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Abstract— This research-to-practice full paper describes the 

machine learning techniques for predicting students’ learning 

preferences and cognitive load in a mixed reality environment. 

As the construction industry increasingly adopts sensing 

technologies, the demand for hands-on learning experiences in 

construction education becomes imperative. However, 

challenges arise in educating the future workforce due to limited 

access to construction sites for practical learning and the high 

costs associated with these technologies. To overcome these 

obstacles, educators are turning to virtual learning 

environments, such as mixed reality (MR), to provide engaging 

learning experiences. While MR has been utilized in 

construction education for simulating activities, the design of 

such learning environments often neglects to account for the 

varying learning preferences necessary for effective navigation 

and optimal learning outcomes. This makes it necessary to 

develop intelligent learning environments that can detect 

students’ learning preferences and present information based 

on individual preferences. Extant studies have shown that eye 

movement data, particularly fixations from virtual learning 

environments, provide valuable insights into users' cognitive 

processes. Studies have also shown that leveraging machine 

learning algorithms enables the analysis and interpretation of 

eye-tracking data, offering deeper insights into students' 

learning preferences. In this study, nineteen undergraduate 

students participated in hands-on activities involving the 

implementation of sensing technologies within an MR learning 

environment. Questionnaires on learning preferences were used 

to assess individual learning preferences. By employing machine 

learning techniques on eye-tracking data and subjective 

evaluations of learning preferences, the study presents models 

that can detect students' learning preferences. The study 

compared performance metrics from three classifiers - 

Ensemble, Neural Network, and K-Nearest Neighbors (KNN) 

and the Ensemble classifier was identified as the most accurate, 

achieving an accuracy of 83.3% for the test model. The findings 

highlight the potential of machine learning models in detecting 

learning preferences most effectively for the user’s interactions. 

The classification models, when implemented in the MR 

environment, can identify users who may require additional 

support tailored to their specific learning preferences. Thereby 

enhancing their interaction with the MR learning environment. 

Understanding and accommodating diverse learning 

preferences in MR learning environments can offer 

personalized experiences for effective engagement and 

knowledge retention in construction education. By tailoring 

instructional methods to individual preferences, educators can 

create inclusive environments that foster deeper comprehension 

and maximize learning outcomes.  

Keywords— Machine Learning, construction education, 

Learning preferences, Intelligent learning environments, Mixed 

reality environment. 

I. INTRODUCTION 

There is a growing adoption of sensing technologies in the 
construction industry. As reported by Ogunseiju, Akanmu and 
Bairaktarova [1], construction companies currently adopt 
various sensing technologies such as laser scanners, drones, 
ground penetrating radars, global positioning systems (GPS), 
and real-time location sensors (RTLS). This has resulted in 
several benefits, such as optimized productivity and 
efficiency, improved safety, and significant improvement in 
the extraction and sharing of project data. It is projected that 
as this productivity continues to increase, the construction 
industry can ramp up an additional 2% increase in the global 
economy [2]. As the construction industry increasingly adopts 
sensing technologies [3], there becomes a need to prepare the 
future workforce to implement sensing technologies in the 
construction industry. In addition to the need to train the future 
workforce in this area, research such as Zhang, Arditi and Liu 
[4] has revealed that integrating sensing technologies such as 
laser scanning in construction education curricula can 
improve at least seven student learning outcomes (SLOs), as 
required by the American Council of Construction Education 
(ACCE). However, challenges arise in educating the future 
workforce due to limited access to construction sites for 
practical learning and the high costs associated with these 
technologies.  

To address these challenges and equip students with the 
requisite technical skills, several studies have investigated the 
efficacy of virtual environments such as mixed reality and 
virtual reality. For example, Cheng, Gheisari and Jeelani [5] 
employed virtual reality to train construction workers on the 
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safety challenges of drones. Similarly, Ogunseiju, Akanmu [6] 
implemented a mixed-reality learning environment for 
learning sensing technologies in construction education. The 
students noted the learning environment as fun, exciting, and 
informative. In such learning environments, students often 
encounter cognitive overload because information is often 
presented in visual and audio mode, and such information is 
required to be processed by human working memory. The 
theory of cognitive load explains that human working memory 
is limited, and instructions should be designed appropriately 
to promote the effective processing of the learning contents 
[7]. Likewise, students’ learning preferences can also greatly 
impact their cognitive load and learning outcomes in a virtual 
environment [8]. Learning preference similar to learning style 
is defined by Zhang, Du [9] as “the way to obtain and process 
information”. Huang, Luo [8] explained that students with 
certain learning preferences must incur a higher cognitive load 
to achieve the same learning outcomes as other students. This 
is because students learn in different ways. As stated by Yfanti 
and Doukakis [10], “individual learners show preferences for 
the mode in which they receive information (e.g., visual, 
auditory, kinesthetic).” Some may prefer more visual 
information for effective learning experiences, and other 
students may do better when learning content contains more 
words or graphics.  

