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ARTICLE INFO ABSTRACT

Keywords: In this paper, a model describing the behavior of two-phase ferrofluid flows with different den-
Two-phase ferrohydrodynamics sities and viscosities is established by using phase field techniques. This model is a coupled non-
Phase field

linear multiphysics PDE system consisting of Cahn-Hilliard equations, Navier-Stokes equations,
magnetization equation and magnetostatic equation. By reformulating the magnetic potential
equation, applying the artificial compressibility method, utilizing the implicit-explicit scheme for
treating the nonlinear terms, and adding several stabilization terms, we propose a linear, decou-
pled and fully discrete finite element method approximation for the established model. And it is
strictly proved to be unconditionally stable and uniquely solvable at each time step. Furthermore,
the proposed scheme does not impose any artificial boundary conditions on the pressure. In order
to accurately capture the diffuse interface in the numerical simulation, we also apply the adaptive
mesh strategy to locally refine the mesh around the interfacial region. Several informative nu-
merical experiments, including an accuracy test, deformation of a ferrofluid droplet, one or two
air bubbles rising in ferrofluids, a controllable ferrofluid droplet in a Y-shape domain, and the
Rosensweig instability under uniformly or nonuniformly applied magnetic field, are performed
to illustrate various features of the proposed model and scheme, especially their applicability for
the cases of high density ratio and high viscosity ratio.

Artificial compressibility
Different densities
Different viscosities

1. Introduction

Ferrofluids, also called magnetic fluids, are colloidal solutions made of ferromagnetic nanoparticles suspended in a dispersing
liquid. These particles are suspended by Brownian motion and do not precipitate or agglomerate under normal circumstances. Ferro-
magnetic fluids have the characteristics of both liquid flow and solid magnetism. Ferrofluids can be controlled by applying a magnetic
field, which is very unique among all fluids. It is well known that the Rosensweig model [1-7] and the Shliomis model [8-10] are
two widely accepted ferrohydrodynamics (FHD) models. Moreover, both the Rosensweig and Shliomis models deal with single-phase
flows, which is the case for many technological applications, such as instrumentation, nanotechnologies, vacuum technology, en-
hanced heat transfer of electronics and acoustics, and so on [11-15].

However, some applications appear in the form of a two-phase flow: one of the two phases has magnetic properties and the
other does not, such as magnetic manipulation of microchannel flows, microvalves, magnetically guided transport, dichroism and
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birefringence based on magneto-optic effect, biomedical engineering, location-specific drug delivery, cell separation, tagging, treat-
ment of tumor cells, particle imaging, etc. [16-20]. Traditionally, most of the existing models for multiphase incompressible FHD
problem are devoted to sharp interface models, such as the volume-of-fluid method [21-23], the level-set method [24-27], and the
coupled volume-of-fluid and level-set method [28].

Recently, the lattice Boltzmann methods were developed for studying the two-phase FHD flows. In [29], Y. He and his collabora-
tors extended the Boltzmann method of the phase field lattice to simulate the flow of multiphase ferrofluids. They proposed multiple
conservative phase-field lattice Boltzmann models, which are applicable to thermal capillary flows with large density ratios and ther-
mal physical parameters [30]. In [31], a fractional step magnetic field coupling Boltzmann model is proposed to simulate complex
interfacial behaviors in magnetic multiphase flows with severe interface deformation and large density ratio, which can be recovered
to the corresponding macroscopic governing equations with fully second-order accuracy. In [32], X.Y. Niu et al. presented a method
combining simplified lattice Boltzmann method and self-correcting techniques to investigate the motion, deformation, and cluster-
ing of ferrofluid droplets suspended in non-magnetic fluids under different magnetic field intensities. There are also other lattice
Boltzmann type works for the two-phase ferrofluid flows [33-36].

In recent years, there are also a few works focusing on macro-level phase field models with the magnetization equation for the
two-phase ferrofluid flows. In [37], R. H. Nochetto et al. proposed a diffuse interface model for two-phase ferrofluid flows. Under
reasonable assumptions, some nonlinear terms were dropped for simplicity. And a nonlinear fully coupled finite element method was
proposed and analyzed. In [38], by combining the projection method for the Navier-Stokes equations, some subtle implicit-explicit
treatments for coupled nonlinear terms, and several stabilizers, G. D. Zhang and his collaborators firstly proposed the decoupled,
linear, and unconditionally energy stable scheme to solve a more complex phase field model of two-phase ferrofluid flows. In [39],
the authors reformed the magnetostatic equation, introduced a scalar variable based on the “zero-energy-contribution” property,
utilized the invariant energy quadratization method for the Cahn-Hilliard equations, and applied the projection method for the
Navier-Stokes model, in order to construct the first linear, full decoupled scheme, second order in time accuracy and unconditionally
energy stable for the two-phase FHD model. In [40], the authors introduced a two-phase ferrofluid flow model of Allen-Cahn type that
conserved mass and developed a unified framework of the scalar auxiliary variable (SAV) method and the zero energy contribution
(ZEC) approach. The models and finite element methods in [37-40] are proposed for two-phase ferrofluid flows of matched density
and use strict pressure boundary treatment.

In this paper, we extend the model in [37] by considering the case of nonmatching density. The main goal of this paper is to
develop a linear, decoupled, unconditionally stable, and fully discrete numerical scheme to approximate the solution of this model.
Even with the existing works, significant challenges still remain in the development and analysis of the numerical method, due to a
series of strong nonlinear couplings among the pressure, velocity, magnetization field, phase variable, and effective magnetization
field through the nontrivial elastic stress tensor, fluid convection, and Kelvin force. The main difficulty in achieving this goal is how
to linearize the coupled nonlinear term and decouple the velocity and pressure, while maintaining the unconditional stability.

Two-phase ferrofluid model with different densities and viscosities consists of Cahn-Hilliard equations, Navier-Stokes equations,
magnetization equation, and magnetostatic equation. For the Cahn-Hilliard equations, there exist a series of successful techniques to
discretize the nonlinear potential to obtain energy stable schemes, such as the convex splitting method [41-45], the stabilize explicit
method [46-49], the invariant energy quadratization method [50-56], the scalar auxiliary variable method [57-62], the zero-energy-
contribution method [63-68], and so on. For the Navier-Stokes equations, there are also a series of successful decoupling techniques,
such as the projection method [69-73] and the artificial compressibility method [74-76]. The main difference between these two
methods is whether one needs to impose any artificial boundary conditions on the pressure.

To design the target numerical method, we reformulate the magnetostatic equation, employ the artificial compressibility method
for decoupling the velocity and pressure in the Navier-Stokes equation, utilize the implicit-explicit techique for handling the coupled
nonlinear term, and add several first-order stability terms. As a result, we propose a linear, decoupled, fully discrete finite element
numerical scheme to solve the two-phase FHD systems with different densities and viscosities. The proposed scheme is unconditionally
stable and uniquely solvable at each time step. It also does not enforce any artificial boundary condition on the pressure. Furthermore,
we introduce the adaptive grid strategy to dramatically accelerate the computation without sacrificing the desired properties and
accuracy. In the numerical experiments, we use the proposed numerical scheme to simulate some practical problems and obtain
physically meaningful results, including deformation of a ferrofluid droplet, one or two air bubbles rising in ferrofluids, a controllable
ferrofluid droplet in a Y-shape domain, and the Rosensweig instability under uniformly or nonuniformly applied magnetic field. This
is by no means an easy task due to the cases of high density ratio and high viscosity ratio.

The rest of this paper is organized as follows. In Section 2, a two-phase ferrofluid model with different densities and viscosities
is presented. With the help of a new variable, we obtain an equivalent form of this model and derive its energy law. In Section 3,
we derive the weak formulation and semi-discrrete formulations for the proposed model. In Section 4, we propose the numerical
scheme, and strictly prove its unconditional energy stability and uniquely solvability at each time step. In Section 5, a series of
numerical experiments are provided to illustrate the features of the proposed model and scheme. Then the conclusions are drawn in
the Section 6.

