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ABSTRACT

INDEX TERMS Ferroelectric Field-Effect Transistors, Verilog-A, Analog Synapses

I. FeFET as an Analog Synapse
The exponential growth in data-driven applications, espe-
cially in artificial intelligence (AI) and machine learning,
has underscored the limitations of traditional von Neumann
architectures. These architectures suffer from a significant
memory and computation bottleneck, particularly when deal-
ing with deep learning workloads that involve large volumes
of data and extensive synaptic weight storage. Neuromor-
phic architectures address this bottleneck by physically co-
locating memory and computation. In neuromorphic com-
puting, analog synapses store weights of neural networks
and effectively function as non-volatile, variable conductance
states to perform in-memory computation. Conventional
memory elements, such as static random-access memory
(SRAM) and dynamic random-access memory (DRAM),
are unsuitable for analog synaptic functions, especially in
edge applications, due to their binary states, large foot-
print, and energy inefficiency in maintaining data over time.
Emerging technologies such as resistive RAM (ReRAM)
and phase change memory (PCM) have demonstrated po-
tential in analog memory applications but face challenges
related to non-linearity, variability, limited endurance under
high-speed operation, device architecture, and integration
challenges [1]. The ferroelectric field-effect transistor (Fe-
FET) has emerged as a promising alternative with low-
power operation, high speed, and compatibility with current
complementary metal-oxide-semiconductor (CMOS) front-
end-of-line (FEOL) processes, making it highly suitable for
applications in energy-constrained environments such as IoT
and edge-AI devices. As a three-terminal device, the FeFET

offers enhanced control over channel conductance, which
is critical for analog weight modulation. By leveraging its
non-volatile characteristics and ability to achieve multi-level
storage, the FeFET stands out as a robust candidate for
analog synaptic applications. The unique characteristics of
the FeFET enable its application as an analog synapse in
neuromorphic computing systems, providing a viable path
for overcoming data movement limitations and accelerating
machine learning processes.

This paper examines the properties of FeFETs when used
as an analog synaptic device for in-memory computing and
its implications for neuromorphic systems. To assess the
characteristics of these ferroelectric devices, we perform
extensive electrical characterization of GlobalFoundries’ Fe-
FETs based on ferroelectric hafnia and their 28nm SLPe
process. We will cover the FeFET’s structural, electrical,
and operational attributes that make the device particularly
suitable for tasks like weight storage, analog multiply-
accumulate (MAC) operations, and real-time learning, es-
pecially in edge computing contexts where low power and
high-speed processing are essential. While there has been
significant progress in the development of FeFET technology
[2]–[4], there are still existing gaps, especially in the analog,
in-memory computing realm, that this research addresses.
Specifically, data is often presented for binary state retention
but not as often for intermediate states. Here we show 3-bit
retention data for both n-type (NMOS) and p-type (PMOS)
FeFETs at room temperature and 125 °C. To better explore
the control of these multilevel conductances, we go beyond
normal potentiation and depression and investigate in detail
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the impact of FeFET size, again for both NMOS and PMOS
devices. Furthermore, papers on device-level testing can
neglect the link to practical circuit- or system-level integra-
tion considerations, with research and reporting occurring
in a siloed manner. Here, whenever possible, we try to tie
device performance to chip design considerations such as the
complexity/size/power/cost of peripheral circuitry. We also
introduce and discuss multiple fundamental tradeoffs that
we see as design decisions, which are highly application-
specific.

II. FeFET Functional Principles
A. Switching Dynamics and Operation
FeFET devices replace or augment the normal dielectric
found in the gate stack of a FET with a ferroelectric layer,
commonly made of solid solutions of HfO2 and interstitial
such as Si or Zr. Remanent ferroelectric polarization in
the gate stack enables distinct and reconfigurable, non-
volatile threshold voltages (Vth) in the transistor channel.
This ferroelectric polarization can be switched by controlling
the electric field across the ferroelectric layer, typically done
via voltage pulses to the gate terminal.

The dynamics of switching involves nucleation and do-
main wall propagation within the ferroelectric layer. Initially,
under a strong enough electric field, small regions (nuclei)
of reversed polarization are formed. These nuclei grow
as the domain walls move, eventually reversing the entire
polarization if the voltage is maintained or increased. This
domain-level behavior underpins the macroscopic switching
characteristics observed in FeFET devices [5].

