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Abstract
Our goal is to provide integrated lessons where computer programming concepts are introduced based on mathematics. 
We consider the development of lessons that would be interesting to our students. At the middle school level, digital video 
generation is used to introduce coding. At the graduate level, we look at the convergence of machine learning models dur-
ing training. We introduce middle-school students to computer programming through the use of variables, linear equations, 
and basic algebraic expressions. We motivate students to create digital images using NumPy arrays by experimenting with 
number representations and coordinate systems. The students create digital videos by building their video characters and 
moving them around from frame to frame. At the graduate level, we describe how Real Analysis can be applied in Optimiza-
tion Theory. The students saw and appreciated the connections between Mathematics and Computer Programming. In the 
graduate course, the students appreciated the rigorous results on the convergence of neural network models. The approach 
also produced conditions for guaranteeing that the neural network models are uniformly continuous. We have found that the 
students strongly appreciated the integration of mathematical concepts into basic and advanced coding courses.

Keywords  Mathematics and computer programming · Teaching computer science · Machine learning algorithms · 
Uniformly continuous neural network models

Introduction

There is a strong need to teach the fundamentals of com-
puter programming to the general population [1]. Unfor-
tunately, often, schools allocate very little to no time for 
educating students how to code. On the other hand, schools 
are required to provide coursework in mathematics through-
out K-12. Furthermore, many of the skills that are taught 
in mathematics classes are also essential for understanding 
computer programming. As an example, both mathemat-
ics and computer programming encompass foundational 
concepts and necessitate logical thinking, problem-solving 
abilities, and the application of creativity. In this paper, we 
propose to teach computer programming building on its con-
nections to the underlying mathematics [1–3].

By leveraging students’ mathematical knowledge, stu-
dents, and even teachers, can also save considerable time 
that would otherwise be spent introducing each coding con-
cept independently from its mathematical counterpart, such 
as the concept of variables. Learning coding in conjunc-
tion with mathematics also enables students to revisit and 
explore mathematical concepts in greater depth, creating a 
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reciprocal relationship between mathematics and computer 
programming. This integration facilitates greater accessi-
bility to computer programming for students who may not 
initially have a natural inclination toward the subject [4–6]. 
By embedding computer programming within the context of 
mathematics, it becomes more appealing and approachable, 
capturing the interest and engagement of a wider range of 
students. The interconnectedness of mathematics and com-
puter programming creates a reciprocal learning process: 
from mathematics to computer programming, and back 
from computer programming to mathematics. This inte-
grated approach empowers students to develop knowledge 
and a versatile skill set that seamlessly bridges the realms of 
mathematics and computers, preparing them to thrive in an 
increasingly digital and technologically-driven world.

We present two examples of our efforts. First, we sum-
marize how the underlying middle-school mathematics was 
used to introduce advanced NumPy programming concepts 
in the Advancing Out-of School Learning in Mathematics 
and Engineering (AOLME) project. The successful learn-
ing of fundamental mathematical concepts in the AOLME 
project has already been documented in [4, 7]. In the current 
paper, we focus on the coding aspects of the project and how 
it is introduced from the underlying middle-school math-
ematics. Second, motivated by the success of the AOLME 
project, we present how the same ideas can be applied in a 
graduate course in optimization that uses Real Analysis for 
selecting an optimal Neural Networks model. For this appli-
cation, we review how Real Analysis can be used to estab-
lish convergence of the validation loss sequence generated 
during neural network training. We also derive conditions 
that guarantee that the generated neural network models are 
uniformly continuous. This effort extends our prior efforts 
to introduce Linear Algebra methods to understand Neural 
Networks as detailed in [8].

The rest of the paper is organized into 4 sections. In 
Sect. “Background”, we review prior pedagogical efforts 
to integrate mathematics and computer programming. In 
Sect. “Methods: Teaching Computer Programming with 
Mathematics”, we describe our methodology. We pro-
vide results from student interviews in Sect.  “Results 
from Student Interviews” and concluding remarks in 
Sect. “Conclusion”.

Background

There was a continuous endeavor to connect computer pro-
gramming to mathematics [9–16]. Articles delve into the 
interplay between mathematics and computer programming, 
each offering unique perspectives and ideas.

The article by Feurzeig, Papert, and Lawler [9] explores 
the use of programming languages as a conceptual 

framework for teaching mathematics. This work empha-
sizes the potential of computer programming to enhance 
students’ mathematical understanding and problem-solv-
ing abilities. The authors argue that programming lan-
guages provide a unique platform that encourages active 
engagement, promotes critical thinking, and facilitates the 
development of mathematical reasoning skills.