While the idea of tailoring instruction to specific learning 
preferences has been debated, with some arguing that it does 
not significantly enhance learning outcomes [10-15], the focus 
has increasingly shifted toward personalizing learning 
experiences to better align with individual preferences and 
needs [9, 16-18]. Studies have shown that understanding and 
adapting to these preferences can positively impact student 
learning outcomes [9, 16, 18]. For example, Hsieh and Chen 
[19] utilized handheld devices to implement personalized 
learning strategies that address the diverse cognitive styles of 
students. Likewise, Tlili, Denden [20] developed an 
educational game that adapts its content based on the 
individual personalities of learners and found out that 
personalized educational games decreased cognitive load. 
However, researchers and designers of virtual learning 
environments have failed to consider how personalized 
experiences, based on individual learning preferences, can 
enhance learning outcomes. As a first step to investigating 
personalized learning environments for construction 
education, this study develops models that can detect students’ 
learning preferences during the implementation of sensing 
technologies in a mixed reality environment. This study 
employs machine learning algorithms on eye-tracking data to 
detect students' learning preferences. The findings highlight 
the potential of machine learning models in predicting 
students’ learning preferences. By tailoring instructional 
methods to individual preferences, educators can create 
inclusive environments that foster deeper comprehension and 
maximize learning outcomes. Moreover, the integration of 
machine learning algorithms enables real-time assessment and 
adaptation of learning environments, paving the way for more 
intelligent educational technologies in the future. 

II. BACKGROUND 

In this section, reviews of sensing technologies in the 
construction industry, personalized learning environments in 
construction education, and the theoretical framework of the 
study are presented.  

A. Sensing technologies in the construction industry 

 As explained by Arabshahi, Wang [21], sensing 
technologies can be location-based technologies (such as 
RTLS, Radio Frequency Identification (RFID), ultra-
wideband (UWB) technology, and GPS) and vision-based 
technologies, such as photographs and video recording 
technologies. The authors further categorized sensing 
technologies into wireless sensor network technologies 
(WSN), (e.g., temperature sensors, light sensors, and pressure 
sensors), often used for wireless communications of data 
between resources and recording devices. These sensors are 
often efficient in locating and tracking construction materials 
for improved safety, enhancing situational awareness, and 
hazard exposure analysis [21]. Physiological sensing 
technologies, such as Electroencephalograms (EEGs), are 
used to improve workers’ safety by detecting stress, fatigue, 
and attention levels. While some categories of sensing 
technologies (e.g., physiological sensors) are still being 
explored in the construction industry, others, such as vision-
based and location-based sensing technologies, have achieved 
a wide level of adoption. Ogunseiju, Akanmu and 
Bairaktarova [1] revealed how companies such as DPR 
Construction, Skanska, and Hensel Phelps are utilizing several 
vision-based technologies and achieving benefits like 
improved site logistics, better quality control, and cost 
savings. To develop the future workforce, it becomes 
important that students acquire the necessary technical skills 
needed to thrive in this technically advancing era of 
construction. 

B. Personalized learning environment in construction 

education 

Personalized learning is a unique approach to teaching and 
learning that provides opportunities for students to engage in 
a diverse set of learning experiences, identify and own their 
learning preferences, explore relevant and authentic topics, 
and strengthen critical thinking, creativity, and collaboration 
skills [22]. Personalized learning focuses on optimizing the 
learning pace, instructional preferences, and learning content 
to suit each learner’s needs [23]. Personalized learning has 
been explored in education, and specifically, extant studies 
have investigated ways to leverage personalized learning for 
the design and development of learning environments. For 
example, Adas, Shetty and Hargrove [24] investigated virtual 
reality and augmented reality for personalized learning of 
engineering designs. In Adas, Shetty and Hargrove [24], 
virtual instructions were developed to integrate virtual models 
and visual cues for personalized learning. In construction, 
personalized learning environments have been investigated 
for improving the health and safety of construction workers 
[25]. Kang and Ryoo [26] explored personalized learning for 
teaching students building information modeling in 
construction education. Kang and Ryoo [26] employed 
personalized learning focused on creating flexible, anytime 
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learning and student-driven learning paths by encouraging 
students to leverage online materials such as YouTube and 
Facebook videos for a detailed understanding of the class 
project. There is no information on the assessment of 
personalized learning environments for construction 
education, specifically for training the future workforce, 
which inspires the need for this study.  

