
Extending FPGA Information Leaks

with Trojan Phantom Circuits

Anthony Etim

Yale University

New Haven, CT, USA

anthony.etim@yale.edu

Shanquan Tian

Yale University

New Haven, CT, USA

shanquan.tian@yale.edu

Jakub Szefer

Yale University

New Haven, CT, USA

jakub.szefer@yale.edu

Abstract—Field-Programmable Gate Arrays (FPGAs) are in-
creasingly used in data centers and in cloud computing for
acceleration of various applications. However, cloud-based FP-
GAs could be programmed with malicious circuits to leak
information. For example, existing work has shown that long-
wire crosstalk can be abused to leak information in cloud-based
FPGAs. However, long-wire crosstalk is limited to very small
spatial distances where the receiver needs to be located next
to the transmitter or victim on the same FPGA. This work
shows how long-wire crosstalk can be extended to cross-FPGA
information leakage with a novel Trojan phantom circuit. The
phantom circuit is a self-contained circuit, isolated from rest
of the FPGA logic. It uses crosstalk to spy on information
within an FPGA and then exfiltrates the information across
FPGAs by triggering RO stressors for cross-FPGA information
transmission. The tested accuracy of the phantom circuits cross-
FPGA information leakage channel can reach 90%. In addition
to demonstrating a new security threat, this work also presents
the first set of active monitoring and defense mechanisms for
protection from cross-FPGA information leakage.

Index Terms—FPGA Security, Hardware Attacks, Reconfig-
urable logic and FPGAs

I. INTRODUCTION

In recent years, the use of FPGAs in public cloud computing

data centers has exploded in size, from private deployments

of FPGAs in projects such as Microsoft Catapult, to public

deployments from companies such as Amazon Web Services

(AWS). In settings such as AWS, users can upload their

own hardware designs, and accelerate computations on the

remote FPGAs. Many of the users’ designs could be pro-

cessing sensitive data and use encryption, or could be used

for machine learning where users run their custom machine

learning algorithms. In both of the example scenarios there is

sensitive data, such as encryption keys or machine learning

model parameters, respectively, which an adversary may want

to steal.

Existing work has shown that information such as encryp-

tion keys can be leaked using long-wire crosstalk [1]. When

victim and attacker are located next to each other on the FPGA,

their logic may be mapped to wires which are physically

adjacent, and cause crosstalk between each other. Attacker

using Ring Oscillators (ROs) can measure delays induced in

the wires due to crosstalk and learn information about the

state of the victim’s wire. Further, continuing FPGA research

has shown that ROs can be used for other various purposes,

from RO stressors [2] used to generate voltage and thermal

changes, to RO sensors [3] used as receivers in information

leaks through thermal channels. Moreover, ROs can be used to

create Physically Unclonable Functions (PUFs) [4]. In all of

these settings, use of ROs for information leaks is limited to

within single FPGA and we classify these leaks as intra-FPGA

information leaks.

Meanwhile, in this work, we explore novel inter-FPGA in-

formation leaks. We introduce new phantom circuits, which are

malicious circuits which could be used for stealing information

and sending it across FPGAs within same server. Phantom

circuits for the first time combine multiple existing hardware

FPGA threats to extend local, intra-FPGA information leakage

to cross-FPGA or inter-FPGA information leakage. Phantom

circuits are hardware modules unconnected to the rest of the

FPGA circuit. Especially, they have no explicit inputs and

outputs. Unlike most existing FPGA based malicious circuits,

e.g., [2]–[4], our phantom circuits leverage an RO as a clock

source and require no external clock. Clock gating or other

means to disable the clock source thus cannot be used to

disable phantom circuits. Further, when inserted into a victim

design, the phantom circuit Trojan cannot be detected by

checking wire connections, as they have no logical interaction

with the victim circuit.

The phantom circuits combine existing approaches and give

an example of an end-to-end means by which an attacker

could leak information locally, within an FPGA, and send it

across to a different FPGA in the same server. Our phantom

circuits leverage the long-wire crosstalk effects, which have

been recently explored in FPGAs [5] to steal information from

the victim. Then, they utilize novel RO stressors to encode the

leaked information into voltage changes of the FPGA chip.

The voltage changes can then be observed by other receiver

circuits on a different FPGA within the same server. Unlike

most of the previous work, we develop an end-to-end means

that can leak information from victim on one FPGA and send

it to a different FPGA. This work solves number of technical

challenges, such as developing a self-clocked RO long-wire

crosstalk sensor, which enables the phantom circuit Trojan to

be stealthy and harder to detect. Also, unlike prior work on

cross-FPGA information leaks, we demonstrate how to collect,

i.e. leak, the sensitive information from the victim locally and

then send it across the FPGAs. Prior work mainly has focused



Fig. 1: Schematic diagram showing long-wire crosstalk between
victim’s long wire (top) and attacker’s long wire (bottom). Attacker’s
long wire is part of an RO; the crosstalk is detected as changes in
the frequency of the RO under control of the attacker.

on analyzing cross-FPGA communication independent of how

the data to be leaked is actually collected on the source FPGA.

Our work develops the first end-to-end demonstration that

can leak information from victim on one FPGA and send it to

a different FPGA. This highlights new set of threats in cloud-

based FPGAs, and the need for new security mechanisms to be

developed to protect cloud computing and other environments

where FPGAs are used. Consequently, having demonstrated

that local information leakage can be extended to cross-

FPGA information leakage, this work also looks at counter-

measures. It is currently difficult to analyze FPGA bitstreams

and code to find malicious circuits. An antivirus program for

FPGAs has been proposed [6], but the work may not catch all

types of malicious circuits. Consequently, rather than try to

find the phantom circuits, we propose defenders that focus

on identifying and stopping the information leakage in an

active manner.

The main characteristic which the defender can look at are

systematic voltage changes in the operation of the FPGA,

which could be signs of the transmitter modulating the voltage

in order to achieve the cross-FPGA transmission. As one

means for the defender to monitor voltage changes, we explore

the use of CPU and motherboard voltage sensors available on

today’s servers. The sensors can easily be accessible via com-

mon Linux lm-sensors [7] software tool. The voltage data

from various voltage domains monitored by lm-sensors

could be used for discovery of the voltage changes that are

signs of cross-FPGA communication. As an active defense

triggered after the cross-FPGA transmission is suspected, the

voltage changes in the system could be induced on purpose

by the defender or the victim. We explore generation of

disturbance by using CPU or GPU stressors to manipulate the

system’s voltage. Further, the victim circuit itself can generate

large voltage disturbances as well, e.g., by using RO stressors,

to create noise in the cross-FPGA channel.

