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Abstract— This research-to-practice full paper describes the
machine learning techniques for predicting students’ learning
preferences and cognitive load in a mixed reality environment.
As the construction industry increasingly adopts sensing
technologies, the demand for hands-on learning experiences in
construction education becomes imperative. However,
challenges arise in educating the future workforce due to limited
access to construction sites for practical learning and the high
costs associated with these technologies. To overcome these
obstacles, educators are turning to virtual learning
environments, such as mixed reality (MR), to provide engaging
learning experiences. While MR has been utilized in
construction education for simulating activities, the design of
such learning environments often neglects to account for the
varying learning preferences necessary for effective navigation
and optimal learning outcomes. This makes it necessary to
develop intelligent learning environments that can detect
students’ learning preferences and present information based
on individual preferences. Extant studies have shown that eye
movement data, particularly fixations from virtual learning
environments, provide valuable insights into users' cognitive
processes. Studies have also shown that leveraging machine
learning algorithms enables the analysis and interpretation of
eye-tracking data, offering deeper insights into students'
learning preferences. In this study, nineteen undergraduate
students participated in hands-on activities involving the
implementation of sensing technologies within an MR learning
environment. Questionnaires on learning preferences were used
to assess individual learning preferences. By employing machine
learning techniques on eye-tracking data and subjective
evaluations of learning preferences, the study presents models
that can detect students' learning preferences. The study
compared performance metrics from three classifiers -
Ensemble, Neural Network, and K-Nearest Neighbors (KNN)
and the Ensemble classifier was identified as the most accurate,
achieving an accuracy of 83.3% for the test model. The findings
highlight the potential of machine learning models in detecting
learning preferences most effectively for the user’s interactions.
The classification models, when implemented in the MR
environment, can identify users who may require additional
support tailored to their specific learning preferences. Thereby
enhancing their interaction with the MR learning environment.
Understanding and accommodating diverse learning
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preferences in MR learning environments can offer
personalized experiences for effective engagement and
knowledge retention in construction education. By tailoring
instructional methods to individual preferences, educators can
create inclusive environments that foster deeper comprehension
and maximize learning outcomes.
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1. INTRODUCTION

There is a growing adoption of sensing technologies in the
construction industry. As reported by Ogunseiju, Akanmu and
Bairaktarova [1], construction companies currently adopt
various sensing technologies such as laser scanners, drones,
ground penetrating radars, global positioning systems (GPS),
and real-time location sensors (RTLS). This has resulted in
several Dbenefits, such as optimized productivity and
efficiency, improved safety, and significant improvement in
the extraction and sharing of project data. It is projected that
as this productivity continues to increase, the construction
industry can ramp up an additional 2% increase in the global
economy [2]. As the construction industry increasingly adopts
sensing technologies [3], there becomes a need to prepare the
future workforce to implement sensing technologies in the
construction industry. In addition to the need to train the future
workforce in this area, research such as Zhang, Arditi and Liu
[4] has revealed that integrating sensing technologies such as
laser scanning in construction education curricula can
improve at least seven student learning outcomes (SLOs), as
required by the American Council of Construction Education
(ACCE). However, challenges arise in educating the future
workforce due to limited access to construction sites for
practical learning and the high costs associated with these
technologies.

To address these challenges and equip students with the
requisite technical skills, several studies have investigated the
efficacy of virtual environments such as mixed reality and
virtual reality. For example, Cheng, Gheisari and Jeelani [5]
employed virtual reality to train construction workers on the
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safety challenges of drones. Similarly, Ogunseiju, Akanmu [6]
implemented a mixed-reality learning environment for
learning sensing technologies in construction education. The
students noted the learning environment as fun, exciting, and
informative. In such learning environments, students often
encounter cognitive overload because information is often
presented in visual and audio mode, and such information is
required to be processed by human working memory. The
theory of cognitive load explains that human working memory
is limited, and instructions should be designed appropriately
to promote the effective processing of the learning contents
[7]. Likewise, students’ learning preferences can also greatly
impact their cognitive load and learning outcomes in a virtual
environment [8]. Learning preference similar to learning style
is defined by Zhang, Du [9] as “the way to obtain and process
information”. Huang, Luo [8] explained that students with
certain learning preferences must incur a higher cognitive load
to achieve the same learning outcomes as other students. This
is because students learn in different ways. As stated by Yfanti
and Doukakis [10], “individual learners show preferences for
the mode in which they receive information (e.g., visual,
auditory, kinesthetic).” Some may prefer more visual
information for effective learning experiences, and other
students may do better when learning content contains more
words or graphics.

