristics of each
activity. Then, at the activity-specific frame rate, we use a
family of 3D CNNs to capture fine spatio-temporal features
of each activity.

We consider a family of different 3D CNN architectures
parametrized by the number of Dyad networks as shown in
Fig. 7. Each dyad consists of 3D-ConvNet kernels, batch
normalization, ReLU activation, and 3D max-pooling. For
the D-th dyad, we use 2D+1 3p_ConvNet kernels, as shown
in figure 7. The maximum depth, D,,,, of our architecture
depends on the size of the input video. For our dataset
videos, which have a size of 3 x 224 x 224 x fr, where
fr is the number of frames, the maximum depth that can be
supported is 4. As shown in Fig. 7, we can support up to
four depth levels. Overall, we explore three different rates
at four depth levels for a total of 12 different processing
models.

We will use multiobjective optimization framework to
select optimal models as described in the results.
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FIGURE 7. Video activity classification networks based on dyadic architectures. A family of 4 low-parameter architectures
were considered for determining whether an activity was present in each video segment.

D. INTERACTIVE VISUALIZATION OF VIDEO ACTIVITY
MAPS

Our interactive visualization of video activity maps is
designed to be applicable to any number of activities.
However, as stated in the introduction, we focus on recog-
nizing writing and typing activities. We present the WebApp
interface to visualize all typing activities over the entire video
in Fig. 8.

The WebApp takes the original input with bounding boxes
and time stamps that mark the activity within each video
session. It then generates an interactive activity map with
links back to the original input video. The WebApp associates
a student pseudonym with each activity. For each student,
we use a different row to summarize the results. Along each
row, a sequence of bars marks the beginning and the ending
of each activity.

The WebApp is highly interactive. When a user hovers over
each bar, they can view the activity time interval. They can
then click on each bar to activate a link that loads the video
hosted on our AOLME server, allowing users to review the
activity in question.

The Webapp provides controlled access. To access the
WebApp, users must first register with the AOLME website.
The system supports multiple concurrent users.
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We provide an example in Figure 8b. The Figure shows
several features of the interactive WebApp. We note that the
displayed activity maps also provide zoom-in and zoom-out
so that the users can focus on specific intervals.

V. RESULTS

In this section, we provide detailed results on the
optimization of the video activity classification net-
work, comparisons against other methods, and interactive
visualization of the results. In terms of performance,
we used an Intel Xeon CPU running at 2.10 GHz
and 128 GB of RAM. Our system used an Nvidia
Quadro RTX 5000 GPU with 16 GB of video memory,
which is considered to be lower-end according to standard
benchmarks [29].

A. VAPN RESULTS

We present results from VAPN in Fig. 9. In what fol-
lows, we present results for keyboard and hand detections
separately.

We note that training on wired and wireless keyboard
examples worked well. As seen in Fig. 9(a), the VAPN
can successfully detect wired and wireless keyboards under
significant occlusions. On the other hand, the VAPN failed
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can use mouse to hover over the asterisks (*) and hash (#), which display exact location in the video. These symbols also serve as weblinks
(requires AOLME account and IRB training), displaying the activity in a web browser.

FIGURE 8. System diagram and example of interactive activity map.

(a) True Positive (left image): Detection of wireless keyboard with (b) False negative example (left image): Significant change in ke

significant occlusion. True Positive (right image): Detection of the board appearance was not detected. False Positive example (rig

rotated wired keyboard. Both keyboards were successfully tracked.  image): Incorrect detection of dark notebook as a keyboard.
e T - O X T e Dy g . - L N

bt

(c) Noisy hand detections before using projections. The images con- (d) Corrected hand detections after using projected-based filtering in
tain several false positives, where many of the detected hands belong the VAPN. The left image contains a false-positive in the upper left. All
to moving people or outside groups (away from the camera). other detections represent true positives.

FIGURE 9. VAPN results for keyboard detection (top images) and hand detection (bottom images).

to detect keyboards under significant appearance changes Fig. 9(b)). Overall, we achieved an average precision (AP)
(see left image and in Fig. 9(b)). The VAPN also confused of 0.92 and average recall of 0.676 at 0.5 intersection over
a dark notebook for a keyboard (see the right image and in union (IOU).
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TABLE 6. Multiobjective optimization results for VACN architectures in
terms of the number of parameters, test-set accuracy, and inference
speed. In this table, we report accuracy over the test-set. This accuracy
increased with the test-set AUC. Inference speed is controlled in terms of
the frame rate and the number of parameters. FPS refers to the number
of frames per second of the input video. Thus, at 10 FPS, the network is
applied to the video sampled at 10 frames per second. The number of
parameters is controlled in terms of the number of dyads. We choose the
highlighted configuration as the most balanced configuration (see text).