The switching mechanism is inherently fast and energy-
efficient, making single-bit FeFETs suitable for traditional
non-volatile memory applications. Notably, sub-nanosecond
switching behavior has been demonstrated in HfO2-based
FeFETs, where the polarization reversal time was observed
to span 11 orders of magnitude for only a single order
change in pulse voltage. This steep time-voltage relationship
is well captured by classical nucleation theory, confirm-
ing the voltage-sensitive kinetics of domain nucleation and
switching in ferroelectric materials [6].

1) Single-Bit Operation (Traditional Memory)
Single-bit operation in FeFETs represents the most funda-
mental mode of device functionality, wherein the device
toggles between two polarization states—corresponding to
binary logic levels. In this mode, switching dynamics are
governed by the complete reversal of ferroelectric polar-
ization when the applied gate voltage exceeds the coercive
field (Ec) of the material. This process leads to two distinct
threshold voltages, enabling the binary storage of ‘0’ and ‘1’
as illustrated in Figure 1(a).

The two-state behavior arises from the homogeneous
switching of all ferroelectric domains once the
coercive field is surpassed. However, the precision

and endurance of single-bit FeFETs depend heavily
on material quality, domain uniformity, and interface
stability between the ferroelectric and semiconductor
layers, and the device architecture (e.g., MFIS (Metal-
Ferroelectric–Insulator–Semiconductor) vs. MFMIS
(Metal–Ferroelectric–Metal–Insulator–Semiconductor)
structures) [3], [7], [8].
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FIGURE 1. Example FeFET operation for an n-type channel. (a) Single-Bit
Operation: Ferroelectric polarization is predominantly all in either the up
or down state. This leads to two distinct states, (red) the high threshold
voltage (HVT) and (blue) low threshold voltage (LVT) states. (b) Multi-Bit
Operation: By applying voltage pulses with amplitudes and widths lower
than a critical value, only a subset of the ferroelectric domains will switch,
leading to intermediate states between the HVT (red) and LVT (blue)
states.

2) Multi-Bit Operation (Analog Memory)
Multistate performance in FeFETs significantly enhances
their utility in neuromorphic and memory-intensive applica-
tions by enabling the storage of more than two conductance
levels per cell. Unlike binary switching, multistate behavior
leverages the partial switching of ferroelectric domains due
to the heterogeneous coercive field distribution across the
ferroelectric layer.

In an idealized mono-domain system, the coercive field
(Ec)—the electric field required to switch the polarization di-
rection—is sharply defined and uniform across the material.
However, practical ferroelectric layers, especially polycrys-
talline HfO2 solid solutions, exhibit significant heterogene-
ity due to variation in grain morphology, crystallographic
orientation, interstitial distribution, and internal mechanical
stress. These microstructural non-uniformities lead to a broad
distribution of coercive fields among the domains in the
ferroelectric layer [9].

Domains with lower Ec switch at lower voltages, while
others require higher fields. This physical phenomenon al-
lows for gradual and selective switching of ferroelectric
domains by carefully tuning the amplitude and duration
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of voltage pulses. As a result, the material can be par-
tially polarized, and the overall polarization state becomes
a weighted sum of the switched and unswitched domains.
This intermediate polarization gives rise to multiple discrete
threshold voltage levels in FeFETs, forming the basis for
multi-bit operation as illustrated in Figure 1(b).

This behavior is quantitatively described using physical
models such as the Preisach model, which has long been
employed to simulate polarization switching and hysteresis
in ferroelectric capacitors and memory devices [10]. The
model treats the ferroelectric material as a superposition of
bistable domains, each with its own switching threshold, and
it can accurately replicate the hysteresis behavior observed
experimentally in multistate memory systems. In experi-
mentally fabricated FeFETs using solid solutions of HfO2,
the heterogeneous distribution of coercive fields enables
multilevel threshold voltages due to selective domain activa-
tion. Mulaosmanovic et al. demonstrated that precise voltage
pulse control can induce stable intermediate polarization
states, which correspond to distinct threshold voltages in
the device’s transfer characteristics. Each of these voltage
states translates into a unique drain current level under fixed
gate bias conditions, allowing analog or multibit conductance
representation [11].

Device geometry and scaling significantly affect multi-
state performance. Larger FeFET devices typically contain
a greater number of ferroelectric grains, averaging out the
effects of domain variability and yielding smoother and
more predictable analog behavior [12]. In contrast, nanoscale
devices contain fewer grains and are more susceptible to
stochastic switching behavior due to the pronounced influ-
ence of individual domain variability [13].

