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Abstract—The ability for users to access quantum computers
through the cloud has increased rapidly in recent years. Despite
still being Noisy Intermediate-Scale Quantum (NISQ) machines,
modern quantum computers are now being actively employed
for research and by numerous startups. Quantum algorithms
typically produce probabilistic results, necessitating repeated
execution to produce the desired outcomes. In order for the
execution to begin from the specified ground state each time
and for the results of the prior execution not to interfere with
the results of the subsequent execution, the reset mechanism
must be performed between each iteration to effectively reset the
qubits. However, due to noise and errors in quantum computers
and specifically these reset mechanisms, a noisy reset operation
may lead to systematic errors in the overall computation, as well
as potential security and privacy vulnerabilities of information
leakage. To counter this issue, we thoroughly examine the state
leakage problem in quantum computing, and then propose a
solution by employing the classical and quantum one-time pads
before the reset mechanism to prevent the state leakage, which
works by randomly applying simple gates for each execution
of the circuit. In addition, this work explores conditions under
which the classical one-time pad, which uses fewer resources,
is sufficient to protect state leakage. Finally, we study the role
of various errors in state leakage, by evaluating the degrees of
leakage under different error levels of gate, measurement, and
sampling errors. Our findings offer new perspectives on the de-
sign of reset mechanisms and secure quantum computing systems.

I. INTRODUCTION

The term Noisy Intermediate-Scale Quantum (NISQ) quan-

tum computer is used to refer to the current quantum com-

puters [1]. Despite already having promising applications in

optimization, chemistry, and other crucial fields [2], [3], [4],

today’s NISQ quantum computers are still too limited to

provide quantum error correction [5], and execute “large”

algorithms, such as Shor’s algorithm [6] and Grover’s al-

gorithm [7]. However, NISQ quantum computers are being

developed quickly; 433-qubit machines are now available, and

above 4000-qubit is anticipated soon [8].

Nowadays, quantum computers from various suppliers are

already accessible through cloud-based services such as IBM

Quantum [9], Amazon Bracket [10], and Microsoft Azure [11].

Without having to buy or maintain them, remote access makes

it simpler to run algorithms on actual quantum computers, but
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also leads to privacy and security concerns with such open

access. For example, malicious users can try to gather the

leaked information to learn the state of the victim user’s qubits

through the victim’s results. One possible source of state leak-

age is the noisy operation, such as the reset operation which

is necessary between circuit executions to reset qubits. As a

result of noisy and erroneous reset operations, information may

be carried over to subsequent executions, and this leakage may

be abused by attackers. Such a weakness is shown in reset

attacks [12], side-channel attacks [13], and higher-energy state

attacks [14]. Given that the information is leaked sequentially

from earlier executions to later executions, this type of state

leakage can be referred to as “horizontal” leakage. On the

other hand, “vertical” leakage, which simultaneously occurs

from qubits to qubits, is another kind, which is demonstrated

in crosstalk attack [15], [16], [17], [18] and qubit sensing [19].

The one-time pad (OTP) is a well-known, powerful tool in

cryptography to perfectly encrypt information [20]. The idea

is to generate a random key to XOR, or pad, the plaintext

into a perfectly secure ciphertext. While this is proved to be

secure in classical computing, it is not enough for quantum

computing because of the neglect of some crucial degrees of

freedom, such as phase information. To extend the classical

OTP (COTP) to the quantum setting, the quantum one-time

pad (QOTP) has been proposed [21], [22] which can perfectly

secure qubits, and thus can be a potential approach to mitigate

the information leakage in quantum computing.

In this paper, we aim to thoroughly study horizontal leakage

by deducing the theoretical model for describing the process

of state preparation in the previous execution, reset mechanism

between executions, and information collection in the follow-

ing execution. As demonstrated later, state leakage is mainly

due to the noise and errors in quantum computers, specifically

reset operations. Thus, depending on the implementations and

error rates of reset operations, there may be different amounts

of state leakage, and commonly used reset operations are

analyzed and evaluated in this work. As a countermeasure,

we propose to apply the OTP to mitigate the state leakage.

Also, we show that the COTP is sufficient to mitigate leakage

in measurement-based reset, nullifying the need for the more

expensive QOTP. We evaluate our technique on both quantum

computers and simulators to secure quantum reset operations.



II. BACKGROUND

This section introduces key concepts in quantum computing.

A. Quantum Computing Basics

Analogous to the bit in classical computing, the quantum

bit (qubit) is the basic unit in quantum computing. A qubit

can be represented by a two-dimensional unit complex vector:

|Èð = (³, ´)T , where |³|2 + |´|2 = 1 due to the requirement

for unity. Any qubit can be expressed as a linear combination

|Èð = ³ |0ð + ´ |1ð. where |0ð := (1, 0)T and |1ð := (0, 1)T

which can be thought of as the 0 and 1 inside of a traditional

computer. More generally, the state space of n-qubit states are

spanned by 2n basis states starting from |0 . . . 0ð to |1 . . . 1ð,
and an n-qubit state |Èð can be represented as

|Èð =
2n−1
∑

i=0

ai |ið (1)

Qubits are controlled and evolve under quantum gates,

which can be represented as unitary matrices, i.e. for a

quantum gate represented by a matrix U , it requires that

UU  = U  U = I , where U  denotes conjugate transpose.

Several quantum gates that are used in this paper, and can be

executed on today’s real quantum computers, are listed below:

I =

(

1 0
0 1

)

, X =

(

0 1
1 0

)

, Z =

(

1 0
0 −1

)

, XZ =

(

0 −1
1 0

)

(2)

as well as the rotation-by-¹ gate:

R¹ =

(

cos ¹
2 −i sin ¹

2

−i sin ¹
2 cos ¹

2

)

(3)

The above examples are single-qubit gates. In general, an n-

qubit gate can be expressed by a 2n × 2n unitary matrix.

