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Abstract

In this paper, we present efficient numerical schemes based on the Lagrange multiplier approach for
the Navier-Stokes equations. By introducing a dynamic equation (involving the kinetic energy, the
Lagrange multiplier, and a regularization parameter), we form a new system which incorporates the
energy evolution process but is still equivalent to the original equations. Such nonlinear system is
then discretized in time based on the backward differentiation formulas, resulting in a dynamically
regularized Lagrange multiplier (DRLM) method. First- and second-order DRLM schemes are
derived and shown to be unconditionally energy stable with respect to the original variables. The
proposed schemes require only the solutions of two linear Stokes systems and a scalar quadratic
equation at each time step. Moreover, with the introduction of the regularization parameter, the
Lagrange multiplier can be uniquely determined from the quadratic equation, even with large time
step sizes, without affecting accuracy and stability of the numerical solutions. Fully discrete energy
stability is also proved with the Marker-and-Cell (MAC) discretization in space. Various numerical
experiments in two and three dimensions verify the convergence and energy dissipation as well as
demonstrate the accuracy and robustness of the proposed DRLM schemes.

Keywords: Incompressible Navier-Stokes equations; Energy stability; Lagrange multiplier;
Dynamic regularization; Marker-and-Cell method

1. Introduction

The incompressible Navier-Stokes (NS) equations are fundamental in computational fluid dy-
namics, governing the behavior of incompressible fluid flows. In this paper, we study these equations
in the following form: {

ut − ν∆u+ F (u) +∇p = f , in Ω× (0, T ],

∇ · u = 0, in Ω× (0, T ],

(1.1a)

(1.1b)

subject to the initial condition u(x, 0) = u0(x) and the homogeneous Dirichlet or the periodic
boundary condition. In (1.1), Ω is an open bounded domain in Rd (d = 2, 3), u = (u1, . . . , ud)

T
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and p are the unknown velocity field and pressure respectively, F (u) = (u · ∇)u denotes the
nonlinear convection, f is an external force, and ν represents the kinematic viscosity which is
inversely proportional to the Reynolds number Re. It is well known that, in the absence of external
forces, the incompressible NS equations (1.1) under the prescribed boundary conditions satisfy the
energy dissipation. Therefore, it has been highly desirable to develop numerical schemes for (1.1)
that preserve this key property.

Projection methods, originally proposed by Chorin [8] and Temam [34], are among the most
commonly used methods for solving the incompressible NS equations (1.1). These methods consist
of a prediction step for the velocity and a projection step to enforce the incompressible condi-
tion (1.1b) at each time step. However, one needs to introduce artificial boundary conditions for
the pressure, leading to boundary layers and reducing its convergence rates [38, 12]. To overcome
such issues, in [29, 39, 40] the gauge formulation was developed by using the Helmholtz-Hodge de-
composition to rewrite (1.1) in terms of two auxiliary variables, the vector variable a and the scalar
variable ϕ, for which u = a+∇ϕ and u is orthogonal to ∇ϕ. A key advantage of this formulation
is the flexibility in choosing suitable boundary conditions for the nonphysical variable ϕ. Although
the gauge formulation can be easily combined with traditional time discretization methods (e.g.,
backward Euler and Crank-Nicolson schemes [36, 27]) as well as more advanced approaches (e.g.,
exponential time differencing methods [19]), achieving energy stability for the resulting schemes
remains challenging.

Motivated by the invariant energy quadratization (IEQ) methods [42, 46, 43, 45], the scalar
auxiliary variable (SAV) schemes have recently been developed for simulating gradient flows [32,
33, 18, 1, 35, 7], in which time-dependent auxiliary variables are introduced to transform the free
energy into a quadratic form, allowing for an explicit treatment of nonlinear terms. The SAV
schemes are shown to be unconditionally energy stable (usually with respect to certain modified
energies), provided that the nonlinear part of the free energy is bounded from below. Such a
boundedness requirement is automatically satisfied by the incompressible NS equations (1.1), thus
in [24] an auxiliary variable associated with the total system energy of (1.1) was introduced to
reformulate the NS equations into an equivalent system with an extra dynamic equation for the
auxiliary variable. The resulting linear schemes are unconditionally energy diminishing, marking
the first time that numerical schemes with explicit treatment of the nonlinear convection term can
preserve this important property. Following this idea, a second-order in time numerical scheme for
the NS equations was constructed based on the SAV approach for time stepping and the Marker-
and-Cell (MAC) method for spatial discretization in [22], where the auxiliary variable is computed
via a quadratic equation at each time step. Later in [23], new SAV-pressure correction methods
were introduced where only a linear algebraic equation needs to be solved for the scalar variable,
whose exact value is an exponential decay function. Besides the SAV approach, it is well known
that the Lagrange multiplier technique also helps lead to unconditionally energy stable schemes.
Inspired by [6], in [44] a Lagrange multiplier was introduced into a dynamic equation for the original
kinetic energy, and the proposed second-order backward differentiation formula (BDF) scheme was
shown to satisfy energy stability that involves the original energy and some pressure gradient terms.

Although both SAV and Lagrange multiplier approaches are efficient to implement, requiring
only the solutions of generalized Stokes systems (for the coupled approach) or a sequence of Poisson-
type equations (for the decoupled approach) at each time step, they usually pose three challenges:
(i) Solving nonlinear algebraic equations for the Lagrange multiplier is required at each time step,
which may produce multiple real or even complex solutions; (ii) To maintain accuracy for the
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SAV and Lagrange multiplier methods, especially the latter, the time step size must be sufficiently
small, which is not efficient in terms of computational cost for long-term simulations; (iii) Most
stability results from the SAV methods concern a modified energy, which is not directly related to
the original energy. Thus, the boundedness of the original energy is not straightforwardly implied,
especially when large time step sizes are applied.

In this paper, we aim to develop a novel class of numerical schemes, namely dynamically reg-
ularized Lagrange multiplier (DRLM) schemes, for the incompressible NS equations to overcome
the aforementioned challenges. Partially motivated by recent work [15] for gradient flows, we
first reformulate the model problem (1.1) into an equivalent system that includes an additional
dynamic equation involving the kinetic energy, a Lagrange multiplier, and a positive regularization
parameter. First- and second-order DRLM schemes are then obtained by using the BDF methods
with an explicit treatment of the nonlinear convection term. These schemes are shown to be un-
conditionally energy stable with respect to the original variables. Fully discrete energy stability
is also proved with the MAC discretization in space. While our stability analysis also concerns
a modified energy consisting of the original energy plus an error evolution term for the Lagrange
multiplier, numerical results show that the modified energy is almost identical to the original energy
(cf. Remark 3.1(i) and Section 4), even when the regularization parameter is large. The proposed
schemes are linear and simple to implement, requiring only the solutions of two generalized Stokes
systems and a scalar quadratic equation at each time step. Note that each Stokes system can be
replaced by two Poisson-type equations if one considers the pressure-correction approach [12, 13]
for the DRLM formulation (cf. Remark 2.3). Importantly, unlike existing Lagrange multiplier
schemes [44], we observe that the proposed DRLM schemes can guarantee the uniqueness of the
discrete Lagrange multiplier (and consequently the unique solvability of the numerical solutions)
by choosing a sufficiently large regularization parameter, especially when the time step sizes are
large. Convergence and energy dissipation of the proposed DRLM schemes are confirmed via a
manufactured convergence test and the Taylor-Green vortex problem. Additionally, the DRLM
schemes accurately capture dynamical evolution in practical scenarios such as the lid-driven cavity
flow and Kelvin-Helmholtz instability.

The rest of the paper is organized as follows: In Section 2, we introduce the DRLM formulation
for the incompressible NS equations (1.1). The first- and second-order DRLM schemes are derived
and shown to be unconditionally energy stable. Fully discrete DRLM schemes with the MAC spatial
discretization and their corresponding energy stability are discussed in Section 3. An efficient
preconditioning technique is provided in this section to iteratively solve the generalized Stokes
systems arising from the fully discrete formulations. In Section 4, we carry out various numerical
experiments in 2D and 3D to verify the theoretical findings as well as illustrate the performance
of the proposed DRLM schemes with large time-step sizes for long-term simulations. Finally, some
concluding remarks are given in Section 5.