2. A two-phase ferrofluid model with different densities and viscosities

In this section, we extend the two-phase FHD model in [37] by considering the case of nonmatching density. Then an equivalent
form of this model is derived by introducing a new variable. The dissipative energy law is also showed at the continuous level.
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2.1. Model system

Under the linear assumption m ~ yh [23], the terms ‘—2‘V X (mx h) and pm x (m x h) are negligible. Under the assumption that

convection and reaction are the domain terms, the term —%V x ux m of the magnetization equation is negligible [37]. As a result,
the following matched density two-phase FHD model [37] was proposed in a polygonal domain Q:

@, + V- (ud) = MAW, (1a)
W= —£A® +f (D), (1b)
p(U, + - Vyu) — V - (W(P)D(u)) + Vp + quw: u(m - Vh, (1)
V.u=0, (1d)
m,+ (- Vm =~ (m - 7(@h) (1e)
—~Ap=V-(m-hy). an

Here @ is the phase field variable, W is the chemical potential, 0 < € < 1 is related to the interface thickness, M > 0 is the mobility
parameter, u is the velocity field, p is the pressure, v(®) is the dynamic viscosity, 4 is the capillary coefficient, u is the permeability
of free space, m is the magnetization field, h(:= V) is the effective magnetizing field, ¢ is the magnetic potential, h = h, + h; where
h, is the given applied magnetizing field satisfying curl-free and div-free conditions, h, is the so-called demagnetizing field, y(®) is
the susceptibility, r is relaxation time constant, D(u) = %(Vu+ (Vu)"), and the term (m - V)h is the so-called Kelvin force. Moreover,
f (®) = F'(®), where F(®) is a given double well potential as follows:

g @ € (~00,0),

F(@) =1 0@ ~17, ®e[0.1], @)
1 2
w(@-17 ® e (1, +00).

It is easy to check that the second derivative of the double well potential F(®) is bounded, that is, |[F"(®)| < % The phase field
variable @ satisfies

1, ferrofluid phase,
D(t,x) = . . (3)
0, nonmagnetizable viscous medium.

Without loss of generality, we can take density p =1 in (1c). In this work we extend the model (2.1) by considering the case of
nonmatching density for which the density p is not a constant but a function related to the phase field variable ®. Inspired by [77,78],
we know that the momentum Eq. (1c¢) can be rewritten as

(@)U, + (u-Vu) -V - (v(®)D(u)) + Vp + S(DVW = u(m- V)h. 4)
Therefore, replacing (1c) in model (2.1) with (4), we obtain the following model with different densities and viscosities in Q:
O, + V- (ud) = MAW, (5a)
W= —£A® +f (D), (5b)
(@)U, + (u-Viu) -V - (v(®)D(w)) + Vp + fthW = u(m - V)h, (5¢)
V-u=0, (5d)
m,+u-V)m= —%(m — y(®)h), (5e)
—Ap=V-(m-hy,), (59

for every t € (0, T], where p(®), v(®) and y(®) are density, viscosity and susceptibility depending on the phase-field variable ® and
satisfying

0 < min{p,, pr} < p(®) < max{py, pg}, 0 < min{v,, ve} < V(@) <max{y,, v}, 0 < y(P) < (D). 6)

Here yo(®) > 0 is the magnetic susceptibility of the ferrofluid phase, v,, and p,, are the viscosity and density of the non-magnetic
phase, v and py are the viscosity and density of the ferrofluid, respectively.

For the two-phase FHD model (2.5) with different densities and viscosities, the main goal of this paper is to develop a decoupled,
linear, unconditionally stable, and fully discrete numerical scheme to approximate the solution. It is well known that the skew-
symmetric property is one of the important properties of the nonlinear term for the incompressible Navier-Stokes equations with
constant density and certain boundary conditions. That is, since V - u = 0 and u|,, = 0, one has

/ po(u- Vv - vdx = 0. (7)
Q
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However, if the constant p, above is replaced by the non-constant function p related to the phase field variable ®, then (7) is not
valid. To overcome this difficulty, we follow [78,79] to introduce a new variable ¢ = 1/p(®) to derive the equivalent form of system
(2.5). Using the mass conservation

P@) + V - (@) = 0, ®)
we derive

o(ou), = POV, + 3 p (@)U = p@Y, = 3V - (@)W ©
then

(@), = o(ou), + %v - (p(P)u)u, (10)

thus it is physically consistent to replace p(®)u, in (5¢) by o(cu), + %V - (p(®)u)u, leading to the modified momentum equation
o(ouw),; + %V (p(@uwu+ (p(@u - Viu—-V - (v(®)D(u)) + Vp + §¢VW= um- Vh. (11)
Since u - n|,o = 0, we obtain
((p(P)u- Vv, v) + %(V “(p(@wv,v) = 0. (12)

Therefore, the equivalent form of two-phase ferrofluid with different densities and viscosities can be obtained as follows:

@, + V- (ud) = MAW, (13a)
W= —A® +f (), (13b)
o(ou), + %V (p(@)wu + (p(@)u - Viu— V - ((@)D(u)) + Vp + fcbvw = u(m- V)h, (13¢)
V.u=0, (13d)
m +(u-Vym= —%(m - x(@)h), (13e)
—Ap=V-(m-hy). (13f)

We supplement system (13a)—(13f) with the following initial and boundary conditions
D0, x) = D), u(0,x) =uy, m(0,x)=m,, (14a)
0,Plaq =0, 9,Wlya =0, ulyo =0, 9,9lyq = (hg —m) - n, (14b)
where n is the outward normal on the boundary 0Q. Moreover, under the condition of satisfying inequalities (6) [38,80,81], we select

/J(q)) = (pf - pw)q) + P v(®) = (Vf - Vw)d) + Vs ){((D) = /YO(I)~ (15)
2.2. The dissipative energy law

For the convenience of mathematical deduction, we first introduce some notations in this paper. We use ||-||;, to denote the
standard norm of the Sobolev space W*?(Q). When p = 2, we use ||-|| ;1 to denote the norm of w2(Q) = H'(Q). In particular, s = 0,
WOP = LP(Q). The inner product in L?(Q) is associated with (-,-) and the norm of L?(Q) is denoted by ||-||. Moreover, we define a
trilinear form as b(m, h,u) = ((m - V)h, u). Thus, we recall an important lemma to derive the energy estimate as follows:

Lemma 2.1 ( [37]). Let m be the magnetization, h be the effective magnetizing field, u be a solenoidal field such that u - n = 0 on 9Q. Then
the following identity holds true

b(u,m, h) = —=b(m, h, u). (16)

Theorem 2.1. The two-phase ferrofiuid system (2.13) with different densities and viscosities satisfies the following energy law:

d/ 2 A 1 AM
S (21vo|? + 2E®), D) + > lloull® + 2 Im|I* + £ ) + 22 | vw)?
de \ 2 € 2 2x0 2 £
2 3 T
+IVV@D@I + == liml> < =l I + =ik, I (17)
T X0 2t 2

Proof. Multiplying (13a) by fW and (13b) by ftbt, respectively, and using integration by parts, we obtain

2@, W+ Hjvw? = 2w, vw), as)
4 =4 (Ao 4t
ZW.0) = < (SIVOI? + ZFE®). D). (19)
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By taking the L? inner product of (13c) with u, applying integration by parts, and using Lemma 2.1 for the Kelvin force, (12) and
(13d), we derive

%%uauuz + V@Dl + @VW.w = —ub(u.m,h) (20)

Multiplying (13e) by —uh and Xim, respectively, yield
0

2
— utm by = Eam. by + £ @hll” = pbu,m. h), 1)
H Ly + L2 = L (@b m), 22)
27 dt X0 X0

where we use (u- V)m,m) = (u- V)m,m) + %((V -wym, m) = 0. By taking the L? inner product of (13f) with £ Zo, and using h = Ve,
we derive

Ejni + £m.hy = £k, h. 23)
T T T
By taking the time derivative of (13f), multiplying the resulted equation by u¢, and using integration by parts and h = V¢, we obtain
d
£ S IRIP + u(my. by = (k). . @4)

Thus, summing up (18)—(24), and applying Lemma 2.1, we derive
d (4 2 A 1 2 M 2, M 2 AM 2 2
—( =||VD = (F(®), 1 = —_— =|h —|IVW] d)D
Glt<2|| I +£<( 0+ gloull + = mi + 2 Ik >+ VWP + V@D