A. Contributions

The contributions of this work are listed below:

1) We introduce novel phantom circuit Trojan circuits for

information stealing using long-wire crosstalk; phantom

circuits are first long-wire crosstalk circuits which are

also self clocked using RO as a clock source.

Source FPGA

Sink FPGA

PSU

Fig. 2: Schematic diagram showing cross-FPGA information leakage
through the shared power supply unit (PSU). The source FPGA
generates voltage variations used to transmit the information, and
the sink FPGA monitors voltage variations to receive information. In
the case of our phantom circuits, it is the attacker’s Trojan phantom
circuit that modulates the power consumption of the source FPGA to
transmit to the sink FPGA.

2) We are first to combine long-wire crosstalk within FPGA

with cross-FPGA information leakage to extend the

distance of side-channel information leaks from intra-

FPGA to inter-FPGA; the phantom circuits decode long-

wire crosstalk and encode it into voltage changes that

can be sensed across different FPGAs within a server.

3) We then demonstrate active detection mechanisms which

could detect the cross-FPGA communication, and pro-

totype defenses based on generating disturbance in the

voltages using various types of stressors, which can

prevent the cross-FPGA transmission from succeeding.

II. BACKGROUND

This section discusses prior work in long-wire crosstalk in

FPGAs and information leakage across FPGAs. Our phantom

circuits are the first circuits to combine both of these effects

in a novel way to create a security threat.

A. Long-wire Crosstalk

One of the major challenges in the design of FPGAs is

the issue of crosstalk, particularly that caused by long wires.

Crosstalk refers to the unwanted interference between two or

more signals on a circuit, which can cause errors and impair

the overall performance of the system. Moreover, crosstalk

can also lead to information leakage, where sensitive data is

inadvertently leaked to unintended parties [5].

Long wire crosstalk can be captured using ROs, which is

a common method for exploiting the vulnerability of FPGAs

to information leakage. As seen in Figure 1, the long wire

leaks information to the adjacent RO wire through crosstalk,

which affects the frequency of the RO, and changes in the RO

frequency can be measured to learn the static signal on the

victim’s long wire. Existing work has shown attacks on cryp-

tographic circuits using long-wires, and it is a difficult problem

to prevent use of long-wires for sensitive information [8].

To mitigate the effects of crosstalk on FPGA designs,

various techniques have been proposed, such as careful routing

of wires to minimize crosstalk leveraging a combination of

placement, routing, and obfuscation techniques to prevent



secret leakage on FPGA components [9]. At the same time,

existing work has also shown that AWS defenses for ROs can

be bypassed by use of novel ROs with latches or flip-flops [8],

[10]. This makes defending or preventing long-wire crosstalk

an open research problem.

B. Cross-FPGA Information Leakage

Information leakage is a critical concern in the design of

FPGAs, particularly due to their reconfigurability and vulnera-

bility to attacks. Figure 2 shows a schematic of the information

leakage across two FPGAs sharing the same power supply

unit. The sender can stress the power supply by running RO

stressor circuits, and the receiver can measure the shared power

supply voltage changes using RO sensors [11]. Cross-FPGA

information leakage is a type of information leak attack that

exploits the changes in the shared power supply unit (PSU)

of FPGAs connected to the same server or workstation. For

example, Giechaskiel et al. have proposed cross-FPGA covert

channels to leak information from one FPGA to another [11].

However, the existing work has only shown covert channels,

where transmissions is done on purpose. Our work focuses

on side-channels, where the phantom circuit is used to collect

side-channel information from the victim, and then encode it

into cross-FPGA communication to extend the side-channel

from local to cross-FPGA setting.

III. THREAT MODEL

This work assumes a scenario where the adversary is able to

insert the phantom circuit as a Trojan into the victim circuit.

Since the phantom circuit is not connected to the victim circuit,

it could even be inserted into the bitstream, as it does not

depend on any logical connections to the victim’s logic, not

even the clock. This work further assumes the adversary is able

to locate the phantom circuit’s long wire next to victim’s long

wire from which information will be stolen. In addition, the

phantom circuit uses large RO array, and we assume that there

are sufficient FPGA resources available for the attacker’s ROs.

We assume that in single-tenant FPGA setting, this Trojan

could be inserted during deployment or otherwise hidden in

the code unbeknown to the victim.

In multi-tenant setting it would be actually much easier to

insert the phantom circuit next to the victim as the attacker

could be co-tenant on the same FPGA and not reacquire

actual Trojan. In either case, we assume that the victim’s

sensitive information is carried by long wires, next to which

the phantom circuits has its own long wires. We assume the

sensitive information carried on the victim’s long wire is not

encrypted or otherwise protected, e.g., after sensitive data is

decrypted, it has to be carried on the long wires for doing

actual computation. Or, it could be the actual decryption keys

that are carried on the long wires. Thus the information leaked

by our phantom circuits could be both sensitive intellectual

property, e.g. weights of machine learning models being

written to block memories, or decryption keys.

To execute the cross-FPGA side channel, we assume the

attacker controls a different FPGA in the same server. The

Fig. 3: Schematic of phantom circuit Trojan inserted within a source
FPGA, and receiver circuit in the sink FPGA. The sizes of the
modules and the FPGA are not to scale.

second FPGA serves as the receiver of the information. We

assume that attacker is able to synchronize such that the victim

(with the phantom circuit Trojan) on the first FPGA executes

at the same time as the attacker runs sensors on the second

FPGA. The assumed setting of the two FPGAs, with victim

and phantom circuit in first FPGA, and the attacker’s sensors

in second FPGA, is shown in Figure 3. Prior work has shown

that, in cloud settings such as Amazon F1, it is quite easy to

analyze and guess whether two FPGAs allocated to users are

very likely to be on the same server [12].

IV. PHANTOM CIRCUITS

The goal of this work is to demonstrate how to extend intra-

FPGA information leaks to inter-FPGA information leaks. Our

work combines both ideas of side channels (to spy on victim

within source FPGA) and covert channels (to actively send

the information to the sink FPGA). In particular, this is first

work to combine long-wire crosstalk with cross-FPGA data

transmission via shared power supply.

