IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 71, NO. 1, JANUARY 2025 167

Sparse Regression LDPC Codes

Jamison R. Ebert™, Member, IEEE, Jean-Francois Chamberland™, Senior Member, IEEE,
and Krishna R. Narayanan™, Fellow, IEEE

Abstract— This article introduces a novel concatenated coding
scheme called sparse regression LDPC (SR-LDPC) codes. An SR-
LDPC code consists of an outer non-binary LDPC code and an
inner sparse regression code (SPARC), whose respective field size
and section sizes are equal. For such codes, an efficient decoding
algorithm is proposed based on approximate message passing
(AMP) that dynamically shares soft information between inner
and outer decoders. This dynamic exchange of information is
facilitated by a denoiser that runs belief propagation (BP) on the
factor graph of the outer LDPC code within each AMP iteration.
It is shown that this BP denoiser falls within the framework of
non-separable denoising functions and subsequently, that state
evolution holds for the proposed AMP-BP algorithm. Leveraging
the rich structure of SR-LDPC codes, this article proposes an
efficient low-dimensional approximate state evolution recursion
that can be used for efficient hyperparameter tuning, thus paving
the way for future work on optimal code design. Finally, numer-
ical simulations demonstrate that SR-LDPC codes outperform
contemporary codes over the AWGN channel for parameters of
practical interest. SR-LDPC codes are shown to be viable means
for obtaining shaping gains over the AWGN channel.

Index Terms— LDPC codes, sparse regression codes (SPARCs),
approximate message passing, belief propagation, shaping gain.

I. INTRODUCTION

OW-DENSITY parity check (LDPC) codes have been

studied extensively over the past several decades [1],
[21, [3], [4], [5], [6], [7], [8] and are known to be capacity
approaching over the additive white Gaussian noise (AWGN)
channel. Furthermore, under certain conditions, encoded mes-
sages can be recovered efficiently using iterative belief
propagation (BP) decoding. Since the complexity per iteration
of BP decoding grows linearly with the block length, this
paradigm offers a pragmatic solution for decoding codes with
long block lengths [9]. Moreover, some spatially coupled
LDPC constructions feature capacity approaching iterative

Received 13 November 2023; revised 19 October 2024; accepted 27 October
2024. Date of publication 12 November 2024; date of current version
26 December 2024. This work was supported in part by the National
Science Foundation (NSF) under Grant CCF-2131106 and Grant CNS-
2148354 and in part by Qualcomm Technologies Inc., through their University
Relations Program.An earlier version of this paper was presented in part at
the 2023 Information Theory Applications (ITA) Workshop and in part at
the 2023 IEEE International Symposium on Information Theory (ISIT) [DOI:
10.1109/1S1T54713.2023.10206818]. (Corresponding author: Jean-Francois
Chamberland.)

Jamison R. Ebert is with Qualcomm Technologies Inc., San Diego,
CA 92121 USA (e-mail: jrebert@tamu.edu).

Jean-Francois Chamberland and Krishna R. Narayanan are with the Depart-
ment of Electrical and Computer Engineering, Texas A&M University, College
Station, TX 77843 USA (e-mail: chmbrlnd@tamu.edu; krn@tamu.edu).

Communicated by K. R. Duffy, Associate Editor for Coding and Decoding.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TIT.2024.3496486.

Digital Object Identifier 10.1109/TIT.2024.3496486

decoding thresholds while also avoiding the pitfall of error
floors [10], [11], [12], [13], [14], [15]. However, systems
operating at shorter block lengths may not be conducive to
the application of spatial coupling. In such situations, non-
binary LDPC codes have been leveraged as means to provide
adequate performance [6], [7], [16], [17], [18].

In a seemingly unrelated research direction, Joseph and
Barron introduce the concept of a sparse regression code
(SPARC) [19], [20], [21] which establishes a connection
between code design and sparse recovery in high dimensions.
SPARC codewords consist of sparse linear combinations of
the columns of a design matrix; thus, the problem of SPARC
decoding is equivalent to that of noisy support recovery for
which many low complexity frameworks have been studied
in the literature. Most notably, Barbier et al. introduce an
approximate message passing (AMP) decoder for SPARCs
in [22]. It is shown that SPARCS with AMP decoding achieves
the asymptotic single-user AWGN channel capacity under
an appropriately chosen power allocation [23], [24] or when
combined with spatial coupling [25]. There have also been
efforts to maximize the finite block-length performance of
SPARCs [26], [27].

A popular strategy for improving the performance of codes
in practical settings is to adopt a concatenated structure. For
example, Greig and Venkataramanan combine a binary LDPC
code with a SPARC and propose the following decoding
algorithm [26]. First, AMP is run to decode the SPARC; then,
the factor graph of the LDPC code is initialized using the
soft outputs of AMP; BP is subsequently run to decode the
LDPC code; and finally, AMP is run once more to decode
the SPARC after removing the contribution of confidently
decoded sections. This approach is shown to provide signif-
icant performance benefits over uncoded SPARCs for finite
block lengths. Similarly in [27], Cao and Vontobel concatenate
a SPARC and a cyclic redundancy check (CRC) code for
the complex AWGN channel. In this scheme, the outer CRC
code serves as an error detection mechanism to determine the
true codeword among the multiple candidate paths retained
from the static outputs of AMP. Interestingly, the schemes
discussed in both [26] and [27] produce a steep waterfall in
error performance, a phenomenon that is not achieved by the
standalone AMP decoder when operating over short block-
lengths. From a theoretic perspective, Liang et al. show that,
with a carefully designed outer code, a compressed-coding
scheme can asymptotically achieve the single-user Gaussian
capacity provided that the state evolution for AMP remains
accurate in the presence of the outer code [28]. These results
suggest that concatenated schemes involving SPARCs are
promising codes for the AWGN channel.

0018-9448 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Texas A M University. Downloaded on July 24,2025 at 14:44:49 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-2898-7404
https://orcid.org/0000-0002-2983-9884
https://orcid.org/0000-0001-8742-5332

168 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 71, NO. 1, JANUARY 2025

Concatenated structures with SPARC-like inner codes have
also been proposed in the context of unsourced random
access [29], [30], [31]. In [30], Amalladinne et al. demonstrate
that, under AMP decoding, the structure of a judiciously
designed outer code can be integrated into the iterative recov-
ery algorithm for the inner code via a dynamic denoising
function. Surprisingly, despite being mentioned by Liu et al.
in [32] as a possible future research direction, such an
approach has not been considered for the single-user sce-
nario. Therefore, the purpose of this article is to address this
deficiency.

A. Main Contributions

In this article, a novel concatenated coding scheme is
introduced consisting of an outer non-binary LDPC code and
an inner sparse regression code, where the field size of the
outer code equals the section size of the inner code. An effi-
cient decoding algorithm based on AMP is presented that
allows for information to be dynamically shared between inner
and outer decoders. This dynamic exchange of information
is facilitated by a denoiser that performs BP on the factor
graph of the outer LDPC code during each AMP iteration.
It is shown that this denoiser falls within the framework
of AMP with non-separable denoisers and subsequently, that
the state evolution formalism holds. Leveraging the rich
mathematical structure inherent in both the code structure
and the decoding algorithm, an approximate state evolution
recursion is proposed for efficient hyperparameter tuning and
code optimization. Finally, the proposed code, referred to as
a Sparse Regression LDPC (SR-LDPC) [33] code, is shown
to outperform other SPARC and LDPC code constructions
over the AWGN channel for parameters of practical interest.
Numerical results suggest that SR-LDPC codes may be lever-
aged as means to obtain shaping gain over the AWGN channel.

B. Organization

The remainder of this article is organized as follows.
Section II describes the channel model and introduces
SR-LDPC encoding and decoding. Section III describes the
design of the dynamic denoiser and investigates some of
its properties. Section IV utilizes the structure of SR-LDPC
codes and the proposed decoding algorithm to develop a
low-dimensional approximate state evolution recursion for
code optimization. Then, Section V presents numerical sim-
ulation results highlighting the benefits of SR-LDPC codes.
Finally, Section VI offers concluding remarks. Derivations and
proofs for the theorems contained throughout this article may
be found in Appendices A and B.

II. SYSTEM MODEL

We consider a memoryless point-to-point AWGN channel
where both the transmitter and the receiver are equipped with
a single antenna. In this model, the received signal y € R" is
given by

Yy =x+z, (D

where x € R" is the transmitted signal, z ~ N (0,0°I)
represents AWGN, and n denotes the number of channel uses
or, equivalently, the number of (real) degrees of freedom. The
signal-to-noise ratio (SNR) is expressed as

B, _E[x)] o
NO B 2Bo 27
where B denotes the number of information bits conveyed
in x. The set of codewords is subject to an average power
constraint which, without loss of generality, can be set to one
(i.e., E [||x][?] = 1), with the understanding that a given SNR
may be achieved by adjusting the noise variance. As mentioned
above, we wish to study a coding architecture comprised of a
sparse regression inner code [19], [20], [21], and a non-binary
LDPC outer code [6], [7], [8]. We elaborate on the encoding
process and the decoding scheme below.

A. SR-LDPC Encoding

The proposed encoding process features a sequence of three
distinct steps: g-ary LDPC encoding, indexing of LDPC sym-
bols, and inner CS encoding. In the first step, the information
bits are encoded into a g-ary LDPC codeword via well-
established operations [6], [7], [8]. The second step transforms
the g-ary LDPC codeword into a suitable sparse vector. The
last step is the matrix multiplication emblematic of a sparse
regression code [19], [20], [21]. We summarize the notions
pertaining to this encoding process below while concurrently
introducing necessary notation.

1) q-Ary LDPC Encoding: The LDPC encoder takes a
binary sequence w € FF as its input and maps it to
a g-ary codeword v € IFqL, where ¢ denotes the size of the
Galois field [6], [7]. Note that for F, to be a field, ¢ must be
a power of a prime. Throughout this article, we assume ¢ is
of the form ¢ = 2™ for some m € N,m > 1. We represent
the resultant codeword in concatenated form as

L), 3)

where the /th element v, lies in finite field F, and L is the
length of the resulting codeword.

Remark 1: There exists a bijection ® : F, — [¢] between
the elements of IF, and the integers [¢] = {0,1,...,¢ — 1},
where the integer O represents the zero element of F, and the
integer 1 represents the unity element of F, [7]. Throughout
this article, we adopt such an arbitrary, but fixed bijection.
We exploit this relation by employing the same variable for
a field element g € F, and for its corresponding integer
® (g) € [q]. This slight abuse of notation greatly simplifies the
exposition of SR-LDPC codes. Furthermore, its use should not
lead to confusion because one can unambiguously infer from
context whether g refers to the field element or to its integer
representation.

2) LDPC Symbol Indexing: With Remark 1 in mind,
it becomes straightforward to explain the second step of
the encoding process. Coded symbol sparsification/indexing
consists of mapping v, € [, to standard basis vector
e,, € R? and subsequently stacking the L basis vectors
together. We emphasize that entry ¢ of v is an element of [y,

v = (v1,02,..

Authorized licensed use limited to: Texas A M University. Downloaded on July 24,2025 at 14:44:49 UTC from IEEE Xplore. Restrictions apply.

EBERT et al.: SPARSE REGRESSION LDPC CODES

[Information Message w]

g-ary LDPC Encoding

100
Joo Spass'\f\ca“
gy

€y L

Fig. 1. Depiction of the SR-LDPC encoding process.

but v, in e,, refers to an integer in [g] under our overloaded
notation. With that, the output of the indexing process becomes

ey,
s=| 11, “4)
e,

where s is an L-sparse vector of length gL. Vector s has
a structure akin to that of a sparse regression code prior
to multiplication by a large random matrix. This structured
sparsity can be exploited during decoding.

3) Inner CS Encoding: The last phase of the encoding
process consists in pre-multiplying vector s by matrix A
to obtain x = As, where A € R 5 « ¢L, and
A ~N (07 %) Equation (1) may thus be rewritten as:

y=As+z. 5)

The overall encoding process is depicted in Fig. 1. We are now
ready to discuss the decoding process for SR-LDPC codes.

B. SR-LDPC Decoding

Paralleling the development of AMP for sparse regression
codes [24] and drawing inspiration from concatenated AMP
systems [28], [32], we wish to create an iterative process to
recover state vector s from y using AMP. However, a notable
distinction between our system model and previously pub-
lished articles is the presence of a g-ary LDPC outer code.
Thus, we wish to create an AMP decoder that simultaneously
takes advantage of the structured sparsity in s and the parity
structure embedded in the LDPC outer code. This can be
accomplished by incorporating message passing on the factor
graph of the LDPC code into the AMP denoiser. A similar
approach proposed by Amalladinne et al. can be found in [30],
where the intended application is unsourced random access.
While the two strategies are conceptually similar, the denoiser
we wish to utilize below differs from the one employed
in [30] because, in the problem at hand, only one codeword
is present within y. This distinction simplifies the structure
of the code and enables us to leverage a denoiser that more
closely parallels traditional message passing algorithms for
g-ary LDPC codes.

Our AMP composite algorithm is as follows,

(t-1)
2 =y — As® 1 Z

divm,_ (r(t_l)) (6)

n

169
() = AT 4 g0)
st = g, (r<t)> ’)

where the superscript ¢ denotes the iteration count. The
algorithm is initialized with conditions s(®) = 0 and z(©) = y.
Furthermore, every quantity with a negative iteration count is
equal to the zero vector.

Equation (6) computes the residual error under the current
state estimate s(*) enhanced with an Onsager correction term.
This residual error is used to compute an effective observation
in (7), which is passed through a denoiser to produce a revised
state estimate in (8). The denoising functions (7,(-)),~, seek
to exploit the structure of s to promote AMP’s convergence
to the true state.

The performance of AMP as a function of iteration count
may be characterized through the state evolution formal-
ism [34], [35], [36]. State evolution is an asymptotic tool,
rooted in the analysis of large systems, that captures per-
formance through a Gaussian approximation. Under suitable
regularity conditions, this asymptotic approach is valid in that
random vectors in the approximate Gaussian model converge
in distribution to their counterparts in the original system [37].
The foundation for state evolution in the current setting is
the AMP framework for non-separable denoisers put forth by
Berthier, Montanari, and Nguyen in [35]. Below, we reproduce
a crucial result from [35] which will motivate much of the
remainder of this article.

Theorem 2 (Adapted From [35]): Assume that

D Ai; ~N(0,1) vien],jeqL]
2) Vt,n, : R%* — R is uniformly Lipschitz in ¢L
3) The quantity sl _, ¢ o gL — oo for some c € R

VaL
4) The limit lim, o, 1212 € [0, 00) exists

5) For any iteration ¢t € N and variance o2 > 0, the limit
limg7— oo q%E[(s,nt(s—f— Z))] exists and is finite for
Z ~ N (0,0°1)

6) For s,t € N and covariance matrix ¥ € R2%2,
limgr oo - E[(n, (s +Z),m, (s + Z'))] exists and is
finite for (Z,Z') ~ N (0, X ®1).

Then, the limits in the following state evolution recursion exist:

0 — nsoco M

.1
= 0%+ lim ~E [In,(s+7¢)—sl3]. ©

where ¢ ~ N (0,1). If furthermore,

1 .. _ P 1.
Eleﬂtq (r(t 1)) = E{n divn,_, (S+Tt—1C):|7 (10)

with 74 > o for all s < ¢, then, for any uniformly
pseudo-Lipschitz function v, : (R%)2 — R of order k and
qL > 1, it follows that

¥n (S(t)+ATZ(t)7S> L Ey, (s +7C,,s)],

where ¢, ~ N (0,I) Vt.
Corollary 3 (Adapted from [35]): Consider the Lipschitz-
continuous MSE function ¢ (x,y) = 1|ln(x) — y||3. Under

Y

Authorized licensed use limited to: Texas A M University. Downloaded on July 24,2025 at 14:44:49 UTC from IEEE Xplore. Restrictions apply.