2
IRl + = ml + 21V @bl = = Gr(@)hom) + E g, by + (), . (25)
X0 TX0 T
The three terms to the right of (25) can be estimated as

L y@h,m)+ Eh, b+ uihy), b
X0 T
U 2 (@) o M0 H 2, TH 2
< EIVz @l + i mll” + Z1RIE + 2= 1 1P + S 1), |

—II\/)((<I> hll to Imll2 ||h|| + 5 IIh I+ Il(h)ll (26)

Here h, is a given external magnetic field serving as a source term and may change over time. Thus the system (2.13) satisfies energy
law (17). O

3. The weak formulation and semi-discrete formulation for two-phase FHD model with different densities and viscosities

For the mathematical setting of problem (2.13), a series of spaces are introduced as follows:

Y=H'(Q={pcH Q)

V=H}(Q) ={ve H(Q) : v=0o0ndQ},

0=Ly(Q) ={qe L*(Q) : [,qdx=0}, @7
N=I1*Q) = {c e [*(Q)},

Z=H'@Q={y e H@QnL}Q)}

We then derive the weak formulation of two-phase FHD model (2.13). We firstly consider the magnetic potential Eq. (13f): find
@ € Z, such that

LV, Vy) + 2, Vy) = Lk, V), Yy € Z. (28)
By taking the temporal derivative of (13f) and formulating the obtained equation in the weak formulation, we obtain

Vo, V) + (m,, Vy) = ((h,),, V). (29)
Summing up (28) and (29), we obtain the following new magnetostatic equation which will be used to replace (13f):

LV, Vy) + (Yo, V) + ~m, V) + (my, V) = = (g, V) + (Ry) V). (30)

Remark 3.1. It is well known that the analysis of the discrete energy law of a numerical scheme usually follows the same route as that of
the energy law of the PDE system. Hence it is expected that two test functions are needed to be taken for (13e) and (13f) from the proof of
Theorem 2.1. Inspiring by [39], we construct a new magnetostatic Eq. (30) to avoid taking two test functions in (13f). See Remark 4.3 for
more details about addressing the problem of taking two test functions in (13e).
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Then we obtain the weak formulation of the two-phase FHD model (2.13) with different densities and viscosities: find (®, W, u,
pm, ) €Y XY X VX QXN x Z such that (¢, w,v,q,c, ) EY XY XVXOXNX Z,

(@, ¢) — D, V) = -M(VW, V),
(W, w) = e(VO, Vw) + (f (D), w),
(o(ou),,v) + B(p(®)u, u,v) + (v(®)D(u), D)) — (p,V - v) + f(QVW, V) = u((m- V)h,v),

31)
(V-u,q =0,
(M, €) + (@- V)m, €) = —1(m, ) + 1 (x(®h,0),
1V, V) + (Vo Vy) + 1 (M, V) + (m,, Vi) = L(hg, V) + (), V),
where
B®, v, w) = 2(p(@)u- Vv, w) = 2 (@) V)W), (32)

We set that the polygonal/polyhedral domain Q is discretized by a conforming and shape regular triangulation/tetrahedron 7,
that is composed by open disjoint elements K such that Q = | J ker, K. In order to derive the semi-discrete formulations of two-phase
FHD model with different densities and viscosities, we take a series of the finite dimensional subspaces:

Y,cY,V,cV,0,cO, N,CN, Z,CZ, (33)
where

Y, ={¢y €C(Q) : ¢yl € P, (K), VK €T},

Vi ={v,€CQ) : vylg EP,(K), VK € T.}

Q= 1{q;, €C°(Q) : glx € P, (K), VK €T}, }, (34)
Ny, = {c, €C°Q) : ¢;lx € P;,_(K), VK €T},

Zy, = {wy € CQ) : yylx € P(K), VK € T}

Here P, and P, are the scalar and vector spaces of polynomials of total degree at most /, respectively. Furthermore, we set the pair of
spaces (V,, Qy,) satisfy inf-sup compatibility condition [82] as follows:

(V-v,,q)
Bligull < sup  ——oih

, Vg, € Qp, (35)
e o AU

where the constant g > 0 only relys on Q. Thus we obtain the semi-discrete formulation of the system (31) as follows: find
(@ Wy, wy, ppomy,, @) €Y, XY, XV, X Q) X N, X Z,, such that (¢, w,, vy, 4y, Cpowp) €Y XY, XV, X Q) XNy X Zy,

(D Op) — (W, @y, Voo,,) + M(VW,,, Vo) =0,
Wy, wy) = e(VO,, Vwy,) + (f (D), wy),
(op(cWy,, vy) + B(p(®p)uy,, uy, vy,) + (V(®n)D(uy), D(vy)) — (py, V - vp) + f(dthWh, V)
= pu((my, - )y, vy), (36)
(V-up,q;) =0,
(my,,c,) + (U, - Vmy,,c,) = —%(mh»ch) + %(/Y(q)h)hhsch)a
2V Vi) + (Voops V) + Ly, V) + My, V) = 2 (g, Vi) + (), V),

where ¢, = \/p(®,,) and h, = Vg,
Similar to the proof of Theorem 2.1, we deduce the following energy law of the semi-discrete formulation.

Theorem 3.1. The semi-discrete formulation (36) of two-phase ferrofluid system (2.13) with different densities and viscosities satisfies the
following energy law:

d (A A 1 H H 2 AM
i <§||V‘I)h||2 + ;(F((Dh), D+ §||0'huh||2 + 2—)(0||mh||2 + Ellhh” > + THVWhHZ

2 3u U 2, TH 2
FIVA@D@I + 2= Imyl < I + k)1 @7
4. Fully discrete scheme
In this section, we aim to develop linear, decoupled and fully discrete numerical scheme to solve the semidiscrete formulation (36)

of two-phase FHD model with different densities and viscosities. This scheme is not only easy to implement for temporal discretization
and spatial discretization, but also unconditionally energy stable. For this purpose, let N > 0 be the total number of time steps, define

_gn—1
the uniform time step size as dr = <, and assume t, = ndr. We also define the backward difference operator d, as d,&" = £ ftn for
any variable &. Then the numerical scheme reads as follows.
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Step 0. Initially, given m) and h), we find ¢ € Zj, such that for all y;, € Z,

(V). V) = —m), V) + (2. V). (38)

Step 1. Find (@}, W}") € Y}, X ¥}, such that for all (¢, wy) €Y, XY,

At 1, 1. ne
(d, @}, bp) + M(VW,!, Vbp) + ¥<a"—1 oty Gn—_lcbg 1v¢,,> = @1 vy, (39)
h h
(Wi, wy) — (VO Vwy) = (f (@), wy) + S(@f — &~ wy), (40)

where o7~ = 1 /p(®~") and .S > 0 is the stabilization parameter.
Step 2. Set h,'i_' = V(p';l‘l, find u) € V,, satisfying u} |, = 0 such that for all v, € V,,

n—1,.n n—1,n—1
,,,lo-h u,—o, U, n—1y,n—1 -n n n
o v |+ BG(@) DU . v,) + («(@))D(p). Dvy))

dt - A ne
+ (Vg Vv + Gy L vy + S(@} 'YW vy)
=@ Vv + R ) + T x VxR vy, (41)
where a, [83] includes two extra first-order stabilization terms that read as
Ay (M~ W V) = pdt((y - VImy™ vy - Vymy™) + pdt(V - wpmy™" L (V- vpmgh. (42)
Step 3. Update pj, from

1 dt
pl';:pg 1—:V~u;'l, (43)

where 0 < € < 1 is the artificial compressibility parameter.
Step 4. Set h;’l = Vi, and find (/iy}, ¥} ENLXZ, such that for all (¢,,y,,) € N, X Z,

A | 1 n o1 a el x

(dey, ) + — (G, €)= — (2 (@, &) = (@) - VImg™!, &) = (V- upmy™, &), (44)
1 |- . 1

Z(Voh, Vi) + (d Vg, Vi) + (g, V) + (dyai, V) = — (G, V) + (e, V). (45)

Step 5. Find m; € N, such that for all ¢, € N},

1 1
(dmy,c,) + Bu,,mj.c,) + ;(m',;,ch) = ;(J{(CDZ)V(ﬂ;',,Ch)- (46)
In the rest of this section, we will discuss about the properties of this scheme, starting from several remarks.