The main components of the phantom circuit are the RO

sensor used as the long-wire crosstalk receiver, and the RO

stressor used as the cross-FPGA power covert-channel trans-

mitter. The phantom circuit itself is instantiated inside a source

FPGA on which the victim circuit is running, and there is

separate sink FPGA, which could be used to recover the

transmitted information. The placement of the phantom circuit

is important as it uses crosstalk effect from long-wires being

placed side by side to steal information. This is standard

assumption in all existing work on long-wire crosstalk, which

by design works if the victim and attacker are placed next to

each other. The assumed setup is shown in Figure 3.

A. Stealing Information Through Crosstalk

Phantom circuits use crosstalk effect from long-wires being

placed side by side to steal information [5]. The design

involves 2 transmitter wires and 1 receiver wire. The trans-

mitting wires are part of the victim. The information on

the transmitting wires is the sensitive information that the



(a) (b)

Fig. 4: (a) Typical FPGA circuit clocked using crystal oscillator
available on the FPGA and (b) self-clocked circuit using RO and
MMCM to generate stable clock signal.

phantom circuits aim to capture. The receiving wire is part

of the RO sensor, which is inside the phantom circuit. The

phantom circuit is unique due to the fact that it is completely

isolated from the entire FPGA logic as it does not rely on the

FPGA system clock as conventional methods currently use,

e.g., [13]. Instead, we use a RO as a clock. The output from

a ring oscillator is passed into a mixed-mode clock manager

(MMCM) module primitive [14] which therefore makes the

clock frequency further stable by our controller logic. By using

RO clock, the phantom circuit has no connections to the other

modules on the FPGA, not even clock connection. This makes

it easier to insert as a Trojan, and also can make it harder to

detect since no explicit inputs and outputs are used. To best

of our knowledge, prior work on long-wire crosstalk never

used self-clocked circuits for on the side of the RO sensor

and receiver. Use of RO as a clock, vs. using external crystal

oscillator, is shown in Figure 4.

B. Inter-FPGA Transmission of Information

Modern cloud FPGA deployments contain multiple FPGAs

per server. Even if each whole FPGA is assigned to a different

user (which is the single-tenant scenario), there are multiple

users running on different FPGAs concurrently. We are first

to show that the local side-channel information captured from

long-wire crosstalk can be transmitted to a different FPGA

by use of the PSU voltage-based communication channel.

Prior inter-FPGA information leakage and communication has

mainly been shown in covert channel setting [11], while we

focus on side channels.

An example phantom circuit could consist of 5 power

wasters, or RO stressors, each containing 2, 000 ROs allowing

for covert transmission. More stressors with fewer ROs, or

fewer stressors with more ROs should give similar results.

These stressors can be turned on and off. When the stressors

are turned on, the shared power supply is stressed, and other

FPGAs connected to the power supply are provided with a

lower voltage. On the other hand, when RO stressors are off,

the voltage across shared power supply unit (PSU) returns

to normal value. In our setting, the phantom circuit is the

transmitter in the source FPGA. It stresses the shared PSU to

achieve the cross-FPGA information transmission.

A sink FPGA can observe the voltage variations on the

shared power supply by running RO sensors itself. The sink

FPGA can consist, e.g., of 5 stressors and 4 receivers. Each

stressor consists of 500 ROs while each receiver is made up

of 5 ROs. The stressor ROs are present in the sink FPGA to

stress the FPGA board’s voltage regulator. As a result of the

local stressing, the on-board voltage regulator is not able to

mask the changes in the input 12V voltage coming from the

shared PSU [11].

C. Design of Stealthy Phantom Circuits with Self-Clocked

Circuits using ROs

Typical FPGA circuits are clocked from a clock signal

coming from external crystal oscillators that may use phase-

locked loops (PLLs) internally to produce stable output clock

signals that are fed into the FPGA. Use of the clock requires

at least one connection of a circuit to the FPGA’s clock signal

and clock tree.

In the phantom circuits, instead of using external clock,

a RO inside the phantom circuit is used to provide a local

oscillating signal that acts as a clock. This eliminates the need

for an external clock source. Designing self-clocked circuits

with ROs can be challenging, as the frequency and phase

of the ROs can vary due to process variations, temperature

changes, and aging effects. The use of ROs in self-clocked

circuits can also introduce issues, such as increased jitter and

clock skew, which can affect circuit performance. However,

phantom circuits are simple and small circuits, and thus not

affected by these typical issues. To help stabilize the clock

signal, as seen in Figure 4, we feed the output of the RO

into a MMCM module [14] to produce a stable clock for the

phantom circuit.

Synchronization between the phantom circuit and the victim

could be achieved by using the RO long-wire receiver for

observing specific patterns in changes of victim’s long wire

that are used as trigger for data collection. Synchronization

between the source and sink FPGAs can be achieved by the

phantom circuit first transmitting a known pattern of bits,

followed by the actual data that is being exfiltrated.

We believe ours is the first application for RO-based clock

for use as reference clock for long-wire crosstalk measure-

ments and resulting data transmission. Because phantom cir-

cuits are self-clocked and have no explicit logical inputs

or outputs, they are difficult to find by examining logical

connections within the victim. The phantom circuits do require

an array of ROs, however, for complex victim designs this may

be a small fraction of the area. Detection of phantom circuits

by examining the victim’s final circuit or the bitstream is left

as future work. In case the phantom circuit is used in a multi-

tenant setting, then it is separate from the victim and cannot

be detected by analyzing any aspect of the victim.

V. EXPERIMENTAL PROCEDURE

In the experiments, first, we tested the phantom circuits

on the source FPGA separately from the sink FPGA, to



Sink FPGA

Source FPGA

PSU

Fig. 5: Experimental setup: a shared power supply unit (PSU) is
shared by FPGAs, as well as the server CPU and GPU.

determine the accuracy of the side-channel that uses the long-

wire crosstalk within the FPGA. Then, second, we tested the

combined end-to-end prototype to analyze the overall system

and to determine the accuracy of the side channel information

sent between two FPGAs. Figure 5 shows the experimental

setup. In our setup, both sink and source FPGAs as well as

the CPU and GPU all share the same power supply unit (PSU),

which is typical in the cloud setting [11].