170 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 71, NO. 1, JANUARY 2025

Received Signal

Effective Observation

Denoiser

G —————

Dynamic BP

Y

Onsager Term

f;“,lay

Fig. 2. Graphical representation of the AMP-BP algorithm, which seeks to recover s given observation y, sensing matrix A, and the outer LDPC code.

Theorem 2, it follows that

1 1
D = s]8 = (s + AT20) — s

I

1
B .5+ 7¢,) sl

=717, — o’ (12)

Thus, the state evolution iterate may be used to track the
expected MSE of the state estimates of AMP.

Corollary 4: Under Theorem 2, the effective observa-
tion r® is asymptotically distributed as s + T+, Where
¢; ~ N (0,I) and 7; is a deterministic scalar.

Corollary 4 shows that, during each AMP iteration, the
effective observation is asymptotically distributed as the true
state embedded in Gaussian noise. This fact serves as the
basis for the proposed denoising function, which is described
in detail in the next section. After describing the denoiser,
we show that the requirements of Theorem 2 are satisfied for
the proposed SR-LDPC decoding algorithm.

III. BP DENOISER

In this section, we introduce the denoising function we wish
to employ within AMP. To begin, we emphasize that r admits
a sectionized representation akin to that of the state vector s
in (4). That is, we can view both the state estimate and the
effective observation as a concatenation of L vectors, each of
length g. Mathematically, we have

ry S1

ry SL

Moving forward, we temporarily neglect the superscript (),
which denotes the iteration count, to lighten notation; instead,
we employ the hat symbol to distinguish the estimate § from
the true state vector s. Fig. 2 illustrates several of the key
quantities we employ throughout.

Consider the effective observation restricted to section /.
Under Corollary 4, the distribution of random observation

vector R, given section S, = e, is given by

1 ro — e,
fross, (releg) = i &P <— ZQT;’”) .3
It may be beneficial to think of the inner AMP loop as being
equivalent to accessing a Gaussian vector channel L times,
with every channel use being attached to one LDPC symbol
in a manner akin to pulse position modulation (PPM). Under
a uniform prior on Sy, the conditional distribution of Sy, and
by extension, the corresponding coded symbol V,, becomes

ag(g) =Pr (Sg = eg|Rg = I‘g)

_ _ o fRraw (relg)
=Pr(Vi=gRe=1,) = Yoher, frovi (relh)

_re—eqll® rg(9)
27 e 2

(14)

- lre=enl®> re(h)
- 2 e 2
Zhe[ﬁ‘q e 2 ZhEFq

A possible estimate for Sy can be formed by taking its
conditional expectation, given observation Ry = ry, with

E [Sg|R[= I‘d = Z egPr (S[= eg|Rg = I‘g) = Qy. (15)
g€l

A variant of this approach can be found in [24] for a system
without an outer code. It is also employed in [29] in the context
of unsourced random access. Yet, this approach overlooks the
redundancy found in the outer code for the system under
consideration. Ideally, we would like to take advantage of the
outer code with the more precise MMSE estimate of the form

L
v '_P Rz:181: Vi
E[S(R=1r]=) e@szl r(Ri =1ifSi =ev)
D Cuen Iy Pr (R =1[S; = ey)

where)V denotes the set of valid non-binary LDPC codes.
However, as |V| scales exponentially in B, the MMSE denoiser
quickly becomes computationally intractable. A viable alterna-
tive that trades off performance and complexity is to perform
BP on the factor graph of the outer LDPC code. Implicitly,
this approach computes an estimate for every S, based on the
observations contained within the corresponding computation
tree of the code, up to a certain depth [8], [38].

Authorized licensed use limited to: Texas A M University. Downloaded on July 24,2025 at 14:44:49 UTC from IEEE Xplore. Restrictions apply.

EBERT et al.: SPARSE REGRESSION LDPC CODES

— a
r —_—
............ V1 Lo
7
- \?/1
r2
............ V2

Z C1

=} —
=]

g r3 sl

g U3 §

7]]
o - Co =

© =

o T4 S)

SO I V4 [l
= 9]

8 w
= cs
63

A(b

\)v\)\)

ar
rr e L

Variable nodes

Fig. 3. Each section of the effective observation represents a single coded
symbol; thus, the sections are linked together via the factor graph of the outer
LDPC code.

Frameworks for performing BP on factor graphs are well-
established [39]; thus, we assume some familiarity with such
iterative procedures. For the g¢-ary LDPC portion of the
article, we borrow definitions and concepts from Bennatan
and Burshtein [7], who offer a comprehensive exposition
of g-ary LDPC codes. We proceed by first considering the
nuances of non-binary LDPC factor graphs, then presenting
a BP algorithm, then proposing a dynamic BP denoiser for
SR-LDPC codes, and finally by considering the properties of
the proposed denoiser.

A. Non-Binary LDPC Graphs

The factor graph for an F, LDPC code features L vari-
able (left) nodes, which correspond to the symbols of the
codewords, and L(1 — R) check (right) nodes enforcing
parity constraints, where R is the design rate of the LDPC
code [6], [7], [8]. An important distinction between binary and
non-binary LDPC codes is that a factor graph for a non-binary
LDPC code typically includes edge labels, which take values
in F, \ {0}. Fig. 3 offers a notional factor graph for a
non-binary LDPC code, where the edge labels are represented
as dots along the graph edges. A vector v € FqL is a valid
codeword if it satisfies the parity equations

> wp®u =0 VYpe[Ll-R),
veEN(cp)

(16)

where N(cp) is the collection of variable nodes adjacent
to parity check cp, i.e., neighbors on the factor graph. The
summation and the multiplication operator ® in (16) take
place over finite field IF,. Parameter wy ;, represents the label or
weight assigned with the edge connecting variable node v, and
check node c,,. Adopting common factor graph concepts [39],
[40], we denote the graph neighbors of variable node v, by
N(vy). The factor associated with ¢, and derived from parity
equation (16) can be expressed as an indicator function

Z wep @ue=0],

ve€N(cp)

Gp(vp) =1 a7

171

where v, = (v € N(cp)) is a shorthand notation for
the restriction of v to entries associated with graph neigh-
borhood N(c,). With these definitions, the factor function
associated with our LDPC code assumes the product decom-

position given by

G(v) = gp(Vp)~
pE[L(1-R)]

(18)

Succinctly, G(v) is an indicator function that assesses whether
its argument is a valid codeword.

To create a suitable LDPC code, one can first con-
struct a Tanner graph [41] according to established tech-
niques [8], [42] and then assign labels to edges, possibly
randomly and independently from a uniform distribution
over F, \ {0}.

B. Belief Propagation

We view messages for a non-binary LDPC code as
multi-dimensional belief vectors over IF,. Messages from
variable nodes to check nodes are denoted as p,_,., and
messages in the reverse direction are represented as fr._,,.
Formally, a message going from check node ¢, to variable
node v, € N(cp) is computed component-wise through the

equation
I1

:ucp%ve(g>: Z gp(vp)
v €N (cp)\ve

VpiUe=g

l‘l’vjacp (gj) (19)

While (19) is shown in compact form, the actual summation
operation is cumbersome. Finding the set of summands entails
identifying sequences of the form (g; € F, : v; € N(cp) \ v¢)
that fulfill local condition (16) or, equivalently,

>

v; EN(cp)\ve

Wip @ gj = —wep®g. (20)

Likewise, a belief vector passed from variable node v, to check
node c,, where p € N (vg), is calculated component-wise

via

ce €N (ve)\cp

Py e, (9) o 0u(g) Pee v, (9)- 21)

The ‘o<’ symbol indicates that the positive measure should
be normalized before being sent out as a message. Vector o,
in (21) can be viewed as a collection of beliefs based on local
observations, as in (14). That is, entry a(g) captures the pos-
terior probability that symbol g is the true field element within
section ¢, given the local observation. Other BP messages are
initialized with @, ,. = 1 and p,._,, = 1. These message
passing operations appear in Fig. 3. The traditional parallel
sum-product algorithm iterates between (19) and (21), alter-
nating between updated rightbound messages and leftbound
messages.

One of the key advantages of indexing vectors using field
elements in Iy, as pointed out in [7], is the ensuing ability to
define pertinent operators on these vectors. Paralleling existing
literature, we consider two operators.

Authorized licensed use limited to: Texas A M University. Downloaded on July 24,2025 at 14:44:49 UTC from IEEE Xplore. Restrictions apply.

172 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 71, NO. 1, JANUARY 2025

Definition 5 (Vector +g Operator [7]): For field element
g € Iy, the vector +g operator acting on b € R? and denoted
by b™9 is defined as

b9 = (by,bye1, - - - s bya(g—1))
= (bhag : h € Fy),

where subscript addition @ is performed in [F,.
Definition 6 (Vector xg Operator [7]): For field element
g € Fy\ {0}, we define the vector xg operator acting on

b € R? and denoted by b*¥ by

b*9 = (by, by, bagys, - -
= (bugg : h € Fy)

'vb(q—1)®g)

where subscript product ® takes place in F,.
We emphasize that the +¢ and xg operators introduced
above are reversible, with

(b™9) Y =bg €F,
(b%9)*7" by eF,\{0}.

These operations essentially permute the entries of b in a
structured fashion that naturally meshes with field actions.
These operations are especially meaningful in the computation
of BP messages for non-binary LDPC codes, as factor nodes
impose constraints that are easily expressible within the Galois
field F,. Vector operators then become a convenient way to
track the distribution of belief vectors during message passing.
Specifically, under these operations, we can rewrite (19) as

e v, = ©)

v; EN (ep)\ve

) X (—we,p)
W p

where wj ,, is the label on the edge between variable node v;
and factor node c, [7]. Here, the operator © denotes the
IF4-convolution between two vectors,

[IJ’QV]g: ZMh'ngh
heF,

(22)

gel,.

The exposition can be simplified further if we absorb the edge
labels within the messages themselves. Specifically, we adopt

the definitions
-1

Xw .. P
O (T 23
_ x(-wi)
l’l‘(;p—Vl}[= (I’l‘(}p—Vuz) (24)
Then, (22) morphs into the simpler expression
ﬁcpgvuz = @ ﬁ’[}j*}(’,‘p' (25)
v; €N (cp)\ve

This equation highlights the role of the F,-convolution within
BP for non-binary LDPC codes. The message from variable
node vy to check node ¢, found in (21) also admits a
more compact form. For p € N(vy), the traditional outgoing
message from a variable node can be written as

B Oy © (OC£ EN(ve)\cp IJ’CE*)’UZ) 26)

Hae ° (OCEGN(W)\% “%“W) ‘

I‘LWEHCT_,

1

where o denotes the Hadamard product between two vectors,
and () represents the Hadamard product of a collection of
vectors.

A natural estimate for the distribution associated with vari-
able node vy, including intrinsic information, is

~ Oy © (OCPEN(UL;) ”cp—wuz)
S, =

. (27)
Hae o (OcpeN(vz) “CPHW) Hl

As we will see shortly, (27) is the output of our proposed
denoiser.

Remark 7: In our construction, ¢ = 2™, m > 1 because
indexing is derived from sequences of bits. This invites the
application of fast techniques to implement message passing
over the corresponding factor graph. Specifically, the fast
Walsh-Hadamard transform (FWHT) can be utilized to rapidly
and efficiently compute (25), with

By, X fwht " H
v; €N (cp)\ve

fweht (75, .,)

This technique is especially meaningful given that it may
be desirable to maintain large sections and, hence, a large
alphabet size for sparse regression codewords. Alternatively,
one could adopt a different finite field convolution or a ring
structure amenable to the circular convolution to create local
factor functions conducive to the fast Fourier transform [6],
[43], [44].

With these tools in mind, we are ready to formally define
our proposed denoiser.

C. BP Denoiser

Conceptually, one can initiate the state of the LDPC factor
graph using the effective observation r, run a few rounds
of BP, and then form an estimate for the state based on (27).
As mentioned before, in the absence of BP iterations, local
estimates reduce to the conditional expectation E [Sy|R; = r/]
found in (15). Yet, as more iterations of the BP algorithm are
performed, the estimate for S, can be refined based on the
computation tree of the outer code, up to a certain depth.

Definition 8 (BP Denoiser): Let N, denote the number
of BP iterations to perform during AMP iteration t. The
BP denoiser:

1) initializes the LDPC factor graph with estimates o,
computed from r, for ¢ € [L] according to (14);

2) computes and passes variable to check messages
(see (26)) and check to variable messages (see (23), (25),
(24) and Remark 7) along the edges of the factor graph
in an alternating fashion /V; times;

3) computes updated state estimates according to (27).

The output of this denoiser can then be passed to the AMP
composite algorithm for the computation of the next residual,
enhanced with the Onsager term.

To the reader familiar with the iterative decoding of LDPC
codes, it may seem more natural to construct an estimate for
the distribution associated with variable node v, based on

Authorized licensed use limited to: Texas A M University. Downloaded on July 24,2025 at 14:44:49 UTC from IEEE Xplore. Restrictions apply.

EBERT et al.: SPARSE REGRESSION LDPC CODES

extrinsic information, i.e.,

OCPEN(w) l"’cp—wz

Soxt = (28)

H O(:p €N (vy) ""cp—m[

One may be tempted to argue that o, should not be used
when passing a message back to the left-most nodes in Fig. 3.
However, the presence of the Onsager term in (6) serves to
break first-order dependencies and, hence, one need not worry
about the presence of ayy in (27) as part of the iterative process.

When AMP is used with the BP denoiser as presented in this
paper, the algorithm is referred to as the AMP-BP algorithm.

D. Properties of BP Denoiser

The BP denoiser relies on the effective observation r being
asymptotically distributed as the true state embedded in i.i.d.
Gaussian noise, or

r® ~ s+ 7, (29)

where 7 is a deterministic quantity and ¢, has i.i.d. N'(0,1)
components. This assumption is valid under the conditions of
Theorem 2; thus, having defined the BP denoiser, we now
revisit these conditions to ensure that they are met. For the
sake of conciseness, we will not provide rigorous proofs for
most of these conditions; however, they may be proved under
our construction of A, the SNR constraint, and the properties
of the AWGN. We do, however, provide a rigorous proof that
the denoiser is uniformly Lipschitz under the following two
conditions.

Condition 9 (Sub-Girth BP): The BP denoiser is said to
possess the Sub-Girth BP condition when fewer message
passing iterations are performed on the factor graph of the
LDPC code than the shortest cycle of this same graph, per
AMP denoising step.

This condition is reasonable because, in contrast to the
traditional technique of performing many BP iterations at once,
we are primarily interested in repeatedly performing a few BP
iterations at a time as the BP algorithm is run within each AMP
iteration. Though this condition is sufficient for the theory to
hold, in practice, one may be able to violate this condition
and still obtain reasonable performance. With this condition
in mind, we obtain the following result.

Condition 10: As the dimension of the block sparse vector
s € R is scaled to infinity, the following constraints are
satisfied:

1) The left and right degrees of the outer LDPC code do
not exceed d},, < oo and df . < oo, respectively.

2) The number of BP iterations performed does not exceed
Npax < 00, regardless of the girth of the factor graph.

3) The field size q of the outer LDPC code does not exceed
Gmax < O0.