Some multi-qubit gates can create entanglement, which is

a phenomenon that cannot be found in the classical world.

Moreover, a collection of gates is called a circuit, which is

the form of quantum computation considered in this work.

At the end of a quantum circuit, the final state can be mea-

sured to get computation results. According to Born’s rule, for

a state described as in Equation 1, the probability of measuring

or observing |ið is given by P (|ið) = |ai|
2. Moreover, the

measurement leads to the collapse of the quantum state, i.e. if

the measurement result is |ið, then the state will collapse to |ið
afterward, a stark contrast to the way in classical computing.

In addition to the way we introduced quantum states above,

which we refer to as pure states, we can also have mixed

states, which is a probability distribution over quantum states.

Suppose with probability pi one is given the quantum state

|Èið, such a mixture is denoted {(pi, |Èið)} and is represented

mathematically using the density matrix

Ä =
∑

i

pi |ÈiðïÈi| (4)

noting that ïÈi| := |Èið
 

and thus Ä is a matrix. The

probability of measuring |ið is given by P (|ið) = ïi| Ä |ið.
If Ä = 1

n
In, where In is the n-dimensional identity matrix,

then it is the maximally mixed state, i.e. the probability of

measuring any state |ið will be 1
n

.

B. Classical One-Time Pad (COTP)

Suppose Alice and Bob share a uniformly random bit-string

k ∈ {0, 1}n which is only known to them. If Alice has a

message m ∈ {0, 1}n and sends it to Bob c = m · k, with

c ∈ {0, 1}n the ciphertext and · the bit-wise XOR, then Bob

can recover the message by noting that m = c· k. However,

anyone else who does not know k will see a uniformly random

bit-string and thus will have no information about m.

Technically, the same thing can be done with a qubit. If

Alice has a qubit |Èð and share one bit k with Bob, Alice can

send |È′ð = Xk |Èð to Bob, where X is the Pauli-X gate in

Equation 2. Then Bob can decrypt the received state to obtain

Alice’s state by |Èð = Xk |È′ð. In the following, we refer to

this scheme as the classical one-time pad, or COTP for short.

It functions the same as in classical computing when

|Èð = |0ð or |1ð, and thus is proved to be secure. However, this

scheme is not secure on other occasions. More specifically, for

a qubit È = (³, ´)T whose corresponding density matrix is:

Ä = |Èð ïÈ| =

(

³

´

)

(³ ´) =

(

|³|2 ³´∗

³´∗ |´|2

)

(5)

the mixture after applying COTP is
{(

1

2
, |Èð

)

,

(

1

2
, X |Èð

)}

, and

the density matrix is:

Ä′ =
1

2
Ä+

1

2
XÄX =

1

2

(

1 ³´∗ + ³∗´
³´∗ + ³∗´ 1

)

(6)

This is not a maximally mixed state and the output prob-

ability depends on the measurement axis. When measuring

along the Z axis, whose basis states are |0ð = (1, 0)T and

|1ð = (0, 1)T , the probability of measuring |0ð and |1ð is the

same, i.e. P (|0ð) = ï0| Ä′ |0ð = P (|1ð) = ï1| Ä′ |1ð = 1
2 , then

there is no information about the initial states can be acquired

from the measurement results. However, such a deduction is

not held under some other measurement axes. The insecurity

of this scheme can be proved by computing the probability of

measuring an arbitrary state |nð = (x, y)T , |x|2 + |y|2 = 1:

P (|nð) =
1

2
ïn| Ä |nð =

1

2
[1 + (xy∗ + x∗y)(³´∗ + ³∗´)] (7)

According to this equation, the probability of measuring some

states is not 1
2 . For instance, if the measurement is performed

along X-axis whose basis states are |+ð = 1√
2
(1, 1)T and

|−ð = 1√
2
(1,−1)T , then P (|+ð) = ï+| Ä′ |+ð = 1

2 (1 +

sin ¹ cosϕ) and P (|−ð) = ï−| Ä′ |−ð = 1
2 (1 − sin ¹ cosϕ),

which depends on the initial states. Based on the measurement

probability distribution, additional information about initial

states is leaked.

C. Quantum One-Time Pad (QOTP)

The insecurity of COTP in the quantum world can be

fixed by introducing one more gate into the picture. Be-

sides k1 used to control whether to apply the Pauli-X gate,

Alice and Bob can also share one more bit k2 to specify

if a following Pauli-Z gate will be performed. Alice then

sends |È′ð = Zk2Xk1 |Èð, and Bob can recover the state

with |Èð = Xk1Zk2 |È′ð. This scheme is called quantum



one-time pad, or QOTP for short. The mixture of QOTP
{(

1

4
, |Èð

)

,

(

1

4
, X |Èð

)

,

(

1

4
, Z |Èð

)

,

(

1

4
, ZX |Èð

)}

, or:

Ä′ =
1

4
Ä+

1

4
XÄX +

1

4
ZÄZ +

1

4
ZXÄXZ =

1

2
I (8)

This is a maximally mixed state so the probability of

measuring any state is P (|nð) = 1
2 . Therefore, no information

on the initial state can be learned with the measurement

performed after QOTP was applied.

D. Quantum Channels, Noise, and Errors

There are more general operations in quantum computing

that cannot be expressed as quantum gates and we use the

concept of quantum channels to describe these. We can

describe a quantum channel acting on a state Ä via its Kraus

representation as:

E(Ä) =
∑

i

KiÄK
 
i (9)

where Ki are called Kraus operators satisfying
∑

iK
 
iKi = I .

There are other representations, such as the Choi-matrix rep-

resentation, we refer readers to [23] for more details.

