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Abstract—This paper investigates neural network (NN) based
feedback cancellation in combination with the channel decision
passing (CDP) algorithm for the mitigation of multi-channel
receiver nonlinearities. The CDP algorithm iteratively assesses
output symbols from each channel, utilizing them in successive
channels to mitigate nonlinearities within a feedback loop until
convergence across all channels is achieved. While prior work
relied on a polynomial-based model to estimate the harmonic
distortions and intermodulation products introduced by the
nonlinearities of the analog front end (AFE), this paper em-
ploys trained neural networks to not only aveid the need for
an exhaustive search for the inband nonlinearities expression
required by the polynomial-based model but also to achieve
improved cancellation accuracy. Simulation results on a 3-
channel receiver demonstrate that the NN-based CDP algorithm
achieves improved communications signal-to-noise ratio (SNR) in
comparison with conventional cancellation techniques including
multi-channel decisions feedback cancellation (MCDFC) and
transversal feedforward NN-based topologies. The bit-error-rate
(BER) performance comparison is made between the NN-based
and the polynomial-based CDP algorithms, which demonstrates
that the NN-based CDP algorithm achieves comparable bit-
error-rate (BER) performance to the polynomial-based model
counterpart without significantly increasing complexity for mod-
erate AFE nonlinearities. Moreover, it offers enhanced BER
performance for pronounced AFE nonlinearities but with a
considerable increase in complexity.

Index Terms—Multi-channel receiver, nonlinearities cancella-
tion, machine learning, neural network.

I. INTRODUCTION

HE rapid expansion of data generation necessitates new

paradigms capable of accommodating higher communi-
cation data rates in wireless and wireline transceivers, expand-
ing over the popularity of multi-channel receiver architec-
tures. These designs enhance spectral efficiency by dividing
channel bandwidth into subchannels, allowing for high data
rates through multi-tone or multi-band transmission [1]-[3].
However, the harmonic distortions and the inter-modulation
products introduced from the nonlinear characteristics of the
receiver AFE and the crosstalk among channels cause degrada-
tion in system BER performance. Considering the challenges
in terms of flexibility, adaptability, and power consumption
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faced by analog linearization techniques, it is desirable to
implement the nonlinearity cancellation in the digital domain.
Conventional digital nonlinearity cancellation techniques use
a linear reference receiver with least mean square (LMS)
filters to adaptively reproduce the nonlinearity distortions,
which are then subtracted from the main receiver [4]-[7].
However, challenges remain in implementing these techniques
effectively across multi-channel receivers, particularly with the
growing number of channels and the need for linear reference
paths.

Recently, neural networks (NNs) have drawn much attention
from researchers due to their strength in pattern recognition
and complex system modeling. Neural networks have been
investigated as a promising behavioral model for nonlinear
distortions [8]-[11]. In [9], the feed-forward NN canceler
was proposed to mitigate the nonlinear interference in full-
duplex transceivers. In [10], a low-complexity NN structure
with two neurons in the first hidden layer is proposed to cancel
self-interference with nonlinearities and memory effect. In
[11], a two-step nonlinearity cancellation scheme is proposed,
where the nonlinearity distortion is firstly reconstructed using
the transmit signal and a trained neural network and then
subtracted from the received signal in the digital domain.

In this paper, we build upon our previous work on the
CDP algorithm for multi-channel nonlinearity cancellation
by incorporating neural networks into its framework. The
CDP algorithm iteratively evaluates output symbols from each
channel, employing them in successive channels to miti-
gate nonlinearities within a feedback loop until convergence
across all channels is attained. Previously, we relied on a
polynomial-based model to estimate inband nonlinearities,
deriving nonlinearity components through symbolic expres-
sions. Here, we aim to substitute the polynomial-based model
with trained neural networks. We investigate the nonlinearity
cancellation performance of this NN-based CDP algorithm
against other approaches utilizing neural networks, such as
NN-based MCDFC and feedforward NN techniques, through
simulations. Additionally, we compare the performance of
polynomial-based and NN-based CDP algorithms, demonstrat-
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Fig. 1: (a) Block diagram of the multi-channel receiver with nonlinearity cancellation architecture using: (b) NN-based CDP,

