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Abstract—The paper describes the development of a system for
estimating 3D speaker geometry from raw images of collaborative
classroom videos. The proposed system integrates methods for
2D and 3D pose estimation with depth estimation and camera
calibration to detect and reconstruct the 3D speaker geometry
of a collaborative group of students. Results on the Human3.6M
dataset show that the system can estimate 3D poses reasonably
well without the need to pre-train on the Human3.6M dataset.
Furthermore, for classroom videos, the proposed system outper-
formed a baseline approach trained on the Human3.6M dataset.
The proposed system is used to provide the 3D speaker geometry
to a new speaker diarization system that performs well in noisy
classroom environments.

Index Terms—scene reconstruction, 3D pose estimation, 2D
pose estimation, speaker diarization.

I. INTRODUCTION

Our current paper is focused on reconstructing the 3D
student speaker geometry under occlusions. Our interest in
dynamic 3D scene reconstruction from raw videos comes from
the need to assess student learning in collaborative learning
classrooms.

We present an example of our collaborative classroom
video scene in fig. 1. Based on the raw image, we want
to explore models for reconstructing the 3D student speaker
geometry with respect to the table. Here, we note that a single
microphone is located at the center of the table. Based on
the location of the students with respect to the microphone,
we can construct a 3D acoustic model for speaker diarization
(determining who is talking and when) as described in [1]. We
will demonstrate our approach for 3D pose estimation and for
speaker diarization.

In our earlier research on classroom videos, we focused
on video activity classification. In [2], we demonstrated a
successful approach for dynamic participant tracking in long
classroom videos. In [3], we demonstrated a fast and accurate
method for detecting typing and writing activities. Similarly,
we note related work in educational video analysis has been
reported in [4], [5], [6].

The primary contribution of this paper is the development of
a modular pipeline for reconstructing the 3D speaker geometry
in collaborative classrooms. Our approach allows 3D scene
reconstruction from a raw video image. Thus, it is suitable for

Fig. 1: Collaborative learning classroom example.

dynamic 3D scene analysis from image samples selected from
classroom videos. We demonstrate that our proposed approach
enables speaker geometry based on the estimated 3D speaker
geometry.

We provide extensive background for our approach in sec-
tion II. We then describe our method in section III. We provide
results in section IV and concluding remarks in section V.

II. BACKGROUND

We summarize the background in four subsections. First,
we review previous research on collaborative classroom video
analysis focused on video activity recognition. Second, we
describe the speaker diarization application that relies on the
use of 3D speaker geometry. Third, we review methods for
performing camera calibration from raw images. Fourth, we
provide a summary of PoseNet, a method for estimating 3D
poses from raw images.

A. Collaborative classroom video analysis

In this section, we summarize earlier research for analyzing
collaborative classroom videos. We refer to [7] for a recent
review of video activity recognition systems.

1) Long-Term Human Participation Assessment: In [2], the
authors tackled the problem of tracking student participants in
90-minute videos. The paper introduced methods for dealing
with pose variation, occlusion, and students entering and
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leaving the scene dynamically. The paper used a video face
recognition method described in [8]. The system demonstrated
excellent results for tracking students under occlusion.

2) Long-term human video activity quantification of student
participation: An effective system for recognizing student
activities in classroom videos was described in [3]. In [3], the
authors describe methods for recognizing typing and writing
activities. The method relies on the use of a hand detection
system described in [9]. The system achieved 80% accuracy,
outperforming several popular methods while using 1,000 to
1,500 times fewer parameters.

B. Speaker diarization using virtual microphone array and 3D
scene analysis

We review our development of Physics-based models for
identifying speakers from digital videos. Our approach is to
combine 3D scene analysis with audio signal processing to
identify the speakers. We begin by introducing the speaker
diarization problem.

Speaker diarization refers to the problem of determining
the speaker within a given time interval. For our real-life
collaborative classroom videos, the problem is particularly
challenging. Specifically, we need to identify who is talking
from a group of 3 to 5 active speakers. At the same time,
we have a single microphone recording the group against
a background of over 20 active speakers. In addition, our
speakers are often bilingual, speaking in both English and
Spanish.

More recently, we introduced an effective method for
speaker diarization based on the 3D speaker geometry [1].
The approach relied on a manual estimate of the 3D speaker
geometry. In this paper, we will report results from using
this method based on extracting the 3D speaker methods
automatically (also see earlier efforts in [10]).

The system in [1] used the 3D speaker geometry to simulate
audios from the different speakers. The system also simulated
recording the simulated audio signals as they would have been
recorded by a virtual microphone array designed to separate
the speakers. By comparing features from the simulated speak-
ers against features extracted from the actual speakers, the
system was able to identify the actual speakers. The system
in [1] significantly outperformed Amazon AWS and Google
Cloud in identifying speakers from 2 to 5 speakers.

