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A B S T R A C T 

We provide new constraints on the dark matter halo density profile of Milky Way (MW) dwarf spheroidal galaxies (dSphs) using 

the phase-space distribution function (DF) method. After assessing the systematics of the approach against mock data from the 
Gaia Challenge project, we apply the DF analysis to the entire kinematic sample of well-measured MW dwarf satellites for the 
first time. Contrary to previous findings for some of these objects, we find that the DF analysis yields results consistent with 

the standard Jeans analysis. In particular, in this study we redisco v er (i) a large diversity in the inner halo densities of dSphs 
(bracketed by Draco and Fornax), and (ii) an anticorrelation between inner halo density and pericenter distance of the bright 
MW satellites. Regardless of the strength of the anticorrelation, we find that the distribution of these satellites in density versus 
pericenter space is inconsistent with the results of the high-resolution N -body simulations that include a disc potential. Our 
analysis moti v ates further studies on the role of internal feedback and dark matter microphysics in these dSphs. 

Key words: dark matter – galaxies: dwarf – g alaxies: evolution - g alaxies: kinematics and dynamics. 
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 INTRODUCTION  

he pre v ailing theory of the e volution of the Uni verse, Lambda cold
ark matter ( � CDM), is quite successful in predicting the large scale
tructures we observe today. On subgalactic scales, discrepancies 
etween predictions and observations begin to emerge (Bullock & 

oylan-Kolchin 2017 ; Simon 2019 ). Among the so-called small- 
cale puzzles, the too-big-to-fail (TBTF) problem (Boylan-Kolchin, 
ullock & Kaplinghat 2011 ; Kaplinghat, Valli & Yu 2019 ) for the
bserved bright dwarf spheroidal galaxies (dSphs), satellites of the 
ilky Way (MW) has received a lot of attention. 
MW dSph galaxies are dark matter (DM)-dominated objects 

Walker et al. 2006 ), primarily dispersion-supported (Wheeler et al. 
017 ), and benefit from the availability of increasingly precise stellar
ata thanks to instruments such as the Gaia satellite (Brown et al.
018 ). It follows that these galaxies may represent one of the most
mportant laboratories in order to investigate and decipher the nature 
f DM (for example, see recent re vie ws of Buckley & Peter 2018 ;
dhikari et al. 2022 ; Sales, Wetzel & Fattahi 2022 ). 
Stars in dSphs can be typically modelled as tracers in a colli-

ionless system. By observing their position and velocity one can 
raw conclusions about the nature of the underlying potential, and 
onsequently the distribution of DM. This kind of analysis commonly 
mploys one of three methods (Binney & Tremaine 2008 ; Strigari
018 ; Battaglia & Nipoti 2022 ): (a) Jeans analysis, (b) Schwarzschild
odelling, or (c) phase-space distribution function (DF) modelling. 
Jeans equations relate second-order velocity moments to the 

ensity and total gravitational potential of a collisionless system 
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Jeans 1915 ; Binney & Tremaine 2008 ). Under the assumption of
pherical symmetry, the three Jeans equations stemming from the 
ollisionless Boltzmann equation collapse into a single one. Despite 
he simplification, even the spherical Jeans equation suffers from 

 well-known de generac y between mass and velocity anisotropy 
rofile of the system (Binney & Mamon 1982 ), and several ideas
ave been put forward to ameliorate this issue (see e.g. Binney &
remaine 2008 ; Walker & Penarrubia 2011 ; Diakogiannis, Lewis &
bata 2014 ; Pace et al. 2020 ). Utilizing moments of velocity higher
han second order is one method of addressing this issue (see e.g.
okas & Mamon 2003 ; Richardson & Fairbairn 2014 ; Kaplinghat
t al. 2019 ; Read, Walker & Steger 2019b ). 

The spherical Jeans equation has been a playground for a multitude
f studies on dSph kinematics (Strigari et al. 2007 ; Battaglia et al.
008 ; Evans, An & Walker 2009 ; Strigari et al. 2008 ; Walker
t al. 2009 ; Hayashi & Chiba 2012 ; Zhu et al. 2016 ; Diakogiannis
t al. 2017 ; Hayashi, Chiba & Ishiyama 2020 ). More recently, Read
t al. ( 2019b ) used the Jeans equation solver gravsphere and
ourth-order velocity moments to examine the inner densities of 