Num. of FPS | Num. Of Typing Writing
dyads Params  Acc. Acc.

1 10 657K 53.33 39.93
2 10 47K 61.25 39.93
3 10 7.8K 61.25 57.34
4 10 18.7 K 69.59 63.09
1 20 657K 53.33 38.90
2 20 47K 53.33 61.09
3 20 7.8K 62.08 59.87
4 20 18.7K 65.83 63.22
1 30 657K 53.33 39.93
2 30 47K 53.33 39.93
3 30 7.8K 62.91 61.54
4 30 18.7K 67.91 64.05

Hand detection without the use of projections pro-
duced many false positives as shown in Fig. 9(c).
On the other hand, our use of projection-based filter-
ings reduced most of the false positives as shown in
Fig. 9(d). Overall, hand detection achieved an average
precision of 0.72 at 0.5 IOU. Refer to [27] for more
details.

In terms of our overall system, we recall that the VACN can
reduce the number of false positives by correctly classifying
the activity over the wrong objects. On the other hand, our
system cannot reduce the number of false negatives since they
are not input to the VACN.

B. VACN TRAINING

For training, we use the Adam optimizer with an initial
learning rate of 0.001, and use early stopping and video data
augmentation techniques to prevent overfitting. During train-
ing, we apply data augmentation with 50% probability. Thus,
for half the video segments, we apply uniformly random
shearing (shearing factor between —0.05 and 0.05), rescaling
(scaling factor between 0.9 and 1.2), rotation (angle between
—7 and 7 degrees), translation between —5 and +5 pixels,
and horizontal flips. Furthermore, we train each model for a
minimum of 50 epochs and a maximum of 100 epochs, with
early stopping applied after 50 epochs. The early stopping
uses a patience of 5 epochs. In other words, after 50 epochs,
we select the best model and terminate training if perfor-
mance over the validation set does not improve after 5 epochs.
Here, we note that our early stopping is used to avoid
overfitting.
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TABLE 7. Fast training using small and short video segments over regions
of interest proposed by VAPN. The proposed CNN approach is the fastest,
with a batch size of 16.

Method Typing Writing Batch
in minutes in minutes size
13D 79 (3.04x) 75 (2.50%) 8
Slowfast 310 (11.92x) 279 (9.30 %) 8
TSM 64 (2.46 %) 58 (1.93 %) 8
TSN 42 (1.62x) 38 (1.27x%) 8
Ours 26 (1x) 30 (1x) 16
200x
Best inference batch size is 16.

160x A

3

2 120

£ 80x

40% A

12 4 8 16 32
Number of activity video proposal samples in a batch.

FIGURE 10. Inference speed optimization based on batch size.The
optimal batch size is achieved at batch size=16.Inference speed is
measured as the ratio of the output video frame rate divided by the input
video frame rate. The optimal inference speed is at 154 x which
corresponds to 4,620 frames per second.

C. MULTIOBJECTIVE OPTIMIZATION OF VACN
We performed multiobjective optimization to select an
optimal VACN for each activity. As described in the
methodology, we selected the optimal model-based on the
test-set AUC, the number of parameters and inference speed.

We present results from our multiobjective optimization
of the VACN architectures in Table 6. In terms of our
multiobjective frameworks, we select the maximum AUC
configuration mode that is represented by the maximum
accuracy mode in Table 6. For typing, we achieved a test
AUC of 0.95 and for writing, we achieved an AUC of 0.84.
In terms of constraints, we note that at sampling at 10 frames
per second, our chosen configuration is the fastest possible
because it processes a smaller number of frames per second.
In terms of the number of parameters, we note that we are
using just 18.7K parameters which is a very small number
(but more than the 7.8K for 3 dyads). Overall, in terms of
balancing the constraints, we sacrifice an increase in the
number of parameters to achieve significant improvements
in the test-set accuracy.

We further consider inference speed optimization by
varying the batch size. The results are shown in Fig. 10.
Here, batch size refers to the number of video segments.
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TABLE 8. Comparative results for video activity classification in terms of the number of parameters, inference speed, and memory requirements. The
model performance is measured using AUC and accuracy. We measure inference speed based on the original video playback speed (playback speed =
1x). The best performance is highlighted against a green background. The proposed approach uses over a 1000 times less parameters, requires far less

memory, runs faster, and performs better than all other methods.