Further advancements have been achieved through mate-
rial and device engineering. Zeng et al. showed that engi-
neering the electric field gradient across the device stack
can enhance multistate capability. By spatially modulating
the coercive field distribution within the ferroelectric layer,
they achieved finer control over domain switching, result-
ing in increased multistate resolution [14]. Experimental
demonstration was performed on a 500 nm channel length,
with simulation demonstrating its use down to 20 nm.
This technique underscores the importance of internal field
engineering for fine-tuning device behavior. In a similar vein,
the ”MirrorBit” FeFET concept has been demonstrated on a
240 nm x 240 nm device as a way to convert 1-bit FeFETs
to 2-bit FeFETs through the control of drain and source
terminal voltages [15].

B. Synaptic Functionality in FeFETs: Potentiation and
Depression
The functional role of an analog synapse in neuromor-
phic computing largely depends on its ability to emulate
the behavior of biological synapses by adjusting synaptic
weights in response to external stimuli. In FeFETs, this
adjustment process is achieved through potentiation and

depression mechanisms, which are responsible for increasing
or decreasing the conductance of the device, respectively.
These processes enable FeFET devices to act as analog
synapses, simulating the strengthening and weakening of
synaptic connections in artificial neural networks.

In contrast to charge-based memory technologies such as
DRAM or FeRAM, FeFETs do not rely on a separate storage
capacitor. Instead, the polarization state of the gate stack
controls the channel’s electrical properties through electro-
static modulation of the potential barrier, making the read
operation non-destructive. This is particularly advantageous
in neuromorphic and in-memory computing systems, where
frequent read operations are required during inference and
training cycles [16], [17].

1) Potentiation (Increasing Conductance)
Potentiation in FeFETs involves the incremental increase of
channel conductance by systematically shifting the device’s
threshold voltage (Vth) through the alignment of ferroelectric
dipoles. This is achieved by applying a series of carefully
controlled voltage pulses (positive for NMOS, negative for
PMOS) to the gate terminal. Each pulse incrementally aligns
more dipoles in the ferroelectric layer in the same direction
as the field, resulting in increased remanent polarization. This
shift in Vth leads to a higher channel current for a given gate
voltage, simulating synaptic strengthening in artificial neural
networks [1].

Notably, the degree of potentiation depends on several
factors, including pulse amplitude, duration, and frequency.
Smaller, repeated pulses result in finer resolution of con-
ductance states, which is essential for enabling multi-level
analog weight representation. This granularity allows FeFET-
based synapses to encode a spectrum of weight values, rather
than binary states alone. The controllability and retention
of the potentiated state are further influenced by material
selection (e.g., doped HfO2), device geometry, and the
ferroelectric domain dynamics [18].

2) Depression (Decreasing Conductance)
Conversely, depression in FeFETs is the mechanism by
which the conductance is decreased—representing the weak-
ening or removal of synaptic connections in neural ar-
chitectures. This is implemented by applying a series of
voltage pulses (negative for NMOS, positive for PMOS) that
change Vth and reduce the drain current, reaching a lower
conductance state [1].

The depression process, like potentiation, is ideally grad-
ual and controllable. The symmetry between potentia-
tion and depression ensures that learning algorithms can
both enhance and suppress weights effectively, enabling
backpropagation-based learning and stability during training.
However, achieving symmetric behavior in practice requires
precise calibration of pulse schemes and careful engineering
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FIGURE 2. (a) Synaptic weights are encoded as remanent polarization or
charge in the ferroelectric, QFE . Conductance, G, of each FeFET is a
function of QFE and the chosen gate read voltage, VGS . (b) FeFET
synapses with a shared node intrinsically perform the
multiply-accumulate (MAC) function, a core function in artificial neural
networks.

of ferroelectric layers to avoid hysteresis asymmetry [19].
Importantly, this reversibility is key to the dynamic plasticity
of artificial synapses, allowing for weight updates across
multiple epochs without device degradation.

Multi-Level Synaptic Weights:
The ability to achieve multiple conductance states makes

FeFETs highly suitable for implementing synaptic weights
in spiking neural networks and deep learning accelerators.
The analog modulation of weights is facilitated by the
progressive and partial polarization switching of ferroelectric
domains as described above. These mechanisms support
symmetric weight updates across multiple levels, critical for
neuromorphic learning algorithms such as backpropagation
and Hebbian learning. The progressive nature of switching
also helps mitigate abrupt transitions and allows for finer
control over network dynamics, resulting in more efficient
and accurate neural computation [20].