While the idea of tailoring instruction to specific learning
preferences has been debated, with some arguing that it does
not significantly enhance learning outcomes [10-15], the focus
has increasingly shifted toward personalizing learning
experiences to better align with individual preferences and
needs [9, 16-18]. Studies have shown that understanding and
adapting to these preferences can positively impact student
learning outcomes [9, 16, 18]. For example, Hsieh and Chen
[19] utilized handheld devices to implement personalized
learning strategies that address the diverse cognitive styles of
students. Likewise, Tlili, Denden [20] developed an
educational game that adapts its content based on the
individual personalities of learners and found out that
personalized educational games decreased cognitive load.
However, researchers and designers of virtual learning
environments have failed to consider how personalized
experiences, based on individual learning preferences, can
enhance learning outcomes. As a first step to investigating
personalized learning environments for construction
education, this study develops models that can detect students’
learning preferences during the implementation of sensing
technologies in a mixed reality environment. This study
employs machine learning algorithms on eye-tracking data to
detect students' learning preferences. The findings highlight
the potential of machine learning models in predicting
students’ learning preferences. By tailoring instructional
methods to individual preferences, educators can create
inclusive environments that foster deeper comprehension and
maximize learning outcomes. Moreover, the integration of
machine learning algorithms enables real-time assessment and
adaptation of learning environments, paving the way for more
intelligent educational technologies in the future.

II. BACKGROUND

In this section, reviews of sensing technologies in the
construction industry, personalized learning environments in
construction education, and the theoretical framework of the
study are presented.

A. Sensing technologies in the construction industry

As explained by Arabshahi, Wang [21], sensing
technologies can be location-based technologies (such as
RTLS, Radio Frequency Identification (RFID), ultra-
wideband (UWB) technology, and GPS) and vision-based
technologies, such as photographs and video recording
technologies. The authors further categorized sensing
technologies into wireless sensor network technologies
(WSN), (e.g., temperature sensors, light sensors, and pressure
sensors), often used for wireless communications of data
between resources and recording devices. These sensors are
often efficient in locating and tracking construction materials
for improved safety, enhancing situational awareness, and
hazard exposure analysis [21]. Physiological sensing
technologies, such as Electroencephalograms (EEGs), are
used to improve workers’ safety by detecting stress, fatigue,
and attention levels. While some categories of sensing
technologies (e.g., physiological sensors) are still being
explored in the construction industry, others, such as vision-
based and location-based sensing technologies, have achieved
a wide level of adoption. Ogunseiju, Akanmu and
Bairaktarova [1] revealed how companies such as DPR
Construction, Skanska, and Hensel Phelps are utilizing several
vision-based technologies and achieving benefits like
improved site logistics, better quality control, and cost
savings. To develop the future workforce, it becomes
important that students acquire the necessary technical skills
needed to thrive in this technically advancing era of
construction.

B. Personalized learning environment in construction
education

Personalized learning is a unique approach to teaching and
learning that provides opportunities for students to engage in
a diverse set of learning experiences, identify and own their
learning preferences, explore relevant and authentic topics,
and strengthen critical thinking, creativity, and collaboration
skills [22]. Personalized learning focuses on optimizing the
learning pace, instructional preferences, and learning content
to suit each learner’s needs [23]. Personalized learning has
been explored in education, and specifically, extant studies
have investigated ways to leverage personalized learning for
the design and development of learning environments. For
example, Adas, Shetty and Hargrove [24] investigated virtual
reality and augmented reality for personalized learning of
engineering designs. In Adas, Shetty and Hargrove [24],
virtual instructions were developed to integrate virtual models
and visual cues for personalized learning. In construction,
personalized learning environments have been investigated
for improving the health and safety of construction workers
[25]. Kang and Ryoo [26] explored personalized learning for
teaching students building information modeling in
construction education. Kang and Ryoo [26] employed
personalized learning focused on creating flexible, anytime
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learning and student-driven learning paths by encouraging
students to leverage online materials such as YouTube and
Facebook videos for a detailed understanding of the class
project. There is no information on the assessment of
personalized learning environments for construction
education, specifically for training the future workforce,
which inspires the need for this study.