Remark 4.1. Aiming at the nonlinear potential f(®), we use the stabilized explicit method to discretize it [38,84-88]. The term f(®) is
explicitly discretized and the stabilization term S(tbg - <I>;’1’1,wh) is added in (40). The error that this term introduces is of order Sdt®,(-).

Aiming at the nonlinear terms V - (u®) and fd)VW, we add an explicit stabilization term ’121;( L CID';l’l W, L <I>';1’1 Vy,) to decouple the

[

% h
calculations of u and (®, W) in (39), inspired by [38,85]. Furthermore, in (41) we apply implicit-explicit treatment to deal with the fluid
convection and Kelvin force, add two extra consistent terms %(V UL, Vevy), y(m;’l" X V X h;’l_' , V) which are zero terms at the continuous
level and two extra first-order stabilization terms asmb(mZ‘1 .y, vy). These play an important role in obtaining the energy stability.

Remark 4.2. In view of the strong coupling of velocity and pressure, we use the artificial compressibility method to decouple the calculation
for velocity and pressure [76,89,90]. The regularization term ep, is added in (43), so that the numerical scheme does not impose any artificial
boundary conditions on the pressure. The u is directly solved in Step 2. And then one can solve e(d;py, qp) + (V - uy, qp) = 0 with g, € Q, for
p-

Remark 4.3. To avoid taking two test functions, we are inspired by [38] to introduce an auxiliary intermediate variable in the Step 4. For
the convective term in (46), we use the trilinear form B(u,,mj, c,). Butin (44), we still use ((u;’l . V)m;’l’1 ,€p) and minus an extra consistent
term ((V - u;;)m;’l‘l ,Cp), Which is a zero term at the continuous level.

As a matter of fact, based on the above three remarks, the scheme (38)—(46) is a linear and decoupled scheme. At each time step,
we only need to compute five linear equations. In the following, we prove the unique solvability of this scheme.

Theorem 4.1. For any dt > 0 and h > 0, the linear, decoupled and fully scheme (38)-(46) is uniquely solvable at each time step.

Proof. From the above detailed implementation process, we just need to prove the existence and uniqueness of each sub-problem for
the proposed scheme (38)—(46). Since they are finite dimensional, it is only necessary to prove that the following five homogeneous
problems have only zero solution:
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(D) Find (®", W) ey, xY, such that

n—1
h h
(W wp) — (VO Ywy) — S(@, wy) = 0,

1 At 1 1o
E(c1>",th)+ M(VW" V) + Z( DIV, ——= D) 'v¢h> =0,
(o3 o

for all (¢, wy) €Y), X Y.
(I1) Find u, €V, such that

1. N dt
= 'l vy) + Blp(@ ! ul vy) + (W(@))D(u}), D(vy)) + —(Vu Vv
+ pdt(), - Vymy~", vy - VImEh) + pdt(V - wpymy = (V- vpmy ) =0,

for allv, € V,.
(I1) Find D} €Oy such that

(Py-an) =0,

for all g, € Q.
(IV) Find (rhz, (pZ) € N, X Z,, such that

1, = 1 ., 1 <

E(m;l:’ch) + ;(mz,ch) - ;(;{(CDZ)h",ch) =0,

1 1 1, . 1 .

;(VqJZ, V) + E(V(p;l" V) + ;(m;'l, Vyp) + E(m;'“ Vyyp) =0,

for all (¢,,y,) € N, X Z,,.
(V) Find m;'l € Nj, such that

1 1
E(m;’l,ch) + B(uy,m;, ¢y) + ;(m’;l, cp) =0,
for all ¢, € Np,.
By taking (¢, wy,) = (U2 —icbfl) in (4.10), we obtain

A L
2¢e 0—2*1

1 2 -1 ? —

E(<I>",Wh")+M||VWh"|| + (ID’;I VW}:’H =0,
1 £ 2, S 2

- —W!HLoH+ —||VO! || + =P} = 0.
SO+ VLI + 2

Summing up (52) and (53), we obtain

a2 Aty 1 oo 2 g a2y S pann2 _
M|IVW,| +¥”_GZ“<D” VW +E||Vd>,,ll +Ell¢hll =0.

Thereby, we get @) = W} = 0. Letting v, = u} in (48), we derive
1 n—1,n2 n n 2 n n—11,2
Zlor I + I/ M@DEI + dtlia - Vymy|

2
+udtl(V - uhm )+ L = o,
€
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(47a)

(47b)

(48)

(49)

(50a)

(50b)

(51)

(52)

(53)

(54)

(55)

which means u, = 0. Setting ¢, = p} in (49), it is easy obtain P =0. Taking (¢, ) = (—h}, @}) in (4.13), and using h; =V, we

derive
L b — Lo wy+ Ly p@nme ) = o

- E(mh’ n) — ;(mh’ Wt ;” (@Dl =0,

1 1 1, |

ZIRGIZ + W1 + G B + — i ) = 0.
Thus, by summing up (56) and (57), we obtain

1 21 2 1 2

IR + G + Ll @m;I =0,
which implies hj = 0. Then we obtain

| B |
E(m;’l,ch) + ;(m;'l,ch) =0.

Obviously, taking ¢; = ﬁl;’, in (59), we derive rh';l = 0. Setting ¢, = m;’l in (51), it is easy to obtain m;’l

geneous problems (4.10)—(51) only have zero solution. This concludes the proof. O

(56)

(57)

(58)

(59)

Therefore, the five homo-
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Next, we recall an important lemma to derive the unconditional energy stability of the scheme (38)—(46).
Lemma 4.1 ( [38]). Let m,u € L?(Q), h € H(Q). Then the following identity holds true
(m-V)hu)+ (uxm,Vxh)=(u-V)hm). (60)

Theorem 4.2. Choose S > i. Then scheme (38)—(46) is unconditionally stable, and satisfies the following energy law:

N N
H 2 H 2
E(@) u) .} .mY . hY)+di Y G} < By (@) uf.ph.mi ) +dr Y (L + a1, (61)
n=1 n=1
where
A 2 1 _ 2 € 2 U 2
E @Y u . mY BY) = SIVON I+ il w1 + SIpN I + SR
2 A
+ 2 mN P + 2E@N), 1 (62)
220 I3
and
AM 2 A 1y 2 € 1,2 " " 112
¢ =M ivwr 2 + 2 v — o)+ S =+ i — m
= 2LIVWRIE + @ = I 5B
2 3u 2
1 n
+HI @D + 7 Im 63)

Proof. Setting ¢, = fWh” in (39) and wy, = —fd,tbz in (40), respectively, we deduce

A2dt 1, LI PR
gll—fbi tvw =;(u; lor=t v, (64)

n—1
%

Adon wry+ 2L w4
& &

A A 1.2 12 SA 1.2

- W d,@)) + E(uvcbzllz— VOrt" + V(@] — @ | )+ =l — @) "l
A _
=-Z(f(@; b, d, o). (65)
Summing up (64) and (65), we have
M Adt, 1 _ 2 2 2
IV + S = @ VW + S (VORI = VORI + V(@ = 2fDI)
h
AS 12 A _ A _
+ I - o "= A lor-t vw - ACH h,d,®}). (66)

Letting v;, = u; in (41), we derive

1 a2 a2 _ 12 2 dr
s ol = oy~ I + llop™ @y — ™)1 + 1y /v@pDaipll + SV - up
12 142 _ A _
+ @y - VomGH - pd (V- wpmy T = GV ) = 2@ VWL u)
+u(my VR ) + pml T < VT ). (67)
We rewrite (43) as the following equivalent form:

€ n n—1 no_
-V =0, (68)

By taking the L? inner product of the above equation with pj, on both sides, we obtain

€ 102 12

z—d,dlpznz— e 7+ 11pf = P ) + (V -, p) = 0. (69)
Combining (67) and (69), we get

1 _ 2 112 _ 12 € 12 12

sazlon I = llop™ w1+ llop ™ gy = ™I + 5 (I = ™ I+ iy = 271 10)