Method # Param. Inf. GPU Mem. Test Test Detection AUC
speed in MB AUC acc. on complete sessions
Classification on AOLME-TC dataset AOLME-TD sessions
13D 27.2M (1437x%) 3 X 5051 (20x%) 0.66 64.58 0.75
Slowfast 33.5M (1787x%) 3 X 6318 (25%) 0.71 61.25 0.48
TSM 23.5M (1252x) 118x 6971 (28x%) 0.59 58.75 0.77
TSN 23.5M (1252x%) 4x 5593 (23x%) 0.74 65 0.76
Ours-opt 18.7K (1x) 154 x 245 (1x) 0.76 69.58 0.83
Classification on AOLME-WC dataset AOLME-WD sessions
13D 27.2M (1437x%) 3X 5051 (20%) 0.66 59.58 0.56
Slowfast 33.5M (1787x%) 3x 6318 (25%) 0.57 53.67 0.48
TSM 23.5M (1252x) 118x% 6971 (28 %) 0.50 47.60 0.41
TSN 23.5M (1252x) 4x 5593 (23 %) 0.62 61.66 0.45
Ours-opt 18.7K (1x) 154 x 245 (1x) 0.67 63.09 0.59
° ™ — __1200(; y — Al :
o 40 (23.5M, 4125) Slowfast $ 1000 | (27.2M, 1200) 2 401! TSM Slowfast
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(b) Pareto plots for writing classification.

FIGURE 11. Multiobjective optimization results for typing (top images) and writing (bottom images).The results demonstrate that the optimized VACN is
significantly better in terms of the number of parameters,testing accuracy (error rates), and inference time.To facilitate visualization, we plot three
combinations of any two objectives. For all objectives, lower values are better.

We measure the inference speed as a ratio of the output frame
rate to the input frame rate. Thus, in Fig. 10, an inference
speed of 1x implies real-time video processing where the
output frame rate is the same as the input frame rate. The
optimal network can perform inference at 4,620 frames
per second (4,620=154%30) of 154 x 30 pixels per frame.

D. TRAINING PERFORMANCE COMPARISONS
Our optimization approach led to very fast training times (see
Table 7). We note that this is primarily due to the fact that
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we train on small and short video segments over hand and
keyboard regions.

Our fast training results demonstrate the advantages of
our approach. First, we recall that our approach does not
require any pre-training. Despite the fact that we initialize
from random values, our optimized VACN trained faster than
any other method. Here, unlike all other methods, we did
not perform GPU-based video decoding. Instead, we are
only using CPU-based video decoding, which is somewhat
slower. Yet, we still outperform every other method during
training.
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(a) True negative examples: VACN correctly labels the video segments as no-typing activities. We note that the VACN correctly
identified the lack of typln(); activities despite the presence of fingers waiting to type over the keyboard (e.g., the second image from

the left and the last image

(b) True posmve examples: VACN can detect typing in cases with severe occlusions, despite strong variations in keyboard and finger
placements, and at a variety of different distances and video image sizes.

E. 3

a el

.

(d) False negative examples: In most cases, the keyboard and the hands are severely occluded. There is an example of moderate
occlusion where hands movements are misclassified as typing (see 4th image from the left). In this case, the typing finger tips are

occluded.

FIGURE 12. Typing classification examples over 90-minute sessions from AOLME-TD dataset.

E. INFERENCE MODEL COMPARISONS

We compare our model against several popular state-of-
the-art methods in Table 8 and Fig. 11. For comparison,
we have trained all models on the same datasets. Fur-
thermore, as described earlier, we performed inference
speed optimization by varying the batch size for each
method. As before, we measure performance using AUC
and accuracy (for IoU=0.5). We also compare the number of
trainable parameters, Graphical Processing Unit memory, and
inference speed.

From the results, we note that our classifiers use extremely
low parameter models. At just 18.7k, the proposed model
uses 1252x to 1437x fewer parameters than any other
model. Overall, the proposed models require 20x to 28x
less memory than any other popular model considered in the
literature.

Our proposed models outperform every other model in
terms of inference speed and classification performance.
Over our full session datasets, our AUC results are signifi-
cantly better than any other model. For typing, we achieved
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an AUC of 0.83. For writing, we achieved an AUC of 0.59,
which is much lower. Nevertheless, our writing classification
performance is significantly higher than any other model.
In terms of our combined performance, we note that no
other classifier gets close to our performance and speed.
For example, TSM is much slower and achieved AUCs of
0.77 and 0.41 (compared against 0.83 and 0.59 for our
models).

