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Abstract

Our goal is to provide integrated lessons where computer programming concepts are introduced based on mathematics.
We consider the development of lessons that would be interesting to our students. At the middle school level, digital video
generation is used to introduce coding. At the graduate level, we look at the convergence of machine learning models dur-
ing training. We introduce middle-school students to computer programming through the use of variables, linear equations,
and basic algebraic expressions. We motivate students to create digital images using NumPy arrays by experimenting with
number representations and coordinate systems. The students create digital videos by building their video characters and
moving them around from frame to frame. At the graduate level, we describe how Real Analysis can be applied in Optimiza-
tion Theory. The students saw and appreciated the connections between Mathematics and Computer Programming. In the
graduate course, the students appreciated the rigorous results on the convergence of neural network models. The approach
also produced conditions for guaranteeing that the neural network models are uniformly continuous. We have found that the
students strongly appreciated the integration of mathematical concepts into basic and advanced coding courses.

Keywords Mathematics and computer programming - Teaching computer science - Machine learning algorithms -
Uniformly continuous neural network models

Introduction

There is a strong need to teach the fundamentals of com-
puter programming to the general population [1]. Unfor-
tunately, often, schools allocate very little to no time for
educating students how to code. On the other hand, schools
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reciprocal relationship between mathematics and computer
programming. This integration facilitates greater accessi-
bility to computer programming for students who may not
initially have a natural inclination toward the subject [4—6].
By embedding computer programming within the context of
mathematics, it becomes more appealing and approachable,
capturing the interest and engagement of a wider range of
students. The interconnectedness of mathematics and com-
puter programming creates a reciprocal learning process:
from mathematics to computer programming, and back
from computer programming to mathematics. This inte-
grated approach empowers students to develop knowledge
and a versatile skill set that seamlessly bridges the realms of
mathematics and computers, preparing them to thrive in an
increasingly digital and technologically-driven world.

We present two examples of our efforts. First, we sum-
marize how the underlying middle-school mathematics was
used to introduce advanced NumPy programming concepts
in the Advancing Out-of School Learning in Mathematics
and Engineering (AOLME) project. The successful learn-
ing of fundamental mathematical concepts in the AOLME
project has already been documented in [4, 7]. In the current
paper, we focus on the coding aspects of the project and how
it is introduced from the underlying middle-school math-
ematics. Second, motivated by the success of the AOLME
project, we present how the same ideas can be applied in a
graduate course in optimization that uses Real Analysis for
selecting an optimal Neural Networks model. For this appli-
cation, we review how Real Analysis can be used to estab-
lish convergence of the validation loss sequence generated
during neural network training. We also derive conditions
that guarantee that the generated neural network models are
uniformly continuous. This effort extends our prior efforts
to introduce Linear Algebra methods to understand Neural
Networks as detailed in [8].

The rest of the paper is organized into 4 sections. In
Sect. “Background”, we review prior pedagogical efforts
to integrate mathematics and computer programming. In
Sect. “Methods: Teaching Computer Programming with
Mathematics”, we describe our methodology. We pro-
vide results from student interviews in Sect. “Results
from Student Interviews” and concluding remarks in
Sect. “Conclusion”.

Background

There was a continuous endeavor to connect computer pro-
gramming to mathematics [9—-16]. Articles delve into the
interplay between mathematics and computer programming,
each offering unique perspectives and ideas.

The article by Feurzeig, Papert, and Lawler [9] explores
the use of programming languages as a conceptual

SN Computer Science
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framework for teaching mathematics. This work empha-
sizes the potential of computer programming to enhance
students’ mathematical understanding and problem-solv-
ing abilities. The authors argue that programming lan-
guages provide a unique platform that encourages active
engagement, promotes critical thinking, and facilitates the
development of mathematical reasoning skills.

Goldenberg and Carter [17] focus on the use of com-
puter programming as a language for young children in
elementary grades to explore concepts in the mathematics
classroom. They argue that, when young children engage
with computer programming, they also connect to math-
ematical practices. The authors argue that when connected
to classroom mathematics, computer programming can
be used as a third language that decreases barriers and
provides young students with the expressive and creative
skills they need. Similarly, Benton and colleagues [18]
also designed curriculum materials and professional devel-
opment to support mathematical learning through com-
puter programming for young children aged between 9 and
11 years. The authors discovered that by implementing the
program, key foundational concepts become more accessi-
ble to students. Solin and Roanes-Lozano [19] approached
computer programming as an effective complement to
mathematics education and they also conclude that com-
puter programming actually provided more engaging ways
to teach mathematical practice standards to students.