2 12 2
+ 3/ V@DODW|| + pdtl| ), - Vym,~ | + pdt||(V - wpmy |
A _ _ _ _
=-2(@} W) + u(mi VR )+ pml T x v xchy T ), (70)
Letting €, = —uhj, in (44), we derive
R P )
— (g, ) = E i, B + Sy @y

= p(@), - Vymy~ " hy) + (Y - wpm;~! ). 71)
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By taking v, = u¢) in (45), and applying h, = V¢}, we have

Hopn2 H ny2 n—1,2 n n—1,2 Mo n = n
;llhhll +2Tit(”hh” =R, I + 1Ry, - R+ ;(m;’l,hh)+;4(d,m;'l,hh)

= (b ) + u(d,H. . 72)
Thus, summing up (71) and (72), we get
n n—1,2 n n—1,2 VRS A/ 2 n
S ARG = I+ I =B 1) + 20 S @byl + £ i1
= p(@) - VM R + u((V - wm T R + %(hg,h;’l) + u(d " B, (73)

Setting ¢, = Zim;'l in (46), and from hj, = V), we deduce
0

H ny2 n—1)2 n n—12 H ny2 H N n
—(||m’ — ||m + ||m;] —m + —|m = —(y(®"Hh},m’). 74
Tt I = W=y — ) + 2l = (@ m) (74)

Summing up (66), (70), (73) and (74), we deduce

AM Y _1 2 _1y2y, A%dt, 1
SSIVWRIE + S (V@I = IV + V@) — @4 HID + —= |

2
n—1
oy vw
h

s
edt

L

1,12 —1,,n—12 -1 —-1y12
sarllo a1 = o~ w1+ o gy 1)

142
+ 20 i+

2
€ 14,2 1,2 1,2
+ I3/ V(@)D +27t(||p;||2—||p;1 U+l — ) + wdtll g - Vmy |

12 M 2 1.2 1020 H 2
+ udt(V - wmg I = RGIE — R + h — BH) + ~ @y

U
2 ypdt

H 2 H —1,,2 —12
+ IR + Enm;n% (1 = lm= | + (g, — mi =)
0
= u(m™ - R ) + p( - Vomg By + u((V - wpmy ! B
+umi XV x k) ()
+ i(u"’lfb”’l VW") — i(c1>"*1wv" u') (I1)
£ h h > h £ h h>™h
H H
+ OB + i ) + = G (@R mf) (T11)
0

~ g @phdap. av) 75)

Next, we estimate I — I'V on the right-hand side of (75) as follows.
Firstly, applying Young’s inequality, Lemma 4.1, and integration by parts, we estimate I as

1= (VR uh) + pmi ™ x Voxch ul) + p(l - VymiT )
+u((V - upymy " hy)
= p(@y - VR my + () - Vmy Ry + u((V - wpmg Ry
= u(@) - V) —h)mih
= —u(y - Vom B~ ) — (Y - umg ! T - B
<uli, - Vym kG = Ryl + pll(V - apm ™ IR, = B
2

_142 12 " _
Spdt| - VMG + pdt(V - wpmiH - S "—m (76)

Secondly, we estimate /7 as

A nlane A o n
I71=2@W o™, vw) - 2@ 'vw", u”
5( h T h ) 2( h o )

A, 1 - — -
=S5O VWL g - u)
h
<'1 1 q)n—]vwn n—1 —1 n
—Z”F h h” ”Uh (uh —Uh)”
h
/12dt 1 n—1 n 2 1 n—1,.n n—-1y112
—gllan—l‘bh 2 +2_dl”0-h (u, —u, Il (77)
h

10
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Thirdly, I11 is estimated as
111 = 2, B + (B + - o Dk )
<EUREN RN+ el R+ 2 2 @R 11/ 2(@)my |
T X0

Zﬂllh"ll +—||h"|| +—||h"|| + = IIdh"II +—|| 2(@p) h"ll toa || x(@))my, ||

<EURIE + L+ a2 Srenm) o ||m,,|| 78)
T 27 2 T
Finally, we apply the Taylor expansion for F(®}) to estimate the term IV. Then there exists a aparameter 6 such that

F(®}) - F@") = f (@) )@} — ) + %f 'O @) - 1Y, (79)
From |F"(®)| = |f'(®)| < i, we derive

(d,F@)),1) = i(F(cb;) —F@!h, 1)

= (@ ).d®)) + i(f/(f)), @) -y
< @740 + 10— 07 (80)

which implies

IV = — (f((b” . d,0t) < ——(d F@}), 1)+ —— " 2d o) — q>;;—1||2. (81)
By combining (75)—(78) and (81), we have

I w1+ Vg - 1Yo I+ 190 - @) + I foppupl + 2

2 1112 € 12 1.2 A
+ = (ol — ot )+ 5P = 1Py I+ Dy = Pyt 1) + S (dF@i), 1)

2dt
n2 _ ppt-l _ n—1 _mn—1
+—2dt(llh & 1Rl )+—2 dt(llm I = i I”? + [|mj, —mj, ")
1 - 2 TH 2
25— e — o) < L —||d.h"". 82
+£dt( 48)II =Pl —2f” I > lld:h I (82)

It is worth noting that h, is a given external magnetic field acting as a source term and may change over time. Therefore, the
symbol h is taken as a known term in the numerical scheme, and its value may change with time. Thus, summing up from n =1 to
N for inequality (82), and from S > i, we obtain

N N u o
N 0 m°. h° np2 np2
Ey @Y, ul, pY , mV, h )+dr§6" < Ey (@9, ud, 5. h,hh>+dr;<;nhau + = lddg 1), (83)

a

5. Numerical experiments

In this section, a series of two-dimensional numerical experiments, including an accuracy test, deformation of a ferrofluid droplet,
one or two air bubbles rising in ferrofluids, a controllable ferrofluid droplet in a Y-shape domain, and the Rosensweig instability under
uniformly or nonuniformly applied magnetic field, are performed to illustrate various features of the proposed model and scheme.
Moreover, we choose .S = 4 in all numerical tests.

5.1. Accuracy test

In this part, the example is used to verify the convergence rates in space. We set the calculational domain as Q = (0, 1) x (0, 1). The
model physicial parameters are givenase = A =0.1, M = 0.05, py =3, p,, = vy =, = p = 7 = y = € = 1. Moreover, we choose forcing
functions and boundary functions [38,39] such that the exact solutions of the system (2.13) with Dirichlet boundary conditions can
be chosen as

®(t, x) = 0.5sin(t)cos(zx)cos(xy) + 0.5,

u(t, x) = (sin(t)sin(zx)sin(z(y + 0.5)), sin()cos(zx)cos(z(y + 0.5))",

p,x) =sin(tH)(2x — )2y — 1), (84)
@(t,x) = sin(f)(x — 0.5)y,

m(z,x) = (sin(t + ), sin(t + x))".

11
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Table 1

Numerical errors and convergence rates for proposed scheme (38)-(46).
h |®—®,| Order [|®—,l, Order ||[W -W,|| Order |[W -W,l,  Order
1/8 5.27 e-03 - 1.05 e-01 - 7.34 e-03 - 8.65 e-02 -
1/16 1.40 e-03 1.91 5.24 e-02 1.01 2.03 e-03 1.85 4.15 e-02 1.06
1/32 3.56 e-04 1.98 2.61 e-02 1.00 5.21 e-04 1.96 2.04 e-02 1.02
1/64 8.95 e-05 1.99 1.31 e-02 1.00 1.31 e-04 1.99 1.01 e-02 1.01
h Jlu—u,l| Order [lu— || 1 Order llp = pall Order 1o = pull g Order
1/8 1.11 e-03 - 2.35 e-02 - 2.28 e-03 - 1.38 e-01 -
1/16 2.67 e-04 2.06 5.90 e-03 1.99 5.71 e-04 2.00 6.92 e-02 1.00
1/32 6.62 e-05 2.02 1.48 e-03 1.99 1.43 e-04 2.00 3.46 e-02 1.00
1/64 1.65 e-05 2.00 3.69 e-04 1.99 3.56 e-05 2.00 1.73 e-02 0.99
h |lm—m,|| Order [lm—my|l Order llo — @l Order llo = @ull Order
1/8 3.38 e-03 - 4.60 e-02 - 1.04 e-04 - 8.11 e-04 -
1/16 8.87 e-04 1.93 2.21 e-02 1.06 2.79 e-05 1.89 1.85 e-04 213
1/32 2.27 e-04 1.97 1.08 e-02 1.03 7.28 e-06 1.93 4.25 e-05 2.13
1/64 5.74 e-05 1.98 5.32 e-03 1.02 1.86 e-06 1.97 9.98 e-06 2.10

That is, the forcing functions are calculated by plugging these exact solutions into the system (2.5). The Dirichlet boundary functions
are also obtained by restricting these exact solutions on the boundary.