Note that under Condition 10, it is still possible to let
gL — oo by scaling L — oo. Under these two conditions,
we obtain the following result.

Theorem 11 (BP Denoiser is Uniformly Lipschitz): Under
Conditions 9 and 10, the BP denoiser presented in Definition 8
is uniformly Lipschitz continuous.

173

For the proof of this and all other results in this section,
please see Appendix A.

Since the conditions of Theorem 2 are satisfied under
Conditions 9 and 10, we conclude that state evolution holds
for the AMP-BP algorithm. This endows the algorithm with
a significant amount of mathematical structure that will be
exploited in Section IV for performance prediction and opti-
mization.

The final step in completing our AMP-BP algorithm is
computing the Onsager correction term, which we provide in
Proposition 12.

Proposition 12: The Onsager correction term associated
with the BP denoiser is given by

(t=1)
z divn,_; (r(t_l))

n
- % (H”t—l (=), = e (r“‘”)”i) . (30)

Note that this term has a particularly simple form that
is amenable to efficient computation. In the next section,
we consider how to use the state evolution algorithm for
performance prediction and code optimization.

IV. STATE EVOLUTION

Recall that state evolution is an iterative algorithm that seeks
to characterize the performance of AMP as a function of its
iteration count ¢. Under Corollary 4, the effective observation
is distributed as the true state embedded in zero-mean i.i.d.
Gaussian noise with variance 772. Using the state evolution
formalism, the value of 77 at iteration ¢ can be computed

through the following recursion:

2
1o 1313

n—oo N

.1
2 =o%+ lim ~E |ln, (s +7¢,) sl

2=

(€29)
where 7 is the number of channel uses, o2 is the channel
noise variance, and ¢, ~ N (0,I). Here, the expectation is
computed with a uniform distribution over vectors s.

As shown in Corollary 3, the state evolution algorithm may
be used to compute the expected mean-squared-error (MSE) of
the state estimate at iteration ¢. Thus, by comparing the limit-
ing values of 77 for various configurations of hyperparameters
(e.g. number of channel uses n, LDPC code length L, field
size g, etc), we can identify which set of parameters provides
the lowest reconstruction MSE |[|s() — s||2.

However, naively computing lim; ., 77 is computationally
intensive, in part due to the expectation which must be taken
over the set of indexed F; LDPC codewords. This is not ideal,
as the SR-LDPC code designer may have a large parameter
space to search over, and naively using the state evolution
algorithm to find the optimal code configuration may take a
prohibitively large amount of time. Thus, we are interested in
finding a more efficient way of computing the state evolution
for a given SR-LDPC code.

Note that E [T(ﬂ =02+ %; thus 72 may be directly approx-
imated from the system parameters without the need for any
high-dimensional computations. Additionally, the expected

Authorized licensed use limited to: Texas A M University. Downloaded on July 24,2025 at 14:44:49 UTC from IEEE Xplore. Restrictions apply.

174 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 71, NO. 1, JANUARY 2025

MSE of the input to the denoiser can be computed directly
from 77 and the system parameters. If we could efficiently
compute the expected MSE at the output of the denoiser
given the expected MSE of its input, then we could also com-
pute 77_;. Then, we would have a low-dimensional recursion
for predicting the performance of a SR-LDPC code under
a given hyperparameter set, thus enabling rapid performance
prediction and code optimization.

The purpose of this section is to study the mathematical
properties of SR-LDPC codewords and BP denoising in order
to develop such a recursive algorithm. Though we do not
provide an exact algorithm for computing the state evolution,
we do provide an approximate state evolution algorithm in
Definition 13, which is the main result of this section. This
approximate solution is based on the idea of “MSE message
passing”, whereby scalar expected MSE values are passed
along the edges of a bipartite graph representing the constraints
of the outer LDPC code. Using the known system parameters
as well as the current value of 772, the starting expected MSE
of each section may be computed. Then, expected MSEs
are passed between variable and check nodes, where nodes
provide approximate expected output MSEs based on their
inputs. After a fixed number of message passing iterations,
the final output MSE may be computed, which is then used
in the computation of 77, ;.

We begin this section by introducing the approximate state
evolution algorithm in Definition 13. Then, we explore the
properties of SR-LDPC codes that enable the development
of the algorithm, and finally we evaluate the algorithm’s
performance and utility.

Definition 13 (Approximate State Evolution): Let T denote
the number of AMP iterations to model, let {N, : ¢t € [T}
denote the number of BP rounds to perform during each AMP
iteration ¢ € [T, and let o2 denote the channel noise variance.
The approximate state evolution algorithm proceeds by

1) Approximate 78 ~ E [r¢] = 02 + £

2) For each AMP iteration ¢ € [T, consider a bipartite

graph representing the constraints of the outer LDPC
code where all edges have weight one. Then,

a) Initialize all graph messages to be 1
b) Set ., ., = E[a,(0)] V¢ € [L]
¢) For each BP iteration ¢ € [IV;]:

i) Send variable to check node messages accord-
ing to Proposition 34, where

1

IJ’w—)cp =1-v 1 5

1

77t LeceN (e, 72,
where 77, = ¥~ ([L(:s_,w(())) and ¥ (77) =
E [e(0)].

ii) Send check to variable node messages accord-
ing to Proposition 33, where

-1
g—1 g
u%m@::q—'<q1) X

I

v;EN(cp)

(=]
v F# Ve

2 1
1-5)
where v = |N(cp)| — 1.
d) Approximate expected output MSE using Proposi-
tion 34, where

B, —c,

1
-,—%/2 + ECPEN(w) 7—%

p.L

E[lS-8/3] =1-w

e) Compute 77, =02 + 1 > e E [HSZ — Sg”%}
Having introduced the approximate state evolution recur-
sion, we now study the properties of SR-LDPC codewords
and BP denoising that enable the algorithm. We note that the
proofs associated with all propositions, corollaries, lemmas,
and theorems from this section are contained in Appendix B.

A. Geometric Uniformity of Indexed Fy, LDPC Codes

We begin by examining the symmetry properties of indexed
F, LDPC codewords and show that SR-LDPC codewords are
geometrically uniform. The notion of geometric uniformity,
as presented in [45], is of great value because it guarantees
that the error probability over a Gaussian channel does not
depend on which codeword is transmitted. In particular, the
sets of distances (distance profile) from any codeword to all
other codewords are all the same.

First, note that the signal constellation produced by mapping
a field element g € I, to vector element e, € R? is invariant
under coordinate permutations. That is, suppose II : R? —
R? is a permutation matrix. then the following set equality
(trivially) holds,

{eg:geF,} ={Ile, : g € Fy}.

Furthermore, it is known that every coordinate permutation
operator is an isometry, with

(32)

|Tle, — Iep||” = |leg —enl|” Vg.h € F,, (33)

where 7 : [q] — [g] is the permutation function corresponding
to matrix II. It follows that the sets in (32) are geometrically
congruent under any permutation operator.

We can extend these observations to state vectors in R%%.
Consider a set of permutation matrices on R?*%, which we
denote by I ... TI(X). Define the block diagonal permu-
tation matrix IT = diag (H(l), . ,H(L)). Given that we can
write

L

2 2

Is =s'I"=> " lise = st
(=1

we deduce that the original codebook S C R% and any
section-wise permutation II thereof must also be geometrically
congruent.

Definition 14 (Geometric Uniformity [45]): A signal set S
is geometrically uniform if, given any two points s and s’ in S,
there exists an isometry that transforms s to s’ while leaving
S invariant.

Authorized licensed use limited to: Texas A M University. Downloaded on July 24,2025 at 14:44:49 UTC from IEEE Xplore. Restrictions apply.

EBERT et al.: SPARSE REGRESSION LDPC CODES

Since any section-wise permutation IT acting on S produces
a symmetry of S, it becomes straightforward to show that this
set is geometrically uniform.

Proposition 15: Let S be the codebook produced by com-
bining the F;, LDPC outer code and the indexing step. Then,
the set S is geometrically uniform.

This result should not be too surprising to the reader familiar
with LDPC codes, vector indexing, and sparse regression
codes. Nevertheless, this is important because it permits an
analysis of the system under the all-zero codeword. We elab-
orate on the section symmetry in the following proposition.

Proposition 16: Let II be any permutation on the entries
of vectors in RY. The distribution of R, conditioned on the
input S, is permutation invariant in the sense that

frois, (releg) = frys, (Tre]eny)) (34)

for any r; € R?. Above, 7(-) is a representation of II where
m(g) denotes the permutation of the integer position of g under
the bijection of Remark 1. In other words, €r(g) = Ile, for
any g € .

While there are only ¢ permutations induced through field
mapping of the form g — g @ u, determined by choosing
u € F,, the mathematical statement holds for all ¢! possible
permutations of the vector indices. Thus, this attribute forms
a strong notion of statistical symmetry that is related to a
symmetry property of binary LDPC codes [46] and non-binary
LDPC codes over finite fields [7]. As mentioned in the lat-
ter article, the capacity-achieving distribution for constrained
channels with such statistical symmetry is uniform over the ¢
possible inputs. Fortunately, the marginal input distribution to
the Gaussian vector channel corresponding to section ¢ under
SR-LDPC encoding is indeed uniform over the admissible
inputs.

Corollary 17: Suppose that vector eg is the input to the
Gaussian vector channel of Corollary 4. Then, observation
vectors Ry and R/, where w € F, \ {0}, have identical
distributions.

This corollary is pertinent because, as discussed above,
system analysis for a geometrically uniform codebook can
be performed assuming that the all-zero codeword has been
transmitted. Under such circumstances, the action of edge label
wy,, does not affect the distribution of the rightbound messages
oy, —c,- This complexity reduction also extends to the distri-
bution of p. _,,,. Hence, the effects of the edge labels can
be disregarded when studying the statistical properties of the
BP denoiser.

B. Statistical Properties of BP Messages

We now explore certain statistical properties of the BP mes-
sages that are passed during SR-LDPC decoding. Throughout
the remainder of this section, we assume that the all-zero
codeword has been sent (i.e., v, = 0 V¢ € [L]) and we assume
that Corollary 4 holds. We begin by introducing the notions
of likelihood-vectors and likelihood-vector random variables.

Definition 18: A likelihood-vector £ € R1 is a vector whose
entries are non-negative, i.e. £(i) > 0 Vi € [q].

Definition 19: A likelihood-vector random variable is
defined as a random vector L = (Lo,L1,...,L,—1) in

175

R? that takes on values from the set of likelihood vectors.
Furthermore, a likelihood-vector random variable L is called
group-symmetric if

fu (@) = fu (£*)

for any field element g € F, \ {0}. Similarly, L is said to be
permutation-symmetric if

fu (€) = fu (Tl#)

for any permutation matrix Il that preserves the location of
the zeroth entry in its argument. Such a random vector is
qualified as dominant if, in addition to symmetry, the mean
of the zeroth element E[Lg] is greater than or equal to the
expected value of any other entry.

Remark 20: We emphasize that, if a likelihood-vector
random variable is either group-symmetric or permutation-
symmetric, then the expected value of all its components,
except for the zeroth entry, are equal. We can therefore
unambiguously adopt the uniform notation E[L,], where e can
be any field element g € F \ {0}.

A likelihood-vector random variable that takes on values
in R? can be normalized to produce a probability-vector
random variable on F,. Such vector random variables are
defined below. Both notions are important in analyzing the
performance of sparse regression LDPC codes.

Definition 21: A probability-vector random variable is a
random vector D = (Dg, D;....,Dg_1) in R? that takes on
values in the probability simplex. Such a probability-vector
random variable D is called group-symmetric if

fo(d) = fp (")

for any field element g € F, \ {0}. Moreover, D is said to be
permutation-symmetric if

/o (d) = fp (Ilpd)

for any permutation matrix Il that preserves the location of
the zeroth entry in its argument. Such a random vector is
dominant if, in addition to symmetry, the mean of the zeroth
element E[Dy] is greater than or equal to the expected value
of any other entry.

The most important probability-vector random variables for
the problem at hand are normalized likelihood-vector random
variables. We adopt the notation

L
1L

(35)

(36)

(37

(38)

E:

(39)

for the normalized version of a likelihood-vector random vari-
able. Under Corollary 4, the components of likelihood vectors
associated with the effective observation are derived from the
Gaussian distribution. This fact, which we use extensively
throughout, acts as a motivation for the next definition.

Definition 22: We define a permutation-symmetric Gaus-
sian likelihood-vector random variable as a dominant
permutation-symmetric likelihood-vector random variable that
is component-wise equal to

Ly = fr,s, (Releg) (40)

Authorized licensed use limited to: Texas A M University. Downloaded on July 24,2025 at 14:44:49 UTC from IEEE Xplore. Restrictions apply.

176 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 71, NO. 1, JANUARY 2025

where R, has distribution fr,|s, (-|€o), as defined in (13).
When a permutation-symmetric Gaussian likelihood-vector
random variable L is normalized, we call the resulting vector L
a permutation-symmetric Gaussian probability-vector random
variable.

Part of the motivation for introducing these definitions is
rooted in the operations that take place on the factor graph
of the F, LDPC outer code during belief propagation. One
benefit of working with the likelihood-vector, as opposed
to the probability vector, is the fact that vector components
in (40) are independent, with the joint distribution assuming
a product form. We turn to the effects of the IF,-convolution
on random likelihood vectors and show that this operation
preserves certain properties.

Lemma 23: The I, -convolution of a finite set of inde-
pendent dominant group-symmetric likelihood-vector random
variables produces a dominant group-symmetric likelihood-
vector random variable.

Another interesting property of the IF,-convolution of like-
lihood vectors pertains to the one-norm of the output. This
result is analogous to the one-norm relation for the regular
convolution; it is included below for the sake of completeness.

Lemma 24: Let {é(p)} be a collection of likelihood vectors

and define
n— @ g(:ﬂ),

PE[]

where - is a natural number. Then, the one-norm of the output
of the IF,-convolution is equal to the product of the one-norms
of the input vectors,

Inll, = TT [-

pEl]

Corollary 25: Let {L(p)} be a collection of independent
likelihood-vector random variables and define

N = @ L(P),
]

pElY

where ~ is a natural number. Then, it necessarily holds that
BN, = [T E[[e@]].
PE[]

With the properties identified above, we can characterize
the expectation of the IF,-convolution of certain collections of
likelihood-vector random variables. This is meaningful in that
we can then track the mean behavior of certain BP messages
passed on the factor graph of the outer LDPC code.

Proposition 26: Suppose {L(p)} forms a collection of inde-
pendent dominant group-symmetric likelihood-vector random
variables. For any natural number -, the expectation of N =
Ope L® is governed by

E[Ny] = é I1 (JE {Lﬂ +(q—1E [LS”)D

pE[]

() T e -=[]) @

PE[]

v 2 T (6 (69 + - e 2]

PE]

I e =[])

PE[Y]

(42)

We can extend these findings to probability vectors of the
form L = L/ ||L||,, where L is a dominant group-symmetric
likelihood-vector random variable.

Corollary 27: Suppose {I:(p)} is a collection of indepen-
dent dominant group-symmetric probability-vector random
variables. Then, for any natural number -y, the expectation of
N = ©,¢y L™ is governed by

E [No] = é + (L)Wlpl;[ﬂ (E 0] - (1]> 43)
S B (A

PE[]

An important application of Corollary 27 for our analysis
is the situation where {E(p)} is a collection of inde-
pendent permutation-symmetric Gaussian probability-vector
random variables, each with parameter 7. Our last set of
results on the statistical properties of likelihood vectors per-
tains to the two-norm of permutation-symmetric Gaussian
probability-vector random variables.