C. Camera calibration using a single raw video image

Camera calibration determines the camera parameters that
map 3D world coordinates to the 2D pixel coordinates as given
by:

ρx̃ = µR[K|tc]X̃ (1)

where ρ and µ denote scaling factors, x̃ denotes the 2D
coordinates in homogeneous form, X̃ denotes the 3D world
coordinates in homogeneous form, R denotes a rotation ma-
trix, K denotes the internal parameters of the camera, and
tc represents the position of the camera in the 3D world. The
rotation matrix R stores the rotation angles: the pitch, roll and
yaw. We assume that the yaw angle is 0◦ since it is not possible

to estimate it from single-view images without imposing
additional constraints. For the internal camera parameters, we
have:

K =

fx v xc

0 fy yc
0 0 1

 (2)

where fx and fy denote the focal length parameters along
the x- and y- axes, the principal point (xc, yc) represents the
center of the image in each axis, and v represents the skew
parameter. We consider a simplified camera model with zero
skew: v = 0, square pixels: fx = fy = f , and tc = 0. The
assumptions reduce eq. (1) to

ρx̃ = µR

f 0 xc

0 f yc
0 0 1

X. (3)

Traditional camera calibration is performed using a sequence
of images of known calibration patterns (e.g., chessboard
images). Alternatively, camera calibration can be performed
using geometric features such as line segments and vanishing
points [11], [12] .

For our paper, we consider the use of deep convolutional
neural networks that can estimate camera parameter based on
image content (e.g., see [13]–[17]). We also note that it is
possible to combine geometric priors (line segments) with
image content to improve estimation as described in [18],
[19]. Unfortunately, the use of line segments requires post-
processing, and the use of image content is limited by the
kernel size associated with the use of convolutional neural
network models.

Some of the limitations of convolutional neural networks
can be addressed with the use of end-to-end transformer-based
models [20]–[22]. These models use an attention mechanism
to model long-distance relations between image regions [23].
They also make use of line segment information without the
need for post-processing.

For the current paper, we will use the multi-Scale de-
fOrmable transFormer (SOFI) model for camera calibratIon
with enhanced line queries as described in [22]. Beyond earlier
models such as [20], [21], SOFI provided intra- and cross-scale
interaction and gave state-of-the-art results for camera cali-
bration. Based on SOFI, we first extract line segments using
the linear-time line segment detector [24] (LSD) followed by
passing the line-segments and the input image to the network.

D. PoseNet

In [25], the authors proposed a promising method for 3D
pose estimation. Their approach consisted of three models:
(1) DetectNet for human pose detection, (2) PoseNet for 2D
keypoint estimation with relative depth, and (3) RootNet for
absolute depth estimation. We will be using PoseNet in our
dynamic scene analysis method. Unfortunately, [25] is a multi-
stage network that can result in slow inference for estimating
poses for multiple humans in the scene.
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Fig. 2: An overview of our 3D scene reconstruction system based on real-life collaborative learning videos.

III. METHODOLOGY

We present an overview of the proposed system in fig. 2.
Our system processes raw input videos to compute student
group detection, camera parameters estimation, and table edge
detection. We combine results from the three modules to
reconstruct the 3D locations of each detected student. In what
follows, we provide descriptions of the primary components
of the system.

A. Student group detection

We provide a detailed diagram of our student group detec-
tion module in fig. 3. In parallel, our student group detection
module processes a select number of raw input images to:
(1) segment objects and humans in the scene, (2) estimate the
depth map using Depth Anything V2 [26], and (3) estimate 2D
poses for all detected persons using the YOLOv11 backbone
[27].

The results of the segmentation step are further processed
to remove all objects and all humans for which we get low
confidence (< 0.5) For each detected person, we use the
estimated depth map to select the student group that is closest
to the camera. We apply bipartite matching to associate the
2D poses with the detected student groups. We then remove
students for whom the head keypoint is occluded to produce
the final results.

B. Keypoints updates

Given a cropped image that contains a single human,
PoseNet estimates the relative depth Dr of each human
keypoint with respect to the pelvis (root) keypoint. For our
application, due to occlusion, we keep the keypoints associated
with the nose, the shoulder thorax, and the pelvis. Then, we use

the 2D keypoints J2D, the absolute Da and relative depths of
each detected human and eq. (1) to estimate the 3D keypoints
J3D as given by:

J3D = ρJ̄3D = ρ(RK)−1J̃2D, (4)

where J̃2D = [JT
2D|1]T is the homogeneous representation of

J2D and ρ is a scalar which satisfies:

ρ
√

J̄T
3DJ̄3D = Da +Dr. (5)

PoseNet does not perform well when humans are severely
occluded. Thus, although PoseNet computes 2D keypoints,
we use YOLOV11 for 2D keypoint estimation. We address
PoseNet drawback by using the 2D keypoints estimation from
YOLOV11.

C. Table Edge Detection

Robust table edge detection is key for reliable 3D scene
reconstruction. Although we experimented with multiple ver-
sions of YOLO [27]–[30], RT-DETR [31], and YOLO-World
[32], we were not able to obtain robust detections. Grounding
DINO [33] gave reasonable results with a high latency of 10
seconds per image. To address the issue of object detectors,
we ask the users to verify the table edges.