However, the conductance (weight) of a FeFET is not
solely a function of the ferroelectric polarization, QFE . The
dynamic range and linearity of the conductances (weights)
is highly dependent on the choice of the gate voltage, VGS ,
during the read process (Figure 2(a)). For example, at VGS

values closer to subthreshold the dynamic range gets larger
while the linearity deteriorates, whereas for VGS closer to
the linear regime the dynamic range shrinks and linearity
improves. As long as the gate voltage is low enough to
not disturb the ferroelectric polarization, the choice of VGS

(also channel doping, gate work function, etc.) becomes a
powerful tool to optimize network performance.

In neuromorphic and in-memory computing architectures,
FeFETs are often arranged in crossbar arrays where each
FeFET functions as a programmable synapse, and multiple
synapses are connected to an artificial neuron circuit . This
arrangement enables analog computation of the multiply-
accumulate function as shown in Figure 2(b). This combi-
nation of multiple synapses that lead to an artificial neuron
is mappable into a crossbar array architecture to accelerate
AI workloads.

III. FeFET Synapse Programming Schemes
As mentioned earlier, pulsing schemes can generally be
categorized as controlling pulse amplitude, pulse width,
and/or pulse count. The general comparison of controlling
pulse height, width, or applying identical pulses has been
demonstrated before, with variable pulse amplitude shown
to provide the best control for multi-state operation [21].
Other choices include whether or not to have a RESET pulse
every time to have a more established starting point, or when
it comes to implementing these programming schemes on a
system or chip, there is also the choice of feedback or control
to achieve the desired conductance state.

Accurate evaluation of FeFET device performance neces-
sitates carefully designed electrical measurement protocols.
A widely adopted methodology employs a pulse sequence
comprising RESET–DELAY–SET–DELAY–READ opera-
tions [22]–[25]. The RESET pulse is followed by a delay
interval to allow for transient effects—such as charge re-
distribution, interface trap relaxation, and incomplete ferro-
electric stabilization—to subside. A second delay is again
introduced after the SET pulse to ensure that polarization
dynamics and charge detrapping are complete prior to the
DC READ sweep, which measures either the output current
or the threshold voltage.

These delay periods are not arbitrary. Without sufficient
delay, the measurement may include transient contributions
from unstable charge states or dynamic polarization relax-
ation, leading to erroneous conclusions regarding the de-
vice’s stable memory state. Beyer et al. illustrated this issue
through the sloshing bathtub model, wherein rapid switching
induces electron accumulation at the ferroelectric/interlayer
(FE/IL) interface, accelerating charge trapping into deeper
energy states and resulting in premature Vth walkout and
endurance degradation [22]. This is particularly problematic
in n-type FeFETs, where the conductance level stabilizes
well after the switching event.

The necessity of proper delay intervals was further cor-
roborated by Mulaosmanovic et al., who demonstrated that
omitting delays between SET/RESET and READ operations
significantly misrepresents the effective memory window,
especially in scaled FeFETs [26]. Mulaosmanovic et al.
expanded on this work by proposing optimized timing proto-
cols to isolate intrinsic ferroelectric switching from extrinsic
parasitic effects. These refined pulse schemes are essential
for accurate reliability benchmarking and for minimizing
read disturbance in multilevel programming scenarios [27].

A. 20 mV Incremental Pulse Scheme
In this study, an incremental amplitude pulse scheme fol-
lowing the RESET-DELAY-SET-DELAY-READ method was
applied to FeFETs of various sizes fabricated in the Glob-
alFoundries 28 nm node. In this method, programming and
erasing pulses were applied with progressively increasing
amplitude steps (e.g., 2 V to 5.0 V in 20 mV increments),
while the duration remained fixed. The choice of a 20 mV
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step size was motivated by a 5 V range, subdivided by an
8-bit digital-to-analog converter (DAC), which is roughly 20
mV.

As described previously, 5 s delay intervals followed each
pulse to ensure that the observed Vth reflected a more
stabilized state of the device. RESET pulse widths were 1 µs,
while the SET pulse widths were 500 ns. Specific pulse train
schematics for both potentiation and depression are shown in
Figures 3 and 4, respectively, with experimental data for both
NMOS and PMOS devices below the pulse schemes. We
stress that this testing procedure includes a RESET before
each measurement or VGS sweep; therefore, it tests not only
the number of available states but also the repeatability or
stochasticity of setting a state.

