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Abstract—The rapid growth of interest in quantum computing
has brought about the need to secure these emerging computers
against a range of security attacks. Among the potential secu-
rity threats are physical attacks, including those orchestrated
by malicious insiders within data centers where the quantum
computers are located, which could compromise the integrity of
computations and resulting data. To help in the understanding
of emerging fault injection attacks on quantum computers, this
paper presents an in-depth exploration of quantum computer
fault injection attacks. This work introduces a classification of
fault injection attacks and strategies, including an analysis of the
domain of fault injection attacks, the fault targets, and the fault
manifestations in quantum computers. The resulting classification
highlights the landscape of the potential threats, and presents a
road map for researchers and industry for developing security
protection mechanisms against fault injection attacks for the
emerging quantum computing systems.

Index Terms—quantum computing, security, fault-injection

I. INTRODUCTION

Quantum computing has accelerated in development in

recent years. Many companies and universities are racing to

build bigger and better machines. Among others, IBM unveiled

an 1121-qubit quantum computer in late 2023, and 200-qubit

IBM quantum computers with the ability to run 100 million

gates are anticipated for 2029 [1].

Presently, quantum computers are in the Nosy Intermediate

Scale Quantum (NISQ) regime [2], with less than 1000 qubits

and no support for quantum error correction [3]. Nevertheless,

these machines have the potential to help accelerate many

fields such as drug discovery or finding new materials [4]–

[6]. With the increase of qubits and improvement in fidelity,

it will be possible to gradually move into the fault-tolerant

quantum computing regime with techniques like quantum error

correction. Optimistically, quantum computers and quantum

algorithms promise to be applied to revolutionize many fields,

such be enabling execution of Grover’s [7] and Shor’s algo-

rithms that can be used to break some nowadays widely-used

classical cryptographic algorithms like RSA [8].

As quantum computers grow in size, the data and in-

formation in the computing process may be sensitive and

private. Further, the quantum programs themselves executed

on quantum computers are also valuable intellectual properties.

This work was supported in part by National Science Foundation grants
2312754 and 2245344.

Integrity and confidentiality of the data or quantum programs

can be compromised if there is a fault injection attack.

A. Comparison of Quantum and Classical Computer Fault

Injection Attacks

In classical computer fault injection, the faults mainly

target the instructions executing on the processor or the data

in registers. It is also possible to inject or cause faults in

DRAM memory or on the memory bus or other parts of

the system. The classical processor is typically encased in a

single package, and in fault injection attacks, the package is

exposed to voltage glitching, clock glitching, EM, lasers, or

other sources of disturbance, see Section VI for more details.

One main difference in quantum computers is that they

are not, yet, self-contained within a tiny chip. Today, there

is extensive classical infrastructure outside of the quantum

computer that controls the qubits located in the quantum

computers. This infrastructure significantly extends the pos-

sible attack surface. Given room or server-rack sized quantum

computers, easy physical access also gives the opportunity

to manipulate the equipment much more easily than today’s

nanometer-sized transistors in classical computers. Further,

there is an opportunity for attackers to either manipulate the

qubits, or classical registers into which the qubit measurements

are read, or the control signals (either digital signals going

into the controller equipment, or analog signals going between

controller equipment and the quantum computer itself). This

extends the attack surface even more compared to classi-

cal computers.

B. Contributions

The contributions of this work are:

• We identify the domain of quantum computer fault injection

attacks; this domain represents the attack surface that is

distinct from classical computers, and at the same time it

identifies the hardware and system components that may be

subject to the fault injection attacks.

• We pinpoint 3 fault targets specific to quantum computers:

quantum processing units, quantum computer controller,

and classical co-processors; within the three targets, we

present further 6 specific components that can be targeted

for fault attacks.

• We present fault model, fault bound, and fault lifespan for

the different fault targets.



• We propose the first classification of quantum computer

fault injection attacks to help industry and researchers

navigate the security of this emerging technology.

II. BACKGROUND

This work focuses on superconducting quantum computers,

such as those available from IBM, Rigetti, QCI, and others.

The typical setup of a superconducting qubit quantum com-

puter is shown in Figure 1. We consider today’s cloud-based

computers where users connect remotely to the machines.

Figure 1 specifically depicts a superconducting qubit quantum

computer setup. Other types of quantum computers may have

different types of, for example, quantum computer controllers,

but the same types of fault injection attacks can be applied.