In secondary school level, Kaufmann and Stenseth [11]
investigated how computer programming can be inte-
grated in mathematics using Processing (Processing is a
Java based tool primarily to learn program visual effects
supported and distributed by The Processing Foundation).
The analysis illustrates students’ reasoning when using
Processing to solve mathematical problems. The students
showed a growth in their argumentation ability, going from
basic to more complicated arguments.

In undergraduate level, Wilensky [20] explored the use
of the Logo programming language as a tool to develop
undergraduate students’ understanding of mathemati-
cal concepts. He argues that Logo programming offers a
unique opportunity for students to build tangible connec-
tions between mathematics and computer programming by
engaging in hands-on activities. The article emphasizes the
importance of creating meaningful connections between
mathematics and computer programming to enhance stu-
dents’ mathematical understanding and problem-solving
skills. Sangwin and O’Toole [21] investigated how much
computer programming is integrated into the curricula of
British undergraduate mathematics majors. The authors
found that whereas computer programming is taught to all
undergraduate mathematics students in 78% of BSc degree
courses, in 11% of mathematics degree programs it is not.
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Olteanu [22] suggests several recommended conditions
for fostering mathematical reasoning and sense-making
through the use of an educational programming tool.
These conditions include adequate teacher interventions,
the design of rhizomatic tasks, the identification of criti-
cal aspects, and the utilization of patterns of variation.
By adhering to these conditions, educators can create an
environment that nurtures students’ mathematical think-
ing and promotes their ability to make meaningful con-
nections and discoveries while engaging with educational
programming tools.

Collectively, this body of literature provides valu-
able insights into the intricate and ever-evolving inter-
play between mathematics and computer programming.
However, despite the knowledge available, a notable gap
remains in the absence of a comprehensive curriculum
intentionally designed to connect computer programming
with mathematics. While the existing literature offers
glimpses into the potential synergy between these disci-
plines, there is a need for a cohesive and structured edu-
cational framework that purposefully integrates the two
fields. Such a curriculum would not only bridge the gap
but also unlock the full potential of combining mathemat-
ics and computer programming in educational settings.

The authors [6, 7] also explored the experiences of
bilingual Latinx co-facilitators with the new mathemat-
ics and computer programming integrated curriculum.
The co-facilitators experienced a shift in their percep-
tion of mathematics as they utilized computer program-
ming tools in the new curriculum, resulting in a more
relatable and meaningful understanding. Embracing their
role as co-facilitators, they effectively taught computer
programming practices and fostered a positive learning
environment. The authors found increases in enjoyment
and self-confidence when middle school students took on
the co-facilitator role. The study highlights the potential
for middle school students, particularly those who are
bilingual, to excel in computer programming and bilin-
gual teaching while assuming new roles and goals. The
findings from this study indicate that when middle school
students have the opportunity to co-teach mathematics
and computer programming concepts, they solidify their
understanding of these concepts. In a recent study, the
authors [4, 5] explored the relationship Latinx students
developed with Computer Programming and Mathematics
(CPM) while experiencing CPM curriculum in an after-
school setting. Students had significant increases in their
self-reported enjoyment and knowledge in CPM as they
engaged in the program and the program prepared stu-
dents with the foundational knowledge, skills, and prac-
tices for future endeavors in STEM fields.