Goldenberg and Carter [17] focus on the use of com-
puter programming as a language for young children in 
elementary grades to explore concepts in the mathematics 
classroom. They argue that, when young children engage 
with computer programming, they also connect to math-
ematical practices. The authors argue that when connected 
to classroom mathematics, computer programming can 
be used as a third language that decreases barriers and 
provides young students with the expressive and creative 
skills they need. Similarly, Benton and colleagues [18] 
also designed curriculum materials and professional devel-
opment to support mathematical learning through com-
puter programming for young children aged between 9 and 
11 years. The authors discovered that by implementing the 
program, key foundational concepts become more accessi-
ble to students. Solin and Roanes-Lozano [19] approached 
computer programming as an effective complement to 
mathematics education and they also conclude that com-
puter programming actually provided more engaging ways 
to teach mathematical practice standards to students.

In secondary school level, Kaufmann and Stenseth [11] 
investigated how computer programming can be inte-
grated in mathematics using Processing (Processing is a 
Java based tool primarily to learn program visual effects 
supported and distributed by The Processing Foundation). 
The analysis illustrates students’ reasoning when using 
Processing to solve mathematical problems. The students 
showed a growth in their argumentation ability, going from 
basic to more complicated arguments.

In undergraduate level, Wilensky [20] explored the use 
of the Logo programming language as a tool to develop 
undergraduate students’ understanding of mathemati-
cal concepts. He argues that Logo programming offers a 
unique opportunity for students to build tangible connec-
tions between mathematics and computer programming by 
engaging in hands-on activities. The article emphasizes the 
importance of creating meaningful connections between 
mathematics and computer programming to enhance stu-
dents’ mathematical understanding and problem-solving 
skills. Sangwin and O’Toole [21] investigated how much 
computer programming is integrated into the curricula of 
British undergraduate mathematics majors. The authors 
found that whereas computer programming is taught to all 
undergraduate mathematics students in 78% of BSc degree 
courses, in 11% of mathematics degree programs it is not.
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Olteanu [22] suggests several recommended conditions 
for fostering mathematical reasoning and sense-making 
through the use of an educational programming tool. 
These conditions include adequate teacher interventions, 
the design of rhizomatic tasks, the identification of criti-
cal aspects, and the utilization of patterns of variation. 
By adhering to these conditions, educators can create an 
environment that nurtures students’ mathematical think-
ing and promotes their ability to make meaningful con-
nections and discoveries while engaging with educational 
programming tools.

Collectively, this body of literature provides valu-
able insights into the intricate and ever-evolving inter-
play between mathematics and computer programming. 
However, despite the knowledge available, a notable gap 
remains in the absence of a comprehensive curriculum 
intentionally designed to connect computer programming 
with mathematics. While the existing literature offers 
glimpses into the potential synergy between these disci-
plines, there is a need for a cohesive and structured edu-
cational framework that purposefully integrates the two 
fields. Such a curriculum would not only bridge the gap 
but also unlock the full potential of combining mathemat-
ics and computer programming in educational settings.

The authors [6, 7] also explored the experiences of 
bilingual Latinx co-facilitators with the new mathemat-
ics and computer programming integrated curriculum. 
The co-facilitators experienced a shift in their percep-
tion of mathematics as they utilized computer program-
ming tools in the new curriculum, resulting in a more 
relatable and meaningful understanding. Embracing their 
role as co-facilitators, they effectively taught computer 
programming practices and fostered a positive learning 
environment. The authors found increases in enjoyment 
and self-confidence when middle school students took on 
the co-facilitator role. The study highlights the potential 
for middle school students, particularly those who are 
bilingual, to excel in computer programming and bilin-
gual teaching while assuming new roles and goals. The 
findings from this study indicate that when middle school 
students have the opportunity to co-teach mathematics 
and computer programming concepts, they solidify their 
understanding of these concepts. In a recent study, the 
authors [4, 5] explored the relationship Latinx students 
developed with Computer Programming and Mathematics 
(CPM) while experiencing CPM curriculum in an after-
school setting. Students had significant increases in their 
self-reported enjoyment and knowledge in CPM as they 
engaged in the program and the program prepared stu-
dents with the foundational knowledge, skills, and prac-
tices for future endeavors in STEM fields.