2. The DRLM formulation and time-discrete schemes

For any two functions u,v ∈ (L2(Ω))d, denote by (u,v) the standard L2 inner product of u
and v on Ω, and ∥u∥ =

√
(u,u) is the corresponding L2 norm of u. Let K(u) = 1

2

∫
Ω |u|2dx be

the kinetic energy associated with (1.1), it is clear that

dK(u)

dt
= (ut,u) and (F (u),u) = 0. (2.1)
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In [44], a Lagrange multiplier q(t) was introduced to reformulate the NS equations (1.1) as follows:
ut − ν∆u+ qF (u) +∇p = f ,

∇ · u = 0,

dK(u)

dt
= (ut + qF (u),u).

(2.2a)

(2.2b)

(2.2c)

However, the system (2.2) is not equivalent to the original system (1.1) because any constant
function q(t) satisfies (2.2c). To ensure the uniqueness of q, we introduce a dynamic term for q
in (2.2c) and consider instead the following equations:

ut − ν∆u+ qF (u) +∇p = f ,

∇ · u = 0,

dK(u)

dt
+ θ

dq2

dt
= (ut + qF (u),u),

(2.3a)

(2.3b)

(2.3c)

where q(0) = 1 and θ > 0 is a regularization parameter to be thoroughly studied in the numerical
experiments (cf. Section 4). From (2.1) and (2.3c), we can verify that at the continuous level,
q(t) = 1 for all t > 0. Consequently, the new system (2.3) is equivalent to the original NS
equations (1.1). It should be noted that, unlike the SAV approach, the function q serves as a
Lagrange multiplier to enforce dissipation of the original energy. Additionally, the parameter θ is
crucial in our formulation to guarantee the uniqueness of the Lagrange multiplier at the discrete
level, and thus the numerical solutions. Let us next assume a uniform partition of the time interval
[0, T ]: 0 = t0 < t1 < . . . < tNt = T with the time step size τ = T/Nt and consider the time
discretization of the DRLM system (2.3).

Remark 2.1. In the case of inhomogeneous Dirichlet boundary conditions where u|∂Ω = ub, (2.3c)
is replaced by

dK(u)

dt
+ θ

dq2

dt
= (ut,u) + q

[
(F (u),u)− 1

2
(ub · n, |ub|2)∂Ω

]
,

where (·, ·)∂Ω denotes the L2 inner product on ∂Ω and n represents the outward unit normal vector
to ∂Ω.

2.1. The first-order in time DRLM scheme

By applying the first-order BDF (i.e., backward Euler) method to equations (2.3a)-(2.3c) with
an explicit treatment of the nonlinear convection term, we obtain the following first-order in time
DRLM scheme: for 0 ≤ n ≤ Nt − 1,

un+1 − un

τ
− ν∆un+1 + qn+1F (un) +∇pn+1 = fn+1,

∇ · un+1 = 0,

K(un+1)−K(un)

τ
+ θ

(qn+1)2 − (qn)2

τ
=

(
un+1 − un

τ
+ qn+1F (un),un+1

)
,

(2.4a)

(2.4b)

(2.4c)

where un+1 satisfies either the periodic or homogeneous Dirichlet boundary conditions, fn+1 =
f(tn+1) is given, u

n and pn are approximations of u(tn) and p(tn), respectively.
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Following [22, 23, 24, 44], an efficient implementation of the first-order DRLM scheme (2.4) can
be achieved by decomposing each of the unknown quantities, the velocity un+1 and the pressure
pn+1, into two components as follows:

un+1 = un+1
1 + qn+1un+1

2 , (2.5)

pn+1 = pn+1
1 + qn+1pn+1

2 . (2.6)

Plugging the above equations into the system (2.4), we arrive at

un+1
1 + qn+1un+1

2 − un

τ
− ν∆(un+1

1 + qn+1un+1
2 ) + qn+1F (un)

+∇(pn+1
1 + qn+1pn+1

2 ) = fn+1,

∇ · (un+1
1 + qn+1un+1

2 ) = 0,

K(un+1
1 + qn+1un+1

2 )−K(un)

τ
+ θ

(qn+1)2 − (qn)2

τ

=

(
un+1
1 + qn+1un+1

2 − un

τ
+ qn+1F (un),un+1

1 + qn+1un+1
2

)
.

(2.7a)

(2.7b)

(2.7c)

We then split (2.7a) and (2.7b) into two systems of generalized Stokes equations:
un+1
1 − un

τ
− ν∆un+1

1 +∇pn+1
1 = fn+1,

∇ · un+1
1 = 0,

(2.8a)

(2.8b)

and 
un+1
2

τ
− ν∆un+1

2 + F (un) +∇pn+1
2 = 0,

∇ · un+1
2 = 0,

(2.9a)

(2.9b)

where un+1
1 and un+1

2 satisfy the same boundary conditions as un+1, i.e., either homogeneous
Dirichlet or periodic boundary conditions. For the NS equations with inhomogeneous Dirichlet
data u|∂Ω = ub, we impose un+1

1 = ub(tn+1) and un+1
2 = 0 on ∂Ω.

Note that the two systems (2.8) and (2.9) are linear and can be solved independently of qn+1

(cf. Subsection 3.3 and [22, 30]). Once un+1
1 ,un+1

2 , pn+1
1 , and pn+1

2 are determined, we compute
qn+1 from (2.7c) by solving the quadratic equation:

A1,n+1(q
n+1)2 +B1,n+1q

n+1 + C1,n+1 = 0, (2.10)

where

A1,n+1 =
1

2
∥un+1

2 ∥2 + θ + τν∥∇un+1
2 ∥2,

B1,n+1 = −(un+1
1 − un,un+1

2 )− τ(F (un),un+1
1 ),

C1,n+1 = −1

2
∥un+1

1 − un∥2 − θ(qn)2.

To derive A1,n+1, we have used the property ( 1τu
n+1
2 + F (un),un+1

2 ) = −ν∥∇un+1
2 ∥2 obtained

from (2.9) and integration by parts.
We remark that A1,n+1 > 0 and C1,n+1 < 0 for any θ > 0. Therefore, the quadratic equa-

tion (2.10) has a unique positive solution qn+1 for any positive regularization parameter θ. Once
qn+1 is known, we update un+1 and pn+1 using equations (2.5) and (2.6), respectively.
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2.2. The second-order in time DRLM scheme

To construct the second-order DRLM scheme, we assume un−1 and un are given and denote
by ũn+1 = 2un − un−1 the second-order extrapolation to be used for the approximation of the
nonlinear convection term. By applying the BDF2 method to equations (2.3a)-(2.3c), we obtain
the following second-order DRLM scheme: for 1 ≤ n ≤ Nt − 1,

3un+1 − 4un + un−1

2τ
− ν∆un+1 + qn+1F (ũn+1) +∇pn+1 = fn+1,

∇ · un+1 = 0,

3K(un+1)− 4K(un) +K(un−1)

2τ
+ θ

3(qn+1)2 − 4(qn)2 + (qn−1)2

2τ

=

(
3un+1 − 4un + un−1

2τ
+ qn+1F (ũn+1),un+1

)
,

(2.11a)

(2.11b)

(2.11c)

where un+1 satisfies either the periodic or homogeneous Dirichlet boundary conditions, u1 and q1

are computed using the first-order DRLM scheme (2.4).
The second-order DRLM scheme (2.11) can also be implemented efficiently by again decom-

posing each of the two unknowns un+1 and pn+1 into two components, as in (2.5) and (2.6).
From (2.11a) and (2.11b), we obtain the generalized Stokes systems for un+1

i and pn+1
i (i = 1, 2)

as follows: 
3un+1

1 − 4un + un−1

2τ
− ν∆un+1

1 +∇pn+1
1 = fn+1,

∇ · un+1
1 = 0,

(2.12a)

(2.12b)

and 
3un+1

2

2τ
− ν∆un+1

2 + F (ũn+1) +∇pn+1
2 = 0,

∇ · un+1
2 = 0.