A. Side Channel Types Evaluated

In addition to the FPGA-based side channel leveraging

shared PSU, we have also explored CPU and GPU based

side channels. The evaluation of CPU and GPU was done to

understand how the CPU and GPU also impact the shared

PSU; and later the CPU and GPU is used as part of a

defense procedure.

1) Main Phantom Circuits Side Channel: FPGA to FPGA:

In our evaluated threat model, first, the phantom circuit in the

source FPGA acts as receiver of the long-wire crosstalk to

spy on sensitive information. The information could be for

example encryption keys, which has been shown by prior

work. The information is then stored inside the phantom

circuit in registers or block RAM. To extend the side-channel

and send the information to the second FPGA, the phantom

circuit uses Manchester encoding, where a 1 becomes 10
and 0 becomes 01. The information encoded in this way is

transmitted to the second FPGA. This is done through the

use of the power-based channel. The source FPGA, here the

phantom circuit, uses RO-based stressors to generate large

voltage drop when transmitting a 1, and it stays idle (no

voltage drops) when transmitting a 0. On the receiving end,

the measurements on the sink FPGA are taken where counters

record the oscillation count values of the sensor ROs [11]. For

example, we take 500 RO measurements for each transmission

of a single bit. The RO sensor uses the relative RO counts to

differentiate between a 1 and 0 bit transmission. The relative

RO counts of a 1 are usually lower than that of a 0 [5].

By using the relative RO counts, we can recover the original

transmitted information.

2) CPU to FPGA Side Channel: We also explore use of

CPU for side channel. We evaluate a side channel using CPU

transmissions as a source, where heavy CPU loads replace

the power draw of the FPGA source. Specifically, we use the

open-source stress [15] program, which can be obtained

through Debian-based Linux distribution package managers.

By altering the number of threads that the stress program uses,

we can examine the impact on the transmission from the CPU.

3) GPU to FPGA Side Channel: As another comparison,

we also explore use of GPU for side channel. To evaluate the

side channel using GPU transmissions as a source, we follow a

process similar to that used for CPU transmissions. We utilize

the open-source gpu_burn [16] program to stress the GPUs,

fully utilizing their cores through Nvidia’s CUDA platform.

We compile and execute the gpu_burn program with the

Nvidia drivers and CUDA versions mentioned in Section V-B.

B. Hardware Used

Our experiments were conducted using Xilinx Artix 7

AC701 boards and Kintex 7 KC705 boards which contain

28nm chips that are comparable, but have different optimiza-

tions [17]. While the Kintex 7 offers higher performance, the

Artix 7 is designed for low power consumption [18]. Both

FPGAs are equipped with a 200MHz oscillator and operate at

a core VCCINT voltage of 1.0V. However, they use different

regulators to convert the 12V PSU output to 1.0V [19] [20].

The computer used in our experiments comprises of 2 Xeon

E5645 CPUs each with 6 cores and 12 threads running at

2.4GHz thus providing a total of 24 threads. There is also

an Nvidia GeForce ZOTAC GT 430 GPU present in the

system with a 1GB GDDR3 GPU memory comprising of 96
CUDA cores running at 0.7GHz. The GPU utilizes a Fermi

Kepler architecture build on a 40nm process technology. The

driver version used was Driver Version 390.157 while the

CUDA Version was 8.0.61. Finally, the compile flag used was

compute_20. For the shared power supply unit, we used

a Corsair PSU with a load rating of 850W that has a Gold

Certification that assures 90% efficiency at 50% load.

C. Self-Clocking with RO Setup

Since the phantom circuits use the output of a RO as a clock,

the output of the RO is passed into the Xilinx Clocking Wizard

v6.0 LogiCORE IP [14]. This logic core has the selection

of MMCM primitive which was selected in our design to

give a stable output clock frequency. Options to minimize the

output jitter on the MMCM as well as using a clock safe

start up control were selected when designing the primitive.

Minimizing the output jitter minimizes the jitter on the output

clocks, but at the expense of power and possibly output clock

phase error. The Safe Clock Startup feature enables a stable

and valid clock at the output [14]. From our experiments, the

frequency of the RO was about 434MHz which served as the

input frequency to the MMCM. The output frequency was set

to 200MHz, similar to that of the native FPGA board clock.

VI. EXPERIMENTAL RESULTS

In this section, we present the evaluation results.



2¹ 2² 2²¹ 2²² 2²³ 2²
Delay Cycles

83

84

85

86

87

88

89

90

Ac
cu

ra
cy

 (%
)

Long Wire Length: 

6
5

Fig. 6: Long wire accuracy varying the delay cycles transmission of
long wire lengths of 5 and 6.

A. Long-wire Leakage Analysis

First, the phantom circuits uses long-wire crosstalk to obtain

side-channel information from the victim. We assume that

the victim and attacker long-wires can be placed next to

each other.

For the long-wire crosstalk, two different lengths of long

wires of length 5 and 6 were evaluated. We varied the delay

cycles of each of these long wires. The delay cycles is the

number of the RO oscillations on the receiving or sensing

wire. From Figure 6, it can be seen as we increase the delay

cycles the accuracy increases steadily and falls after 221 cycles

for a long wire of length 6 while for the long wire of length

5 the accuracy increases steadily until 222 delay cycles are

reached. For 221 cycles and a long wire length of 6, the best

accuracy of about 91% is obtained. The accuracy is computed

based on the transmission of random 32 bit numbers across

the long-wire crosstalk.

B. Cross-FPGA Channel Analysis

Based on the long-wire crosstalk results, we assume that the

attacker is able to find long wires of sufficient length to leak

the information from the victim. Once information is leaked,

the attacker, i.e. phantom circuit, can use RO stressors on

source FPGA and RO sensors on sink FPGA for the cross-

FPGA portion of the leakage.

To test the cross-FPGA transmission, we altered the number

of enabled transmitters on different types of source FPGAs.

The AC701-011 has a maximum of 10 enabled transmitters

while the KC705-02 has a maximum of 14. We observe

in Figure 7 that when the KC705-02 serves as a sink, we

achieve the highest accuracy with just 3 enabled transmitters

on the source and for any additional transmitter, the accuracy

remains the same. However, when the AC701-01 acts as a

sink, the highest accuracy is achieved with about 10 enabled

transmitters. The accuracy is computed based on transmission

of random 32 bit numbers from the source to the sink FPGA.

1The suffix -01, -02, etc. is used to distinguish different FPGA boards of
the same kind, for example AC701-01 and AC701-02 are two different AC701
boards available in our server.