Methods: Teaching Computer Programming 
with Mathematics

Motivation and Setup

In designing our curriculum, we wanted to follow a 
few guiding principles to help us design effective cod-
ing activities. First, we wanted to build coding activities 
based on the underlying mathematics. Our goal here is 
to build a better understanding of coding concepts by 
building on students’ understanding of basic mathemati-
cal concepts. At the middle-school level, we wanted the 
students to understand coding variables and basic alge-
braic operations through their mathematical equivalents. 
At the graduate-level, for the optimization theory course, 
we wanted to review and borrow concepts of Real Analy-
sis, which provides basic definitions of convergence. For 
the computer vision course, we introduced fundamental 
concepts in Linear Algebra and vector spaces as outlined 
in [8]. An advantage of the approach is that the students 
get to use their mathematical knowledge to understand 
new concepts in basic coding and advanced coding issues 
in programming machine learning optimization methods. 
Furthermore, by connecting coding to middle-school math, 
the middle-school teachers were able to make the connec-
tions to coding in their regular classroom lessons. At the 
graduate level, the material from Real Analysis allowed 
the students to understand how they can achieve conver-
gence during the training of neural network models. A 
disadvantage of the approach comes from the fact that 
the students need to carefully review and understand the 
underlying mathematics. Alternatively, teaching computer 
programming without using the underlying mathematics 
may lead to a superficial understanding of coding fun-
damentals. Furthermore, for the middle-school lessons, 
without the connections to the underlying math, the math 
teachers would not have been able to make connections 
in their regular math classrooms. Second, we wanted to 
introduce activities that the students would find interesting 
and motivational to support further study. At the middle-
school level, the students were very excited at the idea of 
generating digital videos. At the graduate-level, the stu-
dents were very interested to learn how to train neural 
network models. Third, we wanted our activities to be fun, 
and exploratory and to allow the students to experiment. 
At the middle-school level, the students experimented with 
algebraic equations in the number guessing game. Later 
on, they had fun exploring how image representations were 
used to generate different videos. At the graduate-level, 
the students would get to study the convergence of their 
neural networks models through the training process in 
the final projects.
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Middle‑School Mathematics and Computer 
Programming

We summarize our introduction to coding using Mathemat-
ics in Table 1. The table summarizes elements of Level 1 of 
the AOLME curriculum. In AOLME, the students worked 
collaboratively in small groups. Each group was led by an 
undergraduate facilitator and a middle-school student co-
facilitator. The goal of the curriculum was to introduce the 
students to coding by building their understanding based on 
middle-school mathematics. The students worked in Python 
on the Raspberry Pi.

The first computer programming assignment was based 
on the number guessing game. The number guessing game 
allowed us to follow our guiding principles to design activi-
ties based on the underlying math, to make it interesting, and 
fun, exploratory, allowing the students to experiment. The 
students are asked to memorize an integer between 1 and 
10. They then apply basic linear operations to their num-
ber (e.g., multiply and add), and then provide the computer 
with the result. The computer then guesses their number by 
using the inverse operations. To understand the code, the 
students need to review variables, basic algebraic operations, 
and linear equations. Here, we note that the use of algebra 
provided an entry point into coding. It enabled the students 
to understand variables through Algebra.

The students also learned about different number repre-
sentations during middle-school. This mathematical back-
ground allowed us to introduce binary numbers and hexa-
decimals and make the connections to their mathematics 
lessons. Similarly, coordinate systems served as an entry 
point to NumPy arrays and array indexing. Different shapes 
were constructed by filling rectangular shapes with differ-
ent colors.

Initially, the students thought about their video characters 
as continuous shapes. They quickly discovered the need to 
approximate their characters using rectangular color regions. 
They then worked on putting together their videos as char-
acters moving through the videos (see Table 1).

Understanding the Convergence of Machine 
Learning Algorithms Using Real Analysis

The successful integration of middle-school mathematics 
with computer programming motivated the introduction 
of more advanced mathematics for understanding machine 
learning models. The focus of this effort focused on 
establishing convergence during the training of machine 
learning models. We begin with a simple model for train-
ing machine learning models. We then proceed to apply 
fundamental theorems from Real Analysis to establish 
convergence.