Lemma 28: Suppose L is a dominant
permutation-symmetric Gaussian probability-vector random
variable with standard deviation parameter 7. The expected
two-norm of L is related to E [Lo| through the equation

E [HLHﬂ =E L. (45)

Inspecting the proof of Lemma 28, one notices that (45)
hinges on the property E [L2] = E [LoL,|. This relation
arises naturally for dominant permutation-symmetric Gaussian
probability-vector random variables, yet it may occur more
generally. For instance, this property may be preserved under
certain factor graph operations such as the F,-convolution.
Before studying this property more thoroughly, we give it a
formal name.

Definition 29: We say that a dominant permutation-
symmetric probability-vector random variable L is balanced
if

E[L5] = E [LoL,]

for all g € IF,. -
Proposition 30: Let L be a dominant permutation-
symmetric probability-vector random variable. Then, L is

balanced if and only if

E[|L]3] = E [Zo].- (46)

This structure leads to a corollary that will become very
important when computing the mean-squared-error (MSE) of
graph messages.

Corollary 31: Let L be a balanced dominant permutation-
symmetric probability-vector random variable. Then,

E[|IL —eol3] =1 -E[|L]3] . (47)

Authorized licensed use limited to: Texas A M University. Downloaded on July 24,2025 at 14:44:49 UTC from IEEE Xplore. Restrictions apply.

EBERT et al.: SPARSE REGRESSION LDPC CODES

Thus, when a graph message is a balanced dominant
permutation-symmetric probability-vector random variable,
the expected Lo-norm of that message is sufficient to compute
the expected MSE of that same message. Understanding the
close connection between the Lo norm and the expected MSE,
we now seek to compute the expected Lo norm of the output
of the IF, convolution operator.

Theorem 32: Suppose {E(p)} is a collection of indepen-
dent, balanced dominant permutation-symmetric probability-
vector random variables. For any natural number -y, the

two-norm of N = O, L®) is given by
— 2 —
E |[[N|l3] = & [

y—1 _ 2
(=) n)
q qg—1 e 2 q
i€[v]

Furthermore, N is itself a balanced dominant permutation-
symmetric probability-vector random variable.

At this point, we pause to recall our goal of efficiently com-
puting the expected MSE at the output of the denoiser given
the MSE at its input. To accomplish this goal, we consider
the notion of MSE message passing, whereby we construct a
bipartite graph representing the constraints of the outer LDPC
code, but whose edges all have unity weight. Then, we ini-
tialize each variable node with a local observation containing
the expected starting MSE of that section. Then, we pass
scalar expected MSE messages between variable nodes and
check nodes, where each node approximates the expected
output MSE given its input MSEs. After a fixed number of
iterations, we then compute the output MSE, which is used
in the computation of Tt2+1. In the next section, we use the
results developed thusfar to define the message passing rules.

(48)

C. Computing the State Evolution

We begin with the first round of message passing in which
variable to check node messages consist only of local observa-
tions. Under the all-zero codeword assumption, the messages
arriving at any check node constitute a set of indepen-
dent, balanced, dominant, permutation-symmetric Gaussian
probability-vector random variables. Thus, Theorem 32 may
be employed to obtain an exact expression for the expected
two-norm of the resultant check to variable BP messages. This
is consequential as it offers a means to calculate the MSE of
a section estimate based on incoming BP messages.

Proposition 33: Let .. vi € N(c V¢ } constitute
a setp of independent,{ulz;ﬂalclpced,] domi(ngr)lt} pirmutation-
symmetric, Gaussian probability-vector random variables.
Then, the MSE associated with leftbound message e,

is equal to
2
2 -,] -
TG
q q—1

where v = |N(c,)| — 1.

—vy

(E [Huvﬁ%

J-3)
v;EN (cp) 2 q
v Fve

177

We now turn our attention to the MSE of variable to check
messages. The optimal BP message from variable node vy
to check node c,, defined in equation (26), is created as
the Hadamard product of leftbound messages. Unfortunately,
an exact characterization of the MSE associated with this
operation remains elusive to the authors. It is challenging
to calculate the MSE of this estimator due, in part, to the
normalization step that appears in its construction. Further-
more, while it can be shown that p,, . is a dominant
permutation symmetric probability-vector random variable if
its inputs are similarly structured, it remains unclear whether
this BP message is also balanced.

For the sake of tractability, we introduce a mild approx-
imation for the incoming check to variable node messages.
We begin by defining ¥ to be the bijection

"

O E
ZhG]Fq e
where, under the all-zero codeword assumption, ¢ may be
arbitrarily chosen from [L]. That is, ¥ uniquely associates
each E [a(0)] with an effective noise variance 77. Using this
bijection, we propose that each incoming check to variable
node message JTo— be approximated as having been gen-
erated from a Gaussian model

¥ (72) = E o (0)] = E (49)

rp.0(9)
e o
WION
Sher, ¢
heF,

Here, the p, ¢ notation indicates that the quantity of interest is
associated with the approximate message from check node ¢,
to variable node v,. In (50), ry, , is the hypothetical effective
observation of section ¢ used to generate our approximation
of p. .., Thus, r, ¢ = sy +ny 0, where ny, 4 is zero-mean
AWGN whose variance we will denote by T[i ;- The variance
of n, ¢ is obtained by finding the 72 value that would have
generated . ., had it truly been generated by the Gaussian
model. Thus,

l"’cpavg (g) ~ I:(I'Cpﬂ’ug (g) ~ (50)

o=V (e, 0, (0)). (51)

Under this approximation, it becomes straightforward to track
the MSE of the rightbound messages.

Proposition 34: Let {fi,_.,, : ¢¢ € N(ve) \ ¢p} be a set
of independent, balanced, dominant, permutation-symmetric,
Gaussian probability-vector random variables having the dis-
tribution provided in (50). Then, the MSE associated with the
rightbound message f,, .. is given by

2
E |:HSZ - p’w—wp ‘2:| =1-v (%5217) . (52)
Here, the effective noise variance 7:2 p» 18 given by
- 1
Tip = — (53)

1
T2 + ZQEN(w)\CP ng.z

where 72 denotes the effective noise variance of the effective
observation from AMP and 77, = ¥~" (IE [ﬁcgﬂw (O)D

Authorized licensed use limited to: Texas A M University. Downloaded on July 24,2025 at 14:44:49 UTC from IEEE Xplore. Restrictions apply.

178 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 71, NO. 1, JANUARY 2025

= Empirical Observations
0.12 === Approx. State Evolution
Pb = 1.75dB
0.08 |- - N
c =2.0dB
-~ ~ N
Eb — 995dB %
No : ernnnn
0.04 - Ve N
»
‘-
ﬂ =
N 2.7‘5dB ‘ ‘
0 10 20 30 40
AMP Iteration Number ¢
Fig. 4. Comparison between true T? values and those predicted by

the approximate state evolution algorithm. The approximate state evolution
algorithm is very accurate for low and high SNRs but provides reduced insight
when AMP is at the edge of its convergence region.

A similar result may be obtained for the output MSE of the
denoiser by including all messages from neighboring check
nodes as well as the local observation in the computation
of 7:2 - Note that the approximate variable to check node mes-
sage computed in Proposition 34 is also a balanced, dominant,
permutation-symmetric, Gaussian probability-vector random
variable. Furthermore, if Condition 9 is satisfied, the variable
to check node messages received at a given check node will
be independent. Thus, the MSE of the next round’s check to
variable messages can also be computed using Proposition 33,
thus setting the stage for an iterative procedure.

Propositions 33 and 34 form the basis of the approximate
state evolution algorithm of Definition 13. Note that each
graph message in this MSE message-passing algorithm is a
scalar; thus, this approximate state evolution algorithm is of a
dimensionality that is orders of magnitude lower than the full
SR-LDPC decoding algorithm. As will be shown in the next
section, this property makes the approximate state evolution
algorithm an attractive solution for hyperparameter tuning and
code optimization tasks.

D. Performance of the State Evolution

Having defined a low-dimension approximate state evolu-
tion algorithm, we now seek to characterize its performance
and identify its limitations. Before doing so, we note that a
popular method for approximating the true value of 77 during
AMP decoding is to use the following relation:

> 12715

TR .
n

As a benchmark, we thus run the full SR-LDPC decoder
for a given code many times and average the 77 values
computed from (54). Using this benchmark, we then compare
the true 77 values with those predicted by the approximate
state evolution algorithm for a specific SR-LDPC code. The
details of this code will not be given in this section, but will
be addressed in detail in Section V. Figure 4 highlights the

results of this experiment.

(54)

107" |
1072 A E
= . =
a [| -
b : *
-3 L : |
g 1077 F : E
= . &
I ']
- | -
1074 E s =
= L .
—e— Full SR-LDPC Decoder | 3 . i
= A= Approx. State Evolution ‘ ‘ i
1075
0.7 0.75 0.8 0.85 0.9 0.95
Riprc
Fig. 5. Optimization of outer LDPC code rate under fixed overall rate

constraint using the approximate state evolution algorithm. Approximate state
evolution may be used as a coarse optimization technique, which may possibly
be followed by fine tuning through a local rate search.

From Fig. 4, we see that the 77 values predicted by the

approximate state evolution algorithm are very accurate for
low and high SNRs. When the E,/Ny = 1.75 dB, the
SR-LDPC decoding algorithm fails to converge to the correct
codeword; thus, 72 > o2, or there is a non-zero fixed-
point MSE. Clearly, the approximate state evolution algorithm
identifies this fixed point MSE very well. Conversely, when
the E,/Ny = 2.75 dB, the SR-LDPC decoding algorithm
converges in the sense that 72 = o2 and thus the final
expected MSE is zero. However, when the SNR is such that the
decoding algorithm is operating on the edge of its convergence
region, the predictions provided by the approximate state
evolution algorithm tend to be overconfident. In the example
provided, at Ej, /Ny = 2.0 dB, the approximate state evolution
algorithm predicts a 72 value that is lower than that observed
in practice. Despite this caveat, the proposed approximate state
evolution algorithm may be useful for code optimization as it
enables the rapid comparison of different hyperparameter con-
figurations (e.g. field size ¢, { Ny : ¢ € [T}, outer LDPC code,
etc) for a variety of SNRs. Of course, exact performance for
the hyperparameter selected under approximate state evolution
can be validated through full Monte-Carlo simulations of the
SR-LDPC code.

As an example of using the approximate state evolution
algorithm for hyperparameter tuning, consider the task of
choosing the outer LDPC code rate Rjppc while keeping
the number of information bits and the number of channel
uses fixed. In Fig. 5, we compare the performance of various
SR-LDPC codes that are identical in every way except for
their choices of outer codes. The SNR of this comparison is
chosen to be E},/Ny = 2.5 dB, the number of AMP iterations
is set at 7' = 20, and the difference 72 —o? is plotted in Fig. 5
alongside the associated benchmark values. We choose to plot
72 —o? because the o values are slightly different under each
code and thus this difference provides a clearer comparison
of the residual MSE. From Fig. 5, we see that the optimal
Rrppc ~ 0.96, which is relatively high. The intuition behind
this phenomenon is that when Ry ppc is low, the undersampling

Authorized licensed use limited to: Texas A M University. Downloaded on July 24,2025 at 14:44:49 UTC from IEEE Xplore. Restrictions apply.

EBERT et al.: SPARSE REGRESSION LDPC CODES

=s=: AMP + BP-0 Denoiser
= =@~ AMP + BP-N Denoiser
2L k., i
102 : ‘.....‘. 5
i el
B 1073 E E
o F =
m B .
1074 E 3
1075 E 3
—6 L | | | | |
10 1 1.5 2 2.5 3 3.5
Ey/No (dB)

Fig. 6. BER of SR-LDPC code using AMP + BP-0 denoiser and AMP +
BP-N denoiser. Incorporating the BP denoiser within AMP results in a steep
waterfall in error performance.

ratio of AMP, or the ratio of the number of measurements to
the dimensionality of the sparse vector § = ;—LL, is so small
that AMP may not be operating in its convergence region [34].
Conversely, when Rrppc is high, the LDPC code has minimal
error-correcting capabilities. The rate Ryppc ~ 0.96 thus
appears to offer the best tradeoff between competing design
criteria. As before, we see that the approximate state evolution
algorithm tends to be overconfident when operating on the
edge of AMP’s convergence region. Nevertheless, it is clear
that the approximate state evolution algorithm significantly
narrows down the search space for the optimal Ryppc and
thus can be used as a coarse optimization tool, where more
precise optimization may be done via full Monte-Carlo (MC)
simulations.

V. SIMULATION RESULTS

In this section, we investigate the performance of SR-
LDPC codes.! Specifically, we simulate a randomly generated
SR-LDPC code that encodes 5888 information bits into
7350 coded symbols. We define the rate of the SR-LDPC
code to be the number of information bits over the number
of channel uses; thus, we have that Rsrrppc =~ 0.80. The
non-binary LDPC code employed is a (766, 736) code of rate
Rrppc ~ 0.96 over GF(256) whose edges are generated via
progressive edge growth (PEG) and whose weights are chosen
uniformly at random from the elements of Foss \ 0. These
parameters were chosen to facilitate comparisons with similar
codes in the literature. Throughout this section, we run 25
AMP iterations using the BP denoiser followed by 100 final
BP iterations. If at any point during the decoding process a
valid codeword is obtained, the decoding process is terminated.

Recall that the BP denoiser is parameterized by {N; : t €
[T}, or the schedule of the number of BP iterations to perform
per AMP iteration. In this section, we will investigate various
schedules for the BP denoiser. To begin our study, we consider
the BP-N denoiser, which is defined as the BP denoiser in
which N; = t+1 for every AMP iterationt = 0,1,2,...T—1.

IThe source code used to generate these results is available online at
https://github.com/EngProjects/mMTC/tree/code

179

1071 ¢ 5
1072 ¢ 5
3 i
B0
[aa] r B
1071 ¢ 5
1077 F e
== AMP + BP-N Denoiser]
10-6 = %= AMP + BP-1-KG Denoiser ‘ s \|

1 1.25 1.5 1.75 2 225 25 275

Ey /Ny (dB)

Fig. 7. BER of SR-LDPC code using AMP + BP-N and AMP + BP-1-KG
denoisers. In this regime, the BP-1-KG denoiser reduces complexity without
hurting performance.

Before comparing the performance of our SR-LDPC code
to other error-correcting codes, we first seek to evaluate
the performance of AMP with the dynamic denoiser from
Definition 8. To do this, we introduce a second denoiser, which
we refer to as the BP-0 denoiser, as this denoiser performs
zero rounds of BP per AMP iteration, or N; = 0 V¢. Note
that, under this denoiser, no information is shared between
inner and outer decoders. We then compute and compare the
BER performance of our randomly-generated SR-LDPC code
under AMP + BP-N decoding and AMP + BP-0 decoding.
In both cases, we run 100 rounds of BP after the AMP-BP
process has terminated. In essence, this experiment compares
the performance of jointly decoding the inner and outer codes
vs decoding the inner, then outer codes in disjoint succession.
Fig. 6 compares the bit error rate (BER) performance of the
SR-LDPC code with the BP-N denosier and the BP-0 denoiser.
Clearly, AMP + BP-N decoding endows the SR-LDPC code
with a steep waterfall in BER, a phenomenon not seen in
AMP -+ BP-0 decoding. We thus conclude that the proposed
joint decoder is superior to a disjoint decoder in terms of error
performance.