0 2 4 6 8 10 12 14
Number of Enabled Transmitters

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

Source FPGA: KC705-02
Sink FPGA: 

AC701-01

Source FPGA: AC701-01
Sink FPGA: 

KC705-02

Fig. 7: Increasing the number of simultaneously enabled transmitters
on the source FPGA board increases the accuracy of the cross-FPGA
channel using ROs.

2¹ 2¹² 2¹ 2¹ 2²¹ 2²³
Number of Cycles

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

Source FPGA: KC705-02
Sink FPGA: 

AC701-01

Source FPGA: AC701-01
Sink FPGA: 

KC705-02

Fig. 8: Varying the number of cycles on the sink FPGA with 10
(when KC705 is the sink) and 14 (when AC701 is the sink) enabled
transmitters respectively on the source FPGA.

Figure 8 also demonstrates that when the AC701-01 acts

as a sink we achieve the highest accuracy with just 215

cycles while when the KC705-02 acts as a sink the highest

accuracy is achieved with 221 cycles. The delay cycle for each

FPGA is the number of cycles for how long we enable and

disable the stressor ROs in the sink FPGA. The ranges were

chosen experimentally which gives the best accuracy for the

covert channel.

C. CPU and GPU Shared PSU Side Channels

As discussed before, we have also explored use of CPU

and GPU with the shared PSU. The goal is to analyze if these

could be used for side channels as well; and later we use CPU

and GPU as sources of noise used in possible defenses.

1) CPU to FPGA Side Channel: To analyze use of CPU

as information sender, we altered the number of CPU threads

utilized by a stress program from 0, which equates to random

measurements and no transmissions, to the maximum number

of threads which were available on the computer. Specifically,

we conducted the experiment on the CPU connected to PSU,

which has a maximum capacity of 24 threads. We can observe

in Figure 9 for both sink FPGAs as we increase the number



0 5 10 15 20 25
Number of CPU Threads

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

Sink FPGA: 
AC701-01

Sink FPGA: 
KC705-02

Fig. 9: Increasing the number of CPU threads increases the

accuracy of the covert channel using ROs on the FPGA boards.

of threads, the accuracy increases. The maximum accuracy is

reached and then drops after 16 threads on average.

2) GPU to FPGA Side Channel: To analyze use of GPU

as information sender, the GPU was used as the transmitter

while the KC705-02 and AC701-01 FPGA boards were used as

receivers. We take 1500 measurements while using each FPGA

as a receiver. While using the AC701-01 as a receiver, we

observed the highest accuracy of 75% while with the KC705-

02 we observed an accuracy of 100%. This highlights that the

Kintex boards serve as better sink FPGAs while using GPUs.

VII. END-TO-END DEMONSTRATION OF PHANTOM

CIRCUIT OPERATION

To demonstrate complete phantom circuit operation, first,

the phantom circuit is placed next to a simulated victim circuit.

The long-wire crosstalk is used to receive a 256 bit Advanced

Encryption Standard (AES) key. Previous work has shown

crosstalk being used to leak AES keys [1]. Next, the received

AES key is stored inside an internal register in the phantom

circuit. Then, the RO stressors are activated. Each received

bit is Manchester encoded into two bits. The RO stressors are

turned on if the bit of Manchester encoding is 1, and remain

idle if bit of Manchester encoding is 0. Following Figure 7

we use 10 and 14 transmitters when AC701 and KC705 are

the transmitters, respectively. While the RO stressors on the

source FPGA are activated, RO sensors on the sink FPGA are

activated as well. Following Figure 8 we set the number of

cycles per bit transmitted on the the KC705-02 board (sink

FPGA) to be 221 cycles. Note that all source and sink FPGAs

as well as RO clock used for phantom circuits are set to

be 200MHz.

A. Information Leakage Accuracy

In this section we report the combined accuracy of the

phantom circuit. The phantom circuit on the AC701-01 acts

as the source FPGA which leaks the transmitted information

while the KC701-02 acts as the sink FPGA. The phantom

circuits first leak a random 256 bit AES key locally through

long-wire crosstalk, which in turn is sent to the sink FPGA

through the cross-FPGA power covert channel. As seen in

No
 Interf

GPU
 Interf

2 CPU
 Interf

4 CPU
 Interf

6 CPU
 Interf

12 CPU
 Interf

18 CPU
 Interf

24 CPU
 Interf

0
10
20
30
40
50
60
70
80
90

100

Ac
cu

ra
cy

 (%
)

Crosstalk
 Accuracy
Power Side-channel
 Accuracy
Power Side-channel
 Overall Accuracy

Fig. 10: Combined phantom circuit information leakage accuracy
for random 256-bit AES key. Left side shows “No Interf” which
means no interference or no defense. Other bars show accuracy when
our different proposed defenses are used, defenses are discussed in
Section VIII. In the lables, “Interf” means interference.

Long-wire
Crosstalk
(bit/s)

Power
Channel:
Source AC701,
Sink KC705
(bit/s)

Power
Channel:
Source
KC705, Sink
AC701 (bit/s)

≤ 47.68 ≤ 0.1 ≤ 6.1

(channel error
∼ 10%)

(channel error
∼ 0%)

(channel error
∼ 0%)

TABLE I: Bandwidth for the long-wire crosstalk and different types
of covert channel.

Figure 10, we achieve a cross-talk accuracy of about 90%,

100% for the power-side channel and finally about 90%

for the overall accuracy with no interference. The effect of

interference will be explained in Section VIII.

B. Bandwidth Analysis

As discussed before, we employ the use of the Manchester

encoding for cross-FPGA transmission. With Manchester en-

coding, a 1-bit is encoded as a one followed by a zero indicat-

ing that the transmitters are enabled during one measurement

period and then disabled during the consecutive period. This

method however reduces the bandwidth by half but it allows

us to distinguish between two consecutive measurements.

1) Long-wire Crosstalk Bandwidth Analysis: The band-

width bt of the long wire crosstalk is calculated as follows:

bc =
fc

2 · 2t

fc represents the clock frequency and 2t is the measurement

period. Recall from Section V-C that the frequency of the

FPGA board is 200MHz. We can see that 221 cycles give

the highest accuracy from Figure 6. The factor of 2 is used

because we send two bits as a result of Manchester encoding.