As a general approach, quantum channels can also be used

to model the noisy process in quantum computing. Noise in

quantum computing arises from various sources, including

temperature fluctuations, electromagnetic interference, and im-

perfections in hardware components. These factors collectively

introduce errors that can distort quantum operations. To be

more specific in terms of noise sources, errors can be classified

as thermal relaxation errors, measurement errors, Pauli errors,

and so on. We discuss how to model these errors and deduce

the theoretical formula in more detail in Section V.

E. Workflow of Cloud Quantum Computing

All mathematical computations are used to model quantum

circuits at the logic level. With quantum software development

kits, such as Qiskit [24], mathematical descriptions can be

implemented as quantum circuits. Quantum circuits need to

be further processed, the process is referred to as transpiling,

to be transformed into instructions that can be executed on a

specific quantum computer satisfying its requirements.

One quantum circuit typically needs to run numerous times

in order to obtain the statistical result due to the proba-

bilistic nature of quantum algorithms. One execution within

a quantum circuit is often called one shot. This shot-by-

shot execution enables the gathering of data and investigation

of potential consequences. A key component of shot-based

quantum computing is the reset operation. The qubits are reset

between executions, usually |0ð = (1, 0)T , which makes sure

that each succeeding shot starts from a specified state.

In quantum computers provided by cloud platforms, users

submit multiple-shot quantum circuits to the quantum hard-

ware, and these tasks are carried out, with each shot denoting

a distinct computation. Each shot may be followed by mea-

surements that reveal important details about the behavior and

statistical characteristics of the quantum system. After all shots

have been completed, the user will receive the final results.

(a) No OTP

(b) With OTP

Victim

Circuit

Noisy Reset

Operation

Attacker

Circuit

State Leakage

Victim

Circuit

Noisy Reset

Operation

Attacker

Circuit
OTP

State Leakage Mitigated

끫殌끫殞 끫殌끫殠 끫殌끫殢

끫殌끫殞,끫殌끫殠 끫殌끫殢

Fig. 1: Schematic of the threat model. (a) Without OTP, the

state of the victim circuit is leaked to the attacker circuit; (b)

with OTP, the state leakage can be mitigated.

III. THREAT MODEL

We first assume a strong attacker in order to later provide

reliable assurances on the security of our defense. We assume

that quantum computers can be shared, enabling the alternate

execution of circuits from different users on a group of qubits

on a quantum computer. We assume that between the shots of

circuits, there is a reset operation. Several reset operations can

be performed and are analyzed in this work.

We assume that there are two different types of users:

victim users and attacker users. This work demonstrates OTP

can be used after victim execution, but before reset operation

execution, to prevent information leakage to the attacker user,

as shown in Figure 1. We assume that the attacker user has

a reliable means to alternate execution with the victim user

on the same qubits to collect measurement data that he or she

uses to try to leak the state information from the victim.

We assume that when the victim finishes their computation

and reads out their qubits, the attacker wants to learn the

outcomes of these quantum programs. We assume that the

victim and the attacker will run their programs consecutively

for a sufficient number of times, enabling the attacker to

gather statistical data from their respective applications. We

assume, in particular, that the owner of the quantum computer

has strong logical isolation such that the attacker cannot

directly access the victim’s outputs. If not, it would be simple

to determine the victim’s computation results, negating the

necessity for side channels and information leaking analysis.

IV. ONE-TIME PAD IN QUANTUM COMPUTING

In this section, we analyze how the one-time pad can be

applied to mitigate state leakage in quantum computing jobs.

For simplicity, the deduction is based on single-qubit state,

while it can be extended to multi-qubit states.

In our assumed setting, shown in Figure 1, the victims finish

executing one shot of their circuit, and then the system reset

mechanism is triggered to reset the qubit. Typically, this can be

a reset instruction, or simply idle the system for a long time

to let qubits decohere to the |0ð state. Finally, the attacker

measures the state leakage.
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(b) QOTP

Fig. 2: Schematic of how states are transformed with OTP. The pink
vector shows an arbitrary state, while others show the state after
applying gates of OTP. (a) With COTP, the final states (the orange
vector) are along the axis of the generalized Pauli-X gate; (b) with
QOTP, the final states (no show in the figure) are the original points.

The existence of state leakage is due to the noise and

errors in reset operations. If the reset operation can completely

reset states, then no information will persist into the following

execution. However, if one scheme before the reset operation

can change all states into one same state (such as QOTP

that we demonstrated in Section II-C), or states that the reset

operation can further change into one same state (such as

COTP with the reset instruction that we will discuss in the

following), then it can mitigate state leakage. As we introduced

in Section II-C, QOTP transforms any state into the maximally

mixed state and thus can be utilized to eliminate state leakage.

This section mainly discusses the case for COTP. Later, we

will show the requirements under which COTP is able to

minimize state leakage.

A. States of Victim Circuits

A density matrix should be used to represent a general case

of the states after the victim circuit finishes. Here Ä1 is the

state after the victim finishes, as shown in Figure 1b.

Ä1(r⃗) =
1

2
(I + r⃗ · Ã⃗) =

1

2

(

1 + r cos ¹ re−iϕ sin ¹
reiϕ sin ¹ 1− r cos ¹

)

(10)

where I is the identity matrix, Ã⃗ = (Ãx, Ãy, Ãz) is the vector of

three Pauli matrices, and r⃗ = r(sin ¹ cosϕ, sin ¹ sinϕ, cos ¹)
is the vector in Bloch sphere to represent the states. For one

state, r = |r⃗| f 1, i.e. the vector is encircled inside the Bloch

sphere shown in Figure 2.