The intuition behind the BP-N denoiser becomes clear when
one considers how the effective noise variance 77 of r(*)
is ideally decreasing with AMP iteration count ¢, up to a
certain point. During the first few AMP iterations, the outer
factor graph is initialized with very noisy local observations so
consequently, BP cannot improve r*) very much, even if many
BP iterations are run. However, as ¢ increases, th hopefully
decreases, so BP is able to meaningfully improve the quality
of the state estimates. Ideally, 72 will eventually fall below
the BP threshold of the outer LDPC code, at which point
BP should be run until BP decoding succeeds. In practice,
conditions are not always ideal; nevertheless, increasing IVy
with ¢ seems to make sense. Though intuitive, we make no
claims that the BP-N strategy is optimal, and we leave the
optimal scheduling of BP iterations as an open problem for
future work. Though we decide N, based solely on ¢, we note
that the optimal N;* may also depend on 77.

Authorized licensed use limited to: Texas A M University. Downloaded on July 24,2025 at 14:44:49 UTC from IEEE Xplore. Restrictions apply.

180 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 71, NO. 1, JANUARY 2025

101
10—2

10-3

BER

10~4

107" [—@= SPARC + LDPC [26]
== 4-PAM + LDPC BICM
== 4-PAM + GF(4) LDPC

== SR-LDPC

|
1 1.5 2 2.5 3 3.5
Ey/No (dB)

10-6

10~7

Fig. 8. BER comparison between an SR-LDPC code, the SPARC + LDPC
concatenated code from [26], a BICM scheme involving 4-PAM and NR
LDPC codes, and a 4-PAM + GF(4) LDPC scheme.

Furthermore, though the BP-N strategy is elegant, it requires
T(T +1)/2 = O (T?) total BP iterations, where T is the
number of AMP iterations to perform. For even moderate 7',
the complexity of this decoding strategy becomes significant.
As an alternative approach, we propose the BP-1-KeepGraph
(BP-1-KG) denoiser in which only one BP iteration is run per
AMP iteration (IN; = 1 Vt). However, instead of completely
resetting all graph messages and local observations between
AMP iterations, only the local observations are reset and
the graph messages from the previous round are left to be
incorporated into the current round’s message passing. Thus,
this strategy requires only O(7') BP iterations. Essentially,
this approach uses noisy messages from previous rounds as
information from further down the computation tree instead
of passing fresh information across the entire computation
tree during every AMP iteration. Figure 7 compares the
performance of the SR-LDPC code using the BP-N an
d BP-1-KG denoisers. Demonstrably, there is minimal degra-
dation in BER performance when the BP-1-KG denoiser is
used at low SNRs and, somewhat surprisingly, a performance
boost at high SNRs; thus, the BP-1-KG denoiser may be used
as a pragmatic means to reduce decoding complexity.

We now seek to compare the performance of the
SR-LDPC code using the BP-1-KG denoiser to three pertinent
benchmarks: a highly-optimized SPARC/LDPC construction
from [26], a bit-interleaved coded modulation (BICM) scheme
involving Gray-coded 4-PAM and a rate R = 0.4 NR
LDPC code, and Gray-coded 4-PAM with a GF(4) non-binary
LDPC code generated using an irregular degree distribution
from [47]. Before proceeding, we pause to emphasize that
SR-LDPC codes may provide Gaussian inputs to the AWGN
channel, while the latter two benchmarks provide equiprobable
4-PAM inputs. In general, the capacity of the AWGN channel
with Gaussian inputs is higher than the capacity of the
AWGN channel with 4—PAM inputs; however, at our chosen
rate of R = 0.8, the gap between these two capacities is
negligible [48]. Thus, the observed performance differences
are not caused by fundamental limitations of the underlying

107!

1072

CER

1073

== 4-PAM + LDPC BICM
—a— 4-PAM + GF(4) LDPC
=4i= SR-LDPC ‘
1 1.5 2 2.5 3
Ey /Ny (dB)

10~4

10~5

o«
(@23

Fig. 9. CER performance comparison between an SR-LDPC code, a BICM
scheme involving 4-PAM and NR LDPC codes, and a 4-PAM + GF(4) LDPC
scheme.

AWGN channel. A BER comparison of these three schemes
is included in Fig. 8 and a corresponding CER comparison is
included in Fig. 9. Note that the CER of the scheme from [26]
is not included in Fig. 9 as it was not provided in Greig and
Venkataramanan’s original paper.

From these figures, it is clear that this SR-LDPC code
provides an improvement of about 1 dB at a BER of 1073 over
the SPARC/LDPC concatenated coding structure from [26].
Furthermore, the SR-LDPC code outperforms the 4-PAM with
GF(4) LDPC scheme by just under 0.5 dB and the BICM
scheme by about 0.1 dB at that same BER. In terms of CER,
the SR-LDPC code provides about a 0.3 dB improvement over
the 4-PAM with GF(4) LDPC scheme and an improvement of
under 0.1 dB over the 4-PAM + LDPC with BICM at a CER of
10—, which is a common target CER when an ARQ outer loop
is employed. We note that the performance gap between the
BICM and non-binary LDPC may be reduced through further
optimization of the non-binary LDPC code. Interestingly, this
SR-LDPC code was not thoroughly optimized while the code
in [26] and the NR LDPC codes are both highly optimized.
Thus, it is likely that further performance improvements are
possible through the careful design of the SR-LDPC code.

Though no error floor is observed in Figures 8 and 9, such a
floor may exist at finite blocklengths. However, it appears that
the SR-LDPC decoding process is propitious to having a rela-
tively low error floor. Specifically, the outer non-binary LDPC
code serves to enforce global parity consistency throughout the
codeword, which steepens the waterfall region and lowers the
error floor when compared to uncoded SPARCs. Furthermore,
though a high-rate outer non-binary LDPC code may in
general be at a greater risk of trapping sets, each AMP iteration
in SR-LDPC generates a fresh effective observation r(*) and
therefore gives the BP denoiser a chance to improve the like-
lihoods. This is in stark contrast with the regular BP process.
Preliminary evidence points to performance improvement for
LDPC decoding with fresh observations. Still, the outer LDPC
code is at risk of low-weight codewords, which increase the
probability of converging to a valid, but incorrect, codeword.

Authorized licensed use limited to: Texas A M University. Downloaded on July 24,2025 at 14:44:49 UTC from IEEE Xplore. Restrictions apply.

EBERT et al.: SPARSE REGRESSION LDPC CODES

As SR-LDPC decoding terminates when a valid codeword is
obtained, this phenomenon does contribute to errors.

Finally, recall that the entries of the sensing matrix A
are generated as iid. A (O, %) random variables. As each
SR-LDPC codeword is a linear combination of the columns
of A, every channel input is therefore the realization of a
N (0, %) Gaussian random variable. It is well-known that the
capacity of the AWGN channel is achieved with a Gaussian
input distribution, and that the performance of coded modu-
lation schemes may be improved by shaping the constellation
to be Gaussian-like [48]. While much work has been done
on forcing traditional constellations (e.g., M-QAM) to be
Gaussian-like, SR-LDPC coding is a natural strategy to com-
bine Gaussian signalling with traditional codes in a powerful
way. Thus, we view SR-LDPC coding as a pragmatic strategy
for obtaining shaping gains over the AWGN channel.

VI. CONCLUSION

This article introduces sparse regression LDPC (SR-LDPC)
codes and their decoding. SR-LDPC codes are formed by
concatenating an inner sparse regression code with an outer
non-binary LDPC code whose respective field size and section
sizes are equal. Such codes can be efficiently decoded using
AMP with a dynamic denoiser that runs BP on the factor graph
of the outer LDPC code, thus allowing for soft information
to be shared between inner and outer decoders. It is shown
that the proposed BP denoiser falls within the framework of
non-separable denoising functions and subsequently, that state
evolution holds for the proposed AMP-BP algorithm. Fur-
thermore, by exploiting the structure of SR-LDPC codes and
the proposed decoding algorithm, a computationally efficient
approximate state evolution recursion is presented that allows
for rapid code optimization and hyperparameter tuning.

Numerical simulation results are presented to demonstrate
that the proposed AMP-BP decoder, which jointly decodes
inner and outer codes, significantly outperforms a traditional
Forney-style decoding algorithm. Additionally, an SR-LDPC
code is shown to outperform contemporary codes over the
AWGN channel.

The results presented in this article were obtained for a
relatively unoptimized SR-LDPC code. Thus, it is likely that
further performance improvements may be obtained through
proper optimization of the code structure. For example, it is
known that the performance of uncoded SPARCs can be
significantly improved via a nonuniform power allocation;
yet, in this article, we employ a naive uniform power alloca-
tion. Thus, the optimal power allocation for SR-LDPC codes
remains a promising open problem. Other open problems
include the optimal design of the outer LDPC code and the
optimal number of BP iterations to perform per AMP iteration.

APPENDIX A
PROPERTIES OF BP DENOISER

In this appendix, we prove that the BP-N denoiser is
uniformly Lipschitz continuous under certain assumptions
(Theorem 11) and we derive the Onsager correction term
associated with the BP denoiser (Proposition 12).

181

Ve
v

\yw

Z

Uj

p’co —v,

Fig. 10. Computation tree for variable node vy obtained by taking the factor
graph of the outer LDPC code, setting v, as the root, and retaining only the
nodes involved in the computation of §; (r, g). We use this data structure to
compute the derivatives in (56).

A. Proof of Theorem 11

One of the conditions for state evolution to hold
for non-separable functions is that the denoiser must be
uniformly-Lipschitz with respect to its ambient dimen-
sion [35]. The main objective of this section is to demonstrate
that this property holds for the proposed BP denoiser under
Conditions 9 and 10. To achieve this goal, our strategy is to
demonstrate that the magnitudes of the entries in the Jacobian
matrix of 7(r) with respect to r are uniformly bounded.

Recall that the denoiser assumes a sectional form,
as described in Definition 8. The vector estimate for section /¢
is

éé(r) = Z Pr (‘/Z = 9|Rtree = rtree) €y,
g€l

where Ryi.ee denotes the measurements associated with the
computational tree of the LDPC code rooted at section ¢. The
(realized) scaling factors found in (27) are given by

éz (I‘) OcpeNo(vg) Hc,,—m,z

(55)

HOCPGNO(W.) H’cpﬂw

where Ny(vg) denotes the neighborhood of v, including the
local observation and . _,, = o« We are ultimately
interested in Jacobian entries of the form

084(r,9) _ 0 HCPGNO(W)”CP—’“Z(‘{J)
or;(h) or;(h) HO

ep€Ng(vg) Pep—vg |,

9 ar(9) I, en(vy) Pep—rvg(9)
— orj(h) Zke]ﬁ‘q ay (k) HcpeN(uz) Hep—u, (k)

(56)

for g,h € F, and ¢,j € [L]. We adopt a divide-and-conquer
approach to identify and bound these derivatives. Specifically,
we focus on the rooted tree obtained by taking the factor graph
of the outer LDPC code, setting v, as the root, and retaining
only the nodes involved in the computation of $y(r, g). Under
Condition 9, this sub-graph must form a proper tree; Fig. 10
offers a notional diagram of this concept.

Authorized licensed use limited to: Texas A M University. Downloaded on July 24,2025 at 14:44:49 UTC from IEEE Xplore. Restrictions apply.

182 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 71, NO. 1, JANUARY 2025

We seek to bound the magnitude of the derivatives in (56)
based on the distance between v, and v; in this rooted tree.
We begin with local observations.

Proposition 35 (Local Observations): The partial deriva-
tives of o; with respect to rj(h) are given by

_) Eaih) (en—a;) j=k
0 JFk
for h € IF, and where 7 > 0 is the standard deviation of the

effective observation.
Proof: As defined in (14), the vector o is given by

8(1]'

ary(h)

(57)

r;(g)
e 2
= 0
Ekqu e
When j # k, it immediately follows that Oat;/Ori(h) = 0 as
a; does not depend on ry (k). We thus consider the case where
k = j. When g = h, we have that

a;(g) Vg € F,.

ri(h) ri(h) r;(h)
doy(h) _ , aP P
ar;(h) S1)

72 (k) \ 2
(Zkeque - >
= z0(h) (1 - a;(h)).
When g # h, we get

wpum
e e r
e = ——aj(g)ay(h).
or;(h) T2 (Z rj(n)>2 TQQJ(g)aj()
rkeR, € =

Collecting these findings and condensing them into a more
compact form, we arrive at (57), which is the desired
expression.]

Corollary 36: The absolute value of the partial derivatives
of a; with respect to ry(h) are bounded by

6o¢j ’ 1

< —

8rk(h) ~ 472

where 7 > 0 is the standard deviation of the effective
observation.

The proof of this corollary is trivial when «; is a valid
probability vector, as is the case in this article. We also note
that, based on the state evolution of AMP, 72 > o2 at every
iteration irrespective of the iteration number. We can therefore
establish a uniform bound across iterations. We are now ready
to show that the absolute value of (56) is bounded whenever
¢ =j, i.e., at the root level of the computation tree.

Proposition 37 (Root Derivatives): The partial derivatives
of 8 (r, g) with respect to ry(h) are given by

6§g (I‘) 1

Bre(h) ~ p2ot(mh) (en = 8e(r))

where 7 > 0 is the standard deviation of the effective
observation.

Proof: Leveraging Proposition 35 and denoting the stan-
dard inner product by (,-), we have

8@[(I‘) _ 0
dre(h) Ore(h) ‘

Zkeﬁ‘q e 2

rj(h)

(58)

VheF, (59

Oy © OcPEN(w) l'l‘cp—wz

’aé o OCPGN(’U() Ke,—v, 1

c’iag

ary(h) o (OCPEN(w) ""cp—>w)
Haé 0 (OcpEN(w) l"’cp—wz)

\
o
<6rgoz;zz) ’ OCPEN(W) HCPHW>

Haf © (OCPGN(’U@) ll’cp—we) Hl

— ég (I‘)

af(h) (eh B ae) © (OcpeN(Ué) l'l'cp—>’l}[)

T2

Haz ° (OcpeN(w,) “CPHW) Hl
a[(h)) <eh — Oy, OCPGN(UZ) Il'cpﬂw>
— Vs (r
2t
Je (O vt)
oy(h) ©n° (O%EN(W) “%_’W)
2
T Haz o (OcpeN(w) “Czﬁ”‘) Hl

<eh7 Oc,,EN(w) ""cp—>v[>

1

R .

1, .
= 8e(r,h) (en —3¢(r)),
which is the desired expression. []
Corollary 38: The absolute value of the partial derivatives
of 8§ (r) with respect to ry(h) are bounded by

08y (I‘) L
Org(h)| — 472

The proof of this corollary follows that of Corollary 36
because, like o, 8¢ (r) forms a valid probability vector.

Proposition 37 offers a blueprint for the general result we
wish to establish. Yet, the situation gets more complicated
when ¢ # j because we have to involve the message passing
rules. In doing so, we obtain a key intermediate result using
mathematical induction. We start with the variable node closest
to the root node, and then progress outward step by step.

To circumvent a notational nightmare, we restrict the proof
to cases where all edge weights are equal to 1 € F,.
Conceptually, the edge can be interpreted as permutations on
the belief vectors. From the point of view of bounding partial
derivatives, this is a benign operation, yet the accounting
that comes with permutations is dreadful, hence our focus on
the simpler case. Moving forward, we assume the following
condition.

Condition 39: All edge weights within the factor graph of
the LDPC outer code are equal to 1 € IF,.

The extension of the following propositions to the case
with arbitrary edge weights (i.e., beyond Condition 39) is
conceptually straightforward.