We demonstrate the significant advantages of our proposed
approach in the Pareto plots of Fig. 11. For each plot,
we note that our proposed approach is plotted in the lower-left
corner. This implies that our approach outperforms all other
methods in terms of every possible combination of inference
speed, accuracy (given by 1 - error rate), or the number of
parameters.

While other methods may approach our models’ perfor-
mance in any one objective, this comes at a significant cost at
the other two objectives. And of-course, as mentioned earlier,
without any pre-training on larger datasets, our proposed
approach outperformed every other method while using more
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(a) True negative examples: Despite the presence of both hands and paper, the VACN correctly classifies the lack of writing motions.
The VACN correctly rejects the lack of significant hand motions or cases where hand movement differs significantly from writing.

~ b

(b) True positive examples: The VACN accurately detects writing cases when the hand and pencil/pen are visible and exhibit slow,
deliberate movements associated with writing. Note that the VACN works well even in cases with strong occlusions (e.g., the second

image from the left).

(c) False positive examples: The VACN was found to be sensitive to hand movements that did not correspond to actual writing. In the
leftmost and rightmost |mages we show examples where VACN misclassified hand movements that did not involve a pencil or paper.

ey

(d) False negative examples: The VACN missed cases of hlgh occlusion (e.g., fourth image from the left), wrltmg associated with large
hand movements, or holding the pencil in a non-standard position (e.g., firstimage from the left).

FIGURE 13. Writing classification examples over 90-minute sessions of the AOLME-WD dataset.

than 1000x fewer parameters. In terms of inference speed,
we note that TSM is also fast (e.g., see right plots in Fig. 11).
However, we note that the TSM’s error rate is significantly
worse than our proposed approach (e.g., by 10 percent or
more). Similarly, in terms of accuracy, TSN, although it is
slightly worse, approaches our error rate for writing (see
bottom-right plot in Fig. 11). However, we significantly
outperform TSN in terms of accuracy for typing classification
(see top-right plot in Fig. 11). At the same time, we are more
than 38x faster in terms of inference speed! As shown in
the multiobjective plots of Fig. 11, in terms of objectives,
the remaining models perform significantly worse in every
objective.

VI. FULL-SESSION VIDEO EXAMPLES (90 MINUTES)

A. TYPING CLASSIFICATION

We present several typing classification examples in Fig. 12.
The examples come from testing over 90-minute video
sessions from the AOLME-TD dataset.

We note the strong diversity of our examples. In the
majority of our examples, keyboards are highly occluded.
We also present some examples where hands are severely
occluded. Our examples also include complicated hand
motions over keyboards. Overall, we note that our dataset
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captures the strong diversity of angles,
occlusions associated with typing activities.

Our VACN correctly detects typing in a variety of complex
scenarios. For example, in Fig. 12(a), we have examples of
hand presence over keyboards that were correctly classified
as true negatives due to the lack of typing motions. Similarly,
despite strong occlusions, typing movements were correctly
classified as true positives in Fig. 12(b). We also present
complex examples of misclassifications in Fig. 12(c) and
Fig. 12(d). In Fig. 12(c), we present examples of hand
movements that resembled typing that were misclassified as
typing. In Fig. 12(d), we present examples of typing under
occlusion that were missed. In the fourth image from the left
of Fig. 12(d), we note that the fingers associated with typing
fell outside the VAPN detection region.

Overall, our method performed very well in cases with
strong occlusions where typing remained clearly visible. Our
method performed badly in cases with severe occlusion with
limited visibility of the fingers involved in the typing action.
We have also found a limited number of cases where finger
motions over the keyboard region were misclassified as false
positives. To improve performance for such cases, there is
a need to include training examples with non-typing finger
motions located over the keyboard region. In terms of our

positions, and
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FIGURE 14. AOLME-TD visualization for typing. The interactive WebApp interface is shown in the top figure. Results against ground truth are
shown in the bottom figure. For the bottom figure, we have run a 10-second median filter to reflect the intended use of our system. For the bottom
figure, TP refers to true positives, FP refers to false positives, FN refers to false negatives. Note that everything else represents a true negative.

overall system, we hope that false positives will be identified
during the final review using interactive visualization.

B. WRITING CLASSIFICATION

We present several examples of writing activity classification
in Fig. 13. The examples come from testing over 90-minute
writing sessions from the AOLME-WD dataset.