(c) NN-based MCDFC, (d) Feedforward NN.

ing that the NN-based CDP algorithm achieves comparable
BER performance to its polynomial-based model counterpart
without significantly increasing complexity for moderate AFE
nonlinearities. Moreover, it outperforms the polynomial-based
CDP algorithm for pronounced AFE nonlinearities, albeit with
a manageable increase in complexity.

II. SIGNAL MODEL, RECEIVER ARCHITECTURE, AND
NN-BASED CDP ALGORITHM

The architecture of the multi-channel receiver is shown in
Fig. 1(a), which is designed to detect a multi-band signal. The
baseband channel is a single path configured to detect a pulse
amplitude modulation (PAM) signal, whereas the remaining
subchannels i = 2,...,N have both 1&Q paths configured to
detect a quadrature amplitude modulation (QAM) signal. The
multi-band signal s(¢) to the input of the multi-channel receiver
can be expressed as:

N
s(t) =x1(1)+ Y Re{ci(t)e’™} (1)
i=2

where x;(¢) is a PAM signal, and ¢;(t) are QAM signals that
are up-converted and transmitted through the higher frequency
sub-bands with center frequency @;. The QAM constellation
points can be expressed as c¢;(r) =xp;_2(¢) + jx2i_1(¢), where
x2;—2(t) and x2;_1(t) are the equivalent PAM signals corre-
sponding to the in-phase and quadrature component of the
QAM signal. This multi-band signal passes through the AFE,
which is used to partially compensate for the channel loss,
mixer, integrator, and finally the analog-to-digital converters
(ADCs) before becoming the input to the digital signal pro-
cessor (DSP), which is designed to cancel the nonlinearity
distortion introduced by the AFE.

To consider the nonlinearities of the AFE, the samples
received at the output of the ADC for each receiver path can

be expressed as:

P
yin =G (Z 0lpsy [nT]p) 2)

=1

in which, the transmitted signal after down-conversion through
each path is represented by s;[nT], P is the order of the
nonlinearity polynomial, o, represents the pth order nonlin-
earity parameter, and the function G() is the transfer function
of the integrator which practically filters out high-frequency
components that fall beyond the baseband bandwidth. Since
the even-order nonlinearities vanish when the fully differential
structures are used, and the nonlinearity profile obtained
through circuit simulation can be accurately represented by in-
corporating only third-order nonlinearities, the third-order har-
monic distortion, and the third-order intermodulation products
(IM3) falling in the baseband are considered for mitigation
throughout this study. The analysis and simulations presented
herein exclude the influence of residual channel loss, which
was not fully compensated for by the AFE. These effects can
be effectively mitigated through digital equalization. Our focus
remains on investigating NN-based nonlinearity cancelation
for multi-channel receivers.

In Eqgn. (2), yi[n] can be decomposed as:

yilnl =xi[n]+%[n], 1€[1,2N—1] 3)

as mentioned above, x;[n] denotes the PAM symbols transmit-
ted through each path, and %;[n] represents the inband nonlin-
earity distortions. As depicted in Fig. 1(b), the CDP algorithm
operates as follows: Nonlinearity cancelation proceeds channel
by channel, with subchannels processed path by path. Given
the low likelihood of simultaneous output errors in multiple
paths, accurate outputs from certain paths can be utilized to
correct errors in others. For each path, every constellation
symbol a",(m) [n] associated with the detected symbols d[n]
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from other paths undergoes evaluation to estimate nonlinearity
distortions, which are subtracted from the received samples
through the feedback loop. The constellation symbol that
yields the minimum error with the nonlinearity cancellation
result is considered the temporary decision d;[n] on x;[n].
The detected symbol dj[n] is then replaced by djn] and
utilized by subsequent paths for their nonlinearity cancelation.
This iterative process continues until d;[n] for all data paths
converge.