Proposition 40: Suppose Condition 9 holds and let v; be a
descendant of root node v, in the computation tree. Moreover,
let ¢, € N(vg) be the unique check neighbor of v, on the path
from v, to v; within the tree. Then, there exists vector v, with
0 =2v =X p, _.,,, such that the partial derivative of p. _,,,
with respect to r;(h) is given by

Woyss 1, o)
or,(h) 72 1Hep—u)

(60)

(61)

Authorized licensed use limited to: Texas A M University. Downloaded on July 24,2025 at 14:44:49 UTC from IEEE Xplore. Restrictions apply.

EBERT et al.: SPARSE REGRESSION LDPC CODES

where 7 > 0 is the standard deviation of the effective
observation. Here, < denotes elementwise comparison of the
entries in the vector.

Proof: Under Condition 9, we know that v; appears at
most once within the computation tree rooted at vy. Thus,
we establish (61) via mathematical induction on the distance
between v, and its descendant v; on the computation tree. The
distance that we are interested in only considers the number of
variable nodes between v, and v;. Before beginning, we point
out that if v; is not a descendant of vy, then the corresponding
partial derivatives vanish and the claim is immediate.

We begin with generic results that are useful for both the
base case and the inductive step. Let v; be a descendant of v,
and let vy, be the variable child of v, on the path from v, to
vj. Let ¢, be the unique check node in N(v;) N N(vi) and
let ¢, be the unique check node child of v, on the path from
vk to vy; if vy = vy, let o = 0. Then, we have that

a/"vkﬂcp 0 OcseNo(vk)\cp IJ’CE*VU]C

_ .62
or;(h) or;(h) HO%NO (62)

We can also examine the partial derivatives of the probability
Vector fb, _,, . Suppose vy # v; and let v, be the unique
variable child of v on the path from v, to v;. Using the I,
convolution, we have

(wi)\ep Pee—uy,

ey, O
drj(h) — or(h)

O e,

v EN(co)\vk

Oy,
B 61‘1»0(}59 © @ Hrop—e,
J v EN (co)\{vk,v0}
T
Sl el . 63
8I‘j(h) ch\vk,v(, ()

We emphasize that v \,, ., as defined implicitly above, is a
probability distribution.

Having established these results, we turn our attention to
the base case where v; is a variable child of v, (v, = vy,
o = 0). Applying (62) and Proposition 35, we obtain

ar;(h) or;(h) Hajo(o

Oy, —c, 0

ce €N (v;)\cp “Cf_”)]) H 1

(9(1]'

al'j(h) ° (OCEEN(’U]')\CP IJ’Cg—ﬂ)j)
<aj7 OCEGN(vj)\cp /J'csﬁvj >
daj
<3rg‘ (h)° Occenwhen “C£HU.7‘>

<aj’ Ot,‘gEN('L)j)\cp Hep—u; >

- /"‘1)‘7 —cp

1 ¢ (h)eh o (065€N(vj)\cp I'l‘cg—»vj)

T2

<aj’ OcaeN(vj)\cp /’L65~>vj >
1 <aj(h)eh’ OceeNw\e, “Csﬂ”j>

- ﬁ u’vj —cp

<aj’ OceeNwhe, “C&-’W>
1
L (o o).

(64)

183

where

@ (h)eh o (OCE EN(vj)\ep Hcaﬂvj)

v,,. =
Vj—Cp

<aj7 OC§EN(U.7')\CP Hoee—, >

By construction, we have 0 < Vy,—c, = Hoy, e, We turn to
the second graph operation and apply (63), which yields

or;(h) — orj(h) e
1

= ﬁ (V’U]‘HCP - HV’Uchle ll/vj*»cp> © ch\w,vj
1

= ﬁ (ijﬂcp © Vep\ve,v; — HI/UJHCPHI “cp—we) - (65)

Thus, in this case, we take v = vy, ¢, OV, \y, v, aS a suitable
vector. Based on the fact that v, \,, ., is a probability vector,
together with the aforementioned component-wise ordering,
we gather that

0=v= Voyj—cp © Ve, \ve,v;

= iu'v, —cp © Ve \ve,vj =

)u’cp—wL; .

Moreover, leveraging the properties of the IF;, convolution for
non-negative vectors, we get

1l = [, e[|y [¥epvorws ;= [Po,—e, ;-
Thus, for this choice of v, we arrive at

M — i (,, ||v||)
Brj(h) - 7_2 1/*l'cp—>vg)

as claimed. That is, the base case conforms to the structure of
Proposition 40.

We now consider the inductive step in our proof. As our
hypothesis, we assume that (61) holds for all computation trees
wherein the distance between the root node and v; is less than
or equal to v € N. Consider a rooted computation tree and
suppose the distance between v, and its descendant v; in the
tree is exactly v+ 1. Under Condition 9, there is a unique path
from v, to node v;. Let vy, be the variable child of v, that is
also an ascendant of v;, and denote the unique check node that
connects the two by ¢, € N (vg)NN (v). Furthermore, let ¢, €
N(vg) be the unique check node within this neighborhood
that is an ascendant of v; on the computation tree. Finally, let
Vo € N(c,) be the unique variable child of vj, that is also an
ascendant of v; (or, perhaps, v; itself).

The sub-tree starting at vy can be viewed as a rooted tree
containing v;; the graph distance between these two variable
nodes within the sub-tree is exactly ~. As such, our inductive
hypothesis applies. That is, there exists vector v such that
0=Xv = p,, ., where the partial derivative of p _,,, with
respect to r;(h) is equal to

(66)

op 1
TV —) 67
ey = 7 (W) (®7)
Applying (62) and our inductive hypothesis, we have that

O, _ 0 OceeNo(mey Free—u

orj(h) — or;(h) HOCEGNo(vk

Nep /ch — v

Authorized licensed use limited to: Texas A M University. Downloaded on July 24,2025 at 14:44:49 UTC from IEEE Xplore. Restrictions apply.

184 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 71, NO. 1, JANUARY 2025

Oy,
or;(h)

o (O(:geNg('uk)\cp,cQ l"’c§—>vk)
<“cg~>vk) OC&EN(}(U}G)\CP,CQ HCEH’U]C >

op
Co Yk
< ar, (h) aOcEGNO(vk)\cp,cg lu'c§—>vk>
- I"l‘vk—mp <

He,—uvp» OcseNg(vk)\cp,cQ lj’cg—mk >

1 vo (OC&ENo(vk)\Cp,CQ IJ’CEHUIC)

2
<l‘l’c9~>vk3 c§€N0(’U}9)\Cp,CQ I“!C§*>’Uk>

ALM <UKD%€MWWﬂ%ﬁ9u%*W>
72 ve—ep <

l'l’cg—wk) 005 ENo(vi)\cp,Cco l”’cg—wk >

1

== (Ve = [Poa e,). 69)

where we have utilized the shorthand notation

vo (chENo(vk)\cp,cg Mcs—wk)

Vvkacp =

<p’c9~>vk) Oc£ ENo(vi)\cp,Co HC& —vy >

We emphasize that two of the terms in the derivation above
cancel out, as before. Furthermore, by construction, we imme-
diately obtain 0 = vy, ¢, = M, ., These observations
closely parallel the description for the base case.

The derivation of the second graph operation for the induc-
tive step is in complete analogy with the base case, except for
labeling. Specifically, we apply (63) and obtain

Oy, v, Oy e, Ov
ar; (h) ar; (h) cp\Ve,Vk
_ 1
- ﬁ (Vfuk—wp - ||V'Uk—>cpH1)U’Uk—mp) @ ch\vg,vk

_ 1
- 72 (Vvk_’cp © Vep\ve,or, — Hyvk_’%”l p’c‘p—’ve) - (69)

. . ;L
For the inductive step, we define V' = vy, e, © Ve \u, 0,
as the candidate vector. Based on component-wise ordering,
we can write

!/
0 j v = V’L)k‘)Cp © VCp\Ub’Uk
= I“l"’ljkﬂcp © Ve \veo, = HCPH’U('

As before, we have that

1211y = [orone,) [Pepvoemelly = [1on—e, |l -
Hence, candidate vector v’ is such that 0 < v’ < He, .y, and
e, v, 1 ¢,)
Y P B
This completes the proof for Proposition 40. [|

We have nearly attained out goal of showing that the
magnitudes of the entries in the Jacobian matrix of n(r) with
respect to r are uniformly bounded. To achieve the desired
result, it sufficies to connect the partial derivative of the
incoming message with the partial derivative of state estimate
$¢ (r, g). This is accomplished below.

Proposition 41: Under Condition 9, the absolute value of
the entries in the Jacobian are bounded by

6é€ (I‘, g) ’

or; (h) a

1 .
< = Vg, h € Fy, 0,5 € [L],

where 7 > 0 represents the standard deviation of the effective
observation.

Proof: ~When v; does not appear in the rooted tree
of vy, the partial derivative is equal to zero and the result
immediately follows. Furthermore, when v, = v;, the result
follows from Corollary 38. Thus, we can focus on the scenario
wherein v; is a descendant of v.

Let ¢, be the unique check node in N(v,) that lies on
the path between v, and v;. By Proposition 40, there exists
vector v, with 0 < v < [T such that the partial
derivative of p. _,,, with respect to r;(h) is given by

m:i(y,”ynu)
ar;(h) 72 1Hep—ve)

Drawing an analogy to (68), we have

8@2 (I‘) - 8
81‘j(h) o 8rj

(72)

Oc§ E€No(ve) p’c5 —vp

(h) H OC&GNO(UZ) uc€—>1)[

1

1 vo <OC§EN0(’U@)\CP I'l‘cg—vuz)

2
T </J’cp~>ve) OCEGN()(’U[)\CP HCEHUZ>
1 . <Va OC&EN()(’[}@)\CP ll’c5~>v5>
— 8¢ (r)
<I~“cp—>w) OC5EN0(w)\CP Iicé_ww >

2

1 A~
=) (VW - ”sz||1 Se (r))) (73)

where we have implicitly defined

vo (OCgENo(Ue)\Cp HJCE‘””)

Vy, =

<:u’cp—>vev OcaeNo(ve)\cp “c5—>ve>
We note that 0 < v,, < §; (r). Thus, we have that:

O8(r) _ 1 1,
ax;(h) < Vo < S (r). (74)

Since we are interested in bounding the absolute value of the
partial derivatives, we also consider a lower bound.

8é r 1 R 1 R
315,((;3 = T2 [V, [l 8¢ (r) > — s (r).

Combining these two observations with the properties of
probability vectors, we obtain the desired expression. []

Under Condition 9, Proposition 41 establishes an
element-wise upper bound on the absolute value of the
Jacobian of m(r) with respect to r, which is a sufficient
condition for 1 (r) to be Lipschitz continuous with respect
to r. Thus, we have shown that the BP denoiser is Lipschitz
continuous for fixed gL. However, Theorem 11 requires the
denoiser to be uniformly Lipschitz with respect to its ambient
dimension. In other words, there must exist a finite Lipschitz
constant which is independent of gL. As shown below, this
Lipschitz constant exists under the additional constraints of
Condition 10.

Proof: [Proof of Theorem 11] Let J denote the Jacobian
matrix of 7 (r). By the generalization of the Mean-Value

(75)

Authorized licensed use limited to: Texas A M University. Downloaded on July 24,2025 at 14:44:49 UTC from IEEE Xplore. Restrictions apply.

EBERT et al.: SPARSE REGRESSION LDPC CODES

Theorem to vector-valued functions [49], it follows that, for
any two effective observations rg,r; € RaL

= ()| < [Jllfro —rall;

where ||J|| denotes the operator norm [|J|| = sup = [|Jx]|.
To show that the BP denoiser is uniformly Lipschitz, it thus
suffices to show that |J|| < Ujy < oo for some upper
bound Uj, regardless of the ambient dimension gL.

Under Condition 9, the computation graph of the BP
denoiser forms a tree and, under Condition 10, each variable
node root is connected to no more than

[m(ro) (76)

Nmax

A : max max

| L (1= (@)™

max-'max
— (¢ v
1 dmax dmax

(77)

variable nodes in the tree. Thus, every row and column of J
have no more than Agp.x non-zero entries each. Crucially,
under Condition 10, Agmax < oco. Let €; ; be the indicator
function for the i, jthe entry of J; that is

0 J,;=0
ei,j:{ v

(78)
1 otherwise.

Consider the ith entry of Jx for some vector x such that
|lx|| < oo. Using the Cauchy—Schwarz inequality, we can write

(30,7 = ((35.%))° = (3768 0%))

<3l € o x|
AQmax T 2

< £ oxH

= i

where the last inequality leverages both Proposition 40
and (77). It thus follows that, for any such x,

qL
2 Aqrnax

2
D, ©)(H

i=1
qL qL

Aqmax Z Z el jx

lel

A max
i Z qu

qL

2]

Aqmax AQmax) ||X||2

(79)

Therefore, the operator norm of J is bounded by

Il = sup [|Ix|

lIxll2=1

_ Aqmax

72
which is finite and independent of both ¢ and L. We thus
conclude that the BP denoiser is uniformly Lipschitz.]

(80)

185

B. Proof of Proposition 12

Intuitively, the role of the Onsager term is to (asymptoti-
cally) cancel the first-order correlations between ATz(*) and
s(Y) and thereby maintain a structure conducive to prompt
convergence and analysis. This factor, emblematic of AMP
algorithms, appears in (6) and is given by

Z(t_l)

divn,_, (ATZ(t_l) + s(t_l)) 6

Z(t_l)

=— divn,_, (r(t_l))

where the div operator can be expanded into

Z div §y(r, 7) Z Z 85@ g,r 7) . (82)

Le[L] Le[L] g€F,

(81)

divy (r

Thus, as an intermediate step, we must calculate the partial
derivative of §,(g,r,7) with respect to r;(g). This compu-
tation is rendered much simpler under Condition 9, which
ensures that the message passing operations employed during
denoising yield valid computation trees without cycles.

Lemma 42: Under Condition 9, the partial derivative of
S0 (g,r,7) with respect to ry(g) is equal to

05, (g,r, T 1 5
gi‘j(g)) — ﬁsé (g,I‘,T) (1 — 8¢ (971'77'))

where g € F,.
Proof: Recall that the output of the BP denoiser defined
in (27) can be expressed as

au(g) HCPeN(W) A E— (9)
Zhe]}‘ ay(h) HCPGN(W) I‘I’Cp—VUg(h)
(@), (9)
- Z;Lqu (R, ey ()
Under Condition 9, belief vector w,, . is based solely on

extrinsic information and, hence, it is determined based on
{r; : j € [L]\ {¢}}. Consequence, we gather that

(83)

¢(g,r,7) =

(84)

Oy, —c (9)
or(g)

Under such circumstances, we can calculate the desired deriva-
tive in a straightforward manner, with

=0.

re(9)

e Hoyy—sco (g)

- o rp(h)
I'@(g) Zhe]Fq ejp’w—mo (h)

aéé (g,I‘,’T) _ 9
dry(g)

rg(zg)
i €77 Py, ey (9)
ryo(g9)

ZhEIF e 3 ,J’vg—wo(g)

580 (g,1,7) (1 =3¢ (g,7,7)).

This last line corresponds to the statement of the lemma. W
It is worth emphasizing that the derivative in (83) remains
unchanged irrespective of the number of BP rounds computed

Authorized licensed use limited to: Texas A M University. Downloaded on July 24,2025 at 14:44:49 UTC from IEEE Xplore. Restrictions apply.

186 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 71, NO. 1, JANUARY 2025

on the factor graph, so long as Condition 9 is satisfied. The
divergence of (82) assumes the same simple form under such
circumstances.