(2.13a)

(2.13b)

After determining un+1
i and pn+1

i (i = 1, 2) from the linear systems (2.12) and (2.13), the discrete
Lagrange multiplier qn+1 is obtained from (2.11c) by solving the quadratic equation:

A2,n+1(q
n+1)2 +B2,n+1q

n+1 + C2,n+1 = 0, (2.14)

where

A2,n+1 =
3

2
∥un+1

2 ∥2 + 3θ + 2τν∥∇un+1
2 ∥2,

B2,n+1 = −(3un+1
1 − 4un + un−1,un+1

2 )− 2τ(F (ũn+1),un+1
1 ),

C2,n+1 = −2∥un+1
1 − un∥2 + 1

2
∥un+1

1 − un−1∥2 − θ
[
4(qn)2 − (qn−1)2

]
.

To derive A2,n+1, we have used the fact that ( 3
2τu

n+1
2 + F (ũn+1),un+1

2 ) = −ν∥∇un+1
2 ∥2 due

to (2.13) and integration by parts. Since A2,n+1 > 0 for all θ > 0, the algebraic equation (2.14)
attains two solutions:

qn+1
± =

−B2,n+1 ±
√
B2

2,n+1 − 4A2,n+1C2,n+1

2A2,n+1
.
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Because the exact value of q is 1, we choose the root that is closer to 1. We observe numerically
that C2,n+1 < 0 if θ is sufficiently large, making qn+1 = qn+1

+ the unique positive solution. Finally,
un+1 and pn+1 are computed from (2.5) and (2.6), respectively.

Remark 2.2. Another possible way to construct the DRLM scheme of order 2 is based on the
Crank-Nicolson method, where the time-discrete version of (2.3) is given by

un+1 − un

τ
− ν∆un+1/2 + qn+1/2F (ũn+1/2) +∇pn+1/2 = fn+1/2,

∇ · un+1/2 = 0,

K(un+1)−K(un)

τ
+ θ

(qn+1)2 − (qn)2

τ
=

(
un+1 − un

τ
+ qn+1/2F (ũn+1/2),un+1/2

)
,

(2.15a)

(2.15b)

(2.15c)

where fn+1/2 = f(tn+1/2), ũ
n+1/2 = 1

2(3u
n−un−1), and ψn+1/2 = 1

2(ψ
n+ψn+1) for ψ ∈ {u, p, q}.

Note that ũ1/2 can be computed by the following first-order scheme [22]:

ũ1/2 − u0

τ/2
− ν∆ũ1/2 + F (u0) +∇p̃1/2 = f1/2, ∇ · ũ1/2 = 0,

which has a local truncation error of O(τ2). We remark that all the terms involving the kinetic
energy in (2.15c) disappear after simplification. Indeed, by the definition of K(u) we have:

K(un+1)−K(un)

τ
=

1

2τ

[
(un+1,un+1)− (un,un)

]
=

(
un+1 − un

τ
,un+1/2

)
.

Therefore, (2.15c) is reduced to θ (q
n+1)2−(qn)2

τ =
(
qn+1/2F (ũn+1/2),un+1/2

)
, or equivalently (note

that qn+1 + qn = 2qn+1/2 ̸= 0),

θ
qn+1 − qn

τ
=

1

2

(
F (ũn+1/2),un+1/2

)
. (2.16)

From this equation qn+1 is uniquely determined. Note that (2.16) is equivalent to the Crank-Nicolson
discretization of equation θ dqdt =

1
2(F (u),u).

Remark 2.3. The proposed DRLM schemes involve solving two systems of generalized Stokes
equations at each time step. Alternatively, one can replace the Stokes solver with two Poisson
solvers via the pressure-correction approach; we refer to [12, 13, 23, 25, 44] for a detailed discussion
of this approach in the context of the NS equations, and [4, 26, 37] for other incompressible fluid
models. To that end, a pressure-correction variant of the first-order DRLM scheme (2.4) is given
by 

un+1 − un

τ
− ν∆un+1 + qn+1F (un) +∇pn = fn+1,

un+1 − un+1

τ
+∇(pn+1 − pn) = 0,

∇ · un+1 = 0,

K(un+1)−K(un)

τ
+ θ

(qn+1)2 − (qn)2

τ
=

(
un+1 − un

τ
+ qn+1F (un),un+1

)
,

(2.17a)

(2.17b)

(2.17c)

(2.17d)

7



and a rotational pressure-correction variant of the second-order DRLM scheme (2.11) by

3un+1 − 4un + un−1

2τ
− ν∆un+1 + qn+1F (ũn+1) +∇pn = fn+1,

3un+1 − 3un+1

2τ
+∇(pn+1 − pn + ν∇ · un+1) = 0,

∇ · un+1 = 0,

3K(un+1)− 4K(un) +K(un−1)

2τ
+ θ

3(qn+1)2 − 4(qn)2 + (qn−1)2

2τ

=

(
3un+1 − 4un + un−1

2τ
+ qn+1F (ũn+1),un+1

)
,

(2.18a)

(2.18b)

(2.18c)

(2.18d)

where un+1 and un+1 in (2.17) and (2.18) satisfy the periodic boundary conditions or un+1|∂Ω = 0
and un+1 · n|∂Ω = 0. Note that we have used the rotational form in (2.18) since the standard
second-order pressure-correction approach may limit the accuracy of the scheme due to certain
artificial boundary conditions, as discussed in [12, 13]. The stability of the pressure-correction
DRLM schemes (2.17) and (2.18) will be discussed in Remark 2.6.

2.3. Time-discrete energy stability

In this subsection, we aim to establish energy stability of the proposed first- and second-order
DRLM schemes.

Theorem 2.1. In the absence of the external force f , the first-order DRLM scheme (2.4) is un-
conditionally stable in the sense that

K(un+1) + θ[(qn+1)2 − 1] ≤ K(un) + θ[(qn)2 − 1], n = 0, 1, · · · , Nt − 1.

Proof. Taking the L2 inner product on both sides of (2.4a) with un+1, we have(
un+1 − un

τ
+ qn+1F (un),un+1

)
= (ν∆un+1 −∇pn+1,un+1) = −ν∥∇un+1∥2, (2.19)

where we used the fact that (∇pn+1,un+1) = 0 due to the divergence-free condition (2.4b), bound-
ary conditions of un+1, and integration by parts. The combination of (2.4c) and (2.19) yields

K(un+1)−K(un)

τ
+ θ

(qn+1)2 − (qn)2

τ
= −ν∥∇un+1∥2 ≤ 0.

This implies that
K(un+1) + θ(qn+1)2 ≤ K(un) + θ(qn)2,

which completes the proof of Theorem 2.1.

Remark 2.4. We have from Theorem 2.1 that

0 ≤ K(un) + θ(qn)2 ≤ K(un−1) + θ(qn−1)2 ≤ . . . ≤ K(u0) + θ(q0)2 = K(u0) + θ.

Thus, the discrete energy {K(un)}Nt
n=0 is uniformly bounded for the first-order scheme (2.4).
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Theorem 2.2. In the absence of the external force f , the second-order DRLM scheme (2.11) is
unconditionally stable in the sense that

3

2
K(un+1)− 1

2
K(un) + θ

[
3

2
(qn+1)2 − 1

2
(qn)2 − 1

]
≤ 3

2
K(un)− 1

2
K(un−1) + θ

[
3

2
(qn)2 − 1

2
(qn−1)2 − 1

]
, n = 1, 2, · · · , Nt − 1. (2.20)

Proof. Multiplying both sides of equation (2.11a) with un+1 and using (2.11b), we find that(
3un+1 − 4un + un−1

2τ
+ qn+1F (ũn+1),un+1

)
= (ν∆un+1 −∇pn+1,un+1)

= −ν∥∇un+1∥2 ≤ 0.

This, together with (2.11c), gives us

3K(un+1)− 4K(un) +K(un−1)

2τ
+ θ

3(qn+1)2 − 4(qn)2 + (qn−1)2

2τ
≤ 0,

or equivalently,

3K(un+1)−K(un) + θ
[
3(qn+1)2 − (qn)2

]
≤ 3K(un)−K(un−1) + θ

[
3(qn)2 − (qn−1)2

]
.

Thus, we obtain the desired estimate.