From Table I we observe 47.68 bit/s as the maximum value

for bandwidth with nearly 10% channel error.



0 10 20 30 40 50 60
Bit Number

1.08

1.10

1.12

1.14

1.16

1.18
Vo

lta
ge

 (V
)

Voltage: 
in4 Voltage

Fig. 11: CPU in4 voltage from server when no shared power supply
unit covert transmission is occurring.

2) Shared PSU Channel Bandwidth Analysis: The band-

width bt of the Power Covert Channel is calculated as follows:

bp =
fc

2 · 2t ·M

M represents the number of RO measurements taken in a

single cycle. Recall from Section V that we take 500 RO

measurements. In addition, we can see that 215 and 221 cycles

result in the highest accuracy from Figure 8 when the AC701

and KC701 act as sinks respectively. Table I shows that with

the AC701 acting as a sink, we observe 6.1 bit/s as the

maximum value for bandwidth with nearly 0% channel error.

With the KC705 acting as a sink, we observe 0.1 bit/s as

maximum value for bandwidth with nearly 0% channel error.

3) Overall Bandwidth Analysis: The overall bandwidth is

the minimum of the long-wire crosstalk bandwidth and the

power covert channel bandwidth. This is given by:

min(
fc

2 · 2t
,

fc

2 · 2t ·M
)

In Table I we observe 47.68 bit/s as the maximum value for

bandwidth with nearly 10% channel error, however, the overall

bandwidth is limited by the shared power channel.

VIII. DEFENDING AGAINST PHANTOM CIRCUITS AND

INFORMATION LEAKS

Having demonstrated the novel phantom circuits and ability

to extend long-wire crosstalk information to cross-FPGA infor-

mation leakage, we now propose defenses. Our defenses also

apply to prior shared power supply unit covert channels [11].

Long-wire crosstalk can be simply defended by preventing

placement of the Trojan next to victim circuit. While not as

trivial to realize in practice, the long-wire crosstalk defense is

not discussed further in this work, and we focus on the more

novel defense for the share power supply unit covert channels.

A. Active Monitoring of Voltages

This paper provides the first active monitoring method for

defending attacks that leverage shared power supply units. The

voltage data from the CPU or the motherboard is one method

0 10 20 30 40 50 60
Bit Number

1.136

1.137

1.138

1.139

1.140

1.141

1.142

1.143

1.144

Vo
lta

ge
 (V

)

Voltage: 
in4 Voltage

Fig. 12: CPU in4 voltage from server when shared power supply
unit covert AC701 to KC705 leakage transmission is occurring.

that could be used to detect when an attack is happening.

We utilize the open-source lm-sensors [7] program to

collect the voltages from the system. The voltage information

is collected at a rate of 10Hz. Figure 11 shows the voltage

data in its idle state when there is no transmission between

the source and sink FPGA. Since the system is idle, we expect

the voltage to be stable. However, when a transmission occurs

we see a change in the voltage levels as seen in Figure 12.

One challenge for both the attacker and the defender is the

interference from other activity on the CPU or GPU. The

voltage drop may occur from an attack or the normal execution

of programs on the CPU or GPU. On defense side, this means

that CPU or GPU should be idle during the active monitoring.

On the attacker side, this means that transmission will not

work well when activity is happening on CPU or GPU. We

utilize exactly this approach in our next step of the defense.

B. Information Leakage Disruption

To prevent the leakage of information during the power

covert channel transmission, one defense mechanism would

be to stress the CPU when an attack has been detected.

Figure 10 shows that both the power-side channel and overall

accuracy drop significantly when we stress the CPUs with 4

or more threads.

Another defense mechanism would be to stress the GPU

when an attack has been detected. Figure 10 shows that both

the power-side channel and overall accuracy drop significantly

when we stress the GPU once the attack is detected. The

stressing of the CPU and GPUs are used as a defense once an

attack is detected and not to detect an attack themselves.

IX. RELATED WORK

This section provides an overview of existing work on the

different types of malicious circuits that can be instantiated in

FPGAs, as well as the covert and side-channel attacks without

physical accesses.



A. Malicious FPGA Circuits

The research of malicious circuits, or hardware Trojans,

has seen significant growth in the past few decades, with the

increasing complexity of modern Integrated Circuits (ICs) and

the global collaboration in the semiconductor industry. Modern

ICs usually contain billions of transistors and are fabricated by

semiconductor foundries that collaborate internationally, thus,

the research of malicious circuits is vital to secure the chips

that power the basis of critical infrastructures.

Malicious circuits are the stealthy circuits implemented by

attackers in the chip to accomplish designed attacks or for

information leakage purposes. Traditionally, the field of hard-

ware Trojan research mainly refers to the creation and defense

of additional circuits at the transistor level that enable infor-

mation leakage or damage. In [21], Jain et al. summarized the

different types of hardware Trojans in ICs. Attackers are able

to instantiate combinational, sequential, or analog malicious

circuits in the IC fabrication process and can steal information

or perform function manipulations. A more detailed survey

on the hardware Trojans is provided by Xiao et al. [22], the

authors summarized the hardware Trojan design, countermea-

sures, and threat models. The countermeasures include the

Trojan detection, which aims to verify the fabricated ICs, and

the design-for-trust, which adopts the prevention measures in

the design phase. To compare various Trojan detection works,

Shakya et al. [23] put forward a vulnerability analysis flow

and benchmarks for the hardware Trojan research.

The re-configurable hardware, such as FPGAs, opens up

new opportunities in the malicious circuit research. Besides

the insertion of transistor-level Trojans in the chip fabrication

process, FPGAs allow for the creation of logic components

that cause logical malfunction. For the transistor-level Trojans,

Mal-Sarkar et al. [24] investigated the hardware Trojans that

can be inserted in the FPGA device production process, based

on the diverse activation and payload characteristics. For the

logic-level malicious circuits, Chakraborty et al. [25] proposed

the direct modification on the FPGA configuration bitstream

to insert hardware Trojans. It bypassed the pre-deployment

verification step and could be used to steal information and

cause severe malfunction. For specific hardware accelerators,

Ye et al. [26] demonstrated the feasibility of adding malicious

circuits into FPGA CNN accelerator, where attackers acquired

the privilege to control the CNN classification results.

Our work, meanwhile, presents a new type of self-clocked

malicious circuit that is the phantom circuit. We are also first

to show how intra-FPGA side channels can be extended to

inter-FPGA information leaks.