Proposition 43: The divergence of 1 (r) with respect to r
is equal to

diva () = = (In @), ~ In@)]*)

Proof: We expand the div operator as

(85)

08
divn (r ZleSg (r,7) Z Z SZ g,r 7)
Le[L] t€[L] g€F,
=3 Y Salenn) (- (g r)
L€[L] g€F,

= L (I~ I @)?).

The last equality follows from the fact that, since $; (g, r,7)
lies between zero and one, the corresponding partial derivative
with respect to ry(g) found in Lemma 42 is always non-
negative.]
The proof of Proposition 12 follows immediately from the
definition of the Onsager term (81) and Proposition 43.

(86)

APPENDIX B
STATE EVOLUTION

In this appendix, we provide proofs for the propositions,
lemmas, corollaries, and theorems from Section IV.

A. Proofs From Section IV-A

Proof of Proposition 15:

Proof: Fix two points s,s’ € S. Since every point in S
is obtained by indexing an LDPC codeword, there exists v, v’
in LDPC codebook V such that v maps to s and, similarly,
v/ maps to s’. Furthermore, since the outer LDPC code is a
linear code, we have u = v/ —v € V; that is, u is also a valid
codeword.

Consider the invertible translation v +— v @ u in Fg.
Then, for any codeword v € V, we get v @ u € V because
codebook V is closed under addition. Focusing on every
section individually, we have the mapping vy — vy & uy.
This action induces a bijection acting on IF,. Likewise, this
produces a permutation of basis vectors with

€ 7 Cr(vy) = CupBuy-

Based on this correspondence, we can define a permutation
matrix II© that acts on RY for each ¢ € [L]. Then, aggre-
gating these L permutation matrices, we get the isometry
II = diag (IW, ..., TI)) which, by construction, maps s
to s’ while leaving S invariant. Since s and s’ are arbitrary,
we conclude that S is geometrically uniform, as claimed in
the proposition. [|
Proof of Proposition 16:

Proof: We already know that the 2-norm of ry, — e; is
invariant to permutations in its vector argument. Then, under
Corollary 4, we have

1 Ire — e
frois, (releg) = (2m)ra P <—2T2

272

1
©(2m)ETa xp (

= fRz\Sz (Hrf‘neg) .

Leveraging the underlying order on field elements, we can

write Ile, = er(,, where 7(-) is the permutation on F,

induced by matrix II. []
Proof of Corollary 17:

Proof: To begin, recall that R, corresponds to the
operator introduced in Definition 6. This operator reorders the
entries of a vector based on the mapping g — w ® g, together
with the bijection of Remark 1. This action therefore creates
a permutation matrix IT on the vector entries of its argument.
However, the zeroth element of R necessarily remains in its
original location under this mapping because w®0 = 0. Thus,
we can apply Proposition 16 and get

JRrels, (releo) = frys, (IIrg|Tleg)
= fRzISz (rzw|e0) :

|TIr, Heg||2>

(87)

(88)

Consequently, the conditional distributions of Ry and R/ “
are identical, given vector input €. []

B. Proofs From Section IV-B

Proof of Lemma 23:

Proof: This lemma is best proved by induction; however,
in the interest of space, we only provide a proof of the base
case. Let L and M be two independent group-symmetric
likelihood-vector random variables. Define N = L®M. Then,
the components of the convolution are given by

Z LyMg_p,.

heF,

N, =(LoM),

As a function of two random variables with non-negative
entries, it immediately follows that N is a likelihood vector
random variable. What remains is to show that IN is dominant
and group-symmetric. For any i € F, \ {0}, we have

(N, = (LoM™) =@LoM),,

= Z LyMygi—n = Z Lh®i*1®iM(g—h®i71)®i
heF, helF,

= Z LigiMg-jei = Z (in)j (M”)@—j)
jeR, JjEF,

— (LXiQMXi)g (89)

where j = h ® 1. By definition, L £ L*/ and M < M*?,
where <
that

denotes equality in distribution. Thus, we have

N=(LoM) < (@L*eoM*) =N, (90)

Thus, N is a group symmetric likelihood vector random
variable. Now, note that

S LpM_p| =Y E[L,JE[M_]

heF, heF,
= E[Lo|E[Mo] + (¢ — 1)E[L4]E[M,]

Authorized licensed use limited to: Texas A M University. Downloaded on July 24,2025 at 14:44:49 UTC from IEEE Xplore. Restrictions apply.

EBERT et al.: SPARSE REGRESSION LDPC CODES

> E[Lo]JE[M.,] + E[L¢|E[Mo] + (g —
= E[N,].

2)E[LeJE[M,]

The inequality above is a consequence of the fact that,
by assumption, L and M are dominant symmetric. Hence,
E[Lo] > E[Le] and E[M,] > E[M,]. Thus, N is a dominant
group-symmetric likelihood vector random variable.

The extension of these findings to the convolution of
multiple independent vectors follows from a straightforward
induction argument. u

Proof of Lemma 24:

Proof: Again, in the interest of space, we only prove the
base case when 7 = 2. The inductive case for v > 2 follows
directly. Let £ and m be likelihood-vectors over Iy, and define
n = £Gm. Since F is a finite set and likelihood-vectors have
non-negative entries, we get

o, =Y n,=>Y" ((om),
g€F, g€eF,
SDID LI Sy SrI
g€F, hel, heF, g€F,
=" b |mll, = [l€]; [m]], . ©1)
heF,

That is, the one-norm of n is equal to the product of the
one-norms of £ and m.]
Proof of Corollary 25:
Proof: Let w € () denote an outcome within the underly-
ing sample space. For any such realization, Lemma 24 states

that
IN@IL = TT L@ w)), -

pEl]

Taking expectations with respect to the corresponding proba-
bility law, we get

E[|N(w)|,] H HLW‘”)HI

Il [HL“” L)

pE[]

92)

where the last step is a consequence of the likelihood-vector

random variables being independent. Hence, the expectations

decouple and the result follows. [|
Proof of Proposition 26:

Proof: Consider the case of two independent domi-
nant group-symmetric likelihood-vector random variables, L
and M, with N = L ® M. Examining the zeroth component
of N, we write

E [No] = E[Lo]E[Mo] + (¢ — 1)E[L4]|E[M,].

Similarly, the expected value of any other component within
random vector N is of the form

E [N,] = E[Lo]E[M,] + E[L|JE[My] + (¢ — 2)E[L.|E[M,].

Combining these two equations, we arrive at the expression

E[No] — E [Ne] = E[Lo]E[Mo] — E[Lo|E[M,]

187

— E[L.JE[Mp] + E[L.]E[M,]
= (E[Lo] — E[Ls]) (E[Mo] — E[M.]), (93)
which seems propitious for the application of mathematical
induction.
To proceed with the induction argument, we introduce a

collection of convolved vectors: N(V) = QpE[’y] L(®). The
hypothesis can be formulated as

E [Néﬂ —E [N.W)} -1 (E [Lgm] ~E [LS”D. (94)
pE[]

The base case of v = 1 is immediate by construction. For the
inductive step, assume that (94) holds for fixed v € N, v > 0.
Note that

NO+H) — Lo+ o N
Also, note that LO*tY and N are independent because
{L®} is a set of independent likelihood-vector random

variables and, consequently, LO+Y and {L® : p € [y]} form
independent collections. Hence, (93) applies and

E [Néwrl)] _E |:N.(V+1):|

- (e[- [e o] -2)
- (el 2 T1 (] -2

pEl]

[1 (Bln] -2[r]).

pE[y+1]

where the penultimate equality follows from our inductive

hypothesis. This completes the mathematical induction.
Lemma 23 asserts that N = ®p€[’y] L™ is a dominant

group-symmetric likelihood-vector random variable. Thus,

E[[INJ1] = E[No] + (¢ — 1)E[N,]
= (E[No] — E[N]) + qE[N,]
= qE[No] — (¢ = 1) (E[No] —E[N,]). (95)

Furthermore, combining Corollary 25 and the fact that the
random vectors in {L(p)} are independent, we get

E(IN]] =]] (IE [Lgp)} +(g-1E [LSP)D .

PE[]

Isolating IE [Ny] in (95) and then applying (94) & (96), we get

(96)

(q

E[No] = + 47U g vy —E)

I (sl o vefar)
() (& [z¢] -=[2]).

Similarly, isolating E [N,], we arrive at

E[N.] = E[|N]|,] - 3 (E[N,]

q
I v)
pE[V]

~E[|[IN]1]

pE[]

- E[N.])

Authorized licensed use limited to: Texas A M University. Downloaded on July 24,2025 at 14:44:49 UTC from IEEE Xplore. Restrictions apply.

188 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 71, NO. 1, JANUARY 2025

1 11 (E [Lém} _E [L@D.
q pE[Y]
This completes the proof.]

Proof of Corollary 27:

Proof: First, we stress that a probability-vector ran-
dom variable, as described in Definition 21, is also a
likelihood-vector random variable, albeit with additional
structure. Thus, some of the results derived above for
likelihood-vector random variables readily apply in the current
scenario. For instance, in view of Lemma 24, we have

@]L@) - 11 Hﬂp)Hl — 1

pEly 1 PED]

Thus, HNH1 = 1 and, consequently, N is a valid
probability-vector random variable as suggested by our nota-
tion. Second, we emphasize that the expected value of all its
components, except for the zeroth entry, are equal, Given that
a probability-vector takes on values in the simplex, we can
therefore write

E[L.] = %,
qg—1
The difference between E [Eo} and E [E.] is subject to
_ 1-E [Lo]

- aferl-})

Collecting these findings and substituting the equivalent forms
into Proposition 26, we arrive at the claimed expressions. M
Proof of Lemma 28:
Proof: Recall that, for a dominant permutation-symmetric
Gaussian probability-vector random variable, we can write the
individual components of L as

I = fRe\Se (Rf‘eg)
* Yher, fris. (Relen)

where fr,|s, (|eg) is specified in (87). Interestingly, we can
express the second moment of L as

2
721 _ Jr.Is, (Reley)
B L] =B (z Frars, <Reeh>>

f REYRC VAL f ¢S, (Tej€
_ Rels, (Teleg) fry|s, (ve] éq)fRe\Sé (releg) dry

- (Z’LEFq Truis, (I'e|eh))

Iros, (releg) frys, (releo)
= S L0l RS R Frys, (xeley) dry

Rq (Zhqu TRels, (I'g|eh/)>

_ thz\Se (I‘e‘eg) fRz\S/z (rZ|egg)ng|Sg (rZ|eO) dr,

- (ZhEFq fRZ‘SZ (rf|eh)>
- E [E()Eg] .

o7

In the third equality, we leverage the invariance in the problem
structure established in Proposition 16. This fact, together
with the symmetry in the region of integration, enables us

to permute the indices. With this relation, we can rewrite the
two-norm of L as

— 2 —_ — —
E[HLHQ] —E g%F: 2| =E g%; LoL,
=E|Lo | > Ly || =E[L|L]]
L g€F,
_E[L]. (98)

This chain of equalities reveals the intricate relation between
E[[[T]];] and E[Lo). n

Proof of Proposition 30:
Proof: First, suppose (46) holds. Then, we can write
— 2 —_ — —

E[|IL];] = E [Zo] = E[Lo L],
=E [Lo (Lo + (¢ — 1)Ls)]
=E[L§] 4 (¢ — 1)E [LoL.] .

At the same time, by definition, we have
E[[[Lll;) = E[L3] + (¢ - VE[LZ].

Equating both expressions for the two-norm of L, we deduce
t_hat E [LOL.} =K [L%] To get the converse, we assume that
L is balanced and then parallel the progression in (98), which
yields

E |[[E);] =B 28] + (a - DE 2]
=E[L§] + (¢ — DE [LoL.]
—E[Lo (Lo + (g — 1)La)] =E [Lo] .
We emphasize that in the two instances al_)ove, we have
leveraged the fact that, for any realization of L,
|IL|l, =Lo+(g—1)Le = 1.

Combining these two results, we get the desired logical
equivalence. []
Proof of Corollary 31:
Proof: Let L be a balanced dominant permutation-
symmetric probability-vector random variable. Then, it follows
that

E[IL - eollf] = >_ E[(Ly — eols))’]
g€l
=E[1-2Lo+L§] + Y E[L]
gEFL\0
=1-2E [Lo] +E [||L||3]
= 1-E[|LIZ],
where the last line uses the fact that E [Lo] = E [||L||3]. =
Proof of Theorem 32:

Proof: We show this result via mathematical induction.
To facilitate the proof, we need to expand our notation slightly

with
N — @ L®)

PE[V]

Authorized licensed use limited to: Texas A M University. Downloaded on July 24,2025 at 14:44:49 UTC from IEEE Xplore. Restrictions apply.

EBERT et al.: SPARSE REGRESSION LDPC CODES

In this context, t[le base case is immediate. When v = 1,
we have N(U) = L) and, based on our assumptions, we can

write
B 2 _ 2 _ _
[0l -l] -2] e]
)) 0 0
For the inductive step, assume that (48) holds for v fixed.
Then, consider the case where

NO+D = L0+ o N

Within this part of the proof, we use the abridged notation
N = NOtD, L = LOTYD, and M = N0 to lighten the
exposition. We stress that, under our inductive hypothesis, L
and M are both balanced dominant permutation-symmetric
probability-vector random variables. As a first step, we seek
a convenient expression for the square of the two-norm of N,

E[IN*] = S E[X,

g€F,
=SB S L) [,
g€F, heF, L€F,

— Z Z Z E[Ly—nLg—.| E [M,M,]

gEF, hEF, LEF,

= Y E(08] Y E (Lo

heF, IS
+z:Z NM!ZEM%QJ.(%
h€F, LeF \h g€R,

We emphasize that L and M are independent and, as
such, we can split the expectations. Focusing on the first
summand, we have

Z E [Mth} Z E [I’g—hz’g—h]

helF, g€l
= Y E[M] Y E[L2,] = Y E[MFIE[||T];]
heR, g€F, her,

=12 — 112
= &[] & [m)3).
Turning to the second summand, we get

)P DEITRAD SELI AV

heF, LeFg\h g€eF,

=2 2. E[M]

heFq 1eFq\h

= (1-E[|M]3]) CE [LoL.] + (g -
(1-E[[™3]) @B [LoL] +E[L] -

— = (1-E[JL]) (1 [Im)).

The subscript notation L.L, refers to any two distinct, non-
zero elements in F,. In the second equality, we have utilized
the fact that M is normalized with HMH1 =1 and, hence,

2. 2. MM,

heF, LEF \h

(2E [LoLa] + (¢ — 2)E [LuL.])

2)E [L.L.])

E (L))

= [= vl vl =

189

The third equality relies on the identity
E[LoL.] = E[E[LeL.|Lo, Lo]]

L.
— E[L.E[L.|Lo, L]] = E {i. (1
E

—Lo— L.

) o | q—2)]

[Le] —E [LoLe] —E [L7]]
q—2 q-

_ E[L,] - 2E[L?
N 2

The last equality makes use of the relations E [EOE.] =
E[L2] and E[Lo] = E[||L||3], which hold for balanced
dominant permutation-symmetric probability-vector random
variables. Combining our findings for the constituent sums
in (99), we arrive at

E [[IN]]}]
= E[|L)}] & [n)3]
s (- [IE]) (-2)

=L (e [iel] - 2) (= i) -5)+ 2

This demonstrates that the inductive step is valid. Corollary 27

. 2 =
connects the expression for E [||NH2] to the mean of Ny,
given the assumed condition

E U’L(z’) z] =E [Eép)] Vp € [v].