The nonlinearity distortion of each path %[n] is approxi-
mated using a neural network. Given the variability of nonlin-
earity distortion across different data paths, a unique neural
network is assigned to each path. The input of the neural
network has (2N — 1) nodes to accommodate the transmitted
symbols for all paths, which is succeeded by one hidden layer
and the output layer. The number of the neurons in the hidden
layer can be adjusted with each neuron employing the rectified
linear unit (ReLu) function, denoted as ReLu(x) = max(0,x),
which is the most widely-used activation function considering
its effectiveness for implementation. Fig. 2 shows the imple-
mentation detail of the NN-based feedback cancellation, the
nonlinearities estimation X; yy[n] can be expressed as:

K 2N—1
sl =Y wf]ReLa( y w[rLIo,(X)+byI) +2 (@
k=1 r=1

where X is the input vector to the NN with 2N — 1 dimension,
and o,(X) denotes the output of the rth input node. wl}(] is the
weight from rth input node to the kth neuron with K neurons
in total in the hidden layer, wf] is the weight from kth neuron
in the hidden layer to the output node, bV is the bias of the
kth neuron in the hidden layer, and b 1613 the bias of the
single neuron in the output layer. The nonlinearities estimation
% nn([n] is then subtracted from the output of the ADC y;[n]
and used by the slicer, which serves as the activation function
of the output neuron, to make a decision on the transmitted
symbol x;[n]

Algorithm 1 shows the pseudo-code that implements the
NN-based feedback cancellation with the CDP algorithm as-
suming a PAM-4 signal is transmitted through the baseband

Hidden layer
Deurons

Output layer
neuron

Fig. 2: Block diagram of the neural network-based feedback
cancellation.

Algorithm 1 Neural-Network-based Feedback Cancellation
with Channel Decision Passing Algorithm

Input: Vector of received samples after digitization of ADCs,
= i[nl,y20n], ..., yav—1[n]];
Output: Decisions with NN-based feedback nonlinearity can-
cellation, D = [di[n],da[n], ...,doy_1[n]];
I: setting detection level: ‘f;(])[”} =-Ys d}(?'] [n] =
dPn] = YES, J[n) = ¥ES j e [1,2N—1];
2. Initialize output vector with detected symbols without
feedback cancellation applied yet:

Dout = [d1[n],d2[n],...,dan—1[n]];

__VFES
6 ?

3: while true do

4: for /=1to 2N —1 do

5: for m=1to 4 do

6: Generate input vector for the neural network,

X = [dy[n],...,d"™ [n],dy1[n], ... don 1 []];

T Calculate nonlinearities f}?N [n] based on
n. (4);

s 31" ) =[] —{
[ I,NN

9 e = |5 [n] — d{"™ [n] ;

10: end for

1: Find the index min of the minimum e(™);

12: di[n) = d"™"[n];

13: end for

14: if D = Dy then

15: Break while loop;

16: else

17: Dout = D;

18: end if

19: end while

channel and QAM-16 is transmitted through the rest subchan-
nels. In this way, a PAM-4 signal is transmitted through each
data path considering the full-scale peak-to-peak range (VFS)
of the symbol.

In this study, we show the superior performance of the
CDP algorithm in combination with NN-based feedback can-
cellation in reducing nonlinearity distortion when compared
to two other NN-based techniques: the MCDFC and a feed-
forward NN approach. The NN-based MCDEFC technique
is depicted in Fig. 1(c). This method uses neural networks
in the feedback nonlinearity cancellation with the decisions
made concurrently in each channel, without the decision-
passing process. Moreover, the feedforward neural network
technique, depicted in Fig. 1(d), employs a neural network
in a transversal feedforward manner to mitigate nonlinear
distortion by mapping distorted samples to the desired out-
puts. However, for a limited number of neurons, the NN-
based feedback cancellation provides better performance than
the feedforward-based NN nonlinearity reversion, because
the feedback-based solution efficiently solves the front-end

288

Authorized licensed use limited to: Texas A M University. Downloaded on July 24 2025 at 18:44:19 UTC from IEEE Xplore. Restrictions apply.



feedforward nonlinearities, particularly for severe nonlinearity
distortion. The effectiveness of these NN-based approaches
in mitigating nonlinearity distortion will be validated through
simulation results in the following section.