A. Quantum Computing Basics

Analogous to the classical bit, a quantum bit, or qubit, is

the fundamental computational unit in quantum computers. A

qubit can be represented with the bra-ket representation. With

|0ð and |1ð as the basis states, a qubit can be written as |ψð =
α |0ð + β |1ð, where |α|2 + |β|2 = 1. According to Born’s

rule, the results of measuring |ψð is either |0ð or |1ð, with

probability |α|2 and |β|2 respectively. Such a phenomenon that

a qubit can be measured with two results is not seen in classical

computing, and it is often called superposition. Also, the state

after the measurement will collapse to the resulting state, no

matter what the initial state is. Similarly, an n-qubit system

is spanned by 2n basis states. Surprisingly, some multi-qubit

quantum states cannot be described independently by the state

of their components, which is another phenomenon that is not

shown in classical computing, and this is often referred to

entanglement. Qubits are controlled and evolved by quantum

gates, which are the building blocks of quantum circuits, like

classical logic gates are for conventional digital circuits. We

refer interested readers to [9] for details.

B. Cloud-based Quantum Computers

Due to the expensive nature of quantum computing equip-

ment, quantum computers are currently available as cloud-

based systems. For example, cloud-based services such as IBM

Quantum [10], Amazon Braket [11], and Azure Quantum [12]

already provide access to Noisy Intermediate-Scale Quantum

(NISQ) quantum computers remotely for users. In the cloud

setting, the user has no control over the management server,

quantum computer controllers, and the cryogenic fridge are

not under the control of the user. A malicious insider or

compromised cloud provider could try to perform fault in-

jection attacks.

As in any cloud-based computing systems, there is a man-

agement server that is a typical classical server that sits

between the users and the quantum controllers and equipment.

Management servers for quantum computing commonly han-

dle the receiving of quantum jobs, queuing, and dispatching

jobs. Quantum jobs submitted by users are usually first pushed

into priority queues, and based on the priority algorithms of

the cloud platforms, these jobs wait in the queue, and then the

information of jobs is processed and sent to quantum computer

controllers after they finish waiting. Fault injection attacks in

classical management servers are possible, but they are the

domain of classical security, not further considered here.

Quantum programs dispatched from the management server

are sent to quantum computer controllers. In current quan-

tum computers, each qubit or qubit pair is typically assigned

dedicated control pulses with distinct parameter settings, in-

cluding the pulse waveform, pulse duration, pulse frequency,

pulse amplitude, and so on. Control pulses, both microwave

and baseband flux, are generated at room temperature by

classical equipment such as the arbitrary waveform generator

(AWG) and IQ mixers. Then these pulses will be delivered to

the qubits in the cryogenic system through a series of attenu-

ators and filters designed to suppress harmful noises when the

quantum programs reach the point to run the corresponding

gates. These controllers can be sources of novel fault attacks

analyzed in this work.

Besides controlling the qubits, one important function of

quantum computer controllers is to perform the measurement

process and measurement readout results. The results from

quantum computers may be stored in the controller and sent

back to the management servers when jobs finish. In addition,

for advanced features like dynamic circuits [13], it stores

the middle-measurement results and controls future operations

based on these results. Classical data in the controllers can be

vulnerable to fault attacks, as AWGs, IQ mixers, and other

similar equipment have not been analyzed from a security

perspective before.

An auxiliary processor is a classical processor that is part

of the quantum computer controller, or tightly coupled to the

controller. It may contain user-defined code or application-

specific code defining what operations to perform based on

the readout data; as well as it can be used to determine what

subsequent operations to execute on the quantum computer

or to update the circuit executing on the quantum computer.

In one example of quantum machine learning (QML) [6],

based on the readout data, the co-processor can optimize the

parameters of the quantum circuit and issue the next job with

the updated circuit, similar to the classical machine learning.

The auxiliary processor is critical to the operation of quantum

computers and can be the target of fault injection attacks.

In the end, the control pulses actuate the quantum pro-

cessing unit, also called simply the QPU, which contains the

actual physical qubits. The QPU is located in the cryogenic

fridge, also known as the dilution refrigerator, which is an

integral part of superconducting quantum computers. These

qubits are sensitive to thermal noise, which is why the frigid

environment provided by the dilution refrigerator is crucial.

Once the qubits are in their superconducting state, they are

manipulated using microwave pulses, generated by quantum

computer controllers previously introduced. The pulses are

delivered through coaxial cables that are also cooled within

the refrigerator to minimize thermal noise. The qubits and the

fridge are other new parts not found in classical computers

and can be targets of fault injection attacks.
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Fig. 1: Typical setup of a superconducting qubit quantum computer, figure is based on figure from IBM.
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Fig. 2: Typical quantum computer workflow.