Finally, Proposition 30 ensures that N is balanced. This
completes the proof. []

C. Proofs From Section IV-C

Proof of Proposition 33:
Proof: This result is obtained immediately by combining
Theorem 32 and Corollary 31. []
Proof of Proposition 34.:
Proof:
The operation at the variable node yields

Oy © (OC{EN(W{)\C;} ﬂcﬁﬂvz)

I‘I‘U[HCP - 11
Hai o (chGN(W)\CP /J’c§—>w,) Hl
or, component-wise,

ro(g)

(9)

e 73 HQEN(U@)\CP eXp(6:1)

£ () T
Zh,EJFq (6 T HC5EN(W)\C,, €xp (
r () r (g)

- exp(S NNy, o)

o(h r h
ZhG]F exp(: +Zc§eN(w)\Cp U())

We emphasize that the argument of the exponennal is a
Gaussian random variable with mean

Py, (9) =

1 1
= s¢(g) B Z o
¢
ce €N (ve) &
Cg;ﬁ(}p

CEEN(’UZ) E,
cg;ﬁcp

Authorized licensed use limited to: Texas A M University. Downloaded on July 24,2025 at 14:44:49 UTC from IEEE Xplore. Restrictions apply.

190 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 71, NO. 1, JANUARY 2025

and variance

ro(g) reo(9)
Var 2 + Z 77_%
CgEN(Uz) &
ceFcp

1 1
==+ X =
T TE
ce€N(vg) &
ceFcp
Due to normalization, this becomes statistically equivalent to
observing

Tpp =S+ 1yp,

where ng ,, is i.i.d. with Gaussian entries

1
N0, = T (100)
7+ 2cceN@woe, 7z,
Denoting the variance of ny , by %2 p» it follows that
E |y, 0, (0)] = W (72,). (101)

Since ft,,_,, is a balanced dominant permutation-symmetric
probability-vector random variable, the corresponding MSE
may be obtained by inspection using Corollary 31.]

REFERENCES

[1] R. G. Gallager, “Low-density parity-check codes,” IRE Trans. Inf.
Theory, vol. 8, no. 1, pp. 21-28, Jan. 1962.

[2] D. J. C. MacKay, “Good error-correcting codes based on very sparse
matrices,” IEEE Trans. Inf. Theory, vol. 45, no. 2, pp. 399431,
Mar. 1999.

[3] M. Luby et al., “Improved low-density parity-check codes using irregular
graphs,” IEEE Trans. Inf. Theory., vol. 47, no. 2, pp. 585-598, Feb. 2001.

[4] T.J. Richardson and R. L. Urbanke, “The capacity of low-density parity-
check codes under message-passing decoding,” IEEE Trans. Inf. Theory,
vol. 47, no. 2, pp. 599-618, Feb. 2001.

[5] S.-Y. Chung, T. J. Richardson, and R. L. Urbanke, “Analysis of sum-
product decoding of low-density parity-check codes using a Gaussian
approximation,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 657-670,
Mar. 2001.

[6] M. C. Davey and D. J. C. MacKay, “Low density parity check codes
over GF(q),” in Proc. Inf. Theory Workshop, 1998, pp. 70-71.

[7]1 A. Bennatan and D. Burshtein, “Design and analysis of nonbinary LDPC
codes for arbitrary discrete-memoryless channels,” IEEE Trans. Inf.
Theory, vol. 52, no. 2, pp. 549-583, Feb. 2006.

[8] T.J. Richardson and R. L. Urbanke, Modern Coding Theory. Cambridge,
U.K.: Cambridge Univ. Press, 2008.

[9] D. . Costello, L. Dolecek, T. E. Fuja, J. Kliewer, D. G. M. Mitchell, and
R. Smarandache, “Spatially coupled sparse codes on graphs: Theory and
practice,” IEEE Commun. Mag., vol. 52, no. 7, pp. 168-176, Jul. 2014.

[10] A. J. Felstrom and K. S. Zigangirov, “Time-varying periodic convo-
lutional codes with low-density parity-check matrix,” IEEE Trans. Inf.
Theory, vol. 45, no. 6, pp. 2181-2191, Sep. 1999.

[11] M. Lentmaier, A. Sridharan, D. J. Costello, and K. S. Zigangirov,
“Iterative decoding threshold analysis for LDPC convolutional codes,”
IEEE Trans. Inf. Theory, vol. 56, no. 10, pp. 5274-5289, Oct. 2010.

[12] S. Kudekar, T. Richardson, and R. L. Urbanke, “Spatially coupled
ensembles universally achieve capacity under belief propagation,” IEEE
Trans. Inf. Theory, vol. 59, no. 12, pp. 7761-7813, Dec. 2013.

[13] A. Yedla, Y.-Y. Jian, P. S. Nguyen, and H. D. Pfister, “A simple proof
of Maxwell saturation for coupled scalar recursions,” IEEE Trans. Inf.
Theory, vol. 60, no. 11, pp. 6943-6965, Nov. 2014.

[14] S. Kumar, A. J. Young, N. Macris, and H. D. Pfister, “Threshold
saturation for spatially coupled LDPC and LDGM codes on BMS
channels,” IEEE Trans. Inf. Theory, vol. 60, no. 12, pp. 7389-7415,
Dec. 2014.

[15] I. Andriyanova and A. Graell I Amat, “Threshold saturation for nonbi-
nary SC-LDPC codes on the binary erasure channel,” IEEE Trans. Inf.
Theory, vol. 62, no. 5, pp. 2622-2638, May 2016.

[16] D. Declercq and M. Fossorier, “Decoding algorithms for nonbinary
LDPC codes over GF(q),” IEEE Trans. Commun., vol. 55, no. 4,
pp. 633-643, Apr. 2007.

[17] A. Voicila, D. Declercq, F. Verdier, M. Fossorier, and P. Urard, “Low-
complexity decoding for non-binary LDPC codes in high order fields,”
IEEE Trans. Commun., vol. 58, no. 5, pp. 1365-1375, May 2010.

[18] B.-Y. Chang, D. Divsalar, and L. Dolecek, “Non-binary protograph-
based LDPC codes for short block-lengths,” in Proc. IEEE Inf. Theory
Workshop, Sep. 2012, pp. 282-286.

[19] A. Joseph and A. R. Barron, “Least squares superposition codes of
moderate dictionary size are reliable at rates up to capacity,” IEEE Trans.
Inf. Theory, vol. 58, no. 5, pp. 2541-2557, May 2012.

[20] A. Joseph and A. R. Barron, “Fast sparse superposition codes have near
exponential error probability for R < C,)” IEEE Trans. Inf. Theory,
vol. 60, no. 2, pp. 919-942, Feb. 2014.

[21] R. Venkataramanan, S. Tatikonda, and A. Barron, “Sparse regres-
sion codes,” Found. Trends Commun. Inf. Theory, vol. 15, nos. 1-2,
pp. 1-195, 2019.

[22] J. Barbier and F. Krzakala, “Replica analysis and approximate message
passing decoder for superposition codes,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Jul. 2014, pp. 1494-1498.

[23] J. Barbier and F. Krzakala, “Approximate message-passing decoder and
capacity achieving sparse superposition codes,” IEEE Trans. Inf. Theory,
vol. 63, no. 8, pp. 4894-4927, Aug. 2017.

[24] C. Rush, A. Greig, and R. Venkataramanan, “Capacity-achieving sparse
superposition codes via approximate message passing decoding,” IEEE
Trans. Inf. Theory, vol. 63, no. 3, pp. 1476-1500, Mar. 2017.

[25] C. Rush, K. Hsieh, and R. Venkataramanan, “Capacity-achieving spa-
tially coupled sparse superposition codes with AMP decoding,” IEEE
Trans. Inf. Theory, vol. 67, no. 7, pp. 44464484, Jul. 2021.

[26] A. Greig and R. Venkataramanan, “Techniques for improving the finite
length performance of sparse superposition codes,” IEEE Trans. Com-
mun., vol. 66, no. 3, pp. 905-917, Mar. 2018.

[27] H. Cao and P. O. Vontobel, “Using list decoding to improve the finite-
length performance of sparse regression codes,” IEEE Trans. Commun.,
vol. 69, no. 7, pp. 4282-4293, Jul. 2021.

[28] S. Liang, C. Liang, J. Ma, and L. Ping, “Compressed coding, AMP-
based decoding, and analog spatial coupling,” IEEE Trans. Commun.,
vol. 68, no. 12, pp. 7362-7375, Dec. 2020.

[29] A. Fengler, P. Jung, and G. Caire, “SPARCs for unsourced random
access,” IEEE Trans. Inf. Theory, vol. 67, no. 10, pp. 6894-6915,
Oct. 2021.

[30] V. K. Amalladinne, A. K. Pradhan, C. Rush, J. Chamberland, and
K. R. Narayanan, “Unsourced random access with coded compressed
sensing: Integrating AMP and belief propagation,” IEEE Trans. Inf.
Theory, vol. 68, no. 4, pp. 2384-2409, Apr. 2022.

[31] J. R. Ebert, V. K. Amalladinne, S. Rini, J. Chamberland, and
K. R. Narayanan, “Coded demixing for unsourced random access,”
IEEE Trans. Signal Process., vol. 70, pp. 2972-2984, 2022.

[32] L. Liu, C. Liang, J. Ma, and L. Ping, “Capacity optimality of AMP in
coded systems,” IEEE Trans. Inf. Theory, vol. 67, no. 7, pp. 4429-4445,
Jul. 2021.

[33] J. R. Ebert, J.-F. Chamberland, and K. R. Narayanan, “On sparse
regression LDPC codes,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
May 2023, pp. 2350-2355.

[34] D. L. Donoho, A. Maleki, and A. Montanari, “Message-passing algo-
rithms for compressed sensing,” Proc. Nat. Acad. Sci. USA, vol. 106,
no. 45, pp. 18914-18919, Jul. 2009.

[35] R. Berthier, A. Montanari, and P.-M. Nguyen, “State evolution for
approximate message passing with non-separable functions,” Inf. Infer-
ence, J. IMA, vol. 9, no. 1, pp. 33-79, Mar. 2020.

[36] C. Gerbelot and R. Berthier, “Graph-based approximate message passing
iterations,” Inf. Inference, A J. IMA, vol. 12, no. 4, pp. 2562-2628,
Sep. 2023.

[37] M. Bayati and A. Montanari, “The dynamics of message passing on
dense graphs, with applications to compressed sensing,” IEEE Trans.
Inf. Theory, vol. 57, no. 2, pp. 764-785, Feb. 2011.

[38] N. Wiberg, H.-A. Loeliger, and R. Kotter, “Codes and iterative decoding
on general graphs,” Eur. Trans. Telecommun., vol. 6, no. 5, pp. 513-525,
Sep. 1995.

[39] FE. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and
the sum-product algorithm,” IEEE Trans. Inf. Theory, vol. 47, no. 2,
pp. 498-519, Feb. 2001.

[40] H.-A. Loeliger, “An introduction to factor graphs,” IEEE Signal Process.
Mag., vol. 21, no. 1, pp. 28-41, Jan. 2004.

Authorized licensed use limited to: Texas A M University. Downloaded on July 24,2025 at 14:44:49 UTC from IEEE Xplore. Restrictions apply.

EBERT et al.: SPARSE REGRESSION LDPC CODES

[41] R. Tanner, “A recursive approach to low complexity codes,” IEEE Trans.
Inf. Theory, vols. IT-27, no. 5, pp. 533-547, Sep. 1981.

M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman,
“Efficient erasure correcting codes,” IEEE Trans. Inf. Theory, vol. 47,
no. 2, pp. 569-584, Feb. 2001.

H. Song and J. R. Cruz, “Reduced-complexity decoding of Q-ary LDPC
codes for magnetic recording,” IEEE Trans. Magn., vol. 39, no. 2,
pp. 1081-1087, Mar. 2003.

A. Goupil, M. Colas, G. Gelle, and D. Declercq, “FFT-based BP
decoding of general LDPC codes over Abelian groups,” IEEE Trans.
Commun., vol. 55, no. 4, pp. 644-649, Apr. 2007.

G. D. Forney, “Geometrically uniform codes,” IEEE Trans. Inf. Theory,
vol. 37, no. 5, pp. 1241-1260, Sep. 1991.

T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke, “Design of
capacity-approaching irregular low-density parity-check codes,” IEEE
Trans. Inf. Theory, vol. 47, no. 2, pp. 619-637, Feb. 2001.

G. J. Byers and F. Takawira, “EXIT charts for non-binary LDPC codes,”
in Proc. IEEE Int. Conf. Commun., ICC, vol. 1, May 2005, pp. 652-657.
G. D. Forney and G. Ungerboeck, “Modulation and coding for lin-
ear Gaussian channels,” [EEE Trans. Inf. Theory, vol. 44, no. 6,
pp. 2384-2415, May 1998.

W. S. Hall and M. L. Newell, “The mean value theorem for vector
valued functions: A simple proof,” Math. Mag., vol. 52, no. 3, p. 157,
May 1979.

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

Jamison R. Ebert (Member, IEEE) received the B.S. degree in electrical
engineering from Brigham Young University, Provo, UT, USA, in 2020,
and the Ph.D. degree in electrical engineering from Texas A&M University,
College Station, TX, USA, in 2024. He is currently a Senior Engineer
with Qualcomm Technologies, San Diego, CA, USA. His research interests
include signal processing, wireless communications, error control coding, and
compressed sensing.

191

Jean-Francois Chamberland (Senior Member, IEEE) received the B.Eng.
degree from McGill University, the M.S. degree from Cornell University,
and the Ph.D. degree from the University of Illinois at Urbana—Champaign.
He is currently a Professor with the Department of Electrical and Computer
Engineering, Texas A&M University. Recently, he has been studying the
efficient design of wireless systems and the fundamental limits of communi-
cation networks. His research interests include information theory, statistical
inference, algorithms, and learning. His contributions have been recognized
through the IEEE Young Author Best Paper Award from the IEEE Signal
Processing Society, the Faculty Early Career Development (CAREER) Award
from the National Science Foundation (NSF), and the IEEE Communications
Society and Information Theory Society Joint Paper Award. He serves as a
Senior Area Editor for the IEEE OPEN JOURNAL OF SIGNAL PROCESSING.
He was an Associate Editor of IEEE TRANSACTIONS ON INFORMATION
THEORY.

Krishna R. Narayanan (Fellow, IEEE) received the B.E. degree from
Coimbatore Institute of Technology, the M.S. degree from Iowa State Uni-
versity, and the Ph.D. degree in electrical engineering from Georgia Institute
of Technology in 1998. Since 1998, he has been with the Department of
Electrical and Computer Engineering, Texas A&M University, where he is cur-
rently the Sanchez Chair Professor. His current research interests include the
design of massive uncoordinated multiple access schemes, coded distributed
computing, and applications of machine learning to wireless communications.
He was elected as a fellow of the IEEE for contributions to coding for
wireless communications and data storage. He received the 2022 IEEE
Joint Communications Society and Information Theory Society Best Paper
Award. He also received the 2006 and 2020 Best Paper Awards from the
IEEE Technical Committee for Signal Processing for Data Storage. He has
served as an Associate Editor for Coding Techniques for IEEE TRANSAC-
TIONS ON INFORMATION THEORY and as an Area Editor (and Editor) for
the Coding Theory and Applications Area for IEEE TRANSACTIONS ON
COMMUNICATIONS.

Authorized licensed use limited to: Texas A M University. Downloaded on July 24,2025 at 14:44:49 UTC from IEEE Xplore. Restrictions apply.