Methods: Teaching Computer Programming
with Mathematics

Motivation and Setup

In designing our curriculum, we wanted to follow a
few guiding principles to help us design effective cod-
ing activities. First, we wanted to build coding activities
based on the underlying mathematics. Our goal here is
to build a better understanding of coding concepts by
building on students’ understanding of basic mathemati-
cal concepts. At the middle-school level, we wanted the
students to understand coding variables and basic alge-
braic operations through their mathematical equivalents.
At the graduate-level, for the optimization theory course,
we wanted to review and borrow concepts of Real Analy-
sis, which provides basic definitions of convergence. For
the computer vision course, we introduced fundamental
concepts in Linear Algebra and vector spaces as outlined
in [8]. An advantage of the approach is that the students
get to use their mathematical knowledge to understand
new concepts in basic coding and advanced coding issues
in programming machine learning optimization methods.
Furthermore, by connecting coding to middle-school math,
the middle-school teachers were able to make the connec-
tions to coding in their regular classroom lessons. At the
graduate level, the material from Real Analysis allowed
the students to understand how they can achieve conver-
gence during the training of neural network models. A
disadvantage of the approach comes from the fact that
the students need to carefully review and understand the
underlying mathematics. Alternatively, teaching computer
programming without using the underlying mathematics
may lead to a superficial understanding of coding fun-
damentals. Furthermore, for the middle-school lessons,
without the connections to the underlying math, the math
teachers would not have been able to make connections
in their regular math classrooms. Second, we wanted to
introduce activities that the students would find interesting
and motivational to support further study. At the middle-
school level, the students were very excited at the idea of
generating digital videos. At the graduate-level, the stu-
dents were very interested to learn how to train neural
network models. Third, we wanted our activities to be fun,
and exploratory and to allow the students to experiment.
At the middle-school level, the students experimented with
algebraic equations in the number guessing game. Later
on, they had fun exploring how image representations were
used to generate different videos. At the graduate-level,
the students would get to study the convergence of their
neural networks models through the training process in
the final projects.

SN Computer Science
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Middle-School Mathematics and Computer
Programming

We summarize our introduction to coding using Mathemat-
ics in Table 1. The table summarizes elements of Level 1 of
the AOLME curriculum. In AOLME, the students worked
collaboratively in small groups. Each group was led by an
undergraduate facilitator and a middle-school student co-
facilitator. The goal of the curriculum was to introduce the
students to coding by building their understanding based on
middle-school mathematics. The students worked in Python
on the Raspberry Pi.

The first computer programming assignment was based
on the number guessing game. The number guessing game
allowed us to follow our guiding principles to design activi-
ties based on the underlying math, to make it interesting, and
fun, exploratory, allowing the students to experiment. The
students are asked to memorize an integer between 1 and
10. They then apply basic linear operations to their num-
ber (e.g., multiply and add), and then provide the computer
with the result. The computer then guesses their number by
using the inverse operations. To understand the code, the
students need to review variables, basic algebraic operations,
and linear equations. Here, we note that the use of algebra
provided an entry point into coding. It enabled the students
to understand variables through Algebra.

The students also learned about different number repre-
sentations during middle-school. This mathematical back-
ground allowed us to introduce binary numbers and hexa-
decimals and make the connections to their mathematics
lessons. Similarly, coordinate systems served as an entry
point to NumPy arrays and array indexing. Different shapes
were constructed by filling rectangular shapes with differ-
ent colors.

Initially, the students thought about their video characters
as continuous shapes. They quickly discovered the need to
approximate their characters using rectangular color regions.
They then worked on putting together their videos as char-
acters moving through the videos (see Table 1).

Understanding the Convergence of Machine
Learning Algorithms Using Real Analysis

The successful integration of middle-school mathematics
with computer programming motivated the introduction
of more advanced mathematics for understanding machine
learning models. The focus of this effort focused on
establishing convergence during the training of machine
learning models. We begin with a simple model for train-
ing machine learning models. We then proceed to apply
fundamental theorems from Real Analysis to establish
convergence.

We summarize the training process in the following
pseudocode:

1: 4+ 1

2: j —0

3: BestEpoch «— 1

4: BestLoss «— 0o

5. Patience «— small Number

6: for epoch =1 to MaxFEpochs do
7 Train weights W; for model F;

8: Compute training loss T;

9: Compute validation loss L;
10:

11: if L; < BestLoss then

12: j—J+1

13: MinLosses; < L;

14: BestLoss «— L;

15: BestEpoch «— i

16: Save model f;

17: end if

18:

19: if epoch > BestEpoch + Patience then
20: Stop training

21: end if

22: 1—i+1

23. end for

Table 1 The integration of computer programming and middle-school mathematics during Level 1 of the AOLME curriculum