One distinction of applying OTP to quantum computing

from other scenarios such as quantum teleportation is that at

the end of circuits, there are usually measurements to obtain

the computing results. Measurement is not a unitary operation

and will collapse states. For example, when measuring along

the Z axis whose eigenstates are |0ð and |1ð, without knowing

the measurement results, the state after the measurement can

be represented as Ä = p |0ð ï0|+(1−p) |1ð ï1|, where p is the

probability of measuring |0ð. Equation 10 already captures any

state, and the correspondence is r = 2p− 1, i.e. if the eigen-

states of the measurement is n⃗ and −⃗n where r⃗ = (2p− 1)n⃗,

then Ä1(p) = p |nð ïn|+ (1− p) |−nð ï−n| = Ä1(r⃗).

B. States After OTP

For a general study, assume the gate used by COTP

is a generalized Pauli-X gate that has eigenstate |nð with

eigenvalue 1 and eigenstate |−nð with eigenvalue -1, where

n⃗ = (sin ¹n cosϕn, sin ¹n sinϕn, cos ¹n), so:

Xn⃗ = |nð ïn| − |−nð ï−n| =

(

cos ¹n e−iϕn sin ¹n
eiϕn sin ¹n − cos ¹n

)

(11)

for a special case when ¹n = Ã
2 and ϕn = 0, Xn⃗ = X .

The state after COTP, shown as Ä2 in Figure 1b, is:

Ä2(r⃗, n⃗) =
1

2
Ä1(r⃗) +

1

2
Xn⃗Ä1(r⃗)X

 
n⃗

=
1

4

























2 + 2r cos ¹ cos2 ¹n + re−i(ϕ+ϕn)(e2iϕ + e2iϕn)·
sin ¹ sin ¹n cos ¹n,

r sin ¹n{2e
−iϕn cos ¹ cos ¹n+

e−iϕ[1 + e2i(ϕ−ϕn)] sin ¹ sin ¹n},
r sin ¹n{2e

iϕn cos ¹ cos ¹n+
eiϕ[1 + e2i(ϕn−ϕ)] sin ¹ sin ¹n},

2− 2r cos ¹ cos2 ¹n − re−i(ϕ+ϕn)(e2iϕ + e2iϕn)·
sin ¹ sin ¹n cos ¹n

























(12)

When Xn⃗ = X , the state above is simplified as:

Ä2,X(r⃗) =
1

2

(

1 r sin ¹ cosϕ
r sin ¹ cosϕ 1

)

(13)

On the other hand, after QOTP, the state is Ä2(r⃗) = 1
2I

as shown in Equation 8. This holds for a generalized QOTP.

The idea can be seen from Figure 2b. Given the axes of the

two generalized gates used in QOTP are orthogonal to each

other, the state will be rotated along two axes independently

to generate the mixture, and the vector of the mixture in the

Bloch sphere is the original point.

C. States After Reset Operations

The states after the reset operation depend on the various

implementations of the reset operation, such as the reset

instruction, or simply idle qubits to decohere. Currently, the

reset instruction is typically implemented as one mid-circuit

measurement and one Pauli-X gate conditioned on the mea-

surement result. If the measurement result is |0ð, then it is

already in the ground state so the Pauli-X gate will not be

applied. Otherwise, the Pauli-X gate will be applied to flip

the state to |0ð.
For a generalized reset instruction, suppose

the measurement is along the axis m⃗ =
(sin ¹m cosϕm, sin ¹m sinϕm, cos ¹m), or correspondingly

|mð = cos ¹m
2 |0ð+eiϕm sin ¹m

2 |1ð. Without losing generality,

we choose to start from Equation 13. The possibility of

measuring |mð and |−mð with Ä2,X(r⃗) is:

PX(|mð | r⃗) = ïm| Ä2,X(r⃗) |mð =
1

2
(1 + r sin ¹ cosϕ sin ¹m cosϕm)

PX(|−mð | r⃗) = ï−m| Ä2,X(r⃗) |−mð =
1

2
(1− r sin ¹ cosϕ sin ¹m cosϕm)

(14)

notice that after determining the axis of the measurement in

the reset instruction, the conditional gate is determined, i.e. if

the ground state is chosen to be |mð, then the conditional gate

must change |−mð to |mð, i.e., it functions the same as Xm⃗.



For other types of implementations of the reset operation,

the process can be modeled with the quantum channel E in

Equation 9, since the reset operation is not unitary.

Besides, as we explained, the state leakage exists due to the

noise and errors. For the reset instruction, the measurement

error plays a role when measuring |−mð but reporting to

measure |mð, it keeps |−mð unchanged, or the opposite. The

gate error works when |−mð will not be correctly rotated to

|mð. For a generalized reset operation with errors, the state

after the reset operation, shown as Ä3 in Figure 1b, can be

represented as:

Ä3(r⃗) = E(Ä2) =

(

1−

n
∑

i=1

pi(r⃗)

)

|mð ïm|+

n
∑

i=1

pi(r⃗) |ei(r⃗)ð ïei(r⃗)|

(15)

where |ei(r⃗)ð ïei(r⃗)| is one state to which the noise and errors

cause, and pi(r⃗) is the probability of this result.

D. Measurement of the State Leakage

The state leakage can be measured with a subsequent

measurement. If pi is independent of the initial state r⃗, or if

the pi is dependent on the initial state r⃗ but the following reset

operation removes this dependence, then no information will

be leaked from the prior execution to the next. Otherwise, such

dependence may be measured in attacker circuits, and then this

state leakage can potentially lead to a bias in the computing

results, or information leakage to the following execution.