C. Theoretical framework 

Cognition plays a pivotal role in determining an 
individual’s learning preference [27], as it encompasses the 
mental processes involved in acquiring knowledge and 
understanding through thought, experience, and the senses. 
Individuals' cognitive preferences, such as how they perceive, 
process, and remember information, influence their learning 
preferences [28]. For example, some learners may have a 
preference for visual information, while others may prefer 
auditory or kinesthetic modalities. These cognitive factors 
interact with learning environments and instructional 
materials, influencing individuals' learning experiences [27]. 
Moreover, cognitive theories provide frameworks for 
assessing and addressing individual differences in learning 
preferences, guiding the design of personalized learning 
experiences. This study is guided by the principles of 
Cognitive Load Theory (CLT). Researchers [7] have adopted 
CTL to design learning environments where information is 
presented in a manner that stimulates learning and promotes 
intellectual performance. The theory posits that the working 
memory is limited while the long-term memory is unlimited. 
However, CTL further explains that the limitations of working 
memory can be mitigated by developing several elements of 
information as one element in cognitive schemata by 
automating rules and presenting information with different 
modalities [7]. To understand the effects of learning contents 
of cognitive load in the mixed reality environment, the study 
further explores the Cognitive Theory of Multimedia Learning 
(CTML) [25]. CTML explains that learners, being active 
participants, develop insightful connections between words 
and pictures and learn more deeply than they would have with 
just words or pictures alone [29]. CTML further explains that 
human memory can be classified as working memory, long-
term memory, and sensory systems. CTML proposes that the 
processing of visual and verbal information from visuals and 
audio occurs in the sensory system, while long-term memory 
retains cognitive constructs and manages information [30, 31]. 
To understand the impacts of learning materials and learning 
environments on students’ learning preferences, this study 
adopts the principles of CTML. The study seeks to understand 
how students’ learning style preferences impact their 
processing of visuals and audio information during cognitive 
activities in an MR learning environment. Since eye-tracking 
data possess information about cognition, the study seeks to 
develop models that can predict learning preferences based on 
eye-tracking data.  

D. Research question 

According to Sorden [29], CTML is established on three 
important tenets: the tenets of dual channel, the limited 
capacity assumption, and the active processing assumption. 
The dual-channel tenets believe that working memory has 
visual and auditory channels. In contrast, the limited capacity 

tenets are based on the theory of cognitive load and explain 
that each subsystem of the working memory is limited. Hence, 
it is important that while learning in a mixed reality 
environment, learners’ limited working capacity is effectively 
utilized to minimize cognitive overload. To do this, learning 
environments must be designed to adapt to each learner’s 
cognitive load. Lastly, the tenets of active processing suggest 
that meaning is constructed meaningfully when learners 
devote attention to the learning material. However, according 
to Antelm-Lanzat, Gil [32], [33], learning preferences often 
impact the way learning materials are understood and 
coherently structured. Hence, to promote effective learning 
experiences, learning content must be designed and adapted to 
students’ learning preferences. This leads to our research 
question: What is the effectiveness of machine learning 
models for predicting students’ learning preferences in a 
mixed reality environment? 

III. METHODS AND ANALYSIS 

This section details the methodology adopted in this study. 
This section explains the experimental procedure, data 
collection, and data analysis process (Fig. 1).  
 