Mathematics

Computer Programming

Algebraic operations and their inverses, variables, linear equations

Binary, decimal, hexadecimal number systems and conversions between
them

Coordinate systems

Coordinate plane grid, shapes using rectangles, hexadecimals

Approximate continuous-space shapes using digital rectangles
Motion, 2D+time

Number guessing game with linear equations
Digital color pixels using hexadecimals, 3-tuples

NumPy Arrays, working with rectangular regions in Python

Digital color image representations using NumPy arrays and hexa-
decimals

Design game characters using color image representations

Design character movements, video frames, Python lists, frames per
second

SN Computer Science
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The algorithm generates several sequences of real num-
bers and model functions. More specifically, we generate the
following sequence of loss values:

Training loss values: T}, T,, T5, ... .

Validation loss values: L, L,, L, ... .

Minimum loss values: MinLosses,, MinLosses,,
MinLossess, ... .

Here, we note that the MinLosses; sequence is a subsequence
of the validation losses L.

We next describe the process of early stopping. The
algorithm saves the current optimal model that is associ-
ated with a minimum validation loss. The expectation is that
the validation loss will be reduced with every epoch. We use
the BestEpoch to keep track of the epoch that produced the
minimum validation loss. Then, if the current epoch is more
than the Patience number of epochs, we stop the training.
In other words, we stop waiting for the validation loss to be
reduced any further.

We further demonstrate the early stopping process in
Fig. 1. From Fig. 1, we can see that the training loss is sig-
nificantly reduced with the number of epochs. On the left
plot of Fig. 1, we can see a gap between the validation loss
and the training loss. Here, a large validation loss indicates
that the model does not generalize very well. To address the
issue, a standard approach is to try to use data augmenta-
tion to increase the training set. As demonstrated in [23]
(see Figs. 5.12 and 5.13), data augmentation may help bring
down the validation loss to the training loss as shown in the
right plot of Fig. 1.

We demonstrate early stopping using sequences
in Fig. 2. In Fig. 2, the red dots are used to mark the
sequence of MinLosses,, MinLosses,, MinLossess, .... The
effect of the Patience value is also shown in the Figure. A
small value will terminate execution early. We will return

Loss Loss

Validation loss

Minimum point
Validation loss

Minimum point

Training los;\

Training loss e\

Number of epochs Number of epochs

Fig. 1 Early stopping examples. Left: High validation loss with gap
from training loss indicates bad generalization of the machine learn-
ing model. Right: Low validation loss that follows training loss indi-
cates good training with data augmentation (see text)

Validation loss sequence

Loss Early stopping
« With patience=1
L ]
[ ]

Early stopping
with patience=7

L]
L J
Convergent
subsequence e

Lower bound

Number of epochs

Fig.2 Convergence of the minimum validation loss. In the example,
we assume that the loss function has a lower-bound

to this figure to examine convergence after we introduce
some basic terms from Real Analysis.

Let us return to the left plot of Fig. 1. When the vali-
dation loss function remains above an earlier minimum
value, then early stopping will terminate training. In what
follows, we will examine the case when the validation loss
function keeps decreasing. This case corresponds to the
right plot of Fig. 1 and Fig. 2. In this case, we need to bor-
row results from Real Analysis to establish convergence.

We are also concerned with the convergence of a
sequence of neural network functions:

F,Fy,Fs,....

where each F, has a domain in R” and a range in RY. In
other words, we allow our neural network functions to map
input vectors to output vectors. For our models, we assume
that the inputs consist of the weights and input signals. We
would like to understand when the sequence F, converges
toF: F, = F.

In summary, when there is no observed minimum criti-
cal point in our validation loss sequence, we ask the fol-
lowing questions:

Q1. What conditions can we impose to guarantee the con-
vergence of the validation loss function?
Q2. What conditions should we impose to guarantee the

convergence of large weight vectors?

Q3. What conditions do we need to impose on neural net-
work model functions to guarantee convergence?

SN Computer Science
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Q4. What conditions do we need to impose on neural net-
work model functions to guarantee convergence for a
layer with an infinitely large number of connections?