III. SIMULATION RESULTS

In this section, we show the performance of the CDP
algorithm with nonlinearity NN-based feedback cancellation.
The simulations were conducted in MATLAB, leveraging the
machine learning and parallel computing toolboxes to facilitate
neural network training and deployment, utilizing a single
Nvidia 3080s GPU for computational support.

In the simulation model, a 3-channel receiver is configured
to detect a PAM-4 signal through the baseband channel and
QAM-16 signals through 2 higher frequency channels to
achieve a 64 Gigabit per second (Gbps) transmission rate, such
that each data path is processing an effective PAM-4 signal
with 6.4GHz bandwidth. The neural networks are trained using
the Adam algorithm with 1ES symbols from all channels.
Moreover, the number of the training Epoches is set to 10
with a batch size of 16.

Fig. 3 shows the communications SNR comparison results
of a 3-channel receiver employing various nonlinearity can-
cellation methods as the function of input third-order intercept
point (IIP3) with 20dB E},/N,. Here, E, represents the energy
per information bit, assuming VFS of 1V, while N, denotes
the power spectral density of the noise at the input. The
communications SNR is expressed as follows:

1 Py Ep

SNR, = (e, . 5
comms (Zb) Piol ~ N, (5)
where b is the number of bits per symbol, P; is the received
baseband signal power, P, is the noise power considering
the input-referred noise shaped by the magnitude response of

the AFE while ignoring other noise contributors, and ofqm

—— - ——

= === EbiNo limit ]
= Without Nonlinearity Mitigation
—4— Feedforward NN
61 —8— NN-based MCDFC
—— NN-based COP

10 12 14 16 18 20
1IP3 (dBm)

Fig. 3: Communications SNR vs. [IP3 comparison between
NN-based CDP, NN-based MCDFC, and Feedforward NN
with VFS = 1V, 50 neurons in the hidden layer, and Eb/No =
20dB.

denotes the variance of the residual nonlinear distortions post-
mitigation. In Fig. 3, all NN-based nonlinearity mitigation
techniques used neural networks with 50 neurons in their
hidden layers. The results show that all techniques significantly
enhance the communications SNR compared to a receiver
that does not incorporate nonlinearity mitigation. However, the
NN-based CDP algorithm provides noticeable communications
SNR improvement over the NN-based MCDFC and feedfor-
ward NN techniques in the low IIP3 regime. Specifically, when
the IIP3 is 11dBm, the NN-based CDP algorithm provides a
communications SNR improvement of 2.4dB over the NN-
based MCDFC and a communications SNR improvement of
3.0dB over the feedforward NN. This result shows the NN-
based CDP’s potential to reduce linearization needs in multi-
channel receivers’ AFEs, ensuring reliable BER performance
in the presence of severe nonlinearity distortion.

Fig. 4 shows the BER performance comparison of the CDP
algorithm as the function of Ej/N, using the polynomial-
based model and neural networks for feedback nonlinear-

T T
| ==8— Linear AFE
= Without i L
& =—{— Polynomial-model-based COP
107 ~ NN-based COP (5 Neurens)
== WN-based COP (50 Neurons|
—— NN-bassd CDP (100 Neurons|
10 3
4
w
m
107
10
[ B 10 15 20 25 30
Eb/No (dB)
(a)

BER

=8 Linear AFE
== Without Nonlinearity Cancellation

£ | —6— Polynomial-model-based COP
MN-based CDP (5 Neurons)