We choose the finite element spaces (34) with [; = 1, [, = ; = 2. In this way, we expect the optimal convergence error estimates
as follows:

ot,) — @6+ W (1,) = W S dt + k2, [|®(,) = @20 + IW () — Wl S dt+ h,
lut,) —upll S di+ k3, |luct,) —ufll 0+ llpt,) = ppll S dt+ A2, llp(t,) = phll o S di+ h.
Sdt+h.

- 85)

o) = @)l S dt + B, llo,) = @)l + Im(,) —mi|| < di + 12, ||m(t,) —m) |,

For convenience, we abbreviate |lo(t,) — o} || as |0 — o, || for variables @, W, u, p, m and ¢.

To check the convergence orders of our scheme, we use dt = A2 with terminal time T = 0.5 and refine the spatial grid size with
h =27 wherei = 3,4,5 and 6. Table 1 shows the spatial L>-norm and H!-norm errors and convergence rates for the proposed scheme
(38)-(46). It is observed that the accuracy orders of ®, W, u, p, m and ¢ in L>-norm are O(h?), the accuracy orders of ®, W, p and m
in H'-norm are O(h), and the accuracy orders of u and ¢ in H'-norm are O(h?). These accuracy orders are consistent with the above
expected convergence orders (85).

For phase field models, one major difficulty is how to resolve the transition layer. Otherwise artificial spurious oscillations may
arise [91-93]. If we want to obtain better results in a timely fashion, calculations of phase-field models need certain types of mesh
adaptivity. Therefore, we apply adaptive grid to address this issue. Compared with the uniform grid, the adaptive grid is more efficient.
The implementation is done in Matlab [94]. Regarding the error indicators, we resort to the simplest element indicator #g:

nx = hg /dK (IV®,|%ds, VK €T, (86)

where hy is the diameter of the circumscribed circle of triangle K.

5.2. Deformation of a ferrofluid droplet under uniformly applied magnetic field

In this subsection, we simulate the deformation of a ferrofluid droplet suspended in a viscous media under the different external
uniform magnetic field h, [23]. The equilibrium shape of the ferrofluid droplet is determined by the ratio of magnetic effect to surface
tension effect, which can be characterized by the magnetic Bond number:

B ROﬂHg

BOm Z—g N (87)

where R, is a ferrofluid droplet of initial radius, H,, is the external applied magnetic strength, and ¢ = f is the coefficient of surface
tension [95]. We recall a well known analytical expression, which relates the aspect ratio »/a of deformed ferrofluid droplet with the
magnetic Bond number, as follows [23]:

o= [+ (2 (22-() 1)

Here 2a and 25 are the minor axis and the major axis of deformed ferrofluid droplet, respectively, k is called the demagnetizing factor:

(88)

(89)

12
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(a) Ho=0.5 (b)vH():l (C)MH():Q (d) Ho=3 (e) Ho=4

Fig. 1. Snapshots of the phase field variable ® under uniformly applied magnetic field with H, = 0.5, 1, 2, 3 and 4.

where E = /1 — a?/b? is the eccentricity. Moreover, we use a linear combination of dipoles to generate the applied magnetizing field
h,:

hy =) V() (90)
S
where o is the intensity of the dipole,
d-(x,—x
K5(X) = (—2) 1)
|xs -X |

|d| = 1 indicates the direction of the dipole and x; is the dipole’s position [37].
Consider the problem domain as Q = (0, d) x (0, d). The equations (2.13) are non-dimensionalized by applying the following scaled
variables [78,96]:

. u
il=—, Xx=

u,

ci=L, (92)
Po

,i=

&%
S~

where u, = \/d|g|, dy = d, 1) = v/d/Igl, po = min(p, p,,), and |g| represents the magnitude of gravity. We also have

VD) = (Vy = V) )@ + ¥y, p(P) =Dy = $rp)P + Pyys 93)

X -1 -1
where 5, = ’;—f, P = %, V= vf(pod;/zlgl'/z) sV = vw(podg/zlgll/z) with non-dimensionalized parameter d, = 0.005 [78].
0 0
We set the initial conditions as u(0, x) = (0,0)", m(0,x) = (0,0)", hy = (0,0)", p(0,x) =0,

2 2 2
0, 0.5+ 0.5tanh 820D H0=05"015 5

@(0,x) = 2V2e (94)
1, otherwise,

the boundary conditions as
0,®@l9q =0, 9,W|;0 =0, tulyo =0, 9,0ly0 = (hy—m)-n, (95)

and the finite element spaces (34) with /, = I, = I; = 2. Based on [37,38,78], the physical parameters of the model (2.13) are opted as
d=1,e=1=0.002, M =0.0002, p,, = 1.161, p, = 100p,,, v, = 0.0000186, p, = 0.0007977, u = 1, = = 0.0001, yo =2, h= é, dt=0.001,
e =0.0ldt.

To generate an approximate uniform applied magnetic field h,, we place five dipoles at a far end from the computational domain,
and the positions x; of dipoles are (-0.5, —15), (0, —15), (0.5, —15), (1,—15) and (1.5, —15). The directions d of the five dipoles are (0, 1),
and the intensity a; is the same for the five dipoles and kept constant. This method is used to generate five uniform applied magnetic
fields with magnetic strength H, = 0.5, 1, 2, 3 and 4, respectively.

In Fig. 1, we plot the time evolution of one circular ferrofluid droplet with H, = 0.5, 1, 2, 3 and 4. As can be seen from these
figures, we observe that the circle ferrofluid droplet is elongated with time. The stronger the external magnetic field intensity H, is,
the longer the ferrofluid droplet is stretched along the direction of the magnetic field under the equilibrium state, which is qualitatively
consistent with the experimental results shown in [29,31,34]. In Fig. 2, we show the snapshots of the adaptive meshes corresponding
to Fig. 1. Moreover, we plot the quantitative comparison between the analytical results (88) and the computed results in Fig. 3, and
observe that the numerical results well agree with the analytical results.

5.3. An air bubble rising in oil based ferrofluid

The rising air bubble problem has been widely applied in the multiphase flow community to assess the space-time accuracy and
robustness of methods [78,96-102]. The problem follows the trajectory of an air bubble submerged in a heavier fluid as it rises. The
deformation of bubbles in ferrofluid can be traced back to the study in [103]. Then this issue was further studied in [22,104-106]. To
provide a reference basis of the comparison purpose for the practical applications with high density and viscosity ratio, we simulate
an air bubble rising in oil based ferrofluid in the following way. Assume the calculation domain Q = (0,d) x (0, 1.5d) with initially

13



X. Chen, R. Li, J. Li et al. Journal of Computational Physics 539 (2025) 114209

(a) Ho=0.5 ” (b) Ho=1 | (c) 022 | | (d) Ho=3 | (e)Ho:

Fig. 2. The adaptive meshes corresponding to Fig. 1, with H, = 0.5, 1, 2, 3 and 4.

10’

b/a

10°
1072 107 10° 10’
Bom

Fig. 3. Comparison between the analytical results and numerical results. Green solid line represents the analytical solution (88). Small red circles

stand for the numerical results.
) t=0.2 (c) t=0.3 ) t=0.4 (e) t=0.5 ) t=0.6

Fig. 4. Snapshots of the phase field variable ® at t = 0, 0.2, 0.3, 0.4, 0.5 and 0.6.

air bubble of viscosity v,,, density p,, in oil based ferrofluid of viscosity v, density p;. The gravity force as a forcing term pg is
supplemented on the right-hand side of (13c). That is,

o(ow), + %V -(pwu+ (pu- Vyu—V - (v(®)D(u)) + Vp + fCI)VW: um- V)h+ pg. (96)

We choose the initial condition as u(0,x) = (0,0)", m(0,x) = (0,0)", h, = (0,0)", p(0,x) = 0,

0, 0.5+ 0.5tanh &=0+0-05?2-025 ) 5
®(0,%) = 2o 97)
1, otherwise,

the boundary conditions as
0,Plaq =0, 9,Wlaq =0, ulyg =0, 9,9lsq = (hy—m) - n, (98)

and the finite element spaces (34) with /; =1, = I3 = 2. Based on [37,99], the physical parameters are chosen as

— 1= — — — — — 1 —
{a =1=0.01, M=0.00004, d=1, pu=1, 2=0.0001, yy =2, h= 3 dt=10.001, 99)

€ =0.01dt, p,, = 1.161, pr =100p,, v, = 0.0007977, v,, = 0.0000186, g = 0,-10)".