E. Multi-Qubit Case

For multi-qubit states that are not entangled, the extension

of the previous discussion is straightforward since each qubit

is independent. For a general multi-qubit state, the case is

similar to the single-qubit case. As an example, consider

a general 2-qubit state Ä = {aij}. After applying COTP

independently on each qubit, the diagonal elements in the

density matrix are both 1
4 , which means the probability of all

cases are 1
4 when measuring along the Z axis, while leaving

the off-diagonal elements to be a quarter of the summations of

permutations between rows and columns. Because off-diagonal

elements may be non-zero, they may be measured by attackers

to retrieve the information of victims. In contrast, QOTP

will evolve the state to be 1
4I4, which is still a maximally-

mixed state. Whether multi-qubit entangled states can have

more interesting behaviors will leave as a future work. For

instance, it may be possible to measure one qubit to get

information about other qubits due to entanglement, e.g., to

“phase kickback” in quantum algorithms [25].

V. NOISE AND ERRORS

Noise and errors in the reset operation are the main reason

for the state leakage. The noise and errors depend on the

implementation of the reset operation. In this section, three

types of reset operations will be discussed:

1) Thermal Relaxation: This reset approach simply idles

the qubit for a long time to allow decoherence to occur.

Currently, quantum computers on most cloud platforms,

such as IBM Quantum, are mainly using this approach.

2) reset instruction: The typical implementation of a “re-

set instruction” is based on a mid-circuit measurement

followed by a conditional Pauli-X gate as introduced in

Section IV-C. IBM Quantum adopts this implementation.

3) Measurement-less reset instruction: For a theoretical

study, we propose an imaginary reset instruction that is

assumed to reset states but may maintain the state with a

small probability. We will evaluate this theoretical reset

instruction in Section VII-D.

In the following, we only consider applying the quantum

channel on Ä1(r⃗) (Equation 10, without OTP) and Ä2,X(r⃗)
(Equation 13, with COTP of Pauli-X gate), since QOTP evolve

states to the maximally mixed state. The discussion of Ä2,X(r⃗)
can be directly applied to COTP with the generalized Pauli-

X gate. The noise and errors in the gate used by OTP are

not considered, and their influence on state leakage can be

future work. For simplicity, we consider the axis of the attacker

measurement to be along the Z and X axes.

A. Thermal Relaxation

In practice, qubits are constantly interacting with the en-

vironment, and through this process, quantum coherence is

lost [26]. This process is called quantum decoherence, and

is usually described by T1 time, or the relaxation time, and

T2, or the dephasing time [27]. For qubit in state |1ð, the

probability of measuring it to be |1ð after time t is given by:

P (|1ð) = e
− t

T1 , where T1 quantifies how the qubit decays to

|0ð. On the other hand, T2 both describes the energy and phase

loss, with 1
T2

= 1
2T1

+ 1
Tφ

, where Tϕ is the pure dephasing

time. According to this formula, it requires T2 f 2T1.

The thermal relaxation error channel can described in the

Choi-matrix representation:

Λ =
∑

i,j

|ið ïj| ¹ E(|ið ïj|)

=









1− p1(1− e−µ1) 0 0 e−µ2

0 p1(1− e−µ1) 0 0
0 0 p0(1− e−µ1) 0

e−µ2 0 0 1− p0(1− e−µ1)









(16)

where µ1 = T1

t
and µ2 = T2

t
is the ratio of the decoherence

time to the time idled, and p0 and p1 are the populations of

|0ð and |1ð at equilibrium, which is approximately p0 = 1 and

p1 = 0 for most quantum computers.

Under this quantum channel, the state will be:

E(Ä) = Tr1
[

Λ(ÄT ¹ I)
]

(17)

where Tr1 is the partial trace over subsystem 1. We refer read-

ers to [23] for more details of the Choi-matrix representation.

Therefore, the state after thermal relaxation will be:

E [Ä1(r⃗)] =
1

2

(

2− e−µ1(1− r cos ¹) e−µ2−iϕr sin ¹
e−µ2+iϕr sin ¹ e−µ1(1− r cos ¹)

)

(18)

E [Ä2,X(r⃗)] =
1

2

(

2− e−µ1 e−µ2r sin ¹ cosϕ
e−µ2r sin ¹ cosϕ e−µ1

)

(19)

When the axis of the attacker measurement is along the Z

axis, the probability of measuring −1 is:

P (−1|E [Ä1(r⃗)]) =
1

2
e−µ1(1− r cos ¹) (20)



P (−1|E [Ä2,X(r⃗)]) =
1

2
e−µ1 (21)

Without COTP, the probability depends on the victim proba-

bility (recall r = 2p(+1)−1) and its orientation, and thus the

attacker can retrieve such information, while with COTP, the

probability only depends on the decoherence time.

When the measurement axis is along the X axis, the

probability of measuring −1 is:

P (−1|E [Ä1(r⃗)]) =
1

2
(1− e−µ2r sin ¹ cosϕ) (22)

P (−1|E [Ä2,X(r⃗)]) =
1

2
(1− e−µ2r sin ¹ cosϕ) (23)

They are the same and depend on victim states. Thus, COTP

cannot mitigate state leakage on this occasion.

B. reset instruction

For the reset instruction, the first part is the mid-circuit

measurement, whose reported results are influenced by M01

and M10, which is the measurement error of preparing |1ð
and measuring |0ð and preparing |0ð and measuring |1ð re-

spectively. The state after the measurement can be represented

as:

E(Ä) = [ï0| Ä |0ð (1−M10) + ï1| Ä |1ð (1−M01)] |0ð ï0|+

(ï0| Ä |0ðM10 + ï1| Ä |1ðM01) |1ð ï1|
(24)

The second part is the conditional Pauli-X gate, which is

affected by the errors in measurement and also its own errors.