Remark 2.5. (i) We note that (2.20) is equivalent to the following estimate

K(ũn+3/2) + θ[(q̃n+3/2)2 − 1] ≤ K(ũn+1/2) + θ[(q̃n+1/2)2 − 1] + εn+1,

where ũn+1/2 = 1
2(3u

n−un−1) and q̃n+1/2 = 1
2(3q

n− qn−1) for n ≥ 1 are second-order approxima-
tions of u(tn+1/2) and q(tn+1/2), respectively, and

εn+1 =
3

4

[
K(un+1 − un)−K(un − un−1) + θ(qn+1 − qn)2 − θ(qn − qn−1)2

]
.

Therefore, if ∥un+1 − un∥ ≤ cτ and |qn+1 − qn| ≤ cτ for all n ≥ 0, then εn+1 = O(τ2).

(ii) It follows from Theorem 2.2 that

3

2
K(un+1) +

3

2
θ(qn+1)2 ≤ 1

2
K(un) +

1

2
θ(qn)2 + C, (2.21)

where C = 3
2K(u1)− 1

2K(u0) + θ
[
3
2(q

1)2 − 1
2(q

0)2
]
. By repeatedly applying (2.21), we deduce that

K(un) + θ(qn)2 ≤ 1

3n
(
K(u0) + θ(q0)2 − C

)
+ C,

which indicates the boundedness of the energy functional for the second-order scheme (2.11).
(iii) By using similar arguments as in the proofs of Theorems 2.1 and 2.2, we can show that the

second-order DRLM scheme based on the Crank-Nicolson method (2.15) is unconditionally stable
in the sense that

K(un+1) + θ[(qn+1)2 − 1] ≤ K(un) + θ[(qn)2 − 1], n = 0, 1, · · · , Nt − 1.

9



Note that the energy stability result is improved with the Crank-Nicolson scheme, compared to
the BDF2 method (cf. (2.20)). However, for dissipative systems, the second-order BDF method
usually has better numerical performance than the Crank-Nicolson counterpart [6]. Therefore, in
the following sections, we focus on the DRLM schemes based on the first- and second-order BDF
methods.

Remark 2.6. For the pressure-correction versions of the proposed DRLM schemes, the following
energy stability results hold (assuming f = 0):

K(un+1) +
τ2

2
∥∇pn+1∥2 + θ[(qn+1)2 − 1] ≤ K(un) +

τ2

2
∥∇pn∥2 + θ[(qn)2 − 1], (2.22)

for the first-order pressure-correction DRLM scheme (2.17), and

3

2
K(un+1)− 1

2
K(un) +

τ2

3
∥∇(pn+1 + νsn+1)∥2 + τν

2
∥sn+1∥2 + θ

[
3

2
(qn+1)2 − 1

2
(qn)2 − 1

]
≤ 3

2
K(un)− 1

2
K(un−1) +

τ2

3
∥∇(pn + νsn)∥2 + τν

2
∥sn∥2 + θ

[
3

2
(qn)2 − 1

2
(qn−1)2 − 1

]
, (2.23)

for the second-order rotational pressure-correction DRLM scheme (2.18), where sn := ∇ ·
n∑
i=1

ui

for 1 ≤ n ≤ Nt. Detailed proofs of these estimates are provided in Appendix A and Appendix B,
respectively.

3. Fully discrete DRLM schemes

In this section, we apply spatial discretization for the time-discrete problems (2.4) and (2.11)
to obtain fully discrete DRLM schemes. While the proposed DRLM approach can be coupled with
finite difference, finite element, or finite volume methods, we adopt the finite difference approxima-
tion on a MAC staggered grid for simplicity. The corresponding energy stability of the numerical
solutions is then rigorously established. The proposed schemes require solving two generalized
Stokes systems and a quadratic equation at each time step, with the former being the main compu-
tational cost, especially for large Reynolds numbers. Therefore, we discuss preconditioned iterative
solvers for Stokes systems at the end of the section.

3.1. The MAC scheme for spatial discretization

To simplify the presentation, we consider the 2D NS equations (1.1) with the spatial domain
Ω = (0, 1)2, the external force f = [f1, f2]

T , and the velocity vector field u = [u, v]T . The extension
to the 3D case can be done in a similar manner. Suppose that Ω is partitioned into NxNy rectangles
of the form (xi−1, xi)× (yj−1, yj) for 1 ≤ i ≤ Nx and 1 ≤ j ≤ Ny, where

0 = x0 < x1 < . . . < xNx = 1, and 0 = y0 < y1 < . . . < yNy = 1.

Let hx = 1
Nx

and hy =
1
Ny

be the uniform mesh sizes in the x- and y-directions, respectively. For ψ ∈
{u, v, p}, let Ωh,ψ represent the collection of discrete points in Ω associated with ψ (see Figure 1);

10



(a) (b)

Pressure p

Velocity u

Velocity v

Figure 1: Staggered grid (Nx = Ny = 4) for spatial discretization with positions of unknowns u, v, and p.
(a) Homogeneous Dirichlet boundary conditions. (b) Periodic boundary conditions.

in particular, Ωh,p corresponds to black circle points, Ωh,u to blue right-pointing triangles, and Ωh,v
to red upward-pointing triangles. Denote by Un,V n, and P n (0 ≤ n ≤ Nt) the approximations of
un, vn, and pn over Ωh,u,Ωh,v, and Ωh,p, respectively. For any two matrices A and B of the same
size, we define

(A,B)l2 := hxhyTr(A
TB), ∥A∥l2 :=

√
(A,A)l2 ,

as the discrete l2 inner product and corresponding l2 norm.
Next, we introduce differentiation matrices for ∆u, ∆v, and ∇p, utilizing the following matrices

for any positive integer N and real numbers h and a:

KDir
N,h,a =

1

h2


−a 1 0 . . . 0
1 −2 1 . . . 0
...

. . .
. . .

. . .
...

0 . . . 1 −2 1
0 . . . 0 1 −a


N×N

MDir
N,h =

1

h


−1 1 0 . . . 0
0 −1 1 . . . 0
...

. . .
. . .

. . .
...

0 . . . 0 −1 1


(N−1)×N

,

Kper
N,h =

1

h2


−2 1 0 . . . 1
1 −2 1 . . . 0
...

. . .
. . .

. . .
...

0 . . . 1 −2 1
1 . . . 0 1 −2


N×N

Mper
N,h =

1

h


1 0 0 . . . −1
−1 1 0 . . . 0
...

. . .
. . .

. . .
...

0 . . . −1 1 0
0 . . . 0 −1 1


N×N

.

For homogeneous Dirichlet boundary conditions, we define the matrices Au, Bu, Av, Bv, Ap, and
Bp as follows:

Au = KDir
Nx−1,hx,2, Av = KDir

Nx,hx,3, Ap = MDir
Nx,hx , (3.1)

Bu = KDir
Ny ,hy ,3, Bv = KDir

Ny−1,hy ,2, Bp = MDir
Ny ,hy . (3.2)

For periodic boundary conditions, we set

Au = Av = Kper
Nx,hx

, Ap = Mper
Nx,hx

, (3.3)

Bu = Bv = Kper
Ny ,hy

, Bp = Mper
Ny ,hy

. (3.4)
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Applying the central finite difference method on the staggered grid (cf. Figure 1) to system (2.4)
results in the fully discrete first-order DRLM scheme:

Un+1 −Un

τ
− ν

(
AuU

n+1 +Un+1BT
u

)
+ qn+1F1(U

n,V n) +ApP
n+1 = Fn+1

1 ,

V n+1 − V n

τ
− ν

(
AvV

n+1 + V n+1BT
v

)
+ qn+1F2(U

n,V n) + P n+1BT
p = Fn+1

2 ,

(−AT
p )U

n+1 + V n+1(−Bp) = O,

1

2τ

(
∥Un+1∥2l2 + ∥V n+1∥2l2 − ∥Un∥2l2 − ∥V n∥2l2

)
+ θ

(qn+1)2 − (qn)2

τ

=

(
Un+1 −Un

τ
+ qn+1F1(U

n,V n),Un+1

)
l2
+

(
V n+1 − V n

τ
+ qn+1F2(U

n,V n),V n+1

)
l2
.