Q5. What conditions do we need to impose on the input
images (or videos) and neural network models so as
to achieve uniform continuity?

Our questions are motivated by the need to establish conver-
gence properties for large neural network models. We will
tackle each question in detail in the next subsections.

Convergence of Sequences and Vectors

We begin with the study of the convergence of a sequence of
real numbers. A sequence of numbers may either converge
or diverge (e.g. page 128 in [24]). We say that a sequence
converges when it gets arbitrarily close to its limit as n — 0.
Otherwise, the sequence is divergent.

We demonstrate the definition in Fig. 3. On the left, we
can see that the loss function oscillates between two val-
ues. It clearly does not get arbitrarily close to a limit. The
sequence is divergent. On the right, we can see that after a
while, the sequence gets very close to it’s minimal value.
The loss sequence depicted on the right image is convergent.

We can now provide the formal mathematical definition.
Let L be the limit. Then the sequence:

LI’LZ’L?)’

converges to L, provided that for any desired € > 0, we can
find an N(e), beyond which, we can get e close to L as given
by:

Ly — Ll <€ |Ly,—L| <e |Ly,;—L|<e,....
In other words, if we wait long enough, we get very close
to our limit. Going back to Fig. 3, oscillations take us away

from any limit because we want to be able to push € to very
small values. On the other hand, in the right image, it is clear

that we can drive € to arbitrarily small values and we are still
close to our limit.

We can also define convergence for vectors (e.g., weight
vectors). In this case, we use the standard Euclidean norm
to define the length of a vector:

V] = [ 492 4 e 422112,
Similarly, we measure the distance between vectors using:
dw,v) = [(w; = v)? + Wy = vy)? + -+ (w,, —v,)*1"/%

As for real numbers, for vectors, a sequence is defined to
be convergent if we can get arbitrarily close to its limit as
n — oo and measured by d(., .). We will use this type of
convergence for the weight parameters.

Convergence for a Decreasing Validation Loss
Sequence

We summarize the basic theorems from Real Analysis in
Table 2 (see [24-26]). Here, we note that the most basic
requirement is for the loss functions to be bounded. We note
that the majority of loss functions are bounded below by
zero. When such a bound exists, even for infinite sequences,
then the best possible achievable minimum value is given by
the greatest lower bound (theorem 1). The greatest lower
bound provides the optimal validation loss.

For a bounded loss function, the convergence of the early
stopping algorithm is guaranteed by Theorem 4. Return-
ing to Fig. 2, we can see that the red points representing
MinLosses; correspond to a convergent subsequence that will
achieve the optimal validation loss for infinite patience.

Theorem 7 makes it clear that convergence requires
beyond a certain epoch, all validation losses will get infi-
nitely close to each other. Here, the emphasis is on all
losses. We note that the standard practice of examining
|L;;; — L;] < e to terminate an algorithm is not sufficient.
Instead, we require that |L, — L,,| < € for some sufficiently
large N and n,m > N. The theorem makes it clear that oscil-
lating sequences are not convergent unless the amplitude of

Fig.3 Every generated loss
function is classified as diver- Divergent validation loss sequence Convergent validation loss sequence
gent (left) or convergent (right) Loss Loss
[ ] (]
[ [ ]
° L]
° L]
L] °
° ° ° ° ° °
() e o [ ] L] L] e o
... ¢ ... ..' ¢ °
®%0 00000

Number of epochs
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Table 2 Mathematical sequence theorem implications for loss function minimization

Real Analysis

Machine Learning

Theorem 1. Every non-empty set that is bounded below will possess a
greatest lower bound

Theorem 2. Every real, bounded, infinite set possesses at least one
limit point

Theorem 3. Every convergent sequence is bounded

Theorem 4. A monotone decreasing sequence that is bounded below

will converge to a minimum

Theorem 5. Every sequence has a monotone subsequence

Theorem 6. Every bounded sequence has a convergent subsequence
Theorem 7. A sequence converges if and only if it is Cauchy

Minimization of a loss function bounded below (e.g. zero) will possess
a greatest lower bound

After a large number of iterations, the minimization of a bounded loss
function will make the algorithm produce a limit point

Loss function convergence implies it remains bounded during training

The MinLosses; sequence is clearly a monotone decreasing sequence.
If the loss function is also bounded below, then it will converge to a
minimum value

We can always select a decreasing or an increasing subsequence of
iterations from an optimization algorithm

Optimization of bounded loss functions will always converge

An algorithm converges if and only if all iterations beyond a certain
number get close to each other

the oscillation keeps decreasing to zero. Here, we note that
reducing the step size will hopefully reduce the oscillation
magnitude of the validation loss. If the oscillation magnitude
does not tend to zero, we are not converging.