There can be many types of errors for it, such as the bit-

flip error, depolarizing error, etc. As an example, if we only

assume the bit-flip error with the probability pbf , then the state

after the conditional Pauli-X gate is:

E(Ä) = {ï0| Ä |0ð [(1−M10) +M10pbf ] + ï1| Ä |1ð (1−M01)(1− pbf )} |0ð ï0|

+ {ï0| Ä |0ðM10(1− pbf ) + ï1| Ä |1ð [M01 + (1−M01)pbf ]} |1ð ï1|
(25)

Based on this, when the measurement axis is along the Z

axis, the probability of measuring −1 is:

P (−1|E [Ä1(r⃗)]) =
1

2
{[(M10 +M01)(1− pbf ) + pbf ]+

[(M10 −M01)(1− pbf )− pbf ]r cos ¹}
(26)

P (−1|E [Ä2,X(r⃗)]) =
1

2
[(M10 +M01)(1− pbf ) + pbf ] (27)

When the measurement axis is along the X axis, the

probability of measuring −1 is:

P (−1|E [Ä1(r⃗)]) =
1

2
(28)

P (−1|E [Ä2,X(r⃗)]) =
1

2
(29)

COTP masks the dependence on the input parameter thus

mitigating the state leakage in both axes, and there is no state

leakage even for no OTP when measuring along the X axis.

In addition, as Equation 34 shows, generally M10, M01, and

pbf are small, under which case the direction of the state

leakage pattern depends on M10−M01. Usually, M10 < M01

due to the decoherence in the measurement process, and thus

the pattern will be similar to other reset operations. However,

sometimes M10 > M01. This leads to a reverse direction of

the state leakage pattern, which is also shown in [12].

C. Measurement-less reset instruction

Lastly, we consider a theoretical reset instruction, which

is a simplified reset instruction, which either leaves the state

unchanged with the probability pr or resets the state with the

probability 1− pr:

E(Ä) = prÄ+ (1− pr) |0ð ï0| (30)

Therefore, the state after this reset will be:

E [Ä1(r⃗)] =
1

2

(

2− pr(1− r cos ¹) prre
−iϕ sin ¹

prre
iϕ sin ¹ pr(1− r cos ¹)

)

(31)

E [Ä2,X(r⃗)] =
1

2

(

2− pr prr sin ¹ cosϕ
prr sin ¹ cosϕ pr

)

(32)

When the measurement axis is along the Z axis, the

probability of measuring −1 is:

P (−1|E [Ä1(r⃗)]) =
1

2
pr(1− r cos ¹) (33)

P (−1|E [Ä2,X(r⃗)]) =
1

2
pr (34)

When the measurement axis is along the X axis, the

probability of measuring −1 is:

P (−1|E [Ä1(r⃗)]) =
1

2
(1− prr sin ¹ cosϕ) (35)

P (−1|E [Ä2,X(r⃗)]) =
1

2
(1− prr sin ¹ cosϕ) (36)

Both are the same as the case of thermal relaxation if

considering pr = e−µ1 and pr = e−µ2 . This theoretical reset

instruction can be considered as the special thermal relaxation

process where the decoherence is isotropic.

VI. REQUIREMENTS FOR CLASSICAL ONE-TIME PAD

As discussed in the previous section, after applying COTP,

the probability may include r and ¹, which is related to the

states of the previous execution. However, we will discuss in

this section that with the correct design of quantum computer

systems, this information cannot be effectively measured.

A. Victim Circuit Measurement Axis

Measuring along different axes is required in many quan-

tum algorithms. This can be done by adding quantum gates

before the measurement. To make the collapsed states correct,

additional gates also need to be added after the measurement.

However, gates after the measurement are optional in many

cases, such as in the final measurement since the state is not

concerned any further.

If all measurements are on the same axis and the gate

after the measurement is not added, such as in Qiskit and

IBM Cloud, where the measurement axis is along Z axis, the

COTP is enough since ¹ = 0 and the off-diagonal elements

in Equation 13 is 0. The reason is that the states after the

measurement can only be one of the two eigenstates of the



measurement (|0ð and |1ð in the case of Z axis), and thus the

case is totally the same as to encode the classical bits.

However, if the feature of changing the axis of the measure-

ment is supported natively, then COTP cannot fully obliterate

dependence on the input parameters as exemplified in the

previous section. For the native support, the gate after the

measurement is necessary, since the measurement may also be

used in the middle of the circuit, and thus the state is needed

to be one of the eigenstates of the measurement.

In addition, in some cases, some qubits will not be measured

at the end of the circuits, such as ancilla qubits. Consequently,

COTP may not mitigate the state leakage in both cases.

B. Reset Operation

According to Equation 13, if the gate used in COTP is

the Pauli-X gate, the axis of the measurement in the reset

instruction can be chosen to be along the Z axis. Under this

circumstance, COTP can get rid of the dependence on the

according to Equation 34 and Equation 36. Since the reset

mechanism is supposed to be supported natively in quantum

computer systems and cannot be tuned by users, this can be

a direct solution to mitigate state leakage.

This is not the only solution. To make the state after COTP

indistinguishable, the measurement axis can be any axis in the

plane perpendicular to the axis of the gate used in OTP. The

idea is shown in Figure 2a. Because the gate used in COTP

rotates the state around its axis for Ã, the component parallel

to the axis is the same, while the component orthogonal to

the axis is the opposite. The state after COTP is along its

gate axis. The measurement is one projection operation to its

eigenvectors, and thus for the measurement with any axis in

the plane perpendicular to the axis of the gate used in OTP, the

probability of measuring two results will be 0.5. Consequently,

COTP only hides components orthogonal to the axis of its gate.

Note, for a generalized reset operation in Equation 15, such

as the decoherence, COTP will not help in most cases.