(3.5a)

(3.5b)

(3.5c)

(3.5d)

Here, F1 and F2 represent the discrete evaluations of f1 and f2 over Ωh,u and Ωh,v, respectively.
Similarly, F1(U ,V ) and F2(U ,V ) approximate the nonlinear convection terms uux + vuy and
uvx + vvy on the grids Ωh,u and Ωh,v, respectively.

For the second-order case (2.11), we define Ũn+1 = 2Un −Un−1 and Ṽ n+1 = 2V n −V n−1 for
n ≥ 1. The fully discrete second-order DRLM scheme is given by:

3Un+1 − 4Un +Un−1

2τ
− ν

(
AuU

n+1 +Un+1BT
u

)
+ qn+1F1(Ũ

n+1, Ṽ n+1) +ApP
n+1 = Fn+1

1 ,

3V n+1 − 4V n + V n−1

2τ
− ν

(
AvV

n+1 + V n+1BT
v

)
+ qn+1F2(Ũ

n+1, Ṽ n+1) + P n+1BT
p = Fn+1

2 ,

(−AT
p )U

n+1 + V n+1(−Bp) = O,

1

4τ

(
3∥Un+1∥2l2 + 3∥V n+1∥2l2 − 4∥Un∥2l2 − 4∥V n∥2l2 + ∥Un−1∥2l2 + ∥V n−1∥2l2

)
+ θ

3(qn+1)2 − 4(qn)2 + (qn−1)2

2τ
=

(
3Un+1 − 4Un +Un−1

2τ
+ qn+1F1(Ũ

n+1, Ṽ n+1),Un+1

)
l2

+

(
3V n+1 − 4V n + V n−1

2τ
+ qn+1F2(Ũ

n+1, Ṽ n+1),V n+1

)
l2
.

(3.6a)

(3.6b)

(3.6c)

(3.6d)

The implementation of the fully discrete DRLM schemes (3.5) and (3.6) can be carried out in the
same manner as in the semi-discrete case and is thus omitted.

3.2. Fully discrete energy stability

In this subsection, we show that the fully discrete DRLM schemes (3.5) and (3.6) are also
unconditionally energy stable.

Theorem 3.1. In the absence of the external force f , the fully discrete first-order DRLM scheme (3.5)
is unconditionally stable in the sense that, for n = 0, 1, · · · , Nt − 1,

1

2

(
∥Un+1∥2l2 + ∥V n+1∥2l2

)
+ θ

[
(qn+1)2 − 1

]
≤ 1

2

(
∥Un∥2l2 + ∥V n∥2l2

)
+ θ

[
(qn)2 − 1

]
.

Proof. Since f = [0, 0]T , both Fn+1
1 and Fn+1

2 (n ≥ 0) are zero matrices. Taking the discrete l2
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inner product of (3.5a) and (3.5b) with Un+1 and V n+1, respectively, we obtain(
Un+1 −Un

τ
+ qn+1F1(U

n,V n),Un+1

)
l2

= ν
(
AuU

n+1 +Un+1BT
u ,U

n+1
)
l2
− (ApP

n+1,Un+1)l2 , (3.7)(
V n+1 − V n

τ
+ qn+1F2(U

n,V n),V n+1

)
l2

= ν
(
AvV

n+1 + V n+1BT
v ,V

n+1
)
l2
− (P n+1BT

p ,V
n+1)l2 . (3.8)

For any matrices A,B,X, and Y , we have

(AX,Y )l2 = hxhyTr
(
(AX)TY

)
= hxhyTr

(
XTATY

)
= (X,ATY )l2 , (3.9)

(XBT ,Y )l2 = hxhyTr
(
(XBT )TY

)
= hxhyTr

(
BXTY

)
= hxhyTr

(
XTY B

)
= (X,Y B)l2 ,

(3.10)

provided that the above matrix products are well-defined. Using (3.9)-(3.10) and the fact that
AT
pU

n+1 + V n+1Bp = O obtained from (3.5c), yields

(ApP
n+1,Un+1)l2 + (P n+1BT

p ,V
n+1)l2 = (P n+1,AT

pU
n+1)l2 + (P n+1,V n+1Bp)l2

= (P n+1,AT
pU

n+1 + V n+1Bp)l2 = 0. (3.11)

It follows from the definitions of Au, Bv, Ap, and Bp (cf. (3.1)-(3.4)) that Au = −ApA
T
p and

Bv = −BpB
T
p . Consequently,(

AuU
n+1,Un+1

)
l2
= −

(
ApA

T
pU

n+1,Un+1
)
l2

= −
(
AT
pU

n+1,AT
pU

n+1
)
l2
= −

∥∥AT
pU

n+1
∥∥2
l2
≤ 0, (3.12)(

V n+1BT
v ,V

n+1
)
l2
= −

(
V n+1BpB

T
p ,V

n+1
)
l2

= −
(
V n+1Bp,V

n+1Bp

)
l2
= −

∥∥V n+1Bp

∥∥2
l2
≤ 0, (3.13)

where we have applied identities (3.9) and (3.10) to derive the above equalities. On the other hand,
both −Bu and −Av are symmetric positive definite matrices, they admit Cholesky decompositions
−Bu = RuR

T
u and −Av = RvR

T
v . By using the same arguments as in (3.12) and (3.13), we obtain(

Un+1BT
u ,U

n+1
)
l2
= −

∥∥Un+1Ru

∥∥2
l2
≤ 0, (3.14)(

AvV
n+1,V n+1

)
l2
= −

∥∥RT
v V

n+1
∥∥2
l2
≤ 0. (3.15)

Combining (3.7)-(3.8) and (3.11)-(3.15) gives us(
Un+1 −Un

τ
+ qn+1F1(U

n,V n),Un+1

)
l2
+

(
V n+1 − V n

τ
+ qn+1F2(U

n,V n),V n+1

)
l2
≤ 0.

This, together with (3.5d), leads to

1

2τ

(
∥Un+1∥2l2 + ∥V n+1∥2l2 − ∥Un∥2l2 − ∥V n∥2l2

)
+ θ

(qn+1)2 − (qn)2

τ
≤ 0,
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or equivalently,

1

2

(
∥Un+1∥2l2 + ∥V n+1∥2l2

)
+ θ(qn+1)2 ≤ 1

2

(
∥Un∥2l2 + ∥V n∥2l2

)
+ θ(qn)2,

which completes the proof of Theorem 3.1.

Theorem 3.2. In the absence of the external force f , the fully discrete second-order DRLM
scheme (3.6) is unconditionally stable in the sense that, for n = 1, 2, · · · , Nt − 1,

3

4

(
∥Un+1∥2l2 + ∥V n+1∥2l2

)
− 1

4

(
∥Un∥2l2 + ∥V n∥2l2

)
+ θ

[
3

2
(qn+1)2 − 1

2
(qn)2 − 1

]
≤ 3

4

(
∥Un∥2l2 + ∥V n∥2l2

)
− 1

4

(
∥Un−1∥2l2 + ∥V n−1∥2l2

)
+ θ

[
3

2
(qn)2 − 1

2
(qn−1)2 − 1

]
.

Proof. By taking the discrete l2 inner product of (3.6a) and (3.6b) with Un+1 and V n+1, respec-
tively, and noting that Fn+1

1 and Fn+1
2 (n ≥ 0) are zero matrices, we arrive at(

3Un+1 − 4Un +Un−1

2τ
+ qn+1F1(Ũ

n+1, Ṽ n+1),Un+1

)
l2

= ν
(
AuU

n+1 +Un+1BT
u ,U

n+1
)
l2
− (ApP

n+1,Un+1)l2 ,(
3V n+1 − 4V n + V n−1

2τ
+ qn+1F2(Ũ

n+1, Ṽ n+1),V n+1

)
l2

= ν
(
AvV

n+1 + V n+1BT
v ,V

n+1
)
l2
− (P n+1BT

p ,V
n+1)l2 .

Based on the proof of Theorem 3.1, we find that

ν
(
AuU

n+1 +Un+1BT
u ,U

n+1
)
l2
− (ApP

n+1,Un+1)l2

+ ν
(
AvV

n+1 + V n+1BT
v ,V

n+1
)
l2
− (P n+1BT

p ,V
n+1)l2 ≤ 0.