C. Theoretical framework

Cognition plays a pivotal role in determining an
individual’s learning preference [27], as it encompasses the
mental processes involved in acquiring knowledge and
understanding through thought, experience, and the senses.
Individuals' cognitive preferences, such as how they perceive,
process, and remember information, influence their learning
preferences [28]. For example, some learners may have a
preference for visual information, while others may prefer
auditory or kinesthetic modalities. These cognitive factors
interact with learning environments and instructional
materials, influencing individuals' learning experiences [27].
Moreover, cognitive theories provide frameworks for
assessing and addressing individual differences in learning
preferences, guiding the design of personalized learning
experiences. This study is guided by the principles of
Cognitive Load Theory (CLT). Researchers [7] have adopted
CTL to design learning environments where information is
presented in a manner that stimulates learning and promotes
intellectual performance. The theory posits that the working
memory is limited while the long-term memory is unlimited.
However, CTL further explains that the limitations of working
memory can be mitigated by developing several elements of
information as one element in cognitive schemata by
automating rules and presenting information with different
modalities [7]. To understand the effects of learning contents
of cognitive load in the mixed reality environment, the study
further explores the Cognitive Theory of Multimedia Learning
(CTML) [25]. CTML explains that learners, being active
participants, develop insightful connections between words
and pictures and learn more deeply than they would have with
just words or pictures alone [29]. CTML further explains that
human memory can be classified as working memory, long-
term memory, and sensory systems. CTML proposes that the
processing of visual and verbal information from visuals and
audio occurs in the sensory system, while long-term memory
retains cognitive constructs and manages information [30, 31].
To understand the impacts of learning materials and learning
environments on students’ learning preferences, this study
adopts the principles of CTML. The study seeks to understand
how students’ learning style preferences impact their
processing of visuals and audio information during cognitive
activities in an MR learning environment. Since eye-tracking
data possess information about cognition, the study seeks to
develop models that can predict learning preferences based on
eye-tracking data.

D. Research question

According to Sorden [29], CTML is established on three
important tenets: the tenets of dual channel, the limited
capacity assumption, and the active processing assumption.
The dual-channel tenets believe that working memory has
visual and auditory channels. In contrast, the limited capacity

tenets are based on the theory of cognitive load and explain
that each subsystem of the working memory is limited. Hence,
it is important that while learning in a mixed reality
environment, learners’ limited working capacity is effectively
utilized to minimize cognitive overload. To do this, learning
environments must be designed to adapt to each learner’s
cognitive load. Lastly, the tenets of active processing suggest
that meaning is constructed meaningfully when learners
devote attention to the learning material. However, according
to Antelm-Lanzat, Gil [32], [33], learning preferences often
impact the way learning materials are understood and
coherently structured. Hence, to promote effective learning
experiences, learning content must be designed and adapted to
students’ learning preferences. This leads to our research
question: What is the effectiveness of machine learning
models for predicting students’ learning preferences in a
mixed reality environment?

III. METHODS AND ANALYSIS

This section details the methodology adopted in this study.
This section explains the experimental procedure, data
collection, and data analysis process (Fig. 1).