Fig. 1: Overview of methodology 

A. Experiment Procedure 

a. Participants 

The learning environment was implemented in a 
Construction Technology course (BC 2620) at Georgia Tech 
as a part of the course curriculum. The participants were 19 

Data classification 
Data cleaning 

 

All Classifier 
Performance metrics 

 

IRB approval 
Consent; Surveys 

 

Surveys through 
Qualtrics 

 

Demographic & 
Learning 

preferences Survey  

Learning activity 

through HoloLens2 
Eye tracking data 

 

Data Spliting 
Feature extraction 

 

Machine Learning 
(training model) 

 

Methodology overview 

D
a

ta
 C

o
ll

ec
ti

o
n

 
D

a
ta

 P
r
e
p

r
o
c
e
ss

in
g
 &

 A
n

a
ly

si
s 

 
Explore Job site 
Scene; Sensor 

tutorial Scene; & 
Sensor 

Implementation 

Scenes 
Learning activity 

scenes 
 

Model validation 

(testing model) 

Performance 
metrics 

 

E
x

p
e
r
im

e
n

ta
l 

P
r
o
c
e
d

u
re

 

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 24,2025 at 15:46:09 UTC from IEEE Xplore.  Restrictions apply. 



students with an average age of 18-24 years.  The participant 
group was diverse in both gender, race, and ethnicity, 
reflecting a broad spectrum of backgrounds. Students were 
recruited through the institution’s Canvas platform, where 
participation in the mixed reality interaction was a graded 
component of their course curriculum. Additionally, the 
majority of students had significant prior experience 
interacting with virtual learning environments, including 
Mixed Reality, Virtual Reality, and Augmented Reality. 

b. AR Head-Mounted Display 

The AR Head-Mounted Display (HMD) adopted for this 
study was the HoloLens 2, which is an advanced augmented 
reality head-mounted display (AR HMD) developed by 
Microsoft. The AR HMD provided eye and head gaze data, 
which is pivotal for understanding user engagement, and 
cognition.  

c. The Learning Environment and Activities 

This study was guided and approved by the Institutional 
Review Board (IRB) at Georgia Tech. Before the beginning 
of the study, students were required to provide their consent, 
after which they were immersed in the learning environment 
through the AR-HMD. The mixed reality (MR) learning 
environment for learning sensing technologies, as shown in 
Fig. 2, was developed using the Unity3D game engine and 
consists of three distinct learning scenes: The explore jobsite 
scene, the sensor tutorial scene, and the sensor implementation 
scene. ‘Scene’ represents environments where learning 
occurs, as described in detail by the preceding study [34]. For 
this study, participants were required to interact with the three 
learning scenes. All scenes were equipped with a virtual 
assistant and menu interfaces (Fig.2) that explained the 
learning activities in each scene. In the Explore Jobsite Scene 
(Fig 2a), participants were asked to observe at least three (3) 
construction activities, the types of resources involved in each 
activity, and interactions between each of the resources, and 
identify the risks involved and the required sensing system to 
mitigate the risks. The Sensor Tutorial Scene (Fig 2b) offers a 
step-by-step guide on implementing five sensing technologies 
(Laser scanner, Radio Frequency Identification Device 
(RFID), IMU, GPS, and drones) within the environment. 
While in the sensor implementation (Fig.2c), users were asked 
to implement the selected sensor on the selected activity to 
mitigate the identified risk. 

B. Data Collection 

a. Questionnaires 

 The study employs a learning style questionnaire 
from the University of California, Merced 
(learning.ucmerced.edu). The questionnaire categorizes 
preferences into Visual, Auditory, and Tactile (Kinesthetic) 
learners. The visual category is further divided into Visual 
and Read/Write learners based on the learning preferences 
model introduced by Neil Fleming [35]. According to Neil 
Fleming [35], there are four major types of learning 
preferences (VARK: Visual, Auditory, Read/write, and 
Kinesthetic). Visual Learners learn things using real-time 
visual tools such as graphs, charts, diagrams, and symbols.  
Auditory Learners prefer to understand through listening 

such as lectures, discussions, and tapes. The 
Tactile/Kinesthetic learners engage best with real-time 
experiences such as hands-on projects. Read/write learners 
prefer information displayed in written form, such as lists and 
text [35]. It is important to emphasize that the questionnaire 
used for this study is based on the VARK model because it 
aims to capture how students interact with learning materials 
in a way that aligns with their individual learning preferences. 

b. Eye-tracking data 

Eye-tracking data is valuable in assessing student 
learning preferences as it offers a direct, quantitative measure 
of where and how students allocate their visual attention 
during learning tasks [36]. A study by Luo [37] utilized eye-
tracking data to identify student learning preferences and 
compared the result with the learning style classification 
obtained from the subjective questionnaire. It was noted that 
eye-tracking data accurately predict student learning 
preferences. Eye-tracking data can reveal patterns [37] 
indicative of different learning preferences [38]. For 
example, individuals with a preference for visual learning 
may exhibit longer fixations on graphical elements or images, 
while those who favor verbal learning may spend more time 
reading text. Moreover, eye-tracking data is collected non-
intrusively, preserving the natural learning environment and 
ensuring that the data reflects genuine interaction with the 
material [38]. To predict students’ learning preferences 
during the interactions with the learning environment, this 
study adopted eye-tracking data afforded by the Hololens 2, 
which provided information such as head gaze, duration, head 
origins, and positions.  