Therefore, (
3Un+1 − 4Un +Un−1

2τ
+ qn+1F1(Ũ

n+1, Ṽ n+1),Un+1

)
l2

+

(
3V n+1 − 4V n + V n−1

2τ
+ qn+1F2(Ũ

n+1, Ṽ n+1),V n+1

)
l2
≤ 0. (3.16)

The combination of (3.6d) and (3.16) results in

1

4τ

(
3∥Un+1∥2l2 + 3∥V n+1∥2l2 − 4∥Un∥2l2 − 4∥V n∥2l2 + ∥Un−1∥2l2 + ∥V n−1∥2l2

)
+ θ

3(qn+1)2 − 4(qn)2 + (qn−1)2

2τ
≤ 0.

This implies that

3

4

(
∥Un+1∥2l2 + ∥V n+1∥2l2

)
− 1

4

(
∥Un∥2l2 + ∥V n∥2l2

)
+ θ

[
3

2
(qn+1)2 − 1

2
(qn)2

]
≤ 3

4

(
∥Un∥2l2 + ∥V n∥2l2

)
− 1

4

(
∥Un−1∥2l2 + ∥V n−1∥2l2

)
+ θ

[
3

2
(qn)2 − 1

2
(qn−1)2

]
,

which concludes the proof of Theorem 3.2.
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Remark 3.1. (i) Let En1 and En2 (n ≥ 1) be the discrete error functions for q associated with the
first- and second-order DRLM schemes:

En1 (qn, θ) := θ
[
(qn)2 − 1

]
, En2 (qn, qn−1, θ) := θ

[
3

2
(qn)2 − 1

2
(qn−1)2 − 1

]
.

Under suitable choices of θ, it will be demonstrated in the numerical experiments (cf. Section 4)
that both En1 and En2 are significantly smaller than the main energy functional. Therefore, they can
be considered negligible in Theorems 2.1 and 2.2 (for the semi-discrete case) and Theorems 3.1 and
3.2 (for the fully discrete case).

(ii) The energy stability of the proposed DRLM schemes remains valid under certain mixed
boundary conditions. One typical example is the 2D Kelvin-Helmholtz instability (cf. Subsection
4.4), where periodic conditions are applied along the vertical boundaries while free-slip conditions
are imposed at the horizontal boundaries.

(iii) Due to the coupling between the Lagrange multiplier, velocity, and pressure, the fully discrete
convergence analysis of the proposed DRLM schemes (3.5) and (3.6) is challenging and remains
an open problem. We refer to [22] and [5] for error analysis of the MAC method applied to the
NS equations and other coupled physical systems involving fluid motion, such as the Cahn-Hilliard-
Hele-Shaw equation.

3.3. Preconditioned iterative solvers for generalized Stokes systems

The proposed first- and second-order DRLM schemes involve solving the following generalized
Stokes system at each time step (cf. (2.8), (2.9), (2.12), and (2.13)):{

αu− ν∆u+∇p = g,

∇ · u = 0,

(3.17a)

(3.17b)

where u = [u, v]T and p denote the velocity field and pressure, ν is the viscosity coefficient, g =
[g1, g2]

T is a given vector function, α = 1
τ for the first-order DRLM scheme, and α = 3

2τ for the
second-order DRLM scheme. After spatial discretization on the MAC staggered grid, system (3.17)
becomes 

αU − ν(AuU +UBT
u ) +ApP = G1,

αV − ν(AvV + V BT
v ) + PBT

p = G2,

(−AT
p )U + V (−Bp) = O,

(3.18a)

(3.18b)

(3.18c)

where U ,V , and P are the approximations of u, v, and p over Ωh,u,Ωh,v, and Ωh,p, respectively; G1

and G2 are the values of g1 and g2 over Ωh,u and Ωh,v, respectively. The matricesAu,Bu,Av,Bv,Ap,
and Bp are defined in (3.1)-(3.4).

System (3.18) can be transformed into the following saddle point problem:[
A BT

B O

] [
x
y

]
=

[
G
O

]
, (3.19)

where x =

[
vec(U)
vec(V )

]
, y = vec(P ), and G =

[
vec(G1)
vec(G2)

]
, with vec denoting the vectorization operator.

The coefficient matrix A is defined as

A =

[
αI(Nx−1)Ny

− ν(INy ⊗Au +Bu ⊗ INx−1) O

O αINx(Ny−1) − ν(INy−1 ⊗Av +Bv ⊗ INx)

]
,
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for the homogeneous Dirichlet boundary condition, and

A =

[
αINxNy − ν(INy ⊗Au +Bu ⊗ INx) O

O αINxNy − ν(INy ⊗Av +Bv ⊗ INx)

]
,

for the periodic boundary condition, where ⊗ denotes the Kronecker product. The matrix B is
given by:

B =
[
INy ⊗AT

p BT
p ⊗ INx

]
.

Since the pressure p is defined up to a constant, BT has a one-dimensional kernel. By fixing
P (1, 1) = 0, we may assume without loss of generality that BT has full rank.

Suppose that A ∈ Rn×n, B ∈ Rm×n (with m < n), and that A is decomposed as A = D −E,
where D is the diagonal matrix obtained from A. Let Ŝ = BD−1BT be an approximation of the
Schur complement matrix S = BA−1BT . As discussed in [3, 9], we consider the following block
preconditioner: [

D BT

B O

]−1

=

[
(In −D−1BT Ŝ−1B)D−1 D−1BT Ŝ−1

Ŝ−1BD−1 −Ŝ−1

]
. (3.20)

Preconditioning (3.19) from the left by (3.20) yields[
In − (In −D−1BT Ŝ−1B)D−1E O

−Ŝ−1BD−1E Im

] [
x
y

]
=

[
(In −D−1BT Ŝ−1B)D−1G

Ŝ−1BD−1G

]
. (3.21)

Therefore, solving (3.19) or (3.21) is equivalent to performing the following two steps:

(i) Solve for x the linear system[
In − (In −D−1BT Ŝ−1B)D−1E

]
x = (In −D−1BT Ŝ−1B)D−1G. (3.22)

(ii) Compute y from x by y = Ŝ−1BD−1(Ex+ G).

The linear system (3.22) can be solved using various iterative solvers; in the numerical experiments,
we employ the GMRES method. It is worth noting that Ŝ ∈ Rm×m is a sparse symmetric positive
definite matrix, allowing efficient computation of Ŝ−1z for any z ∈ Rm, such as via the incomplete
Cholesky decomposition.

4. Numerical experiments

In this section, we carry out several numerical experiments to verify the accuracy and energy
stability of the proposed first- and second-order DRLM schemes with difference choices of the
regularization parameter and Reynolds number. Various benchmark test cases in 2D and 3D,
including lid-driven cavity flow and Kelvin-Helmholtz instability, are also considered to validate
the performance of the proposed schemes, particularly the second-order one. For simplicity, we
choose the uniform MAC spatial mesh size h = hx = hy in 2D and h = hx = hy = hz in 3D. Unless
otherwise stated, the viscosity coefficient is defined as ν = 1

Re for a given Reynolds number Re.
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4.1. Convergence test

We set the spatial domain Ω = (0, 1)2 and the final time T = 1. The external force f is
computed according to the following analytic solution [19], whose velocity satisfies homogeneous
Dirichlet boundary conditions:

p(x, y, t) = cos(πx) sin(πy) sin(t),

u(x, y, t) = π sin2(πx) sin(2πy) sin(t),

v(x, y, t) = −π sin(2πx) sin2(πy) sin(t).