FeFETs were tested on a FormFactor SUMMIT200 probe
station and measured using a Keysight B1500A semiconduc-
tor device analyzer. Gate pulses were applied via the B1525A
high-voltage source/pulse generator unit (HV-SPGU), while
voltage biasing and current measurements were conducted
using B1511B source-measure units (SMUs). The drain,
source, and bulk terminals were grounded during gate puls-
ing. To enable pulse application and measurement on the
same physical probe, the SPGU output and gate SMU
were connected using a Keithley 4205 remote bias-tee. This
configuration ensured precise control of pulse delivery and
synchronization with transient relaxation periods.

While this pulsing scheme was chosen to enable finer con-
trol over the polarization process for device characterization,
it should be noted that in a real embedded system these
pulses need to be created on-chip which can increase the
complexity (size, cost, power, etc.) of the peripheral circuitry.

Overall, the incremental amplitude scheme offers signif-
icantly enhanced weight resolution compared to the fixed
pulse method, making it better suited for implementing
analog synapses in neuromorphic systems where precise
conductance tuning is required.

IV. FeFET Synapse Performance Metrics
We mainly focus on two aspects of these FeFET analog
synapses, their intermediate states and the retention of those
states. However, other important performance metrics will be
introduced and discussed, such as the linearity of potentiation
and depression behavior, stochasticity in setting a state, chip
space occupied, and energy consumption.

A. Intermediate States
A balanced understanding of both NMOS and PMOS Fe-
FETs is important for designing analog synapses in neuro-
morphic computing systems. While the fundamental switch-
ing mechanism—reliant on polarization reversal in the ferro-
electric layer—is similar in both device types, differences in
band alignment, carrier mobility, interface behavior, and trap
dynamics influence their analog characteristics. Experimental
measurements conducted on GlobalFoundries 28nm FeFET
devices show that both NMOS and PMOS variants are

capable of stable multistate switching, suitable for analog
computing applications, though with distinct performance
profiles. The main difference between the NMOS and PMOS
FeFETs we tested is the magnitude of the Vth offset from
0 VGS , leading to slightly asymmetric biasing and response
between the two types of devices.

An ideal analog synapse has access to a wide continuum of
conductance states. It is clear from Figures 3 and 4 that large-
area (7 µm x 10 µm) FeFETs come close to this continuum,
with most of the space bounded by the LVT and HVT filled
with intermediate states. However, for smaller FeFETs, the
available intermediate states become limited as illustrated in
Figure 5.
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NMOS FeFET 20 mV Incremental Potentiation Scheme
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FIGURE 3. Potentiation characteristics measured for incremental
program pulses of (a) 2 V to 5 V (500 ns pulse width) on a 7 µm x 10 µm
NMOS FeFET device (b) -2 V to -5 V (500 ns pulse width) on a 7 µm x 10
µm PMOS FeFET device
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NMOS FeFET 20 mV Incremental Depression Scheme
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FIGURE 4. Depression characteristics measured for incremental program
pulses of (a) 2 V to 5 V (500 ns pulse width) on a 7 µm x 10 µm NMOS
FeFET device (b) -2 V to -5 V (500 ns pulse width) on a 7 µm x 10 µm
PMOS FeFET device
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FIGURE 5. Potentiation characteristics of the smallest measured NMOS
FeFET (a), 80 nm x 34 nm, and the smallest measured PMOS FeFET (b),
200 nm x 200 nm.
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TABLE 1. Estimate for Number of Grains in Each Device Size

One
Grain
Size*
[nm]

One
Grain
Area

[nm2]

Device
Width
[nm]

Device
Length
[nm]

Total
Grains
Upper
Bound

Total
Grains
Lower
Bound

20 400 7000 10000 175000 7000

100 10000 1000 1000 2500 100

500 500 625 25

200 200 100 4

80 34 6.8 0.272

*Lateral grain size typically 20-30 nm, up to 100 nm.