Methodology overview J
P
IRB approval )
g o Consent; Surveys Explore Job site
55 Scene; Sensor
E g ¢ tutorial Scene; &
2 S Sensor
é A Learning activity Implementation
scenes —> Scenes
\
D v
= Surveys through Demographic &
= Qualtrics —> Learning
= preferences Survey
s I
g
5 Learning activity | Eye tracking data
through HoloLens2
~—
S v
a Data classification Data Spliting
= Data cleaning "1 Feature extraction
=
<
: 7
2
'% Machipe Learning N All Classifier
2 (training model) Performance metrics
2
@
S
£ v
£ o
s Model validation Performance
(testing model) metrics
\ J

Fig. 1: Overview of methodology
A. Experiment Procedure

a. Participants

The learning environment was implemented in a
Construction Technology course (BC 2620) at Georgia Tech
as a part of the course curriculum. The participants were 19
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students with an average age of 18-24 years. The participant
group was diverse in both gender, race, and -ethnicity,
reflecting a broad spectrum of backgrounds. Students were
recruited through the institution’s Canvas platform, where
participation in the mixed reality interaction was a graded
component of their course curriculum. Additionally, the
majority of students had significant prior experience
interacting with virtual learning environments, including
Mixed Reality, Virtual Reality, and Augmented Reality.

b. AR Head-Mounted Display

The AR Head-Mounted Display (HMD) adopted for this
study was the HoloLens 2, which is an advanced augmented
reality head-mounted display (AR HMD) developed by
Microsoft. The AR HMD provided eye and head gaze data,
which is pivotal for understanding user engagement, and
cognition.

c. The Learning Environment and Activities

This study was guided and approved by the Institutional
Review Board (IRB) at Georgia Tech. Before the beginning
of the study, students were required to provide their consent,
after which they were immersed in the learning environment
through the AR-HMD. The mixed reality (MR) learning
environment for learning sensing technologies, as shown in
Fig. 2, was developed using the Unity3D game engine and
consists of three distinct learning scenes: The explore jobsite
scene, the sensor tutorial scene, and the sensor implementation
scene. ‘Scene’ represents environments where learning
occurs, as described in detail by the preceding study [34]. For
this study, participants were required to interact with the three
learning scenes. All scenes were equipped with a virtual
assistant and menu interfaces (Fig.2) that explained the
learning activities in each scene. In the Explore Jobsite Scene
(Fig 2a), participants were asked to observe at least three (3)
construction activities, the types of resources involved in each
activity, and interactions between each of the resources, and
identify the risks involved and the required sensing system to
mitigate the risks. The Sensor Tutorial Scene (Fig 2b) offers a
step-by-step guide on implementing five sensing technologies
(Laser scanner, Radio Frequency Identification Device
(RFID), IMU, GPS, and drones) within the environment.
While in the sensor implementation (Fig.2c), users were asked
to implement the selected sensor on the selected activity to
mitigate the identified risk.

B. Data Collection

a. Questionnaires

The study employs a learning style questionnaire
from the  University of  California, = Merced
(learning.ucmerced.edu). The questionnaire categorizes
preferences into Visual, Auditory, and Tactile (Kinesthetic)
learners. The visual category is further divided into Visual
and Read/Write learners based on the learning preferences
model introduced by Neil Fleming [35]. According to Neil
Fleming [35], there are four major types of learning
preferences (VARK: Visual, Auditory, Read/write, and
Kinesthetic). Visual Learners learn things using real-time
visual tools such as graphs, charts, diagrams, and symbols.
Auditory Learners prefer to understand through listening

such as lectures, discussions, and tapes. The
Tactile/Kinesthetic learners engage best with real-time
experiences such as hands-on projects. Read/write learners
prefer information displayed in written form, such as lists and
text [35]. It is important to emphasize that the questionnaire
used for this study is based on the VARK model because it
aims to capture how students interact with learning materials
in a way that aligns with their individual learning preferences.

b. Eye-tracking data

Eye-tracking data is valuable in assessing student
learning preferences as it offers a direct, quantitative measure
of where and how students allocate their visual attention
during learning tasks [36]. A study by Luo [37] utilized eye-
tracking data to identify student learning preferences and
compared the result with the learning style classification
obtained from the subjective questionnaire. It was noted that
eye-tracking data accurately predict student learning
preferences. Eye-tracking data can reveal patterns [37]
indicative of different learning preferences [38]. For
example, individuals with a preference for visual learning
may exhibit longer fixations on graphical elements or images,
while those who favor verbal learning may spend more time
reading text. Moreover, eye-tracking data is collected non-
intrusively, preserving the natural learning environment and
ensuring that the data reflects genuine interaction with the
material [38]. To predict students’ learning preferences
during the interactions with the learning environment, this
study adopted eye-tracking data afforded by the Hololens 2,
which provided information such as head gaze, duration, head
origins, and positions.