We first consider the case Re = 10 (i.e., ν = 0.1). To study the convergence of the DRLM schemes,

we vary both the spatial mesh size and time step size with h =
τ

8
and τ ∈

{
1
8 ,

1
16 ,

1
32 ,

1
64

}
. The L2

errors of the velocity and pressure, as well as the absolute errors of the Lagrange multiplier q with
different values of θ ∈ {10−2, 10−1, 1, 10, 102} are shown in Figure 2 for both first- and second-order
DRLM schemes. We observe that the errors in velocity, pressure, and q are large for small values
of θ, such as θ ∈ {10−2, 10−1}. We remark that when θ = 10−3 and τ ∈ {1

8 ,
1
16}, the second-order

scheme produces complex values for q after a certain number of iterations; therefore, we do not
consider θ = 10−3 in this case. Conversely, when θ ∈ {1, 10, 102}, q stabilizes closer to 1, resulting
in the expected convergence rates for the proposed schemes. This highlights the critical role of θ in
our DRLM formulations: if θ is too small or absent, the schemes produce incorrect solutions, but
they perform significantly better when θ is large enough, with a minimum value of 1.

Next, we increase the Reynolds number to Re = 1000 (i.e., ν = 0.001). Due to the explicit
treatment of the convection term which requires some CFL condition, we consider h = 4τ and
τ ∈

{
1

128 ,
1

256 ,
1

512 ,
1

1024

}
. The corresponding errors of the velocity, pressure, and Lagrange multiplier

for different values of θ ∈ {10−3, 10−2, 10−1, 1, 10} are presented in Figure 3. As θ increases, errors of
the concerned quantities become smaller, and both first- and second-order DRLM schemes exhibit
the correct order of convergence when θ ≥ 1. Note that the results with θ = 102 are almost identical
to those with θ = 10, thus omitted here. Moreover, for this case with a large Reynolds number,
θ = 10−3 could be used without leading to complex values for q; nevertheless, the expected accuracy
of the numerical solution is only achieved when θ is sufficiently large.

4.2. Energy dissipation test

We now examine the Taylor-Green vortex problem in Ω = (0, 1)2 with zero external force,
f = [0, 0]T , and the periodic boundary conditions. The exact solution to this problem is given by

u(x, y, t) = sin(2πx) cos(2πy)e−8π2νt,

v(x, y, t) = − cos(2πx) sin(2πy)e−8π2νt,

p(x, y, t) =
1

4
[cos(4πx) + cos(4πy)] e−16π2νt.

The original kinetic energy can be computed explicitly as follows:

K(u(t)) =
1

2

∫
Ω

[
u2(x, y, t) + v2(x, y, t)

]
dxdy =

1

4
e−16π2νt.

We set T = 20, Re = 1000, and h = 1.5τ = 0.01. The evolutions of K(un), K(u), and Eni (i = 1, 2)
generated by the first- and second-order DRLM schemes with θ ∈ {1, 100} are shown in Figure 4,
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Figure 2: [Convergence test, Re = 10] Errors of the velocity, pressure, and Lagrange multiplier by the first-order
(left) and second-order (right) DRLM schemes with h = τ

8
and difference values of θ.

where we clearly observe the energy decay property of the numerical solutions. Figure 4 also
confirms that the additional terms, En1 and En2 , in our energy stability analysis (cf. Theorems 2.1-
2.2 and 3.1-3.2) are negligible due to their small magnitudes. Furthermore, the results for θ = 1
and θ = 100 are quite similar, with the second-order DRLM scheme exhibiting better performance.
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Figure 3: [Convergence test, Re = 1000] Errors of the velocity, pressure, and Lagrange multiplier by the first-order
(left) and second-order (right) DRLM schemes with h = 4τ and difference values of θ.

4.3. Lid-driven cavity flow

Next, we demonstrate the accuracy of our new schemes through realistic physical simulations,
the well-known lid-driven cavity flow [11, 19, 21, 23] in 2D and [2, 20, 41, 14] in 3D. For the 2D
problem, the computational domain Ω = (0, 1)2 consists of three rigid walls (at x = 0, x = 1, and
y = 0) with no-slip boundary conditions and a lid (at y = 1) moving with a tangential unit velocity.
Since the exact solution to this problem is not available, we compare our numerical results with
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Figure 4: [Taylor-Green vortex, Re = 1000] Evolution of the energy functional and error function En
i (i = 1, 2) by

the first-order (left) and second-order (right) DRLM schemes with h = 1.5τ = 0.01.

the benchmark method in [11]. Using the second-order DRLM scheme with Re = 5000, θ = 100,
and h = 2τ = 1

256 , we perform the simulation until the steady state is reached, characterized
by ∥un − un−1∥∞ ≤ 10−6. Contour plots of the velocity magnitude at times t = 4, t = 6, and
t = 10 are presented in Figure 5. Figure 6 illustrates the velocity magnitude, vorticity, and stream
function at the final steady state, along with velocity components at the cavity centerlines, which
closely match the benchmark results [11]. As reported in [11] and [19], in addition to the primary
and secondary vortices at the bottom corners, a third vortex emerges in the upper left corner at
Re = 5000. Thus, our numerical simulation based on the DRLM approach accurately captures the
dynamic evolution of the velocity field, achieving the steady state that compares well with existing
results.

We proceed to consider the 3D lid-driven flow in a cubic cavity Ω = (0, 1)3, a natural extension
of the 2D driven cavity test case. The fluid is initially at rest and starts moving as the top lid
(at y = 1) is dragged at a constant unit speed in the positive x-direction. On all other sides,
the velocity satisfies homogeneous Dirichlet boundary conditions. With Re = 1000, θ = 100, and
h = 1.5τ = 0.01 fixed, we simulate the flow evolution using the second-order DRLM scheme until
the steady state is achieved, indicated by ∥un − un−1∥ ≤ 10−6. Figure 7 displays contour plots of
the vorticity components [ω1, ω2, ω3]

T = ∇ × u on the midplanes x = 0.5, y = 0.5, and z = 0.5,
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Figure 5: [2D lid-driven cavity, Re = 5000] Contour plots of the velocity magnitude at times t = 4, 6, and 10 by the
second-order DRLM scheme with h = 2τ = 1

256
.
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Figure 6: [2D lid-driven cavity, Re = 5000] Contour plots of the velocity magnitude, vorticity, and stream function
(top) and the velocity components along the centerlines (bottom) at the steady state by the second-order DRLM
scheme with h = 2τ = 1

256
.

respectively. The flow is symmetric about the plane z = 0.5, and the presence of Taylor-Görtler-like
vortices in the bottom region of the cavity is observed besides corner vortices, which are consistent
with those reported in [17, 28]. The distributions of the u- and v-velocity components along the
vertical (x = z = 0.5) and horizontal (y = z = 0.5) plane centerlines are provided in Figure 8,
demonstrating strong agreement with the benchmark results [2].
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Figure 7: [3D lid-driven cavity, Re = 1000] Contour plots of the vorticity components on the midplanes at the
steady state by the second-order DRLM scheme with h = 1.5τ = 0.01.
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Figure 8: [3D lid-driven cavity, Re = 1000] Velocity components along the centerlines at the steady state by the
second-order DRLM scheme with h = 1.5τ = 0.01.

4.4. Kelvin–Helmholtz instability

When there is an initial velocity difference across a shear layer, small disturbances can grow over
time, leading to the formation of vortices. This phenomenon is known as the Kelvin-Helmholtz
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instability. We consider the 2D NS equations in Ω = (0, 1)2 with f = [0, 0]T . At the top and
bottom boundaries of the domain Ω, we apply the conditions ∂u

∂y = 0 and v = 0, while at the left
and right sides of Ω, we impose periodic boundary conditions. Since no body forces are present,
the entire motion is driven by the initial condition, which is given by [31]:

u0(x, y) =

[
u∞ tanh

(
2y−1
δ0

)
0

]
+ cn

[
∂yψ(x, y)
−∂xψ(x, y)

]
,

with the corresponding stream function

ψ(x, y) = u∞ exp

(
−(y − 0.5)2

δ20

)
[cos(8πx) + cos(20πx)] .

Here, δ0 = 1
28 denotes the initial vorticity thickness, u∞ = 1 is a reference velocity, and cn = 10−3

is a scaling factor. With fixed Reynolds number Re = 100, the kinematic viscosity is given by
ν = δ0u∞

Re = 1
2800 . We take h = 1

256 , τ = 1
560 , θ = 100, and T = 200t with t = δ0

u∞
= 1

28
being the time unit. Evolution of the vorticity produced by the second-order DRLM scheme at
different times is illustrated in Figure 9. We observe that four vortices gradually emerge from the
initial condition, exhibiting instability and a tendency to merge into two larger vortices. These two
ellipsoidal vortices remain separated for a long time, with their magnitudes decreasing until the
final time T = 200t. Figure 10 confirms the energy dissipation of the system, in agreement with the
benchmark results [31], and shows the evolution of the discrete error function En2 , which remains
insignificant compared to the total energy.