1) Impact of Device Size
A larger FeFET contains more ferroelectric domains than a
smaller FeFET. This leads to a larger distribution of coercive
fields, which enables not only more states — it also enables
a more deterministic programming of the intermediate states.
One can glean this information from our testing results by ex-
amining the color gradient in Figures 3 through 5. If the color
gradient in the ID−VGS curves closely matches the gradient
in the colorbar scale, that means that the FeFET potentiation
or depression (with a RESET pulse between every curve) is
behaving in a repeatable manner. In a study by Alessandri
et al., [28] they demonstrated that the stochastic nucleation
limited switching dynamics of a ferroelectric capacitor shows
substantial variability in devices with 100 grains but is
virtually indistinguishable from the mathematical average at
5000 grains.

The lateral grain size in these ferroelectric hafnia thin
films are typically around 20-30 nm [29]. For the device
sizes tested in this study, this leads to the estimate of grains
contained in each device shown in Table 1.

The trend in our measurements agrees well with that
of Alessandri et al. The largest devices tested (7 µm x
10 µm) enable a more smooth and deterministic setting
of states; this agrees with our estimate that these devices
include many thousands of ferroelectric grains. However,
with smaller FeFETs, there is clear variability in the setting
of conductance states. This can be viewed more directly by
taking vertical slices in the 20 mV incremental pulsing data
at specific VGS values. Figure 6 plots an example slice of
normalized potentiation data for both NMOS and PMOS
FeFETs of different sizes. Once the FeFET size reaches 7
µm x 10 µm (black data points), the potentiation becomes
a smooth, monotonically increasing function of the SET
pulse magnitude, indicating a high level of repeatability or
determinism in setting a conductance level. Smaller devices,
on the other hand, show a more variable relationship to
the magnitude of the SET pulse, meaning that there is
inconsistent programming of the conductance level.

(a) (b)

FIGURE 6. Effect of FeFET Device Size on Normalized Conductance and
State Density for both NMOS (a) and PMOS (b) devices.

B. Retention of States
A perfect synapse would store its programmed weight with-
out any degradation over time or from a change in operat-
ing conditions, such as temperature. In reality, non-volatile
memory typically suffers some data loss, often specified
at an elevated temperature and a specific time frame. To
characterize retention characteristics, devices are typically
measured for 103 to 105 s at an elevated temperature and
then extrapolated to a 10-year retention figure of merit.

The largest devices (7 µm x 10 µm) were chosen for
retention testing as their state setting behaves the most
deterministically. Following the same RESET-DELAY-SET-
DELAY-READ programming scheme, conductance levels
were set and then read at a specific VGS for 1000 s. Retention
data was measured for at least 8 states for NMOS and PMOS
devices at both room temperature and 125 °C (see Figure 7).
The retention data fit well to a power law description, with

(a)

(c) (d)

(b)

FIGURE 7. Retention of intermediate states in NMOS devices at room
temperature (a) and at 125 °C (b), PMOS devices at room temperature (c)
and 125 °C (d). Each plot shows the fitted line (solid) as well as the 95%
confidence band (darker shade) and 95% prediction band (lighter shade).

values for A being roughly the starting current at 0 s and
ranges for b as listed in table 2.

I(t) = Atb (1)
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TABLE 2. Extracted Power Law Constants

Device Type b (Lower Bound) b (Upper Bound)

NMOS (25 C) -0.016 -0.029
NMOS (125 C) -0.0085 0.025
PMOS (25 C) -0.06 -0.15

PMOS (125 C) -0.006 -0.046

The impact of charge trapping on FeFET behavior, par-
ticularly in NMOS devices, has been discussed in earlier
sections. In those discussions, we noted that electron trapping
near the interface between the ferroelectric HfO2 layer and
the underlying semiconductor can lead to time-dependent
threshold voltage shifts, particularly when insufficient delay
is provided after switching pulses. This dynamic contributes
to transient instability and can obscure the true remnant
polarization state, especially in scaled devices or when
operating at high speeds [2], [30].

In this section, we extend the analysis by examining
trap-related behavior in PMOS FeFETs, which was not
previously addressed. Unlike NMOS devices, PMOS FeFETs
predominantly involve hole transport, and thus exhibit dif-
ferent trapping and detrapping characteristics. Experimental
observations show that PMOS devices demonstrate better
retention performance over longer periods. This is attributed
to the slower detrapping kinetics of holes, which occupy
deeper energetic states in the ferroelectric material compared
to electrons. These deeper traps are less thermally activated
at room temperature, resulting in reduced spontaneous charge
loss and more stable threshold voltages [30], [31].