We summarize the training process in the following 
pseudocode:

1: i ← 1
2: j ← 0
3: BestEpoch ← 1
4: BestLoss ← ∞
5: Patience ← smallNumber
6: for epoch = 1 to MaxEpochs do
7: Train weights Wi for model Fi

8: Compute training loss Ti

9: Compute validation loss Li

10:

11: if Li < BestLoss then
12: j ← j + 1
13: MinLossesj ← Li

14: BestLoss ← Li

15: BestEpoch ← i
16: Save model fi
17: end if
18:

19: if epoch > BestEpoch+ Patience then
20: Stop training
21: end if
22: i ← i+ 1
23: end for

Table 1   The integration of computer programming and middle-school mathematics during Level 1 of the AOLME curriculum

Mathematics Computer Programming

Algebraic operations and their inverses, variables, linear equations Number guessing game with linear equations
Binary, decimal, hexadecimal number systems and conversions between 

them
Digital color pixels using hexadecimals, 3-tuples

Coordinate systems NumPy Arrays, working with rectangular regions in Python
Coordinate plane grid, shapes using rectangles, hexadecimals Digital color image representations using NumPy arrays and hexa-

decimals
Approximate continuous-space shapes using digital rectangles Design game characters using color image representations
Motion, 2D+time Design character movements, video frames, Python lists, frames per 

second
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The algorithm generates several sequences of real num-
bers and model functions. More specifically, we generate the 
following sequence of loss values:

Training loss values: T1, T2, T3,… .

Validation loss values: L1, L2, L3,… .

Minimum loss  values:  MinLosses1,MinLosses2,

MinLosses3,… .

Here, we note that the MinLossesi sequence is a subsequence 
of the validation losses Li.

We next describe the process of early stopping. The 
algorithm saves the current optimal model that is associ-
ated with a minimum validation loss. The expectation is that 
the validation loss will be reduced with every epoch. We use 
the BestEpoch to keep track of the epoch that produced the 
minimum validation loss. Then, if the current epoch is more 
than the Patience number of epochs, we stop the training. 
In other words, we stop waiting for the validation loss to be 
reduced any further.

We further demonstrate the early stopping process in 
Fig. 1. From Fig. 1, we can see that the training loss is sig-
nificantly reduced with the number of epochs. On the left 
plot of Fig. 1, we can see a gap between the validation loss 
and the training loss. Here, a large validation loss indicates 
that the model does not generalize very well. To address the 
issue, a standard approach is to try to use data augmenta-
tion to increase the training set. As demonstrated in [23] 
(see Figs. 5.12 and 5.13), data augmentation may help bring 
down the validation loss to the training loss as shown in the 
right plot of Fig. 1.

We demonstrate early stopping using sequences 
in Fig. 2. In Fig. 2, the red dots are used to mark the 
sequence of MinLosses1,MinLosses2,MinLosses3,… . The 
effect of the Patience value is also shown in the Figure. A 
small value will terminate execution early. We will return 

to this figure to examine convergence after we introduce 
some basic terms from Real Analysis.

Let us return to the left plot of Fig. 1. When the vali-
dation loss function remains above an earlier minimum 
value, then early stopping will terminate training. In what 
follows, we will examine the case when the validation loss 
function keeps decreasing. This case corresponds to the 
right plot of Fig. 1 and Fig. 2. In this case, we need to bor-
row results from Real Analysis to establish convergence.

We are also concerned with the convergence of a 
sequence of neural network functions:

where each Fn has a domain in Rp and a range in Rq . In 
other words, we allow our neural network functions to map 
input vectors to output vectors. For our models, we assume 
that the inputs consist of the weights and input signals. We 
would like to understand when the sequence Fn converges 
to F: Fn → F.

In summary, when there is no observed minimum criti-
cal point in our validation loss sequence, we ask the fol-
lowing questions: 

Q1.	� What conditions can we impose to guarantee the con-
vergence of the validation loss function?

Q2.	� What conditions should we impose to guarantee the 
convergence of large weight vectors?

Q3.	� What conditions do we need to impose on neural net-
work model functions to guarantee convergence?

F1,F2,F3,… .

Fig. 1   Early stopping examples. Left: High validation loss with gap 
from training loss indicates bad generalization of the machine learn-
ing model. Right: Low validation loss that follows training loss indi-
cates good training with data augmentation (see text)

Fig. 2   Convergence of the minimum validation loss. In the example, 
we assume that the loss function has a lower-bound
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Q4.	� What conditions do we need to impose on neural net-
work model functions to guarantee convergence for a 
layer with an infinitely large number of connections?

Q5.	� What conditions do we need to impose on the input 
images (or videos) and neural network models so as 
to achieve uniform continuity?