 

Fig. 2. Mixed Reality Learning Environment 

Fig. 1c. Sensor ITutorialmplementation 

Fig. 2c. Sensor Implementation Scene 

 

Fig. 2a. Explore Jobsite Scene 

Fig. 2b.Sensor Tutorial Scene 
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C. Data Preprocessing 

a. Questionnaires on Learning preferences 

The learning preferences survey has 24 questions in total, 
and the options were further analyzed based on the grading 
system provided by the institution. The options for each 
question are often (5 points), sometimes (3 points), and 
seldom (1 point). The learning style questions were 
categorized into Visual, Read/write, Auditory, and Tactile 
(Kinesthetic) learners. The survey was analyzed using 
descriptive statistics in Microsoft Excel, and Participants 
were categorized according to their respective learning 
preferences. Interestingly, during the analysis, the research 
team identified a few participants who exhibited a 
combination of two or more learning preferences. This 
finding aligns with studies by Jurenka, Stareček [39], and 
Kuttattu, Gokul [40], which also suggests that students can 
possess multiple learning preferences. This means that 
learning preferences are not fixed and that students can 
benefit from multiple learning modalities. Therefore, the 
input data (eye tracking data) were analyzed based on 
different learning preferences (Table 1).  

TABLE I LEARNING PREFERENCES CLASSIFICATION. 

 

Classes  

Students per learning preference 

No of students Percentages 

Visual 5 26.3% 

Auditory 3 15.8% 

Kinesthetic 3  15.8% 

Read/Write 3 15.8% 

Visual+ Kinesthetic 2 10.5% 

Visual+ Auditory  1 5.3% 

Visual + Auditory + 
Kinesthetic  

2 10.5% 

Total 19 100 % 

b. Eye-tracking data 

Eye-tracking data were used to understand users’ 
cognition during interactions within virtual environments. In 
this study, fixations were extracted to analyze where 
participants focused their attention while using the HoloLens 
2 augmented reality (AR) device. Fixations represent 
instances where the eyes remain relatively still and focused 
on a specific point in the visual field. To extract fixations, we 
recorded fixation duration, measured in milliseconds (ms), 
which denotes the length of time a participant's gaze 
remained fixed on a particular area. According to Sekhri et al 
[41], fixation duration may range from 150 to 650 ms [41]. 
Similar studies by Ogunseiju et al [34]; Olsen [42]; and [43] 
said a minimum fixation duration between 50 -150 ms can be 
adopted for tasks such as reading and visual search [44]. For 
this study, a minimum fixation of 75 ms and a maximum 
fixation duration of 650 ms were utilized. Fixation start and 
end times were also extracted to precisely identify the 
duration of each fixation event. This can provide an 
understanding of student reading and cognitive performance 
[45]. In addition, the head origin coordinates (X, Y, Z) were 
utilized to provide additional insights into the spatial 

distribution of fixations and how participants orient 
themselves within the AR environment [46, 47]. As outlined 
in Table 2, data inputs utilized for developing the machine 
learning models include fixation duration, fixation start time, 
fixation end time, and head origin coordinates. These data 
inputs are crucial for understanding where, when, and for 
how long participants focus on different elements of a visual 
scene, which can reveal insights into their users’ cognition, 
such as visual attention and interaction patterns within the AR 
learning environment [44]. 

Table II DATA INPUTS AND THEIR DESCRIPTION  

Data Inputs                                  Description 

Description References 

Fixation duration Fixation time measured in 
milliseconds (ms) 

[41] 

Fixation Start time The time when the fixation begins [45] 

Fixation end time The time when the fixation ends [45] 

Head origin X X-coordinate of the head’s 
position at fixation 

[47] 

Head origin Y Y-coordinate of the head’s position 
at fixation 

[47] 

Head origin Z Z-coordinate of the head’s position 
at fixation 

[47] 

D. Machine Learning Data Classifications 

The classification model was trained on data from 19 
participants after categorizing them into various learning 
preferences (Table 2) and extracting the fixations. The dataset 
was divided into training and testing sets, with 90% of the 
data allocated for training and 10% for testing, as 
recommended by Uçar, Nour [48]. This split allowed model 
training on a significant portion of the data while reserving a 
separate set to evaluate their performance. 