C. Workflow of Executing Quantum Circuits on a Quantum

Computer

The typical workflow of quantum computers is shown in

Figure 2. In quantum computing, users can write gate-level

programs using quantum programming languages such as

Qiskit [14], Amazon Braket SDK [15], or Cirq [16]. These

programs consist of sequences of quantum gates that operate

on qubits. The programs are then transpiled to decompose

the gates into elementary quantum gates supported by the

hardware. The transpiler optimizes the program by reducing

gate count and improving gate ordering. It also maps logical

qubits to the physical qubits available in the hardware, con-

sidering connectivity constraints. The next step is scheduling,

where timing and control information are determined for each

gate, specifying the precise microwave pulses required for

their execution. When jobs are sent to quantum computer

systems and start to execute, microwave electronics generate

these pulses, corresponding to signals that manipulate the

quantum state of the qubits. The pulses are applied to the

physical qubits, implementing the desired gate operations.

After execution, the resulting quantum state can be measured

to obtain the computation’s output. The specific details of

the transpilation and scheduling process may vary depend-

ing on the programming language, hardware, and software

stack used.

III. FAULT MANIFESTATION

In the context of fault injection in quantum computing, fault

manifestation refers to the observable effect or consequence

of an injected fault within the quantum system. This could

include changes in the state of a qubit, alterations in the

operation of a quantum gate, or eventually deviations in

the outcome of a quantum algorithm. The study of fault

manifestation is crucial in understanding the impact of errors

on quantum computations and in developing strategies for

error detection and correction. The fault manifestation can be:

A. Gate-level Program

The gate-level quantum circuit is a model used in quantum

computing to describe qubit evolution and incidental oper-

ations. Computations in the gate-level quantum circuits are

represented as a sequence of quantum gates acting on qubits,

and other operations such as measurement, reset, and classical

operations, from left to right to denote time steps. Each

quantum gate, analogous to a logic gate in classical computing,

performs a specific unitary operation or transformation on the

quantum state of a qubit or a set of qubits. By arranging

these gates in specific sequences and combinations, complex

quantum algorithms can be implemented.
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B. Pulse-level Program

This is one level lower abstraction of quantum circuits.

Since superconducting qubits are controlled by microwave

pulses, the exact physical actions of quantum gates and other

operations in gate-level circuits are correspondingly predefined

microwave pulses. The pulse parameters such as frequency and

amplitude are continuously changing due to the fluctuations in

the environment and qubits. Therefore, the pulse parameters

are frequently calibrated to reach high fidelity to the desired

logic operations specified by the corresponding quantum gates.

A pulse-level description provides a more granular view of

quantum computation compared to the gate-level representa-

tion. It accounts for the physical implementation of quantum

gates, offering insights into the precise control mechanisms

and potential sources of error in quantum operations.

IV. FAULT TARGET

Faults can occur or be injected at various locations or

types of equipment within the quantum computing system. We

focus here on the components within the domain of quantum

computer fault injection attacks, defined in Figure 1: the

Quantum Processing Unit, the Quantum Computer Controller,

and the Auxiliary Processor.

A. Auxiliary Processor Faults

The auxiliary processor is a classical processor cortical in

interpreting quantum computer read-out results and updating

quantum program parameters. For example, in quantum ma-

chine learning (QML), there is an iterative process of running

a circuit on a quantum computer, optimizing the circuit on

the auxiliary processor based on results, running it again on a

quantum computer with updated parameters, etc.

1) Faults in Classical Registers

Within the auxiliary processor are of course the usual com-

ponents such as ALU, registers, or memory, among others.1

Faults can be injected in these classical components to, for

1For simplicity, we specify the fault target here as “classical registers”, but
the physical faults could also be in ALU, memory, or other components. Since
the faults will eventually occur in or enter registers, we use the simplification
of calling the target just “classical registers”.

example, affect the computations used in QML optimization

routines between executions of a circuit on a quantum com-

puter. For program specification at the gate-level, the faults can

result in gates being added, removed, or modified by changing

the digital bits that specify them in the program. For program

specification at the pulse-level, the faults can affect the digital

specification of the amplitude, duration, or phase of the control

pulses to be generated.

B. Quantum Computer Controller Faults

Quantum computer controller is typically made of equip-

ment to generate microwave pulses to manipulate qubit states,

and measurement equipment to translate quantum information

into a classical format which is stored as the readout data.