C. Requirement Summary

In summary, due to that COTP can only hide information

about the components orthogonal to the axis of its gate, and

the measurement is a non-unitary operation that will only

measure information corresponding to some axis, these two

features intertwine with each other and lead to a simple design

to mitigate state leakage: COPT with Pauli-X gate + mid-

measurement along Z axis and Pauli-X gate conditioned on

the measurement results. The axis is not unique and can be

changed based on the discussion in this section. This design

is already able to be implemented in most cloud platforms.

If such a reset instruction is not available, COTP can also

be applied with small errors in operations, though cannot

completely mitigate state leakage, which will be evaluated in

Section VII.

To conclude, if the quantum channel of the reset operation

has some symmetries that cancel out the off-diagonal elements

of Ä2,X (Equation 13), or get rid of the dependence on the

input parameter r, ¹, and ϕ in Ä2,X or Ä2 (Equation 12), then

COTP can be applied to mitigate state leakage.

VII. EVALUATION OF STATE LEAKAGE

This section presents the evaluation results on both the real

quantum computer and the simulator.

A. Experiment Setup

The settings of quantum circuits are shown in Figure 1.

The state of the victim circuit is generated by a rota-

tional X gate with angle ³ chosen from nine vales of

{0, 18Ã,
1
4Ã, . . . ,

7
8Ã, Ã}, and then followed by a Pauli-Z gate,

and finally evolves the state to |Èð = cos ³
2 |0ð + sin ³

2 |1ð.
In the end, the state is measured along the Z or X axis,

which corresponds to set ¹ = 0, ϕ = 0 or ¹ = Ã
2 , ϕ = 0

respectively in Equation 10. Note that r = 2P (+1) − 1
after the measurement, where P (+1) is the probability of

measuring |0ð when along the Z axis and measuring |+ð
when along the X axis. The measurement is assumed to also

collapse the states to its eigenstates, so it will be followed

by a Hadamard gate when measuring along the X axis, as

discussed in Section VI-A. After the victim circuit is the reset

mechanism. The first step is to randomly apply gates of COTP

or QOTP, which are chosen to be the Pauli-X gate and Pauli-

Z gate, or no gate is applied if no OTP is employed. Then

one of the reset operations discussed in Section V is applied

to reset the state. For experiments on real quantum computers,

only the default delay and the supported reset instruction are

used, while the measurement-less reset instruction is evaluated

in experiments on simulators. In the end, one measurement

simulating the attacker’s behavior measures the state leakage.

This measurement will also be along the Z or X axis. For

each parameter set, the experiments were done 10 times, with

each experiment being performed 10,000 shots.

In Section VII-B, the state leakage results on the real

quantum computer ibmq_jakarta are shown, which is a

7-qubit machine on IBM Quantum. In Section VII-C and

Section VII-D, AerSimulator provided in Qiskit with noise

model will be used for testing state leakage with different reset

operations and error rates. The simulator is used because only

the simulator can be tuned with different error rates, and noise

and errors are the same over time, while the noise and errors

on real quantum computers are volatile.

The parameter space is infinite and thus must be limited for

evaluations. For a general evaluation, many parameters can

further be tested, such as the phase ϕ, the measurement axis

angles, and so on. Nevertheless, the general discussion was

presented in previous sections, and evaluations in the following

demonstrated the idea without losing generality.

B. State Leakage in Real Quantum Computers

The state leakage on the real quantum computer

ibmq_jakarta is shown in Figure 3. In Figure 3a and

Figure 3c, the black lines, which are the result without OTP,

show that P (−1) depends on the victim state parameter ³.

Some qubits are less noisy and present a clear pattern, such

as qubits 1-4, while the other qubits are more noisy and the

standard deviation is large, which is due to the instability of

noise and errors of quantum computers. Still, a pattern similar
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(a) 250 ns delay and the measurement axis is along the Z axis.
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(b) 250 ns delay and the measurement axis is along the X axis.
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(c) reset instruction and the measurement axis is along the Z axis.
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(d) reset instruction and the measurement axis is along the X axis.

Fig. 3: P (−1), the probability of attackers measuring −1 on ibmq_jakarta on IBM Quantum. The state leakage is shown in (a) and
(c) without OTP (black lines) by the apparent dependence of P (−1) on α. (a) The reset operation is 250 ns delay (default value on IBM
Quantum) and the measurement axis is the Z axis; (b) the reset operation is 250 ns delay and the measurement is the X axis; (c) the reset
operation is 250 ns delay and the measurement axis is the X axis. (c) the reset operation is the default reset instruction and the measurement
axis is the Z axis; (d) the reset operation is the default reset instruction and the measurement axis is the X axis.

to the trigonometric function is shown. As discussed before,

both COTP and QOTP can mitigate state leakage when the

victim measures along the Z axis, and this is proved by the

flat lines in these figures.

However, in Figure 3b and Figure 3d, there is no clear

dependence for all three cases of OTP when measuring along

the X axis, this is predicted in Section V for the reset

instruction but not the thermal relaxation. One reason is noise

and errors from other sources, such as the gates in the victim

circuits to prepare the states and the measurement of the

attacker circuit. Another reason is that T2 is very small on most

qubits so that dependence is small. Usually, T1 is much larger

than T2, e.g., on ibmq_jakarta, T1 is usually between 100

ns and 200 ns, while T2 is usually less than 100 ns. Therefore,

according to Section V-A, the dependence is much smaller

when measuring along the X axis than measuring along the

Z axis. In any case, OTP can suppress the state leakage.

C. State Leakage with Different Reset Operations

The state leakage results of three reset operations on the

simulator are shown in Figure 4. For the delay, T1 = T2 = 100
ns. For the reset instruction, M10 = 0.05,M01 = 0.10. For
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(a) Thermal Relaxation (250 ns delay).
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(b) reset instruction.
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(c) Measurement-less reset instruction.