 Our questions are motivated by the need to establish conver-
gence properties for large neural network models. We will 
tackle each question in detail in the next subsections.

Convergence of Sequences and Vectors

We begin with the study of the convergence of a sequence of 
real numbers. A sequence of numbers may either converge 
or diverge (e.g. page 128 in [24]). We say that a sequence 
converges when it gets arbitrarily close to its limit as n → ∞ . 
Otherwise, the sequence is divergent.

We demonstrate the definition in Fig. 3. On the left, we 
can see that the loss function oscillates between two val-
ues. It clearly does not get arbitrarily close to a limit. The 
sequence is divergent. On the right, we can see that after a 
while, the sequence gets very close to it’s minimal value. 
The loss sequence depicted on the right image is convergent.

We can now provide the formal mathematical definition. 
Let L be the limit. Then the sequence:

converges to L, provided that for any desired 𝜖 > 0 , we can 
find an N(�) , beyond which, we can get � close to L as given 
by:

In other words, if we wait long enough, we get very close 
to our limit. Going back to Fig. 3, oscillations take us away 
from any limit because we want to be able to push � to very 
small values. On the other hand, in the right image, it is clear 

L1, L2, L3,…

|LN+1 − L| < 𝜖, |LN+2 − L| < 𝜖, |LN+3 − L| < 𝜖,… .

that we can drive � to arbitrarily small values and we are still 
close to our limit.

We can also define convergence for vectors (e.g., weight 
vectors). In this case, we use the standard Euclidean norm 
to define the length of a vector:

Similarly, we measure the distance between vectors using:

As for real numbers, for vectors, a sequence is defined to 
be convergent if we can get arbitrarily close to its limit as 
n → ∞ and measured by d(.,  .). We will use this type of 
convergence for the weight parameters.

Convergence for a Decreasing Validation Loss 
Sequence

We summarize the basic theorems from Real Analysis in 
Table 2 (see [24–26]). Here, we note that the most basic 
requirement is for the loss functions to be bounded. We note 
that the majority of loss functions are bounded below by 
zero. When such a bound exists, even for infinite sequences, 
then the best possible achievable minimum value is given by 
the greatest lower bound (theorem 1). The greatest lower 
bound provides the optimal validation loss.

For a bounded loss function, the convergence of the early 
stopping algorithm is guaranteed by Theorem 4. Return-
ing to Fig. 2, we can see that the red points representing 
MinLossesi correspond to a convergent subsequence that will 
achieve the optimal validation loss for infinite patience.

Theorem  7 makes it clear that convergence requires 
beyond a certain epoch, all validation losses will get infi-
nitely close to each other. Here, the emphasis is on all 
losses. We note that the standard practice of examining 
|Li+1 − Li| < 𝜖 to terminate an algorithm is not sufficient. 
Instead, we require that |Ln − Lm| < 𝜖 for some sufficiently 
large N and n,m > N . The theorem makes it clear that oscil-
lating sequences are not convergent unless the amplitude of 

||v|| = [v2
1
+ v2

2
+⋯ + v2

m
]1∕2.

d(w, v) = [(w1 − v1)
2 + (w2 − v2)

2 +⋯ + (wm − vm)
2]1∕2.

Fig. 3   Every generated loss 
function is classified as diver-
gent (left) or convergent (right)
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the oscillation keeps decreasing to zero. Here, we note that 
reducing the step size will hopefully reduce the oscillation 
magnitude of the validation loss. If the oscillation magnitude 
does not tend to zero, we are not converging.

In order to guarantee convergence, without knowing con-
vergence limit, we turn to a simple ratio test. Let the change 
in validation loss be: ΔLi = |Li − Li−1| . Then, based on the 
triangular inequality, we have that:

From the standard ratio test, we can guarantee convergence 
of Li provided that ΔLi∕ΔLi−1 < 1 as n → ∞ . In practice, 
we want to develop a metric that the sequence satisfies the 
convergence criterion for a minimum number of epochs Min-
ConvCount. The following code implements the idea:

1: ConvCount ← 0
2: while ConvCount < MinConvCount do
3: . . .
4: ∆Li ← |Li − Li−1|
5: r ← ∆Li/∆Li−1
6: if r < 1 then
7: ConvCount ← ConvCount+ 1
8: else
9: ConvCount ← 0

10: end if
11: end while

Here, we note that convergence is guaranteed if 
ConvCount,MinConvCount → ∞.