Statistical features such as mean, median, and mode were 
employed as input features for the models, contributing to a 
total of eighteen (18) features considered in the analysis. The 
training of the models was conducted using MATLAB. 
Cross-validation, a technique that helps prevent overfitting by 
dividing the training dataset into smaller subsets, was 
adopted. Each subset is used as a temporary testing set, while 
the remaining data serves as the training set. This process was 
repeated multiple times, ensuring that each data point was 
used for both training and testing. Cross-validation enhances 
the robustness of the model by providing a more accurate 
estimate of its performance on unseen data. The study then 
adopted a wide array of machine learning classifiers, 
including Ensemble methods, Neural Networks (NN), 
Support Vector Machine (SVM), Ensemble, Naıve Bayes, 
decision tree, Logistic Regression (LR), and kernel and K-
Nearest Neighbors (KNN), to explore different algorithmic 
approaches to the data. The decision to use all available 
classifiers was driven by the desire to compare their 
effectiveness and identify the best-performing model for our 
specific dataset. The top-performing classifiers identified 
through cross-validation were ensemble, NN, and KNN. 

The trained models were then evaluated using 
performance measures such as accuracy, precision, recall, 
and F1-score to assess their effectiveness in classifying the 
data [49]. Accuracy measures the proportion of correct 
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predictions among the total number of cases evaluated [49]. 
Precision assesses the classifier’s ability to identify only 
relevant instances, while recall evaluates the ability to find all 
relevant instances within the dataset [50]. The Receiver 
Operating Characteristic curve (ROC) is a graphical 
representation that assesses the performance of the model 
[51]. The F1 score provides a balance between precision and 
recall, offering a single metric for performance comparison. 
These measures were calculated for each model and used to 
compare their performance on both the training and test 
datasets, providing valuable insights into their effectiveness 
and generalization capabilities. A multi-class confusion 
matrix was generated to assess the classification model.  The 
matrix contained rows and columns with the true positive 
(TP), false positive (FP), true negative (TN), and false 
negative (FN) [49]. Finally, the classifiers were tested on the 
reserved test data (unseen dataset) and were used to validate 
(test the performance) the classification models. The results 
are presented in the next section. 

IV. RESULTS 

This section focuses on the results of the study, wherein 
the confusion matrix for the top classifier is explained, and 
the performance of the top three classifiers (Table 3) is 
compared using the afore-discussed performance measures. 

A. Performance Metrics of the Trained Model 

The performance metrics of three classifiers—Ensemble, 
Neural Network, and KNN—were evaluated, with the 
Ensemble classifier achieving the highest accuracy of 82.2% 
for the trained model. The Ensemble classifier demonstrated 
high precision and recall rates across various learning 
preferences, indicating a reliable prediction capability. The 
F1 Score, which balances precision and recall, was also 
notably high, suggesting that the classifier is robust in its 
predictions. Precision, recall, accuracy, and F1 scores were 
assessed for each learning preference category. The 
Ensemble classifier achieved precision values ranging from 
75.8% to 88.4%, recall values from 64.9% to 91.8%, and F1 
scores from 60.7% to 88.2% across different learning 
preferences. Similarly, the Neural Network classifier attained 
precision values ranging from 69.7% to 92%, recall values 
from 67.1% to 88.8%, and F1 scores from 68.4% to 90.9%. 
In comparison, the KNN classifier demonstrated precision 
values ranging from 61.4% to 87.4%, recall values from 
54.8% to 86.7%, and F1 scores from 57.9% to 85.9%. 
 

B. Model Validation with Test Data 

To validate the trained model, the model was tested with 
the test dataset separated during the cross-validation phase. It 
was tested with all classifiers, and interestingly, Ensemble 
emerged as the best classifier with an accuracy of 83.3%. The 
output, termed the test model, encapsulates the predicted 
classifications for the test data [52]. The efficacy of the test 
models was gauged through performance metrics delineated 
in Table 4. The confusion matrix, depicted in Figure 3, was 
derived from the model’s predictions on the test dataset. The 

test performance metrics indicate a significant improvement 
from the training to testing phases. Table 4 displays the 
performance metrics of the Ensemble classifier. The precision 
rates for the Read/Write and Visual + Kinesthetic styles are 
noteworthy at 94.4% and 96.0%, respectively. These precision 
rates signify the proportion of correctly identified instances 
among all instances classified as a particular learning 
preference. Therefore, when the model predicts a student’s 
preference for these learning preferences, there is a high 
likelihood of correctness. 