In order to guarantee convergence, without knowing con-
vergence limit, we turn to a simple ratio test. Let the change
in validation loss be: AL; = |L; — L,_|. Then, based on the
triangular inequality, we have that:

Jj=i
LI <|Lyl+ ) AL, for N<i
j=N+1

From the standard ratio test, we can guarantee convergence
of L; provided that AL;/AL,_; < 1as n — oo. In practice,
we want to develop a metric that the sequence satisfies the
convergence criterion for a minimum number of epochs Min-
ConvCount. The following code implements the idea:

1: ConvCount < 0
2: while ConvCount < MinConvCount do

3: e

4: ALl — |Lz — Li,1|

5: T — ALZ‘/ALZ‘,1

6: if r <1 then

7 ConvCount < ConvCount + 1
8: else

9: ConvCount «— 0

10: end if

11: end while

Here, we note that convergence is guaranteed if
ConvCount, MinConvCount — oo.

Overall, convergence may not be associated with achiev-
ing an actual minimum. We can get convergence because the
loss function is bounded (theorem 2). As long as we are are

reducing the loss function, that is also bounded below, we
will converge to some minimal value (theorem 4). On the
other hand, Real Analysis also makes it clear that we may
be able to converge to a minimum by selecting a decreasing
subsequence from a bounded function (theorem 5 + theo-
rem 4). Collectively, theorems 1 to 7 provide great insight
into the behavior of an infinite sequence of validation loss
function values.

Series Convergence and Absolute Summability

In Neural network layers with lots of connections, we are
interested in adding up the contributions from each connec-
tion. For this to work, we require absolute summability as
given by:

Z la;| < 0.

k

ey

We cannot relax this requirement. Here, we note a celebrated
result by Riemann that showed that if the sum is condition-
ally convergent but does not satisfy (1), then we can re-
arrange the terms in the sum to add up to any number (e.g.,
see Chapter 1 in [27]).

Guaranteeing the Convergence of the Weight Vector
Sequence

We now turn to the weight vector sequence. During train-
ing, the weight vectors can grow unbounded. This is the
well-known problem of exploding gradients used to update
the weights. We will now derive an approach that avoids
this problem while also guaranteeing the convergence of the
weight vector sequence.

In Table 2, theorem 6 guarantees that the validation loss
will have a convergent subsequence as long as it remains

SN Computer Science
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bounded. The Bolzano-Weierstrass theorem extends the
result to vectors. The theorem states that every bounded
sequence in R™ has a convergent subsequence (e.g., page
53 [28]). We will use the Bolzano-Weierstrass theorem to
guarantee the convergence of the weight sequence.

Let n represent the number of weight components and
M represent the total sum of all the absolute values of all
components. We restrict the weights to a bounded set using:

w;
Wi:{M

We then have that:

if lw;| <
otherwise.

M
n

(@)

LR "M _ M < .
” n
1

Given the fact that the weights are bounded, the Bolzano-
Weierstrass theorem guarantees that the sequence W, W,, ...
will contain a convergent subsequence.

Convergence of Neural Network Models

In this section, we study the convergence of neural network
functions. We will use one-dimensional plots to introduce
the concepts and expand our discussion to vector functions.

We define the pointwise convergence of a sequence of
functions over a set S by requiring convergence of the values
that it generates (e.g., page 261 in [24]):

S =limf,(x), x€S.

A sequence of functions f,f,,f3, ... uniformly converges to
fprovided that for any given € > 0, we have that:

J&) —e <f,(0) <f(x) +e,

for some n > K and for all x € S. Unlike pointwise conver-
gence, the key requirement for uniform convergence is that
€ remains constant for all values of x. We demonstrate the
definition in Fig. 4. In Fig. 4, we can see that f, lies between
f(x) —eand f(x) + €.