Overall, convergence may not be associated with achiev-
ing an actual minimum. We can get convergence because the 
loss function is bounded (theorem 2). As long as we are are 

|Li| ≤ |LN| +
j=i∑

j=N+1

ΔLj, for N < i.

reducing the loss function, that is also bounded below, we 
will converge to some minimal value (theorem 4). On the 
other hand, Real Analysis also makes it clear that we may 
be able to converge to a minimum by selecting a decreasing 
subsequence from a bounded function (theorem 5 + theo-
rem 4). Collectively, theorems 1 to 7 provide great insight 
into the behavior of an infinite sequence of validation loss 
function values.

Series Convergence and Absolute Summability

In Neural network layers with lots of connections, we are 
interested in adding up the contributions from each connec-
tion. For this to work, we require absolute summability as 
given by:

We cannot relax this requirement. Here, we note a celebrated 
result by Riemann that showed that if the sum is condition-
ally convergent but does not satisfy (1), then we can re-
arrange the terms in the sum to add up to any number (e.g., 
see Chapter 1 in [27]).

Guaranteeing the Convergence of the Weight Vector 
Sequence

We now turn to the weight vector sequence. During train-
ing, the weight vectors can grow unbounded. This is the 
well-known problem of exploding gradients used to update 
the weights. We will now derive an approach that avoids 
this problem while also guaranteeing the convergence of the 
weight vector sequence.

In Table 2, theorem 6 guarantees that the validation loss 
will have a convergent subsequence as long as it remains 

(1)
∑
k

|ak| < ∞.

Table 2   Mathematical sequence theorem implications for loss function minimization

Real Analysis Machine Learning

Theorem 1. Every non-empty set that is bounded below will possess a 
greatest lower bound

Minimization of a loss function bounded below (e.g. zero) will possess 
a greatest lower bound

Theorem 2. Every real, bounded, infinite set possesses at least one 
limit point

After a large number of iterations, the minimization of a bounded loss 
function will make the algorithm produce a limit point

Theorem 3. Every convergent sequence is bounded Loss function convergence implies it remains bounded during training
Theorem 4. A monotone decreasing sequence that is bounded below 

will converge to a minimum
The MinLosses

i
 sequence is clearly a monotone decreasing sequence. 

If the loss function is also bounded below, then it will converge to a 
minimum value

Theorem 5. Every sequence has a monotone subsequence We can always select a decreasing or an increasing subsequence of 
iterations from an optimization algorithm

Theorem 6. Every bounded sequence has a convergent subsequence Optimization of bounded loss functions will always converge
Theorem 7. A sequence converges if and only if it is Cauchy An algorithm converges if and only if all iterations beyond a certain 

number get close to each other
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bounded. The Bolzano-Weierstrass theorem extends the 
result to vectors. The theorem states that every bounded 
sequence in Rm has a convergent subsequence (e.g., page 
53 [28]). We will use the Bolzano-Weierstrass theorem to 
guarantee the convergence of the weight sequence.

Let n represent the number of weight components and 
M represent the total sum of all the absolute values of all 
components. We restrict the weights to a bounded set using:

We then have that:

Given the fact that the weights are bounded, the Bolzano-
Weierstrass theorem guarantees that the sequence W1,W2,… 
will contain a convergent subsequence.

Convergence of Neural Network Models

In this section, we study the convergence of neural network 
functions. We will use one-dimensional plots to introduce 
the concepts and expand our discussion to vector functions.

We define the pointwise convergence of a sequence of 
functions over a set S by requiring convergence of the values 
that it generates (e.g., page 261 in [24]):

A sequence of functions f1, f2, f3,… uniformly converges to 
f provided that for any given 𝜖 > 0 , we have that:

for some n ≥ K and for all x ∈ S . Unlike pointwise conver-
gence, the key requirement for uniform convergence is that 
� remains constant for all values of x. We demonstrate the 
definition in Fig. 4. In Fig. 4, we can see that fn lies between 
f (x) − � and f (x) + �.

For neural network functions, uniform convergence 
requires that for any 𝜖 > 0 , we can find an N such that (page 
170 in [28]):

Suppose that Fn maps elements in D to Rm . We have the fol-
lowing (page 173 in [28]): 

1.	 Fn converges pointwise to some function F if and only if 
Fn(X) is a Cauchy sequence for each X ∈ D.

2.	 Fn converges uniformly to some function F if and only if 

(2)Wi =

{
wi if |wi| ≤ M

n
M

n
otherwise.