Once the table has been verified, we estimate the 2D center
of the table as the intersection of its two diagonals as shown
in fig. 2. We then use the depth map to estimate the depth
corresponding to the table’s center. We get the final 3D
coordinates by applying eq. (4) followed by (5) (assuming
Dr = 0).
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Fig. 3: Student group detection module.

Fig. 4: Robust 3D Pose estimation using YOLO and PoseNet.
The left image shows the results for PosNet alone. Right image
shows the results when using PoseNet with YOLO.

IV. RESULTS

We summarize our results in three subsections. First, we
present results for 3D pose estimation on the Human3.6M
dataset. Second, we present an example that demonstrates how
our proposed approach outperforms RootNet for collaborative
classroom videos. Third, we present results for speaker di-
arization using our estimated 3D scene geometry.

A. Out of distribution results on 3D pose estimation

We report results for out-of-distribution results for the
Human3.6M dataset [34]. Human3.6M provides 3.6 million
annotated poses with significant diversity based for various
human activities. We summarize our results and report how
each one of our components affects the estimation of the
3D joints in table I. We recall that neither YOLOV11 nor
DepthAnythingV2 were trained on the Human3.6M dataset.
Surprisingly, our proposed pipeline, has an increased error of
just 27 mm beyond the baseline results.

At the same time, our proposed approach performs much
better than the baseline method in our classroom video ex-
amples. We present an example in fig. 4. PoseNet gave poor

Human Detector Pose Est. Depth Est. MPJPE (mm)

DetecNet PoseNet RootNet 53.70
YOLOV11 PoseNet RootNet 54.24
YOLOV11 YOLOV11 RootNet 64.71
YOLOV11 PoseNet Depth-AnythingV2 75.24
YOLOV11 YoloV11 Depth-AnythingV2 80.79

TABLE I: Out of distribution results for 3D pose estimation
on the Human3.6M dataset.

keypoint predictions for the students on the left and right of
the image. For the same example, YOLOV11 gave excellent
results. Thus, the performance of the baseline method is
significantly degraded for out-of-distribution datasets.

B. 3D Pose Estimation Example

In fig. 5, we present an example of our proposed method
and compare it against RootNet [25]. We note that RootNet
performs poorly because of the occlusion of the pelvis (root
keypoint). This root keypoint is used to estimate the absolute
depth. In contrast, our pipeline uses DepthAnythingV2 [26] to
produce better results. Unfortunately, a limitation of our use
of DepthAnythingV2 is that it requires 5 seconds to estimate
a single depth map (high latency).

C. Speaker Diarization Using 3D Speaker Geometry

We next present results for speaker diarization using the
3D speaker geometry that was estimated using our proposed
method. The 3D scene is described in terms of the audio
sources, room size (fixed), the microphone located in the
center of the table, and the table itself (with its associated
absorption coefficient). Here, we note that the audio sources
require an accurate estimation of the mouths of the student
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Fig. 5: Comparison of 3D human keypoint estimation between RootNet and our pipeline.

speakers derived from our model. An acoustic model is con-
structed that tries to identify the active speaker by comparing
the actual audio recording against hypothesized speakers (see
[1] for details). In what follows, we summarize the dataset and
provide final results for the system.

For this experiment, we apply our dynamic scene method to
estimate the 3D speaker geometry based on the first frame of
an 8-minute video. Within the 8-minute video, we assume that
the 3D speaker geometry will not change. For the example,
we have four primary speakers that we are interested in and
over 20 background speakers that we need to ignore. For the
example, we assume that the four primary speakers do not
talk over each other. We labeled 175 audio samples associated
with one of the primary speakers. We then split our audio
samples to use 80% for training, 10% for validation, and 10%
for final testing. Our goal here is to use the final testing set
to determine who is talking (speaker diarization).

We summarize the results in table II. Overall, the perfor-
mance of the 3D scene estimate rivals the performance of
setting up the parameters manually. Based on accuracy, the
automated system exhibits a 4% drop from 70.58% to 66.70%.

TABLE II: Speaker diarization results. The MaxOrder param-
eter refers to the number of reflections used in the acoustic
simulation model. The SnR parameter refers to the signal to
noise ratio used by the Wiener filter simulation of the esti-
mated room impulse response for each speaker. The optimized
parameters were computed using the validation set.

Method MaxOrder SnR Acc

Manual estimation 3 9 70.58
3D estimations 7 7 66.70

Nevertheless, the automated system can produce results based
on a single video frame. Hence, the proposed system can detect
changes in 3D speaker geometry resulting from routine student
movements.

V. CONCLUSION & FUTURE WORK

Our paper summarizes our proposed approach for recon-
structing 3D classroom scenes from raw images. Our ap-
proach combines the results from two different pose estimation
models. Then, without training on the Human3.6M dataset,
we have found that our proposed method gives acceptable
results for 3D pose estimation. We have also shown that our
system enables accurate speaker diarization by providing the
3D speaker geometry to the method described in [1]. We
are currently developing a computer-assisted system to enable
educational researchers to assess learning in collaborative
learning videos.
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