V. Discussion
A. Fundamental Design Trade-offs
1) FeFET Size
There are two main strategies by which “analog” FeFET
synapses can be achieved. Large-area FeFETs are the only
way to provide true >3 bit analog behavior, whereas small
FeFETs will likely rely on the combination of individual
1-2 bit FeFETs to reach the desired bit precision. While
the large FeFETs enable more intermediate states and have
more deterministic access to those states, it comes at the
price of area and programming energy. The energy used to
program an FeFET is directly proportional to the ferroelectric
switching area, coercive field (EC), and the remanent polar-
ization (PR). The area ratio of the largest FeFET tested to
the smallest is >25,000 which directly reflects the switching
energy ratio. To reap the efficiency of small FeFETs, there
must also be a higher overhead of peripheral circuitry to
address the higher stochasticity and routing required for 1-
or 2-bit FeFETs. One strategy to decrease the variability and
read energy of smaller FeFETs is the use of a series resistor
to limit Vth shifts and lower the overall current [32].

A general comparison of large and small FeFETs to
traditional devices like SRAM can be found in table 3.

B. Retention Analysis
This retention advantage is particularly relevant in neuro-
morphic applications where the stability of stored analog
weights over time is critical. The physical mechanisms
underlying this behavior suggest that PMOS FeFETs may be
better suited for long-term analog memory functions, while
NMOS FeFETs remain favorable for faster, high-frequency
switching applications.

The physical dimensions of FeFET devices strongly in-
fluence the number and stability of achievable conductance
states. Larger devices tend to include more ferroelectric
grains in the active channel. Since each grain may have a
slightly different coercive field due to structural variations,
devices with larger lateral dimensions exhibit a broader dis-
tribution of polarization switching thresholds. This enables a
finer granularity of intermediate states and more continuous
conductance modulation [26].

Both NMOS and PMOS devices in this study showed an
increase in the number of accessible states as the lateral
dimensions increased from 200 nm × 200 nm to 7 µm ×
10 µm. The enhanced multistate resolution in larger devices
is attributed to statistical averaging over a larger number
of grains, which minimizes the variability seen in smaller
devices. These effects are consistent across device types,
suggesting that geometry plays a central role in determining
synaptic resolution, regardless of whether the device is
NMOS or PMOS.

Smaller devices, in contrast, are more susceptible to
stochastic switching behavior. With fewer active domains,
the effect of individual grain switching becomes more pro-
nounced, leading to variability in the conductance response.
This imposes a limitation on how aggressively device dimen-
sions can be scaled while still maintaining reliable multistate
operation.

The comparative analysis shows that both NMOS and
PMOS FeFETs can serve as effective analog synaptic el-
ements, with distinct advantages depending on the intended
use case. NMOS devices generally benefit from faster
switching and stronger drive currents, which can be useful
in high-speed or low-latency applications. PMOS devices,
meanwhile, offer improved data retention and are less sensi-
tive to read disturbances, which may be important in systems
requiring long-term analog state storage.

The retention benefit observed in PMOS FeFETs can
be understood from a physical perspective as arising from
the deeper energy levels of hole traps and the reduced
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TABLE 3. Comparison of Large and Small FeFET metrics

Metric Large FeFET (7 µm x 10 µm) Small FeFET (80 nm x 34 nm)

Number of States >3-4 bit 1-2 bit
Intermediate State Programming Behavior Deterministic Stochastic
Area (µm2) 70 0.00272
Programming Energy (J) 10-100 pJ 1-10 fJ
METRIC OF INTEREST INSERT HERE
METRIC OF INTEREST INSERT HERE
METRIC OF INTEREST INSERT HERE

TABLE 4. Comparison of FeFET and SRAM-Based Analog Synapses

Technology Node Foundry Footprint (µm2) # States Bit Density (bits/µm2) Notes
FeFET 28 nm GF 8–16 Multi-bit analog storage enabled by

incremental pulsing

6T-SRAM (Standard) 10 nm 0.0312 2 (binary) Minimal area; single-bit storage
with standard read/write

6T-SRAM (Standard) 5 nm TSMC 0.021 2 (binary) Scaled bitcell size; density im-
proves, but storage remains binary
without circuit-level enhancements
[33].

SRAM-CIM 28 nm 8.71 3–13 (analog levels) 0.34 Local computing cell (LCC) shared
across 8 SRAM cells; dual-mode
computation supports 2b×1b MAC
operations.