∑
i

|Wi| < nM

n
= M < ∞.

f (x) = lim
n→∞

fn(x), x ∈ S.

f (x) − 𝜖 < fn(x) < f (x) + 𝜖,

||F(X) − Fn(X)|| < 𝜖, n > N, x ∈ S.

As before, testing for Cauchy sequences is computationally 
expensive. Here, we consider a much simpler approach.

Recall that we know how to guarantee the generation of a 
converging subsequence by bounding the weight sequence as 
described in Sect. 3.7. Suppose that Wn represents a converg-
ing subsequence. Furthermore, suppose that W∗ represents the 
limit of the subsequence. We write Wn → W∗ . Furthermore, 
let X0 be any given input signal (e.g., an image or a video). To 
prove convergence we only require that the neural-network 
models are continuous. In this case, we converge as given by 
(e.g., see continuity discussion on page 15 of [27]):

We will extend this result even further in section 3.10.

Convergence for a Large Number of Connections

Given the development of large models, we are also interested 
in the case when a layer includes a large number of connec-
tions. In this case, we consider the requirement for conver-
gence for the infinite series given by:

In this case, suppose that

lim
k,n→∞

sup
X∈D

||Fk(X) − Fn(X)|| = 0.

(3)lim
n→∞

F
n
(X0) = lim

n→∞
F(W

n
,X0)

(4)= F

(
lim
n→∞

W
n
,X0

)

(5)= F(W∗,X0).

∞∑
i=1

wifi(x).

Fig. 4   Uniform convergence for a one-dimensional function
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Then by the Weirstrass M-test (page 223 in [29], page 174 
in [28]), we have that:

Here, we note that a bounded sum of positive numbers will 
only converge to a limit.

To satisfy the requirement for convergence we require that 
the activation functions f1, f2, f3,… remain bounded. Thus, 
we could use sigmoid or tanh for the activation function. On 
the other hand, since there are no imposed bounds on ReLU, 
we should avoid using ReLU activation functions for this 
layer. Then, as before we clip the weights at M/n where n 
represents the number of connections as given in (2). In this 
case, given that the activation functions are bounded above 
by 1, we have that:

Thus, it is clear that under these circumstances we achieve 
convergence with a limited number of connections.

Uniformly Continuous Neural Network Models

In this section, we address the question of guaranteeing uni-
form continuity on all of the input images. As we shall see, 
uniform continuity prevents abrupt changes in the outputs 
of neural network functions based on small changes in the 
inputs. Thus, we can think of uniform continuity as a form 
of stability guarantees on our neural networks.

We define uniform continuity over S ⊂ R
m by requiring 

that for any 𝜖 > 0 we can find a � that is not a function of v 
such that (see page 109 in [28]):

For one-dimensional functions, the basic idea is demon-
strated in Fig. 5. Given an 𝜖 > 0 , we define a rectangle of 
size 2� . We then get to choose the width of the rectangle 2� 
so that the function will remain inside the rectangle at all 
points x ∈ S . In the example of Fig. 5, without providing 
a formal proof, we can see that a fixed rectangle is always 
possible for a ≤ x ≤ b . On the other hand, for x < a , as x 
approaches 0, the function grows to ∞ . In this case, it is 
not possible to have uniform continuity because we cannot 
shrink � sufficiently for all x. As x → 0 , f(x) grows rapidly to 
∞ and escapes any fixed rectangle (see Fig. 5).

To establish uniform continuity for our neural networks 
we require that the input images (or videos) remain bounded. 
This requirement is additional to our requirements for 

|wifi(x)| < Mi < ∞.

∞∑
i=1

wifi(x) converges if and only if

∞∑
i=1

Mi < ∞.

n∑
i=1

wifi(x) ≤

∞∑
i=1

|wifi(x)| ≤ n ⋅
M

n
⋅ 1 = M < ∞.

|f (v1) − f (v2)| < 𝜖 whenever ||v1 − v2|| < 𝛿.

bounded weights and continuous models. We restrict our 
input signals between B1 and B2 . For 8-bit images, we can 
set B1 = 0 and B2 = 255 . More generally, prior to training, 
we bound an input signal using:

It is important to note that the combination of bounding the 
input weights (e.g., through (2)) and (6) restricts the domain 
of Fn to be over a compact set. Here, note that a compact set 
is both closed (containing all of its accumulation points) and 
bounded. Most importantly, a continuous function defined 
over a compact set is uniformly continuous (see theorem 3, 
page 16 in [27]). Thus, based on our restrictions, F(W∗,X) 
given in (5) is uniformly continuous over the inputs and 
weights.