Fig. 2. Mixed Reality Learning Environment
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C. Data Preprocessing

a. Questionnaires on Learning preferences

The learning preferences survey has 24 questions in total,
and the options were further analyzed based on the grading
system provided by the institution. The options for each
question are often (5 points), sometimes (3 points), and
seldom (1 point). The learning style questions were
categorized into Visual, Read/write, Auditory, and Tactile
(Kinesthetic) learners. The survey was analyzed using
descriptive statistics in Microsoft Excel, and Participants
were categorized according to their respective learning
preferences. Interestingly, during the analysis, the research
team identified a few participants who exhibited a
combination of two or more learning preferences. This
finding aligns with studies by Jurenka, Starec¢ek [39], and
Kuttattu, Gokul [40], which also suggests that students can
possess multiple learning preferences. This means that
learning preferences are not fixed and that students can
benefit from multiple learning modalities. Therefore, the
input data (eye tracking data) were analyzed based on
different learning preferences (Table 1).

TABLEI LEARNING PREFERENCES CLASSIFICATION.

Students per learning preference

Classes No of students Percentages
Visual 5 26.3%
Auditory 3 15.8%
Kinesthetic 3 15.8%
Read/Write 3 15.8%
Visual+ Kinesthetic 2 10.5%
Visual+ Auditory 1 5.3%
Visual +  Auditory + | 2 10.5%
Kinesthetic

Total | 19 100 %

b.  Eye-tracking data

Eye-tracking data were used to understand users’
cognition during interactions within virtual environments. In
this study, fixations were extracted to analyze where
participants focused their attention while using the HoloLens
2 augmented reality (AR) device. Fixations represent
instances where the eyes remain relatively still and focused
on a specific point in the visual field. To extract fixations, we
recorded fixation duration, measured in milliseconds (ms),
which denotes the length of time a participant's gaze
remained fixed on a particular area. According to Sekhri et al
[41], fixation duration may range from 150 to 650 ms [41].
Similar studies by Ogunseiju et al [34]; Olsen [42]; and [43]
said a minimum fixation duration between 50 -150 ms can be
adopted for tasks such as reading and visual search [44]. For
this study, a minimum fixation of 75 ms and a maximum
fixation duration of 650 ms were utilized. Fixation start and
end times were also extracted to precisely identify the
duration of each fixation event. This can provide an
understanding of student reading and cognitive performance
[45]. In addition, the head origin coordinates (X, Y, Z) were
utilized to provide additional insights into the spatial

distribution of fixations and how participants orient
themselves within the AR environment [46, 47]. As outlined
in Table 2, data inputs utilized for developing the machine
learning models include fixation duration, fixation start time,
fixation end time, and head origin coordinates. These data
inputs are crucial for understanding where, when, and for
how long participants focus on different elements of a visual
scene, which can reveal insights into their users’ cognition,
such as visual attention and interaction patterns within the AR
learning environment [44].

Table I DATA INPUTS AND THEIR DESCRIPTION
Data Inputs Description
Description References
Fixation duration Fixation time measured in | [41]
milliseconds (ms)
Fixation Start time | The time when the fixation begins | [45]
Fixation end time The time when the fixation ends [45]

Head origin X X-coordinate of the head’s | [47]
position at fixation

Head origin Y Y-coordinate of the head’s position | [47]
at fixation

Head origin Z Z-coordinate of the head’s position | [47]
at fixation

D. Machine Learning Data Classifications

The classification model was trained on data from 19
participants after categorizing them into various learning
preferences (Table 2) and extracting the fixations. The dataset
was divided into training and testing sets, with 90% of the
data allocated for training and 10% for testing, as
recommended by Ugar, Nour [48]. This split allowed model
training on a significant portion of the data while reserving a
separate set to evaluate their performance.