TABLE 5. Retention Time for Different Voltages at 25 C

Voltage (V) I0 (A) I10yr (A) % Drop

2.30 4.75× 10−8 2.65× 10−8 44.30
2.50 2.07× 10−7 9.81× 10−8 52.52
2.60 3.37× 10−7 1.78× 10−7 47.24
2.70 4.66× 10−7 2.39× 10−7 48.67
2.80 5.24× 10−7 3.34× 10−7 36.27
2.90 5.83× 10−7 3.90× 10−7 33.09
3.10 6.68× 10−7 3.94× 10−7 41.03
3.30 7.19× 10−7 4.22× 10−7 41.31
3.50 7.65× 10−7 4.56× 10−7 40.40
4.00 8.51× 10−7 5.97× 10−7 29.89

likelihood of spontaneous detrapping at ambient temperature.
This leads to more stable polarization states, particularly
when combined with appropriate pulse schemes and delay
intervals.

In both device types, increasing the physical size of the
FeFET enhances the number of stable conductance states by
incorporating more ferroelectric domains, improving analog
resolution. As a result, while miniaturization may be advan-
tageous for integration density, it must be balanced against
the requirement for reliable and reproducible multistate
behavior.

C. Control / Feedback
When utilizing FeFET devices as analog synapses in neu-
romorphic systems or in-memory computing architectures,
maintaining precise conductance states is critical for ensuring
computational accuracy and system reliability. However, due
to process variations, pulse-to-pulse programming variability,
and potential device non-idealities such as cycle-to-cycle
fluctuations and polarization fatigue, the actual programmed
Vth may deviate from the intended value. This deviation
directly impacts the effective synaptic weight or memory
state stored in the FeFET.

To address this challenge, a closed-loop feedback control
mechanism is essential during programming. In such a
scheme, each programming iteration (typically comprising
SET or RESET pulses) is followed by an intermediate READ
operation to evaluate the updated state of the device. If the
measured conductance or Vth does not meet the target within
an acceptable error margin, additional incremental pulses are
applied until convergence is achieved [21], [34] .This adap-
tive approach ensures the limited number of distinct states
achievable by applying identical pulses and enables fine-
grained tuning of intermediate states when using incremental
pulsing.

In practical hardware implementations, external
measurement-based feedback (e.g., via semiconductor
parameter analyzers) is not scalable. Thus, on-chip closed-
loop programming circuits are integrated into FeFET arrays
to enable autonomous state tracking and pulse adaptation.
Common approaches include:
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• Comparator-Based Feedback: Each FeFET synapse
is connected to a local comparator that monitors its
current or voltage response after each programming
pulse. A digital control loop increments the pulse count
or adjusts the amplitude until the comparator output
indicates threshold convergence [35]–[37].

• Successive Approximation Register (SAR): A digital
controller performs binary search over pulse amplitude
or width to rapidly converge to the desired state. The
synaptic state is monitored through a READ path and
compared with a reference using a compact ADC or
window comparator.

• Charge Integration and Sensing Circuits: Some
architectures use charge accumulation on capacitive
nodes during pulse application. The integrated charge,
which correlates with ferroelectric polarization, is then
sensed to infer the device state.

D. Design Insights for FeFET-Based Analog Synapses
The electrical characteristics of fabricated FeFET de-
vices—such as achievable threshold voltage range, analog
resolution under pulsed programming, retention behavior,
and minimum device dimensions—significantly influence the
architectural and circuit-level design of compute-in-memory
(CIM) systems. This section summarizes key design insights
derived from measured device behavior and programming
protocols presented in this work.

a: Device Area and Integration Density
The minimum measured gate length and width of the fab-
ricated FeFETs dictate the achievable synaptic array pitch.
In this work, FeFETs with gate lengths down to 34 nm
and widths of 80 nm were characterized. These dimen-
sions are compatible with high-density integration in planar
CMOS back-end-of-line (BEOL)-compatible processes, al-
lowing compact array design. However, increased variability
in ultra-scaled devices requires careful trade-off between
density and analog weight precision. Wider gate widths are
favored in arrays targeting high-resolution weight storage
due to the improved signal-to-noise ratio in current-mode
readout and the ability to achieve deterministic intermediate
states.

VI. Conclusions
o Multi-bit operation is possible, long-term retention of
intermediate states demonstrated.

o Pulse optimization to limit impacts of bias temperature
instability (BTI) needs to be done.

o Deterministic or open loop operation of multi-bit Fe-
FETs requires large-area devices with many ferroelectric
grains (micron-sized lateral dimensions).

o Something about insight into chip design choices
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