VOLUME 13, 2025

We note the diversity of testing examples in the AOLME-
WD dataset. Regarding placement, we note severe occlu-
sions, pose variations, and strong variations in camera angles.
In terms of motions, in addition to writing, we had strong
variations, including students playing with their pencils and
making different gestures.

The VACN correctly rejected cases with little or no
hand movements as true negatives (see Fig. 13(a)). Despite

81163



IEEE Access

V. Jatla et al.: Fast and Accurate Video Analysis and Visualization of Classroom Activities

Compact

wireless
" keyboard

Full size
wired

FIGURE 15. AOLME-TD: Typing detection results visualization over real-life classroom videos. Our system was able to detect and track two

different types of keyboards.

(a) Successful typing region pro- (b) Successful typing region pro-

posal using keyboard tracking posal using keyboard tracking

when keyboard is partially visible. when keyboard is fully visible.
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(c) Failure to detect typing region (d) False positive detection of
when keyboard is tited and the book that has similar markings as
keys are not visible. keyboard.

FIGURE 16. Typing activity detection visualization examples.

occlusions and strong pose variations, the VACN correctly
labeled writing movements as true positives (see Fig. 13(b)).
Yet, the VACN incorrectly classified students playing with
their pencils and other complex hand movements as writing
activities (see Fig. 13(c)). The VACN also missed writing
activities in cases of extreme occlusions or large writing
movements (see Fig. 13(d)).

Overall, our method performed well in cases where writing
is associated with relatively slow hand movements that are
visible despite severe occlusions. We missed cases where
writing is associated with large movements (e.g., drawing)
and cases where the majority of hand movements were
severely occluded. To improve performance for such cases,
as before, there is a need to extend the training dataset
to include examples of complex hand motions that are
not associated with writing (e.g., drawing, playing with
the pencil, etc). As before, we hope to identify these
false positives during the final review using interactive
visualization.

C. INTERACTIVE VIDEO ACTIVITY VISUALIZATION USING
ACTIVITY MAPS

We present typing activity results over a 90-minute video in
Fig. 14. The users can zoom in and out in different parts
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of the video and click to inspect specific portions of the
video activity as demonstrated in 15 and 16. Our interactive
system allows users to review educational activity patterns
and recognize collaborative learning patterns within each
student group. Here, we focus on interpreting the video
activity recognition results.

We analyze the global typing activity recognition results
using Fig. 14. In the top plot of Fig. 14, we can visualize
typing patterns over 90 minutes of real-life classroom videos.
The users can then click on the map to verify the results.
The bottom plot of Fig. 14 displays a detailed comparison
of the detected typing activity against ground truth. From the
results, it is clear that our system is able to recognize the
general typing patterns. We note that false positives can be
easily removed during the interactive review process. Even
for our false negatives, we note that there is often a small
number of nearby true positives that will direct the users’
attention to the general video segment where the activity
is happening. Hence, during the interactive review process,
we can eliminate several of our false negatives by reviewing
longer video segments around our true positives.

We also present results during our interactive review
process in Figs. 15 and 16. In Fig. 15, we can see that
our system successfully detected typing activity around a
compact wireless keyboard (on the left) and a full size wired
keyboard (on the right).

We interactively zoom in to visualize specific results as
demonstrated in Figs. 15 and 16. In Fig. 15, we can see
that the system successfully detected two types of keyboards
under partial occlusion. We show more examples in Fig. 16.
We note that our proposed system was able to detect typing
activities in challenging scenarios (e.g., see Figs. 16(a)-(b)).
An example of failure to detect a typing activity is shown in
Fig. 16(c). In this example, our system could not identify a
keyboard for which the keys were not visible. In Fig. 16(d),
we show an example of hand activity being classified as

typing.

VIi. CONCLUSION
Our paper described the development of a video activity
recognition system that can efficiently process
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90-minute real-life classroom video sessions. Our approach
focused on the development of separable video activity
recognition systems that use an extremely low-number
of trainable parameters. At 18.7k, our optimized video
activity classification system uses more than 1,000 times
less parameters than any of the popular state-of-the-art video
activity recognition systems. At the same time, our proposed
system runs significantly faster and performs significantly
better than any of the popular state-of-the-art video activity
recognition systems. The key idea here is that our proposed
approach allows us to optimize processing frame rates
and minimize parameters that allows us to target specific
activities, as opposed to the standard practice of using transfer
learning from large-scale video activity recognition systems.
Furthermore, we have developed an interactive WebApp that
allows educational researchers to visualize video activity
patterns over very long (90-minute) real-life classroom
videos.
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