1) Faults in Control Pulses

Faults can be injected into the control pulses generated by

the quantum computer controller, for example, through EM

radiation that affects the pulses generated by the controller, or

more directly by affecting the operation of the controller itself

causing it to generate wrong or modified pulses. Readout data

is the classical data resulting from the measurements. Faults

can also be injected into the readout control pulses through

EM, for example, or the readout data can itself be directly

manipulated through faults in digital registers storing the data

within the controller. The control pulses control the operations

or gates of the quantum computer which can be classified

as unitary and non-unitary operations; both types are subject

to faults:

• Unitary Operations – Unitary operations refer to transfor-

mations that preserve the normalization and reversibility

of quantum states. Quantum gates are unitary gates, and

unitary operations are the typical computational operations

on the qubits, such as different X, SX, CX, or other gates.

• Non-Unitary Operations – Non-unitary operations are all

other operations. For instance, reset or measurement are not

unitary, because they collapse the state of the qubits during

the execution of the operation.

2) Faults in Classical Registers

Non-unitary operations such as reset or measurement utilize

classical registers. In particular, when qubits are measured,

the quantum state collapses to one of the eigenstates of

the measurement, and the measurement result is stored in

classical registers or memories inside the control electronics.

The classical registers then can be victims of fault injection

that affects the classical bits:

• Mid-Circuit Measurement – Mid-circuit measurement al-

lows for measuring the qubit state in the middle of the

execution. The results can then be used to determine what

code to execute by analyzing the classical bit measurement

results. If the classical bit is modified, the circuit execution

can be affected, as the classical bit at each mid-circuit

measurement determines the next set of operations that will

be applied.



• Final Measurement – The final measurement is performed

at the end of each circuit. Usually, all qubits are measured,

though sometimes ancilla qubits may not be measured. In-

jecting fault into the classical bits at this stage is effectively

equivalent to manipulating the final circuit output.

C. Quantum Processing Unit Faults

The quantum processing unit implements qubits, such as

the Josephson junction widely used to realize superconducting

qubits. Attackers can also focus on faults in the quantum

processing unit:

1) Faults in Physical Qubits or Couplings

There are many ways to influence and thus inject faults into

the qubits. For instance, superconducting qubits are susceptible

to decoherence, which refers to the loss of coherence and

information due to interactions with the environment. External

noise sources, such as thermal fluctuations or electromagnetic

radiation, can cause qubits to lose their quantum states and

result in errors. Faults can be injected through external means

such as EM radiation or thermal changes to the fridge holding

the qubits.

V. CLASSIFICATION

Our classification of quantum computer fault injection at-

tacks is now presented in this section. The classification is

presented in Figure 4 and detailed below.2

A. Fault Targets

In the classification, we separate the three targets into six

specific components vulnerable to faults and list them in

more detail below.

1) Quantum Processing Unit

• Target: Qubits are typically physical, two-level

quantum-mechanical systems. A common type of qubit

is built from a Josephson junction (but many others

exist). As physical systems, they can be impacted by

voltage changes, EM radiation, etc., that attackers can

generate.

• Target: Couplings are typically intermediate electrical

circuits used to connect qubits, they can be likewise

impacted by voltage changes, EM radiation, etc.

2) Quantum Computer Controller

• Target: Control Pules (Analog RF Signals) are often

microwave pulses sent to an antenna or transmission line

coupled to the qubit with a frequency resonant with that

qubit to realize an operation. The attacker can induce

faults in the qubits or gate operations, e.g., by changing

the frequency, phase, or envelope.

• Target: Control Pulses (Digital Specification) are gen-

erated by arbitrary waveform generators from digital

2The terminology used in this section focuses on superconducting qubit ma-
chines, but this classification can be equally applied to other types of quantum
computers by replacing certain terms. For example, control microwave pulses
can be replaced by laser pulses if ion-trap computers are considered.

specification, e.g. by an FPGA. The attacker can attack

classical bits or classical operations that read, modify,

or write the digital information, thus resulting in wrong

pulses being sent.

• Target: Classical Registers are used, for example, to

store measurement readout information during mid-

circuit or final measurement. The attacker can induce

faults in these classical registers, e.g., during mid-circuit

measurement operations.

3) Auxiliary Processor

• Target: Classical Registers are also used in the auxiliary

processor used to perform computations on the output.