Fig. 4: P (−1), the probability of attackers measuring −1 on the
simulator. (a) The reset operation is 250 ns delay (default value on
IBM Quantum) and T1 = T2 = 100 ns; (b) the reset operation is the
reset instruction and M10 = 0.05,M01 = 0.10 and no error on Pauli-
X . (c) The reset operation is the measurement-less reset instruction
and pr = 0.1.

the measurement-less reset instruction, pr = 0.1. The results

are consistent with the previous discussion in Section V. All

three operations will have considerable state leakage when

measuring along the Z axis and no OTP is applied. While

QOTP can eliminate the dependence on α in all cases, COTP

can only achieve this for the reset instruction and has a similar

pattern as no OTP in the other two cases.

D. Noise and Errors

To quantify the state leakage with different noise and error

rates, we define signal-to-noise ratio (SNR), which is similar

to SNR which is widely used to measure the signal in the

background of noise. In this attack, the state leakage pattern

can be approximately quantified with the measure below:

SNR =
meanexp[P (−1|α = π)]−meanexp[P (−1|α = 0)]

meanα[σ(α) ∗
√

nexp

nexp−1
]

(37)
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Fig. 5: SNR on the simulator with different γ1 and γ2, the ratio of
250 ns to the decoherence time T1 and T2 defined in Section V-A.
Note γ1 ≤ 2γ2 due to T2 ≤ 2T1. (a) The measurement axis is along
the Z axis; (b) the measurement axis is along the X axis.

where P (−1|α = x) is the probability of measuring −1 when

α = x, and the mean value of it is over all the experiments.

σ(α) is the standard deviation of all the experiments given

α. The factor
√

nexp

nexp−1
is Bessel’s correction to estimate

the unbiased standard deviation, where nexp is the number

of experiments. This quantity describes the degree of state

leakage, or in the view of security and privacy, how capable

attackers can retrieve the input state from the results. The

larger means the state leakage is more remarkable, or attackers

can retrieve the victim’s information more easily.

Given P (−1|α = x), SNR can be computed follow-

ing the formula in Section V. Because the measurement

results can only be +1 or −1, it follows the Bernoulli

distribution. Thus, for one experiment consisting of n shots,

the expectation value is P (−1|α = x). Assuming the

independence among each shot, the standard deviation is
√

P (−1|α = x) ∗ [1− P (−1|α = x)]/n. So the theoretical

approximation is:

SNR =
P (−1|α = π)− P (−1|α = 0)

meanα

{

√

P (−1|α = x) ∗ [1− P (−1|α = x)]
} ∗

√
n (38)

For the delay, the main factors are T1 and T2, or the

corresponding γ1 and γ2 defined in Section V-A. The results

shown in Figure 5 is consistent with Section V-A. When
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Fig. 6: SNR on the simulator with different M10 and M01, the
measurement error defined in Section V-B. (a) The measurement axis
is along the Z axis; (b) the measurement axis is along the X axis.

measuring along the Z axis, only γ1 is important, and when

measuring along the X axis, only γ2 influences the results.

Without OTP, the state leakage is apparent along both axes.

COTP can only mitigate state leakage along the Z axis and

has a similar pattern as no OTP when measuring along the X
axis, while QOTP can mitigate state leakage along all axes.

For the reset instruction, due to the existence of the measure-

ment that will project all states to its eigenstates, COTP and

QOTP will have the same effect if the axis of the measurement

and the gate of the OTP are correctly selected, as we listed

in the requirements for COTP in Section VI. The results are

shown in Figure 6, and only the measurement error M10 and

M01 are considered in this figure while excluding the error

of the conditional Pauli-X for simplicity. The state leakage

is not mitigated only when measuring along the Z axis and

without OTP, while in other cases the dependence is removed.

In addition, from the results of measuring along the Z axis

and without OTP, it is proved that SNR is dependent on

M01 − M10: if the measurement error is not much biased

among |0ð and |1ð, then the state leakage is small, as demon-

strated in Section V-B. Also, the reverse direction of the state

leakage pattern is observed with SNR < 0 when M10 > M01.

Last, for the measurement-less reset instruction, which is

a simplified and isotropic version of the delay, only the reset

instruction error pr plays a role. As shown in Figure 7, similar

to the delay, COTP can only mitigate state leakage when along

the Z axis and is nearly the same as the case without OTP. On
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Fig. 7: SNR on the simulator with different pr , the error of the
measurement-less reset instruction defined in Section V-C). (a) The
measurement axis is along the Z axis; (b) the measurement axis is
along the X axis.

the contrary, QOTP can mitigate state leakage along all axes.

Besides the noise and errors in quantum computers them-

selves, one of the most important factors is the number of shots

of the attacker measurement. According to Equation 38, the

attacker can easily increase SNR by increasing the number

of shots. In theory, this means any non-zero dependence of

the probability on the input parameter can be measured by

attackers. Unless the design fully mitigates the state leakage,

such as the QOTP and COTP with the reset instruction, the

state leakage may be abused. Nonetheless, this assumption

is based on the hardware being in the same condition. For

example, the noise and error models should be the same across

all shots. Such a requirement is unrealistic in NISQ quantum

computers, so the state leakage is not extraordinary or feasible

to be detected when it is small, such as shown in Figure 3b.

VIII. CONCLUSION

This study examines the state leakage problem in quantum

computing and suggests using the one-time pad before the

reset operations to mitigate state leakage. Though the classical

one-time pad cannot mitigate state leakage in most cases, this

study examines the prerequisites for it to work and shows that

its synergy with reset instruction can be a more economical

substitution for the quantum one-time pad. By comparing

degrees of leakage under various levels of error rates, this

paper evaluates the role of errors in state leakage. New insights

on the creation of safe quantum computing systems and reset

procedures are provided by our findings.
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