On the other hand, recall rates, representing the proportion 
of actual instances of a class that were correctly classified by 
the model, were highest for the Auditory and V+ Kinesthetic 
learning preferences, reaching 94.00% and 92.30%, 
respectively. This indicates the model's proficiency in 
identifying students inclined toward these learning 
preferences. However, the model exhibits lower performance 
in both precision and recall for Visual + Auditory and Visual 
+ Auditory + Kinesthetic (V+A+K) learning preferences, with 
rates of 75.00% and 70.40%, respectively. These findings 
suggest potential challenges in accurately identifying students 
with these composite learning preferences, leading to a higher 
likelihood of both false positives and false negatives. This 
indicates a need for model refinement to better capture mixed 
learning preferences. 

V. DISCUSSION 

Based on the results from the test model, it can be 
concluded that the Ensemble classifier shows promising 
results in predicting students’ learning preferences within a 
mixed reality environment with an accuracy of 83.3%, which 
can be instrumental in personalizing educational experiences 
and improving learning outcomes. This accuracy, while 
slightly lower, is comparable to the findings by Ikawati, Al 
Rasyid and Winarno [53] who obtained an accuracy of 90% 
with the Bagging algorithm of the Ensemble classifier. Their 
study also demonstrated that ensemble methods, such as 
gradient-boosted trees and Bagging, consistently 
outperformed single algorithms like Decision Trees, 
achieving accuracy rates of 89.80% and 84.30%, 
respectively. An ensemble classifier works well for detecting 
learning preferences due to its ability to combine multiple 
classifiers to produce better predictions [54]. In other words, 
an ensemble model combines several individual models to 
produce more accurate predictions and capture complex 
patterns and relationships in the data that might be missed by 
a single classifier [55]. This classifier has been identified by 
Rao [35] to effectively predict learning preferences. The high 
precision and recall in certain learning preferences further 
support the model’s effectiveness, particularly in identifying 
Auditory, Read/Write, and Visual + Kinesthetic preferences. 
This can be attributed to some of the features of the learning 
environment. This includes a virtual assistant for providing 
audio guidance in the learning environment, visual 
representations of the construction site and sensing 
technologies, and a detailed menu interface for providing 
textual guidance on the learning activities in the environment. 
However, ensemble classifiers face challenges with 
predicting mixed learners such as V+A+K, and V+ Auditory. 
This may be due to insufficient representation of mixed 

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 24,2025 at 15:46:09 UTC from IEEE Xplore.  Restrictions apply. 



learners’ data in the training process, resulting in inadequate 
generalization of mixed learning preferences. To address this 
limitation, future research efforts could focus on enhancing 
the training dataset by collecting more mixed learners data. 
Additionally, incorporating additional features may improve 
the classifier's performance in predicting combined learners' 
patterns. By leveraging machine learning algorithms to 
analyze students' interactions within the virtual environment, 
educators can dynamically adjust the presentation of content, 
pacing of instruction, and level of cognitive challenge to 
maintain an optimal learning experience. For instance, 
auditory learners could be provided with more audio-based 
explanations, narrated presentations, and podcasts to 

facilitate information retention and comprehension. 
Kinesthetic learners could benefit from interactive, 
movement-based tasks and virtual manipulatives to reinforce 
conceptual understanding and promote engagement. 
Providing detailed textual instructions, reading materials, and 
written summaries can support these read/write learners. In a 
mixed reality environment, educators could incorporate 
extensive written guides or documentation that learners can 
access as they engage with the virtual tasks. By tailoring 
instructional interventions to match students' preferred 
learning preferences, educators can foster a more inclusive 
and effective learning environment that accommodates 
diverse learning needs and preferences. 