B. Remote FPGA Attacks

Previous research has explored the remote attacks targeting

FPGAs in numerous aspects, including the covert and side

channels through power, thermal and crosstalk, and degrada-

tion attacks that can damage FPGA itself [27]. This work is

built upon the related research on the crosstalk effects and

resource sharing problem.

In [28]–[30], the authors demonstrated that power and

thermal sensors, like ROs and Time-to-Digital Converters

(TDCs), can be leveraged to construct covert channels and

steal information within cloud-based FPGAs or across cloud-

based FPGAs, but never combining both ideas. Among others,

Ramesh et al. were able to extract bytes of the final round key

of 128-bit AES using a ring oscillator and then recover the

original AES key by inverting the key schedule [1]. Trochatos

et al. showcased thermal covert channels in a SmartSSD

between SSD and FPGA [31]. In [32], Matas et al. presented

the Degradation-of-Service attack on data center FPGAs, that

is, the large energy wasting logic based on ROs could drain

excessive power and cause the FPGA boards to shut down.

Tian et al. showed how cloud FPGA infrastructures can be

mapped by using PCIe contention [33]. Recently, in [34] the

authors demonstrated how co-located FPGA accelerators can

be fingerprinted by using the PCIe information. Giechaskiel et

al. [5] put forward the crosstalk effects between adjacent long

wires and shown the potential usages. Recently, Giechaskiel

et al. [11] demonstrated the covert-channels between different

FPGA devices through a shared power supply unit (PSU). The

crosstalk and power supply sharing problem serve as the basis

of our phantom circuit project.

X. CONCLUSION AND FUTURE WORK

In this paper, we introduced the first self-clocked FPGA cir-

cuit that leaks information through long-wire crosstalk within

an FPGA and then amplifies it for cross-FPGA transmission.

First, the sensitive information is leaked via a long-wire side-

channel to the attacker’s phantom circuit. This circuit can

be inserted as a Trojan in case of single-tenant cloud-based

FPGAs, or it could be a separate, malicious tenant in case

of multi-tenant cloud-based FPGAs. Second, the information

leaked within the source FPGA is transmitted to the sink

FPGA where receiver circuit can decode it. On the sender’s

side, the proposed phantom circuits are completely isolated

from the rest of the FPGA. They require no explicit inputs

and outputs, not even a clock. We further demonstrated that

phantom circuit can leak sensitive information with an ac-

curacy of about 90%. As a defense, we analyzed how CPU

and motherboard voltage sensor data can be used to detect the

shared power supply transmission in our setup. After detection,

the transmission can be disturbed by running CPU or GPU

stressors. Future work can explore in-depth defense mecha-

nism, motivated by our threat model and demonstration. E.g.,

future work can explore the use of other FPGAs within cloud

server for generation of noise on the shared power supply

unit for attack prevention. Alternatively, servers with separate

power supplies for the different FPGAs can be analyzed.

ACKNOWLEDGEMENTS

We would like to thank Ilias Giechaskiel for his discussions

and contributions to early versions of the code and paper. This

work was supported in part by National Science Foundation

grants 2245344 and 1901901.



REFERENCES

[1] C. Ramesh, S. B. Patil, S. N. Dhanuskodi, G. Provelengios, S. Pillement,
D. Holcomb, and R. Tessier, “Fpga side channel attacks without physical
access,” in 2018 IEEE 26th Annual International Symposium on Field-

Programmable Custom Computing Machines (FCCM), pp. 45–52, 2018.
[2] F. Schellenberg, D. R. Gnad, A. Moradi, and M. B. Tahoori, “An

inside job: Remote power analysis attacks on fpgas,” in 2018 Design,

Automation Test in Europe Conference Exhibition (DATE), pp. 1111–
1116, 2018.

[3] J. J. L. Franco, E. Boemo, E. Castillo, and L. Parrilla, “Ring oscillators
as thermal sensors in fpgas: Experiments in low voltage,” in 2010 VI

Southern Programmable Logic Conference (SPL), pp. 133–137, 2010.
[4] S. R. Sahoo, S. Kumar, and K. Mahapatra, “A novel ropuf for hardware

security,” in 2015 19th International Symposium on VLSI Design and

Test, pp. 1–2, 2015.
[5] I. Giechaskiel, K. B. Rasmussen, and K. Eguro, “Leaky wires: Infor-

mation leakage and covert communication between fpga long wires,”
in Proceedings of the 2018 on Asia Conference on Computer and

Communications Security, pp. 15–27, 2018.
[6] T. M. La, K. Matas, N. Grunchevski, K. D. Pham, and D. Koch,

“Fpgadefender: Malicious self-oscillator scanning for xilinx ultrascale
+ fpgas,” ACM Trans. Reconfigurable Technol. Syst., vol. 13, sep 2020.

[7] “Lm-sensors package.” https://github.com/lm-sensors/lm-sensors.
[8] I. Giechaskiel, K. B. Rasmussen, and J. Szefer, “Measuring long wire

leakage with ring oscillators in cloud fpgas,” in 2019 29th International

Conference on Field Programmable Logic and Applications (FPL),
pp. 45–50, 2019.

[9] Y. Luo, S. Duan, and X. Xu, “Fpgapro: A defense framework against
crosstalk-induced secret leakage in fpga,” ACM Trans. Des. Autom.

Electron. Syst., vol. 27, nov 2021.
[10] I. Giechaskiel, K. Rasmussen, and J. Szefer, “Reading between the dies:

Cross-slr covert channels on multi-tenant cloud fpgas,” in 2019 IEEE

37th International Conference on Computer Design (ICCD), pp. 1–10,
2019.

[11] I. Giechaskiel, K. B. Rasmussen, and J. Szefer, “C3apsule: Cross-fpga
covert-channel attacks through power supply unit leakage,” in 2020 IEEE

Symposium on Security and Privacy (SP), pp. 1728–1741, IEEE, 2020.
[12] S. Tian, I. Giechaskiel, W. Xiong, and J. Szefer, “Cloud fpga cartography

using pcie contention,” in Proceedings of the International Symposium

on Field-Programmable Custom Computing Machines, FCCM, May
2021.