For example in quantum machine learning (QML), parts

of the input circuit are optimized based on the results of

computation, and the circuit is run again. The attacker

can induce faults in these classical registers.

B. Fault Model

The fault model is a theoretical representation or framework

that predicts or describes the types of faults that may occur

in a system, their causes, and their potential effects. We have

three fault models, corresponding to different targets.

1) Quantum Processing Unit

The qubits and couplings are vulnerable to three types of

novel faults not found in classical computers: Faults can result

in unitary type operations, which are effectively faults inducing

a change in qubit state that can be reversed like any other

(non-malicious) unitary gate. Faults can result in non-unitary

operations, which are usually hard to reverse. Faults can result

in enabling or disabling qubits or couplings, which may be

similar to instruction skip faults in classical computers if a

coupling is disabled, for example.

2) Quantum Computer Controller

The analog control pulses are also vulnerable to novel types

of faults not found in classical computers: Faults can attenuate

or amplify the analog pulses, causing different gate operations

to be effectively performed. Faults can also shift the phase

of the pulses, likewise resulting in different gate operations

being effectively performed. The faults can also change the

shape of the envelope of the pulse, again changing the gate

operation performed. If the pulses are attenuated or otherwise

sufficiently distorted, a gate operation may be effectively

disabled. Conversely, amplifying or otherwise injecting an

analog signal can create or insert a gate operation not part

of the original circuit.

3) Quantum Computer Controller and Auxiliary Processor

The controller and auxiliary processor also contain digital

classical information, specifying the pulses (before they are

generated as analog microwave signals) and other registers.

These are vulnerable to well-known stuck-at faults or bit

toggling faults.
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Fig. 4: Classification of quantum computer fault injection attacks.

C. Fault Bound

The fault bound is a limit or threshold that defines the

maximum number of faults that a system can tolerate without

significant degradation in its performance or functionality.

Regardless of the fault target, there is either a single or

multiple fault threat.

D. Fault Lifespan

The fault lifespan refers to the duration for which a fault

persists in a system. In quantum computers, there are many

more different lifespans compared to classical computers.

• Single Shot – each circuit is divided into one or more shots

that are executed on a quantum computer; most short-lived

faults would affect single shots. Most faults on analog pulses

would fit in this category.

• Multi Shot – faults can persist through the execution of

multiple shots of a circuit. Modification of the digital

specification of the pulses would fit in this category.

• Single Job – multi-shot faults that last for all shots of a

circuit would be Single Job faults.

• Multi Job – faults across multiple jobs of the same or

different users would be multi-job faults. Faults in classical

co-processor registers could fit in this category.

• Calibration Cycle – each quantum computer is calibrated

frequently. Calibration can correct for changes in the en-

vironment or noise. Unitary operation-type faults in qubits

could be in this category.

• Power Cycle – periodically, a quantum computer fridge has

to be warmed up to replace or modify hardware, this is

effectively a power cycle. Changes to control pulses which

cause rapid heating and then cooling of the qubits could

result in flux trapping, requiring power cycling the fridge.

• Forever – faults that permanently alter the hardware would

be faults that last forever, e.g., disabling couplings.

VI. RELATED WORK

There are only a few studies on fault injection attacks in

quantum computers. Most of them are based on the hardware-

induced faults in qubits [17]–[19]. Therefore, we drew inspi-

ration from the fault injection literature in classical computing

instead. Our decomposition includes Fault Target, Fault Model,

Fault Bound, and Lifespan [20]–[22]. However, our classifica-

tion represents the attack surface that is distinct from classical

computers and, at the same time, identifies the hardware

components that may be subject to fault injection attacks in

quantum computers. Giraud et al. [23] classify fault injection

attacks in classical computing as transient vs. permanent and

invasive vs. non-invasive. However, for our study, we focused

solely on non-invasive attacks and classified them as transient

or permanent under the Fault Lifespan category. Furthermore,

the fault target and fault manifestation security pyramid for

superconducting quantum computers, shown in Figure 3, is

the quantum computing counterpart of the one introduced by

Verbauwhede et al. [21].

VII. CONCLUSION

This paper presented the first classification of fault injection

attacks on quantum computers. This work first introduced the

domain of quantum computer fault injection attacks. It then

proceeded to present fault targets and fault manifestations for

quantum computers. The resulting classification also specifies

fault models unique to quantum computers, along with fault

bounds and fault lifespans that should be considered. By shed-

ding light on the vulnerabilities of quantum computers to fault

injection attacks, this work contributes to the development of

secure quantum computer systems.
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