Statistical features such as mean, median, and mode were
employed as input features for the models, contributing to a
total of eighteen (18) features considered in the analysis. The
training of the models was conducted using MATLAB.
Cross-validation, a technique that helps prevent overfitting by
dividing the training dataset into smaller subsets, was
adopted. Each subset is used as a temporary testing set, while
the remaining data serves as the training set. This process was
repeated multiple times, ensuring that each data point was
used for both training and testing. Cross-validation enhances
the robustness of the model by providing a more accurate
estimate of its performance on unseen data. The study then
adopted a wide array of machine learning classifiers,
including Ensemble methods, Neural Networks (NN),
Support Vector Machine (SVM), Ensemble, Naive Bayes,
decision tree, Logistic Regression (LR), and kernel and K-
Nearest Neighbors (KNN), to explore different algorithmic
approaches to the data. The decision to use all available
classifiers was driven by the desire to compare their
effectiveness and identify the best-performing model for our
specific dataset. The top-performing classifiers identified
through cross-validation were ensemble, NN, and KNN.

The trained models were then evaluated using
performance measures such as accuracy, precision, recall,
and F1-score to assess their effectiveness in classifying the
data [49]. Accuracy measures the proportion of correct
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predictions among the total number of cases evaluated [49].
Precision assesses the classifier’s ability to identify only
relevant instances, while recall evaluates the ability to find all
relevant instances within the dataset [50]. The Receiver
Operating Characteristic curve (ROC) is a graphical
representation that assesses the performance of the model
[51]. The F1 score provides a balance between precision and
recall, offering a single metric for performance comparison.
These measures were calculated for each model and used to
compare their performance on both the training and test
datasets, providing valuable insights into their effectiveness
and generalization capabilities. A multi-class confusion
matrix was generated to assess the classification model. The
matrix contained rows and columns with the true positive
(TP), false positive (FP), true negative (TN), and false
negative (FN) [49]. Finally, the classifiers were tested on the
reserved test data (unseen dataset) and were used to validate
(test the performance) the classification models. The results
are presented in the next section.

IV. RESULTS

This section focuses on the results of the study, wherein
the confusion matrix for the top classifier is explained, and
the performance of the top three classifiers (Table 3) is
compared using the afore-discussed performance measures.

A. Performance Metrics of the Trained Model

The performance metrics of three classifiers—Ensemble,
Neural Network, and KNN-—were evaluated, with the
Ensemble classifier achieving the highest accuracy of 82.2%
for the trained model. The Ensemble classifier demonstrated
high precision and recall rates across various learning
preferences, indicating a reliable prediction capability. The
F1 Score, which balances precision and recall, was also
notably high, suggesting that the classifier is robust in its
predictions. Precision, recall, accuracy, and F1 scores were
assessed for each learning preference category. The
Ensemble classifier achieved precision values ranging from
75.8% to 88.4%, recall values from 64.9% to 91.8%, and F1
scores from 60.7% to 88.2% across different learning
preferences. Similarly, the Neural Network classifier attained
precision values ranging from 69.7% to 92%, recall values
from 67.1% to 88.8%, and F1 scores from 68.4% to 90.9%.
In comparison, the KNN classifier demonstrated precision
values ranging from 61.4% to 87.4%, recall values from
54.8% to 86.7%, and F1 scores from 57.9% to 85.9%.

B. Model Validation with Test Data

To validate the trained model, the model was tested with
the test dataset separated during the cross-validation phase. It
was tested with all classifiers, and interestingly, Ensemble
emerged as the best classifier with an accuracy of 83.3%. The
output, termed the test model, encapsulates the predicted
classifications for the test data [52]. The efficacy of the test
models was gauged through performance metrics delineated
in Table 4. The confusion matrix, depicted in Figure 3, was
derived from the model’s predictions on the test dataset. The

test performance metrics indicate a significant improvement
from the training to testing phases. Table 4 displays the
performance metrics of the Ensemble classifier. The precision
rates for the Read/Write and Visual + Kinesthetic styles are
noteworthy at 94.4% and 96.0%, respectively. These precision
rates signify the proportion of correctly identified instances
among all instances classified as a particular learning
preference. Therefore, when the model predicts a student’s
preference for these learning preferences, there is a high
likelihood of correctness.