5. Conclusions

In this work, we proposed a novel approach for solving the incompressible NS equations. By
introducing a dynamic equation involving the original energy, a Lagrange multiplier, and a regu-
larization parameter, the NS equations are reformulated into an equivalent system. Based on the
BDF method with an explicit treatment of the nonlinear convection, the first- and second-order
DRLM schemes were derived and shown to unconditionally satisfy the energy dissipation law. Fully
discrete energy stability was also carried out with the MAC spatial discretization. Unlike existing
Lagrange multiplier methods, the presence of the regularization parameter in the DRLM formu-
lation enables the use of large time step sizes while still ensuring the uniqueness of the Lagrange
multiplier and therefore the numerical solutions. Our numerical schemes are linear and easy to
implement, as they only require solving two generalized Stokes systems and a quadratic equation
at each time step. To further enhance the overall performance of the DRLM approach, we provided
efficient preconditioned iterative solvers for generalized Stokes systems. Various numerical experi-
ments in 2D and 3D were conducted to verify the convergence, energy stability, and the efficiency
of the proposed DRLM schemes. Future research includes fully discrete error analysis of the DRLM
schemes as well as application of the DRLM methods to other types of PDEs, such as the coupled
Cahn-Hilliard-Navier-Stokes system. Extension of the current approach to higher order DRLM
schemes using the BDF method will also be investigated; we refer to [10] for a discussion of high-
order BDF schemes with time filters and to [16] for the development of energy stable SAV-BDF
schemes up to fifth-order accuracy in time.
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Figure 9: [Kelvin-Helmholtz instability, Re = 100] Evolution of the vorticity at different times t = 10t, 17t, 42t, 50t,
140t, and 200t by the second-order DRLM scheme with h = 1

256
and τ = 1

560
.
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Figure 10: [Kelvin-Helmholtz instability, Re = 100] Evolution of the energy functional and error function En
2 by the

second-order DRLM scheme with h = 1
256

and τ = 1
560

.

Appendix A. Proof of energy stability for the first-order pressure-correction DRLM
scheme (2.17)

Proof. Adding equations (2.17a) and (2.17b) together, noting that f = 0, yields

un+1 − un

τ
− ν∆un+1 + qn+1F (un) +∇pn+1 = 0.

This implies that(
un+1 − un

τ
+ qn+1F (un),un+1

)
=

(
ν∆un+1 −∇pn+1,un+1

)
= −ν

∥∥∇un+1
∥∥2 − (

∇pn+1,un+1 − un+1
)
, (A.1)

where in the last identity, we have used integration by parts and the fact that
(
∇pn+1,un+1

)
= 0

due to the incompressibility condition (2.17c). From (2.17b), we have un+1−un+1 = τ∇(pn+1−pn).
Therefore, (A.1) can be written as(
un+1 − un

τ
+ qn+1F (un),un+1

)
= −ν

∥∥∇un+1
∥∥2 − τ

(
∇pn+1,∇(pn+1 − pn)

)
= −ν

∥∥∇un+1
∥∥2 − τ

2

(
∥∇pn+1∥2 − ∥∇pn∥2 + ∥∇(pn+1 − pn)∥2

)
≤ −τ

2

(
∥∇pn+1∥2 − ∥∇pn∥2

)
. (A.2)

Combining (2.17d) and (A.2) gives us

K(un+1)−K(un)

τ
+ θ

(qn+1)2 − (qn)2

τ
≤ −τ

2

(
∥∇pn+1∥2 − ∥∇pn∥2

)
,

which leads to

K(un+1) +
τ2

2
∥∇pn+1∥2 + θ(qn+1)2 ≤ K(un) +

τ2

2
∥∇pn∥2 + θ(qn)2.

Thus, (2.22) holds true for 0 ≤ n ≤ Nt − 1.
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Appendix B. Proof of energy stability for the second-order rotational pressure-correction
DRLM scheme (2.18)

Proof. Let sn := ∇·
n∑
i=1

ui for n ≥ 1, we have ∇·un+1 = sn+1−sn. By taking the sum of equations

(2.18a) and (2.18b), we obtain

3un+1 − 4un + un−1

2τ
− ν∆un+1 + qn+1F (ũn+1) +∇(pn+1 + νsn+1 − νsn) = 0.

It follows that(
3un+1 − 4un + un−1

2τ
+ qn+1F (ũn+1),un+1

)
=

(
ν∆un+1 −∇(pn+1 + νsn+1 − νsn),un+1

)
= −ν∥∇un+1∥2 + ν

(
∇sn,un+1

)
−
(
∇(pn+1 + νsn+1),un+1 − un+1

)
, (B.1)

where in the last equality, we have used integration by parts and the fact that
(
∇(pn+1 + νsn+1),un+1

)
=

0 due to (2.18c). It is implied from (2.18b) that

un+1 − un+1 =
2τ

3
∇(pn+1 + νsn+1 − pn − νsn). (B.2)

The combination of (B.1) and (B.2) results in(
3un+1 − 4un + un−1

2τ
+ qn+1F (ũn+1),un+1

)
= −ν∥∇un+1∥2 + ν

(
∇sn,un+1

)
− 2τ

3

(
∇(pn+1 + νsn+1),∇(pn+1 + νsn+1 − pn − νsn)

)
. (B.3)

Since ∇ · un+1 = sn+1 − sn and ∥∇ · un+1∥ ≤ ∥∇un+1∥, the second term on the right hand side of
(B.3) can be estimated as

ν
(
∇sn,un+1

)
= −ν(sn,∇ · un+1) = −ν(sn, sn+1 − sn)

= −ν
2

(
∥sn+1∥2 − ∥sn∥2 − ∥sn+1 − sn∥2

)
= −ν

2

(
∥sn+1∥2 − ∥sn∥2

)
+
ν

2
∥∇ · un+1∥2

≤ −ν
2

(
∥sn+1∥2 − ∥sn∥2

)
+
ν

2
∥∇un+1∥2. (B.4)

Using the inequality a(a − b) ≥ 1
2(a

2 − b2), the last term on the right hand side of (B.3) can be
bounded by

− 2τ

3

(
∇(pn+1 + νsn+1),∇(pn+1 + νsn+1 − pn − νsn)

)
≤ −τ

3

(∥∥∇(pn+1 + νsn+1)
∥∥2 − ∥∇(pn + νsn)∥2

)
. (B.5)
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From (B.3), (B.4), and (B.5), we derive(
3un+1 − 4un + un−1

2τ
+ qn+1F (ũn+1),un+1

)
≤ −ν

2

(
∥sn+1∥2 − ∥sn∥2

)
− τ

3

(∥∥∇(pn+1 + νsn+1)
∥∥2 − ∥∇(pn + νsn)∥2

)
. (B.6)

Combining (2.18d) and (B.6) yields

3K(un+1)− 4K(un) +K(un−1)

2τ
+ θ

3(qn+1)2 − 4(qn)2 + (qn−1)2

2τ

≤ −ν
2

(
∥sn+1∥2 − ∥sn∥2

)
− τ

3

(∥∥∇(pn+1 + νsn+1)
∥∥2 − ∥∇(pn + νsn)∥2

)
,

or equivalently,

3

2
K(un+1)− 1

2
K(un) +

τ2

3

∥∥∇(pn+1 + νsn+1)
∥∥2 + τν

2
∥sn+1∥2 + θ

[
3

2
(qn+1)2 − 1

2
(qn)2

]
≤ 3

2
K(un)− 1

2
K(un−1) +

τ2

3
∥∇(pn + νsn)∥2 + τν

2
∥sn∥2 + θ

[
3

2
(qn)2 − 1

2
(qn−1)2

]
.

Thus, we obtain (2.23) for 1 ≤ n ≤ Nt − 1.
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