In Fig. 4, we plot the snapshots of an air bubble rising in oil based ferrofluid without uniformly applied magnetic field h, at
t=0, 0.2, 0.3, 0.4, 0.5 and 0.6. The low density bubble keeps rising and has obvious deformation, and we observe two counter-
rotating vortices at the tail of the bubble. This simulation result is expected based on the experimental results of a bubble rising in
ferrofluid [107-109]. In Fig. 5, we show the snapshots of the adaptive meshes corresponding to Fig. 4.

Because ferrofluid can be controlled by applying a magnetic field, we simulate the dynamic behavior of a bubble rising in oil
based ferrofluid under a uniform magnetic field. Similar to the a ferrofluid droplet deformation experiment, we place five dipoles at
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(b) t=0.2 (c) t=0.3 (d) t=0.4 (e) t=0.5 (f) t=0.6

Fig. 5. The adaptive meshes corresponding to Fig. 4, at 1 =0, 0.2, 0.3, 0.4, 0.5 and 0.6.

cfofo e

(b) t=0.2 (c) t=0.3 ) t=0.4
Fig. 6. Snapshots of the phase field variable ® at t = 0, 0.2, 0.3, 0.4, 0.5 and 0.6.

(=0.5,-15), (0,-15), (0.5, -15), (1,—15) and (1.5, —15) to generate an approximate uniform applied magnetic field h,. The intensity a;
is the same for the five dipoles but increases linearly in time with a slope of 3000, starting from «, = 0 at time t = 0 to maximum
value a5 = 1800 at time t = 0.6. From ¢ = 0.6 the intensity is kept constant. The direction of the five dipoles are the same.

In Fig. 6, we summarize the time evolution of an air bubble droplets under uniformly applied magnetic field h, by generating

t
d= (\/75, %) . We observe that these pictures are obviously different from the corresponding pictures in Fig. 4, especially at r = 0.4,
0.5 and 0.6. From the top to the bottom in Fig. 7, we show the velocity, pressure, magnetic field and effective magnetic field diagrams
corresponding to Fig. 6. We observe that these pictures are not symmetrical and the bubble deforms along the magnetic field direction,

t
which is caused by the direction of applied magnetic field d = (\/75, \/Ti) . This simulation result is qualitatively consistent with the
experimental observations and the corresponding explanations for the bubble rising in ferrofluid in [109].

5.4. Two air bubbles rising in oil based ferrofluid

In this section, we simulate two air bubbles rising in oil based ferrofluid by using the proposed algorithm. The problem domain,
finite element spaces, initial conditions, boundary conditions and model parameters are still the same as those of the air bubble in
the previous section, but

2 2 2 2
0, (0.5+ O.Stanhw)(o.s + O.Stanhw) <05,
®(0,x) = 0.004v/2 0.004y/2 (100)
1, otherwise.

Fig. 8 depicts the snapshots of two air bubbles rising in oil based ferrofluid without uniformly applied magnetic field h, at r =0,
0.4, 0.5, 0.8, 0.9 and 1. We observe that the bubble below rises faster and the deformation of the two bubbles is obviously different.
The deformation of each bubble in this experiment is different from that of the bubble in the previous section, due to the two
bubbles’ influence on each other. After the two bubbles start to merge together, their deformation becomes even more complicated
and continues to rise. In Fig. 9, we show the snapshots of the adaptive meshes corresponding to Fig. 8.

Next, we simulate the time evolution of two air bubbles droplets under uniformly applied magnetic field h, by generating d =

(- ‘f \f) in Fig. 10. We clearly observe that the bubbles deform along the magnetic field direction, which is expected theoretically.

5.5. An oil based ferroftuid droplet as controllable liquid microrobot

In recent years, the development of magnetically controlled microrobots has received more attention and experienced significant
progress [110-113]. These minuscule robotic systems possess distinctive capabilities that enable them to access confined spaces and
execute intricate tasks with minimal disruption to their surrounding environments. Compared with light field drive [114] and electric
field drive [115], magnetically controlled microrobots stand out due to their inherent advantages, such as wireless actuation, non-
invasive control, reduced size and complexity, and improved adaptability. Since ferrofluid can be controlled by an external magnetic
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Fig. 7. From top to bottom, the velocity, pressure, magnetizing field, effective magnetizing field corresponding to Fig. 6.
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(b) t=0.4 (c) t=0.5 (d) t=0.8 (e) t=0.9 (f) t=1

Fig. 8. Snapshots of the phase field variable ® at t = 0, 0.4, 0.5, 0.8, 0.9 and 1.

field, ferrofluid microrobots have very promising potential in various fields, hence have received more and more attentions [116-118].

Moreover, Y-shaped computing region is used to separate ferrofluid droplets from water droplets in [119] and control the formation
of ferrofluid droplets in focused microchannels [120].

In this section, we simulate for the Y-shaped computing area and control the movement of the oil based ferrofluid droplet micro-
robot by applying an external magnetic field. To do so, we use the same finite element spaces, initial conditions, boundary conditions
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(a) t=0 (b) t=0.4 (c) t=0.5 (d) t=0.8 (e) t=0.9 (f) t=1

Fig. 9. The adaptive meshes corresponding to Fig. 8, at t =0, 0.4, 0.5, 0.8, 0.9 and 1.

ofefolo]®

(a) t=0 (b) t=0.4 (c) t=0.5 (d) t=0.8 (e) t=0.9 (f) t=1

Fig. 10. Snapshots of the phase field variable ® at 7 =0, 0.4, 0.5, 0.8, 0.9 and 1.
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(b) t=0.18 ) t=0.36 (d) t=0.54 ) £=0.72 ) £=0.9

Fig. 11. Snapshots of the phase field variable ® at r = 0, 0.18, 0.36, 0.54, 0.72 and 0.9.

(a) t=0 (b) t=0.18 (c) t=0.36 (d) t=0.5 (e) t=0.72 (f) £=0.9

Fig. 12. The adaptive meshes corresponding to Fig. 11, at ¢ = 0, 0.18, 0.36, 0.54, 0.72 and 0.9.

and physical parameters as in Section 5.3 but with e = 4 = 0.001, y, = 0.5, M = 0.000004 and

1, 0.5+ 0.5tanh E=0HH0-0657-005 5
®(0,x) = 2o (101)
0, otherwise.

Furthermore, we place five dipoles at (0.5, —15), (0, —15), (0.5, —15), (1, —15) and (1.5, —15) to generate an approximate uniform applied
magnetic field h,. The intensity «; is the same for the five dipoles but increases linearly in time with a slope of 10000, starting from
a; = 0 at time t = 0 to maximum value a5 = 9000 at time t = 0.9. From ¢ = 0.9 the intensity is kept constant. The direction of the five
dipoles are the same.

In Figs. 11 and 13, we show the time evolution of oil based ferrofluid droplet under uniformly magnetic field h, by generating

t t
d= (—g, —M) andd = (ﬁ, - %5) , respectively. These experimental results show that the moving direction of ferrofluid droplets
can be well controlled by the direction of applied magnetic field. Moreover, the snapshots of the adaptive meshes corresponding to
Fig. 11 are shown in Fig. 12.
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(b) t=0.18 ) =0.36 ) t=0.54 ) £=0.72 ) t=0.9

Fig. 13. Snapshots of the phase field variable ® at r = 0, 0.18, 0.36, 0.54, 0.72 and 0.9.