On the other hand, recall rates, representing the proportion
of actual instances of a class that were correctly classified by
the model, were highest for the Auditory and V+ Kinesthetic
learning preferences, reaching 94.00% and 92.30%,
respectively. This indicates the model's proficiency in
identifying students inclined toward these learning
preferences. However, the model exhibits lower performance
in both precision and recall for Visual + Auditory and Visual
+ Auditory + Kinesthetic (V+A+K) learning preferences, with
rates of 75.00% and 70.40%, respectively. These findings
suggest potential challenges in accurately identifying students
with these composite learning preferences, leading to a higher
likelihood of both false positives and false negatives. This
indicates a need for model refinement to better capture mixed
learning preferences.

V. DISCUSSION

Based on the results from the test model, it can be
concluded that the Ensemble classifier shows promising
results in predicting students’ learning preferences within a
mixed reality environment with an accuracy of 83.3%, which
can be instrumental in personalizing educational experiences
and improving learning outcomes. This accuracy, while
slightly lower, is comparable to the findings by Ikawati, Al
Rasyid and Winarno [53] who obtained an accuracy of 90%
with the Bagging algorithm of the Ensemble classifier. Their
study also demonstrated that ensemble methods, such as
gradient-boosted trees and Bagging, consistently
outperformed single algorithms like Decision Trees,
achieving accuracy rates of 89.80% and 84.30%,
respectively. An ensemble classifier works well for detecting
learning preferences due to its ability to combine multiple
classifiers to produce better predictions [54]. In other words,
an ensemble model combines several individual models to
produce more accurate predictions and capture complex
patterns and relationships in the data that might be missed by
a single classifier [55]. This classifier has been identified by
Rao [35] to effectively predict learning preferences. The high
precision and recall in certain learning preferences further
support the model’s effectiveness, particularly in identifying
Auditory, Read/Write, and Visual + Kinesthetic preferences.
This can be attributed to some of the features of the learning
environment. This includes a virtual assistant for providing
audio guidance in the learning environment, visual
representations of the construction site and sensing
technologies, and a detailed menu interface for providing
textual guidance on the learning activities in the environment.
However, ensemble classifiers face challenges with
predicting mixed learners such as V+A+K, and V+ Auditory.
This may be due to insufficient representation of mixed
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learners’ data in the training process, resulting in inadequate
generalization of mixed learning preferences. To address this
limitation, future research efforts could focus on enhancing
the training dataset by collecting more mixed learners data.
Additionally, incorporating additional features may improve
the classifier's performance in predicting combined learners'
patterns. By leveraging machine learning algorithms to
analyze students' interactions within the virtual environment,
educators can dynamically adjust the presentation of content,
pacing of instruction, and level of cognitive challenge to
maintain an optimal learning experience. For instance,
auditory learners could be provided with more audio-based

facilitate information retention and comprehension.
Kinesthetic learners could benefit from interactive,
movement-based tasks and virtual manipulatives to reinforce
conceptual understanding and promote engagement.
Providing detailed textual instructions, reading materials, and
written summaries can support these read/write learners. In a
mixed reality environment, educators could incorporate
extensive written guides or documentation that learners can
access as they engage with the virtual tasks. By tailoring
instructional interventions to match students' preferred
learning preferences, educators can foster a more inclusive
and effective learning environment that accommodates