[13] J. Lamoureux and S. J. E. Wilton, “Fpga clock network architecture:
Flexibility vs. area and power,” in Proceedings of the 2006 ACM/SIGDA

14th International Symposium on Field Programmable Gate Arrays,
FPGA ’06, (New York, NY, USA), p. 101–108, Association for Com-
puting Machinery, 2006.

[14] “Clocking wizard v6.0 logicore ip.” https://docs.xilinx.com/r/en-US/
pg065-clk-wiz/Clocking-Wizard-v6.0-LogiCORE-IP-Product-Guide.

[15] “Linux stress test.” https://linux.die.net/man/1/stress/.
[16] V. Timonen, “Multi-gpu cuda stress test.” https://github.com/wilicc/

gpu-burn.
[17] “Xilinx, inc., “7 series fpgas data sheet: Overview (ds180)”.”

https://www.xilinx.com/support/documentation/data sheets/ds180
7Series Overview.pdf.

[18] “Xilinx, inc., “7 series product brief.” https://www.xilinx.com/
publications/prod mktg/7-Series-Product-Brief.pdf.

[19] “Ac701 evaluation board for the artix-7 fpga (ug952).”
https://www.xilinx.com/support/documentation/boards and kits/ac701/
ug952-ac701-a7-eval-bd.pdf.

[20] “Kc705 evaluation board for the kintex-7 fpga (ug810).”
https://www.xilinx.com/support/documentation/boards and kits/kc705/
ug810 KC705 Eval Bd.pdf.

[21] A. Jain, Z. Zhou, and U. Guin, “Survey of recent developments for
hardware trojan detection,” in 2021 IEEE International Symposium on

Circuits and Systems (ISCAS), pp. 1–5, IEEE, 2021.
[22] K. Xiao, D. Forte, Y. Jin, R. Karri, S. Bhunia, and M. Tehranipoor,

“Hardware trojans: Lessons learned after one decade of research,” ACM

Transactions on Design Automation of Electronic Systems (TODAES),
vol. 22, no. 1, pp. 1–23, 2016.

[23] B. Shakya, T. He, H. Salmani, D. Forte, S. Bhunia, and M. Tehranipoor,
“Benchmarking of hardware trojans and maliciously affected circuits,”
Journal of Hardware and Systems Security, vol. 1, pp. 85–102, 2017.

[24] S. Mal-Sarkar, A. Krishna, A. Ghosh, and S. Bhunia, “Hardware trojan
attacks in fpga devices: threat analysis and effective counter measures,”
in Proceedings of the 24th Edition of the Great Lakes Symposium on

VLSI, pp. 287–292, 2014.
[25] R. S. Chakraborty, I. Saha, A. Palchaudhuri, and G. K. Naik, “Hardware

trojan insertion by direct modification of fpga configuration bitstream,”
IEEE Design & Test, vol. 30, no. 2, pp. 45–54, 2013.

[26] J. Ye, Y. Hu, and X. Li, “Hardware trojan in fpga cnn accelerator,” in
2018 IEEE 27th Asian Test Symposium (ATS), pp. 68–73, IEEE, 2018.

[27] C. Jin, V. Gohil, R. Karri, and J. Rajendran, “Security of cloud fpgas:
A survey,” arXiv preprint arXiv:2005.04867, 2020.

[28] S. Moini, S. Tian, D. Holcomb, J. Szefer, and R. Tessier, “Remote
power side-channel attacks on bnn accelerators in fpgas,” in 2021

Design, Automation & Test in Europe Conference & Exhibition (DATE),
pp. 1639–1644, IEEE, 2021.

[29] S. Tian and J. Szefer, “Temporal thermal covert channels in cloud fpgas,”
in Proceedings of the 2019 ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays, pp. 298–303, 2019.
[30] S. Tian, S. Moini, A. Wolnikowski, D. Holcomb, R. Tessier, and J. Sze-

fer, “Remote power attacks on the versatile tensor accelerator in multi-
tenant fpgas,” in 2021 IEEE 29th Annual International Symposium on

Field-Programmable Custom Computing Machines (FCCM), pp. 242–
246, IEEE, 2021.

[31] T. Trochatos, A. Etim, and J. Szefer, “Covert-channels in fpga-enabled
smartssds,” ACM Trans. Reconfigurable Technol. Syst., dec 2023. Just
Accepted.

[32] K. Matas, T. La, N. Grunchevski, K. Pham, and D. Koch, “Invited
tutorial: Fpga hardware security for datacenters and beyond,” in Pro-

ceedings of the 2020 ACM/SIGDA International Symposium on Field-

Programmable Gate Arrays, pp. 11–20, 2020.
[33] S. Tian, I. Giechaskiel, W. Xiong, and J. Szefer, “Cloud fpga cartography

using pcie contention,” in 2021 IEEE 29th Annual International Sym-

posium on Field-Programmable Custom Computing Machines (FCCM),
pp. 224–232, 2021.

[34] C. Fang, N. Miao, H. Wang, J. Zhou, T. Sheaves, J. M. Emmert,
A. Sasan, and H. Homayoun, “Gotcha! i know what you are doing
on the fpga cloud: Fingerprinting co-located cloud fpga accelerators via
measuring communication links,” 2023.


	Introduction
	Contributions

	Background
	Long-wire Crosstalk
	Cross-FPGA Information Leakage

	Threat Model
	Phantom Circuits
	Stealing Information Through Crosstalk
	Inter-FPGA Transmission of Information
	Design of Stealthy Phantom Circuits with Self-Clocked Circuits using ROs

	Experimental Procedure
	Side Channel Types Evaluated
	Main Phantom Circuits Side Channel: FPGA to FPGA
	CPU to FPGA Side Channel
	GPU to FPGA Side Channel

	Hardware Used
	Self-Clocking with RO Setup

	Experimental Results
	Long-wire Leakage Analysis
	Cross-FPGA Channel Analysis
	CPU and GPU Shared PSU Side Channels
	CPU to FPGA Side Channel
	GPU to FPGA Side Channel


	End-to-End Demonstration of Phantom Circuit Operation
	Information Leakage Accuracy
	Bandwidth Analysis
	Long-wire Crosstalk Bandwidth Analysis
	Shared PSU Channel Bandwidth Analysis
	Overall Bandwidth Analysis


	Defending Against Phantom Circuits and Information Leaks
	Active Monitoring of Voltages
	Information Leakage Disruption

	Related Work
	Malicious FPGA Circuits
	Remote FPGA Attacks

	Conclusion and Future Work
	References