For neural network functions, uniform convergence
requires that for any € > 0, we can find an N such that (page
170 in [28]):

HFX) - F,X)|| <e, n>N,xeS.

Suppose that F,, maps elements in D to R". We have the fol-
lowing (page 173 in [28]):

1. F, converges pointwise to some function F if and only if
F,(X) is a Cauchy sequence for each X € D.
2. F, converges uniformly to some function F if and only if

SN Computer Science
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£(x)

fa(x)

Fig.4 Uniform convergence for a one-dimensional function

lim sup ||F,(X) — F,(X)|| = 0.
k,n—o0 xep

As before, testing for Cauchy sequences is computationally
expensive. Here, we consider a much simpler approach.

Recall that we know how to guarantee the generation of a
converging subsequence by bounding the weight sequence as
described in Sect. 3.7. Suppose that W, represents a converg-
ing subsequence. Furthermore, suppose that W, represents the
limit of the subsequence. We write W, — W,. Furthermore,
let X, be any given input signal (e.g., an image or a video). To
prove convergence we only require that the neural-network
models are continuous. In this case, we converge as given by
(e.g., see continuity discussion on page 15 of [27]):

lim F,(X,) = lim F(W,.X,) 3)
= F(lim w,.%,) @)

We will extend this result even further in section 3.10.
Convergence for a Large Number of Connections
Given the development of large models, we are also interested
in the case when a layer includes a large number of connec-

tions. In this case, we consider the requirement for conver-
gence for the infinite series given by:

Z wfi(x).
i=1

In this case, suppose that



SN Computer Science (2024) 5:1006

Page90of12 1006

|wif,(x)] < M; < 0.

Then by the Weirstrass M-test (page 223 in [29], page 174
in [28]), we have that:

Z w;f;(x) converges if and only if Z M; < .

i=1 i=1

Here, we note that a bounded sum of positive numbers will
only converge to a limit.

To satisfy the requirement for convergence we require that
the activation functions f;,f,,f;, ... remain bounded. Thus,
we could use sigmoid or tanh for the activation function. On
the other hand, since there are no imposed bounds on ReLLU,
we should avoid using ReLLU activation functions for this
layer. Then, as before we clip the weights at M/n where n
represents the number of connections as given in (2). In this
case, given that the activation functions are bounded above
by 1, we have that:

Do) < Y wfWI <1 =M < oo,
i=1 i=1

Thus, it is clear that under these circumstances we achieve
convergence with a limited number of connections.

Uniformly Continuous Neural Network Models

In this section, we address the question of guaranteeing uni-
form continuity on all of the input images. As we shall see,
uniform continuity prevents abrupt changes in the outputs
of neural network functions based on small changes in the
inputs. Thus, we can think of uniform continuity as a form
of stability guarantees on our neural networks.

We define uniform continuity over S C R” by requiring
that for any € > 0 we can find a 6 that is not a function of v
such that (see page 109 in [28]):

v —fv)l <e

For one-dimensional functions, the basic idea is demon-
strated in Fig. 5. Given an € > 0, we define a rectangle of
size 2e¢. We then get to choose the width of the rectangle 26
so that the function will remain inside the rectangle at all
points x € S. In the example of Fig. 5, without providing
a formal proof, we can see that a fixed rectangle is always
possible for a < x < b. On the other hand, for x < a, as x
approaches 0, the function grows to oo. In this case, it is
not possible to have uniform continuity because we cannot
shrink 6 sufficiently for all x. As x — 0, f(x) grows rapidly to
oo and escapes any fixed rectangle (see Fig. 5).

To establish uniform continuity for our neural networks
we require that the input images (or videos) remain bounded.
This requirement is additional to our requirements for

whenever |[v; —v,|| < 6.

)

Fig.5 Uniformly continuous function. A continuous function over a
compact set is uniformly continuous

bounded weights and continuous models. We restrict our
input signals between B, and B,. For 8-bit images, we can
set B; = 0 and B, = 255. More generally, prior to training,
we bound an input signal using:

x; if By £x; £B,,
B, if B, > x, (6)
B, otherwise.