explanations, narrated presentations, and podcasts to diverse learning needs and preferences.
TABLE Il PERFORMANCE MEASURES OF TRAINED CLASSIFICATION MODELS
Classifiers Performance Learning preferences
Measures Auditory Kinesthetic Read/Write Visual V+ Auditory | V+A+K V+Kinesthetic
Ensemble Precision 84.9407 77.2959 87.23404 75.7575 56.98324 86.5921 88.3838
Recall 91.7733 78.4974 85.1632 82.0463 64.96815 70.7762 84.1346
Accuracy 82.1669 82.1669 82.1669 82.1669 82.1669 82.1669 82.1669
F1 Score 88.2249 77.8920 86.18619 78.7766 60.71429 77.8894 86.2069
Specificity 95.1232 95.5186 97.4095 92.6645 99.0970 98.8852 98.9371
Neural Precision 87.60% 92.00% 75.60% 75.20% 76.60% 69.70% 82.40%
Network Recall 88.80% 89.90% 77.20% 78.40% 68.80% 67.10% 80.80%
Accuracy 81.00% 81.00% 81.00% 81.00% 81.00% 81.00% 81.00%
F1 Score 88.1959 90.9378 76.39162 76.7666 72.49078 68.3752 81.5921
KNN Precision 85.10% 63.60% 73.30% 65.50% 61.40% 78.40% 87.40%
Recall 86.70% 66.10% 71.80% 73.70% 54.80% 61.20% 79.80%
Accuracy 73.30% 73.30% 73.30% 73.30% 73.30% 73.30% 73.30%
F1 Score 85.8925 64.8259 72.54225 69.3584 57.91256 68.7404 83.4272
Note: V = Visuals, A = Auditory, and K = Kinesthetic
Er Model 2.23 (Bagged Trees)
AUDITORY 3 1
KINESTHETIC | 3 36 6 2 1
% READ&WRITE 1 34 5 1 1
E VISUAL+AUDITORY 1 1 3 13 1
VISUAL+AUDITORY+KINESTHETIC 4 1 3 19
VISUAL+KINESTHETIC 1 1 24
mo\ﬁi\:?ﬁﬂ\’\i:@b«@«e Qf;iiﬁoji\;ﬁ“\i\\:aex\*é\o
WO (T o
\\\60”»0
Predicted Class
Fig. 3. No. of observation for the tested model
TABLE IV PERFORMANCE MEASURES OF THE TEST CLASSIFICATION MODEL
Learning preferences
Classifier Metrics Auditory Kinesthetic Read/Write Visual V+ Auditory V+A+K V + Kinesthetic
Precision 86.30% 85.70% 94.40% 72.40% 72.20% 82.60% 96.00%
Recall 94.00% 75.00% 81.00% 85.90% 68.4.% 70.40% 92.30%
Ensemble Accuracy 83.30% 83.30% 83.30% 83.30% 83.30% 83.30% 83.30%
F1 score 89.99% 79.99% 87.19% 78.57% 70.25% 76.01% 94.11%

Note: V = Visuals, A = Auditory, and K = Kinesthetic
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VI. CONCLUSION

In this study, we explored the feasibility of using
machine learning algorithms to predict students' learning
preferences in a mixed-reality learning environment. The
study compared performance metrics from three classifiers -
Ensemble, Neural Network, and K-Nearest Neighbors
(KNN) obtained through supervised machined learning. The
Ensemble classifier was identified as the most accurate,
achieving an accuracy of 83.3% for the test model. The high
precision, recall, and F1 score of the Ensemble classifier
across various learning preferences makes it stand out as
particularly effective for predicting students’ learning
preferences across various modalities such as Auditory,
Read/Write, and Visual Kinesthetic. This study also reveals
that learners can possess a combination of two or more
learning preferences, suggesting that learning preferences are
not fixed and that students can benefit from multiple learning
modalities. Furthermore, since the mixed reality learning
environment was equipped with a virtual assistant (for audio
learners), menu interfaces (for read/write learners), and visual
representations of the learning activities (for visual and
kinesthetic learners), this study further shows the importance
of a learning environment that suits diverse learning
preferences.

VII. STUDY LIMITATIONS AND FUTURE WORK

While this study provides valuable insights into the
potential of machine learning to predict students' learning
preferences in a mixed-reality environment, several
limitations should be considered. Firstly, the limited number
of features used in the analysis may have constrained the
predictive power of the machine learning models. While the
inclusion of mean, median, and mode provided valuable
information about students' learning preferences, additional
features such as variance, standard deviation, and range could
enhance the accuracy and robustness of the predictive
models. Furthermore, some studies question the validity of
learning styles, arguing that tailoring instruction based on
these styles may not significantly enhance learning outcomes.
This controversy may limit the applicability of the findings
presented in this study, given that a learning style
questionnaire was used to assess students' learning
preferences. In future work, one promising direction is to
deploy the predictive models developed in this study for real-
world virtual learning environments. Additionally, deploying
the models in real-world settings would provide opportunities
to collect continuous feedback and refine the predictive
algorithms over time, further improving their accuracy and
reliability.
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