—dlir— NN-based COP (50 Neurons)

- NN-based COP {100 Neurona)

1] 5 10 15 20 25 30
Eb/No (dB)

(b)

Fig. 4: BER vs. Eb/No comparison between the polynomial-
based and the NN-based CDP with VFS = 1V, and (a) IIP3 =

13dBm, (b) IIP3 = 10dBm.
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ity cancellation, respectively. Fig. 4(a) displays outcomes
for a scenario with an IIP3 of 13dBm. Under these con-
ditions, the polynomial-based CDP algorithm surpasses the
NN-based CDP algorithm in performance considering the
polynomial-based model provides accurate nonlinearities ex-
pression through the symbolic analysis. However, enhancing
the NN-based CDP algorithm’s efficacy is possible by aug-
menting the count of neurons within the hidden layer. Notably,
a neural network configured with 100 neurons is capable
of achieving a BER performance comparable to that of the
polynomial-based CDP.

Fig. 4(b) showcases outcomes for a condition with an IIP3
of 10dBm. Under these circumstances, the NN-based CDP
algorithm, utilizing configurations of either 50 or 100 neu-
rons, outperforms the polynomial-based CDP algorithm. This
performance advantage stems from the AFE’s compromised
nonlinearity profile, leading to a reduction in the signal-to-
noise and distortion ratio (SNDR) of received samples. The
consequent lower SNDR amplifies the chance of simultaneous
errors in outputs from various paths. This situation renders
the polynomial-based CDP more prone to settling on local
optima in its decision-making process across all data paths. In
contrast, the neural network is trained with data affected by
both noise and nonlinearities, enabling the NN-based CDP to
effectively navigate the increased probability of simultaneous
errors and achieve convergence to the global optimum dur-
ing the channel-decision-passing process. With 10dBm IIP3,
the NN-based CDP, utilizing a neural network with 50/100
neurons in its hidden layer demands an Ej/N, of 27/25.5
dB, respectively, to attain a BER of 10~*. In comparison,
to achieve equivalent BER performance, the CDP based on
a polynomial-based model necessitates an FEj, /N, > 30dB.

In a 3-channel receiver, the estimation of nonlinearities for
each path with the polynomial-based model requires 27 mul-
tiplications. Meanwhile, with 5 input nodes, an NN with a 5-
neuron hidden layer needs 30 multiplications and an additional
5 comparison operations for the ReLu function, assuming
full connectivity between layers. However, Fig. 4 shows that
only neural networks with 50/100 neurons in the hidden layer
achieve comparable or improved BER performance compared
to the polynomial-based model at IIP3 values of 13/10 dBm,
respectively, significantly increasing the complexity to 300/600
multiplications with 50/100 comparison operations, respec-
tively. The advantage of using the NN approach is not just the
performance gains but also the neural network’s ability to auto-
matically estimate nonlinearities through training. This feature
becomes particularly important as the number of channels
increases, making the search for nonlinear expressions through
symbolic algebraic computations using the polynomial-based
model impractical.

IV. CONCLUSION

This paper explored the effectiveness of nonlinearity mitiga-
tion in a multi-channel receiver through the use of NN-based
feedback cancellation with the CDP algorithm, comparing
it against the NN-based MCDFC and feedforward neural

network techniques. The simulation results highlight the NN-
based CDP algorithm’s superior capability in enhancing the
communications SNR, particularly in AFEs with a low IIP3.
The research also examines the tradeoff between performance
and complexity when choosing between polynomial-based
and NN-based CDP approaches. Although with a significant
increase in complexity, the NN-based CDP, utilizing a neural
network with 50/100 neurons, achieves better BER perfor-
mance compared to the polynomial-based model, especially
when the Ej/N, exceeds 20dB in scenarios with significant
nonlinearity distortion (IIP3 = 10dBm). The NN-based CDP
algorithm offers on-the-fly adaptability that makes it very
suitable for use in multi-channel receivers with an expanding
number of channels.
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