X =
1

It is important to note that the combination of bounding the
input weights (e.g., through (2)) and (6) restricts the domain
of F, to be over a compact set. Here, note that a compact set
is both closed (containing all of its accumulation points) and
bounded. Most importantly, a continuous function defined
over a compact set is uniformly continuous (see theorem 3,
page 16 in [27]). Thus, based on our restrictions, F(W,, X)
given in (5) is uniformly continuous over the inputs and
weights.

Results from Student Interviews

In this section, we summarize the student reactions to our
efforts. We will begin with the student reactions to our
middle-school program. For our efforts to introduce Real
Analysis in Machine Learning optimization, we summarize
the impact we had on the students who took the Numerical
Optimization course.

We present an example video produced by middle-school
students in Fig. 6. The students thoroughly enjoyed working
on their projects and were very excited to get them to work.

SN Computer Science
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Fig.6 Some video frames produced by middle-school students using hexadecimal values and NumPy arrays

We summarize the students’ reactions to our efforts to build
coding based on the underlying mathematics.

After conducting interviews with middle school students
and using thematic analysis to determine common themes,
it became clear that students’ discoveries on the connections
between mathematics and computer programming were one
of the most prominent themes as was also presented in [4, 5].
As aresult of learning the connections between mathematics
and computer programming, students reported a rise in their
enthusiasm for both subjects [4, 5]. For example, as Jests,
a middle school student who had taken on the co-facilitator
role stated:

They (Computer Programming and Mathematics) are
connected. I just like computer programming better....
It’s.. loops is like multiplication you could say. Instead
of adding a number by itself again and again, you can
just multiply it by how many times you wanted to add
it. And then you could do that ...we use the loops to do
stuff multiple times to get it done faster and to use less
blocks, as we are using blocks of codes.

What is evident from this quote is how the student was
able to make sense of how loops worked by using math-
ematics to make the algorithms more efficient. Students also
explained their enjoyment of Mathematics and Computer
Programming are related. In administering a pre, during,
and post implementation questionnaire of the integrated

SN Computer Science
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curriculum with the undergraduate student facilitators and
conducting an interview with them, a theme that emerged on
the integration of computer programming and mathematics
was related to the content. Several facilitators mentioned that
the middle school student with whom they worked progres-
sively exhibited a deeper understanding of the curriculum’s
core concepts and the crucial connections between math-
ematics and computer programming. The approach detailed
in this research also contributed to the long-term develop-
ment of the students’ interest in STEM practices and their
identity formation [6]. We include two selected quotes that
reflect this finding:

I feel like whenever we did the Guessing Game, that’s
when they like understood that if you do like to undo
a number, like if you multiplied it, and then subtracted
it, to divide then add, in whichever order, then they
understand the order of operations with the math and
how to reverse them. (Issac - Interview May 15, 2018)

I think with like binary and the hexadecimal and
binary conversions, and then getting to apply that to
colors, the RGB, hex, that setup. I think that helped
them make the connection that math gives you colors.
(Shelby - Interview May 15, 2018)

The material on Real Analysis was introduced in the gradu-
ate course on optimization and student researchers. The
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students were asked to provide short answer questions on the
material to make sure they understood the applications of the
theorems. The larger impact of the approach occurred when
the students were working on training using large datasets
for their final projects. Ultimately, motivated by the strong
convergence results, students waited longer for convergence
and they studied the gaps between the training and validation
loss sequences. The deeper results on uniformly continu-
ous neural network models were not tested in a classroom
setting.

Conclusion

The paper summarizes the advantages of teaching coding
in an integrated curriculum that builds understanding based
on the relevant mathematics. The paper presented two exam-
ples. First, at the middle-school level, the students generate
digital videos by manipulating NumPy arrays while build-
ing their understanding based on variables, linear equations,
number representations, and coordinate systems. Second,
at the University level, we provide an example of the use of
Real Analysis to minimize the validation loss, establish the
convergence of neural network model functions, and estab-
lish conditions that guarantee that the neural network func-
tions are uniformly continuous. Our two examples follow our
guiding principles that led us to design activities that build
understanding based on the underlying mathematics, while
being interesting, fun, and supportive of exploratory analysis
and further experimentation.
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