TABLE III PERFORMANCE MEASURES OF TRAINED CLASSIFICATION MODELS 

Classifiers Performance 

Measures 

Learning preferences 

Auditory Kinesthetic Read/Write Visual V+ Auditory V+A+K V+Kinesthetic 

Ensemble Precision 84.9407 77.2959 87.23404 75.7575 56.98324 86.5921 88.3838 

Recall 91.7733 78.4974 85.1632 82.0463 64.96815 70.7762 84.1346 

Accuracy 82.1669 82.1669 82.1669 82.1669 82.1669 82.1669 82.1669 

F1 Score 88.2249 77.8920 86.18619 78.7766 60.71429 77.8894 86.2069 

Specificity 95.1232 95.5186 97.4095 92.6645 99.0970 98.8852 98.9371 

Neural 
Network 

Precision 87.60% 92.00% 75.60% 75.20% 76.60% 69.70% 82.40% 

Recall 88.80% 89.90% 77.20% 78.40% 68.80% 67.10% 80.80% 

Accuracy 81.00% 81.00% 81.00% 81.00% 81.00% 81.00% 81.00% 

F1 Score 88.1959 90.9378 76.39162 76.7666 72.49078 68.3752 81.5921 

KNN Precision 85.10% 63.60% 73.30% 65.50% 61.40% 78.40% 87.40% 

Recall 86.70% 66.10% 71.80% 73.70% 54.80% 61.20% 79.80% 

Accuracy 73.30% 73.30% 73.30% 73.30% 73.30% 73.30% 73.30% 

F1 Score 85.8925 64.8259 72.54225 69.3584 57.91256 68.7404 83.4272 

   Note: V = Visuals, A = Auditory, and K = Kinesthetic 
 
 

 
    Fig. 3. No. of observation for the tested model 

TABLE IV PERFORMANCE MEASURES OF THE TEST CLASSIFICATION MODEL 

 

Classifier 

 

Metrics 

Learning preferences 

Auditory Kinesthetic Read/Write Visual V+ Auditory V+A+K V + Kinesthetic 

 
 
 
Ensemble  

Precision 86.30% 85.70% 94.40% 72.40% 72.20% 82.60% 96.00% 

Recall 94.00% 75.00% 81.00% 85.90% 68.4.% 70.40% 92.30% 

Accuracy 83.30% 83.30% 83.30% 83.30% 83.30% 83.30% 83.30% 

F1 score 89.99% 79.99% 87.19% 78.57% 70.25% 76.01% 94.11% 

Note: V = Visuals, A = Auditory, and K = Kinesthetic 
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VI. CONCLUSION 

In this study, we explored the feasibility of using 
machine learning algorithms to predict students' learning 
preferences in a mixed-reality learning environment. The 
study compared performance metrics from three classifiers - 
Ensemble, Neural Network, and K-Nearest Neighbors 
(KNN) obtained through supervised machined learning. The 
Ensemble classifier was identified as the most accurate, 
achieving an accuracy of 83.3% for the test model. The high 
precision, recall, and F1 score of the Ensemble classifier 
across various learning preferences makes it stand out as 
particularly effective for predicting students’ learning 
preferences across various modalities such as Auditory, 
Read/Write, and Visual Kinesthetic. This study also reveals 
that learners can possess a combination of two or more 
learning preferences, suggesting that learning preferences are 
not fixed and that students can benefit from multiple learning 
modalities. Furthermore, since the mixed reality learning 
environment was equipped with a virtual assistant (for audio 
learners), menu interfaces (for read/write learners), and visual 
representations of the learning activities (for visual and 
kinesthetic learners), this study further shows the importance 
of a learning environment that suits diverse learning 
preferences.  

VII. STUDY LIMITATIONS AND FUTURE WORK 

While this study provides valuable insights into the 
potential of machine learning to predict students' learning 
preferences in a mixed-reality environment, several 
limitations should be considered. Firstly, the limited number 
of features used in the analysis may have constrained the 
predictive power of the machine learning models. While the 
inclusion of mean, median, and mode provided valuable 
information about students' learning preferences, additional 
features such as variance, standard deviation, and range could 
enhance the accuracy and robustness of the predictive 
models. Furthermore, some studies question the validity of 
learning styles, arguing that tailoring instruction based on 
these styles may not significantly enhance learning outcomes. 
This controversy may limit the applicability of the findings 
presented in this study, given that a learning style 
questionnaire was used to assess students' learning 
preferences. In future work, one promising direction is to 
deploy the predictive models developed in this study for real-
world virtual learning environments. Additionally, deploying 
the models in real-world settings would provide opportunities 
to collect continuous feedback and refine the predictive 
algorithms over time, further improving their accuracy and 
reliability.  
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