5.6. Rosensweig instability under uniformly applied magnetic field

In this part, we simulate a benchmark problem, the so-called Rosensweig instability [31,32,36-38,121], under uniformly applied
magnetic field. The uniformly applied magnetic field h, in (90) is generated by 5 dipoles with far distance from the computational
domain: (-0.5, —15), (0, —15), (0.5, —15), (1, —15) and (1.5, —15). The direction of the 5 dipoles are the same and d = (0, 1)'. The intensity
a, is the same for the 5 dipoles but increases linearly in time with a slope of 25000, starting from «; = 0 at time t = 0 to the maximum
value a5 = 5000 at time t = 0.2, and from ¢ = 0.2 the intensity is kept constant.

In order to simulate a mixture of air and oil based ferrofluid under uniformly applied magnetic field, we choose the calculation
domain Q = (0,d) X (0, 0.6d), the finite element space (34) with [, = I, = [; = 2, the initial condition as u(0, x) = (0, 0)", m(0, x) = (0,0)",
p(O, x) = 0: ha = (O’ 0)l’

-0.2
®(0,x) = 0.5 — 0.5tanh L s (102)
24/ 2¢

and the boundary conditions as
0,Pl0 =0, 0,W|yq0 =0, ulyo =0, 0,0y =(h, —m)-n. (103)

Similar to the bubble rising experiment, we supplement the gravity force as a forcing term pg on the right-hand side of (13c). Based
on [37,38], the model parameters are chosen as

= A=0.005, M=00005, d=1, =1, 7= 0.00001, =05, h= L, dt=0.00,
{‘g S 0 8 (104)

e =0.01dt, g = (0,-10)", p, = 1.161, py =600p,, v, =0.0026, v, = 0.0013.
In Fig. 14, we show the snapshots of the phase variable ®. We observe that six spikes gradually appear and the directions of the
“sawtooth” are aligned with the applied uniform magnetic field. In Fig. 15, we show the adaptive mesh diagrams corresponding to
Fig. 14. From left to right in Fig. 16, snapshots of the velocity field u, the pressure p, the magnetization field m and the effective

magnetizing field h are shown at 7 = 2.5 of corresponding to Fig. 14. These results are consistent with the experimental results shown
in [37-39].

5.7. Rosensweig instability under nonuniformly applied magnetic field
To validate the developed model (2.13) and show the robustness of our scheme (38)—(46), we simulate a benchmark simulation by
the so-called Rosensweig instability [32,37-39,122] under nonuniformly applied magnetic field. That is, we consider a mixture of air

and oil based ferrofluid under nonuniformly applied magnetic field. The nonuniformly applied magnetic field h, in (90) is generated
by 42 dipoles. The dipoles are placed in three rows, that is, y = —0.5, y = —0.75, and y = —1, the 14 dipoles pointing upwards d = (0, 1)

V—RVVVVEVVVY VRV Y VIV VY

(a) t=0 (b) t=0.6 (c) t=0.8 @) t=1 (e) t=2 (f) t=2.5

Fig. 14. Snapshots of the phase field variable ® at 7 =0, 0.6, 0.8, 1, 2 and 2.5.

(b) t=0.6 | (c) t=0.8 @) t=1 (e) t=2 (f) t=2.5

Fig. 15. The adaptive meshes corresponding to Fig. 14, 1 =0, 0.6, 0.8, 1, 2 and 2.5.
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Fig. 16. Snapshots of the velocity field u, the pressure p, the magnetization field m and the effective magnetizing field h at t = 2.5.

in each row are equidistributed in the x direction. The intention of this setup of the dipoles is to create a crude approximation of a
bar magnet of 0.4 units width and 0.5 units height. The intensity «, is the same for each dipole but increases linearly in time with a
slope of 3.

We use the control variable method to explore the influence of density and viscosity on Rosenweig instability. More specifically,
keeping the viscosity and density of air constant, we fix the density of oil based ferrofluid to explore the influence of viscosity on
Rosenweig instability, or fix the viscosity of oil based ferrofluid to explore the influence of density on Rosenweig instability. Similar
to the bubble rising experiment, we supplement the gravity force as a forcing term pg on the right-hand side of (13c). Moreover, we
choose the same problem domain, finite element spaces, initial conditions and boundary conditions as in Section 5.6, except

®(0,x) =05 - 0.5tanh<M>. (105)
24/2¢

Based on [37,99], the model parameters are chosen as

_ _ _ _ _ _ !
{6 =0.001, 4 =0.005, M =0.0002, d=1, 7 =0.0001, y, =09, h= it (106)

dt=0.001, e =0.01dt, g = (0,-10)", p,, = 1.161, v, = 0.0000186.

Firstly, we fix the viscosity of oil based ferrofluid as v, = 0.0007977 to explore the influence of density on Rosenweig instability.
To this end, we design numerical simulations from a low density ratio of 1:100 to a high density ratio of 1:900. For the comparison,
we show three simulation results. In Figs. 17, 19, and 20, we draw the snapshots of the phase variables ® with density ratios of air
to oil based ferrofluid of 1:100, 1:500 and 1:900 at six different times, respectively. From these simulation results, we observe that
the greater the density of oil based ferrofluid, the slower the occurrence of Rosenweig instability and the lower the spikes formed by
Rosenweig instability. Furthermore, the snapshots of the adaptive meshes corresponding to Fig. 17 are shown in Fig. 18.

Next, we fix the density of oil based ferrofluid as p, = 1050 to explore the influence of viscosity on Rosenweig instability. For this
propose, we design viscosity ratio numerical simulations from 1:100 to 1:500. For the comparison purpose, we show three simulation
results. In Figs. 21-23, we draw the snapshots of the phase variables ® with viscosity ratios of air to oil based ferrofluid of 1:100,
1:200 and 1:500 att =0, 0.8, 1, 1.2, 1.5, 2, respectively. From the pictures of three experiments at ¢ = 1, and 1.2, we observe that the
greater the viscosity of oil based ferrofluids, the slower the Rosenweig instability occurs. From the top to the bottom in Fig. 24, we
show the velocity, pressure, magnetic field, and effective magnetic field corresponding to Fig. 23.

) t=1.2

(a) t=0 (b)t 0.5 (c) t=0.7 ) t=0.9
Fig. 17. Snapshots of the phase field variable ® at six different times with p,, : p, =1 : 100.

(a) t=0 (b) t=0.5 (c) t:0.7 | | (d) t=0.9 | (e) t=1.2 (f) t=2

Fig. 18. The adaptive meshes corresponding to Fig. 17, at 7 =0, 0.5, 0.7, 0.9, 1.2 and 2.

t12

(a) t=0 (b) t=0.5 (c) t=0.7 (d) t=0.9
Fig. 19. Snapshots of the phase field variable ® at six different times with p,, : p, =1 : 500.
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Fig. 20. Snapshots of the phase field variable ® at six different times with p,, : p, =1 : 900.
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Fig. 22. Snapshots of the phase field variable @ at six different times with v, : v, =1 : 200.
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Fig. 23. Snapshots of the phase field variable ® at six different times with v,, : v, =1 : 500.
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(a) t=0 (b) t=0.8 () t=1 (d) t=1.2 (e) t=1.5 (f) t=2

Fig. 24. From top to bottom, the velocity, pressure, magnetizing field, and effective magnetizing field corresponding to Fig. 23.

The above simulation results are qualitatively consistent with the experimental results shown in [37-39]. These results validate
the two-phase ferrofluids with different densities and viscosities and the finite element scheme proposed in this paper. Up to the
authors’ knowledge, this is the first phase field work to explore the influence of different densities and viscosities of ferrofluid on
Rosenweig instability.

6. Conclusions

In this paper, we propose a diffuse interface model describing the behavior of two-phase ferrofluid flows with different densities
and viscosities. This model is the highly nonlinear and coupled multiphysics PDE system consisting of Cahn-Hilliard equations, Navier-
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Stokes equations, magnetization equation and magnetostatic equation. Then we propose a linear, decoupled, unconditionally stable,
and fully discrete finite element method to solve this model. In order to accurately capture the diffuse interface in the numerical
simulation, we also apply the adaptive mesh strategy to locally refine the mesh around the interfacial region. Finally, we perform
several informative numerical experiments to illustrate various features of the proposed model and scheme.
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