Results from Student Interviews

In this section, we summarize the student reactions to our 
efforts. We will begin with the student reactions to our 
middle-school program. For our efforts to introduce Real 
Analysis in Machine Learning optimization, we summarize 
the impact we had on the students who took the Numerical 
Optimization course.

We present an example video produced by middle-school 
students in Fig. 6. The students thoroughly enjoyed working 
on their projects and were very excited to get them to work. 

(6)x�
i
=

⎧⎪⎨⎪⎩

xi if B1 ≤ xi ≤ B2,

B1 if B1 > x,

B2 otherwise.

Fig. 5   Uniformly continuous function. A continuous function over a 
compact set is uniformly continuous



	 SN Computer Science          (2024) 5:1006  1006   Page 10 of 12

SN Computer Science

We summarize the students’ reactions to our efforts to build 
coding based on the underlying mathematics.

After conducting interviews with middle school students 
and using thematic analysis to determine common themes, 
it became clear that students’ discoveries on the connections 
between mathematics and computer programming were one 
of the most prominent themes as was also presented in [4, 5]. 
As a result of learning the connections between mathematics 
and computer programming, students reported a rise in their 
enthusiasm for both subjects [4, 5]. For example, as Jesús, 
a middle school student who had taken on the co-facilitator 
role stated:

They (Computer Programming and Mathematics) are 
connected. I just like computer programming better.... 
It’s.. loops is like multiplication you could say. Instead 
of adding a number by itself again and again, you can 
just multiply it by how many times you wanted to add 
it. And then you could do that ...we use the loops to do 
stuff multiple times to get it done faster and to use less 
blocks, as we are using blocks of codes.

What is evident from this quote is how the student was 
able to make sense of how loops worked by using math-
ematics to make the algorithms more efficient. Students also 
explained their enjoyment of Mathematics and Computer 
Programming are related. In administering a pre, during, 
and post implementation questionnaire of the integrated 

curriculum with the undergraduate student facilitators and 
conducting an interview with them, a theme that emerged on 
the integration of computer programming and mathematics 
was related to the content. Several facilitators mentioned that 
the middle school student with whom they worked progres-
sively exhibited a deeper understanding of the curriculum’s 
core concepts and the crucial connections between math-
ematics and computer programming. The approach detailed 
in this research also contributed to the long-term develop-
ment of the students’ interest in STEM practices and their 
identity formation [6]. We include two selected quotes that 
reflect this finding:

I feel like whenever we did the Guessing Game, that’s 
when they like understood that if you do like to undo 
a number, like if you multiplied it, and then subtracted 
it, to divide then add, in whichever order, then they 
understand the order of operations with the math and 
how to reverse them. (Issac - Interview May 15, 2018)

I think with like binary and the hexadecimal and 
binary conversions, and then getting to apply that to 
colors, the RGB, hex, that setup. I think that helped 
them make the connection that math gives you colors. 
(Shelby - Interview May 15, 2018)

The material on Real Analysis was introduced in the gradu-
ate course on optimization and student researchers. The 

Fig. 6   Some video frames produced by middle-school students using hexadecimal values and NumPy arrays
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students were asked to provide short answer questions on the 
material to make sure they understood the applications of the 
theorems. The larger impact of the approach occurred when 
the students were working on training using large datasets 
for their final projects. Ultimately, motivated by the strong 
convergence results, students waited longer for convergence 
and they studied the gaps between the training and validation 
loss sequences. The deeper results on uniformly continu-
ous neural network models were not tested in a classroom 
setting.

Conclusion

The paper summarizes the advantages of teaching coding 
in an integrated curriculum that builds understanding based 
on the relevant mathematics. The paper presented two exam-
ples. First, at the middle-school level, the students generate 
digital videos by manipulating NumPy arrays while build-
ing their understanding based on variables, linear equations, 
number representations, and coordinate systems. Second, 
at the University level, we provide an example of the use of 
Real Analysis to minimize the validation loss, establish the 
convergence of neural network model functions, and estab-
lish conditions that guarantee that the neural network func-
tions are uniformly continuous. Our two examples follow our 
guiding principles that led us to design activities that build 
understanding based on the underlying mathematics, while 
being interesting, fun, and supportive of exploratory analysis 
and further experimentation.
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