W classical dwarfs. Kaplinghat et al. ( 2019 ) also performed a
pherical Jeans analysis coupled with fourth-order velocity moments 
o predict the inner densities of bright MW dSphs. Chang &
ecib ( 2021 ) and Guerra, Geha & Strigari ( 2021 ) used the Jeans

pproach to examine the inner halo density profile in simulated 
warf galaxies to eventually report that only with the radial velocity
ata from O(10 4 ) stars could cusps and cores could be easily
istinguished. 
Going back to the seminal paper of Schwarzchild ( 1980 ), orbit-

ased models consist of integrating particle paths in a given potential
n order to create an ‘orbit library’. Consequently, a numerical 
pproximation to system’s phase space DF can be obtained as a
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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uperposition of the orbit library elements (Jardel & Gebhardt 2012 ;
reddels et al. 2013 ; Breddels & Helmi 2013 ; Jardel et al. 2013 ;
owalczyk, Łokas & Valluri 2017 , 2018 ; Hagen, Helmi & Breddels
019 ; Kowalczyk et al. 2019 ). Contrary to the Jeans approach, the
chwarzschild one does not require any assumption on the orbital
nisotropy profile of the system that can be a posteriori computed
ithout any a priori ansatz. For this reason, the Schwarzschild
odelling has been adopted to some extent to analyse mock and

bserved MW dSph kinematic data (Van Den Bosch et al. 2008 ;
reddels et al. 2012 ; Jardel & Gebhardt 2012 ; Jardel et al. 2013 ;
owalczyk et al. 2017 ; Kowalczyk & Lokas 2022 , as examples).
he Schwarzschild method is quite general, relying essentially on

he assumption of dynamical equilibrium for the system and on the
eometry of the problem. Nevertheless, it remains computationally
emanding once a marginalization o v er unknowns related to the
ssumed total gravitational potential has to be performed. Addition-
lly, it has the additional drawback of yielding an approximated DF
ntelligible only numerically. 

Differently from methods (a) and (b), method (c) – the phase-
pace DF approach – requires an analytic ansatz in six dimensions
3 in position, 3 in velocity) for the probability distribution of the
tellar system in their DM potential. The ansatz is typically obtained
 xploiting Jeans’ theorem, i.e. e xpressing the DF via the integrals
f motion. This approach allows for flexible forms for the stellar
istribution, and can also allow consideration of velocity moments
bo v e second order, potentially mitigating the mass-anisotropy
e generac y of the spherical Jeans analysis. As examples, Wu &
remaine ( 2006 ) used the DF method to derive the mass distribution
f Messier 87 using its globular clusters as tracers. More recently,
egarding the case of MW dSphs Strigari, Frenk & White ( 2017 )
sed an approximate DF model to examine the DM profile of the
culptor dwarf galaxy. 
Recent examples of hybrid applications of the DF approach with

he Jeans equation can be found in Lokas, Mamon & Prada ( 2005 ),
okas ( 2009 ), Strigari, Frenk & White ( 2010 ), Battaglia, Helmi &
reddels ( 2013 ), Breddels & Helmi ( 2013 ), Ferrer & Hunter ( 2013 ),
acroix, Stref & Lavalle ( 2018 ), Petac, Ullio & Valli ( 2018 ), Li et al.
 2020 ), Li & Widrow ( 2021 ), and Read et al. ( 2021 ). On top of that,
xamples of studies utilizing multiple chemo-dynamical populations
re also present in the literature (see Battaglia et al. 2008 ; Agnello &
vans 2012 ; Amorisco & Evans 2012 ; Zhu et al. 2016 ; Strigari et al.
017 ; Pascale et al. 2018 ). 1 

The central profiles and densities of dwarf galaxies have long
resented challenges to the � CDM model of galaxy formation
Salucci & Burkert 2000 ; Hayashi et al. 2003 ; Go v ernato et al.
010 ; Weinberg et al. 2015 ). More recently, it has been asserted
hat there is an anticorrelation between the central densities of the

W dSphs and their pericentre distances (Kaplinghat et al. 2019 ).
n this work, we reexamine that relationship. Here, we apply the DF
ethod to the kinematic data of the bright MW dSphs with the aim of

roviding a new, theoretically broad study of the DM content in these
alaxies that is completely decoupled and, hence, complementary to
he Jeans approach, along the lines of what was carried out originally
n Strigari et al. ( 2017 ). In order to validate our modelling method,
e first examine 32 mock data sets of various configurations from

he Gaia Challenge project (Read, Gieles & Kawata 2019a ). We
hen analyse the bright dSphs of the MW: Draco, Fornax, Sculptor,
arina, Sextans, Leo I, Leo II, Ursa Minor, and Canes Venatici I.
NRAS 532, 4157–4186 (2024) 

 Regarding this point, in this work we will not entail any metallicity 
istinction in the stellar population of an MW satellite. 
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e show that with the DF approach it is possible to constrain the
M halo of these galaxies in the inner regions with similar precision

o the one previously obtained in literature with the Jeans approach
Kaplinghat et al. 2019 ; Read et al. 2019b ). We have chosen to use
he DM density at 150 pc, ρ150 , as the key metric for inner density.

hile not perfect, it is a good parameter for encapsulating the inner
ensity for haloes in this size range, and is at a radial position that
ends itself well for inferences by stellar data. Moreo v er, it was used
y several prior authors (Read et al. 2018 , 2019b ; Kaplinghat et al.
019 ; Hayashi et al. 2020 ) and thus facilitates comparisons. 
A key result of this work is an inference of the inner density of

he bright MW dSphs using a uniform set of priors and a generalized
F. It serves as a test of dark matter physics [see recent work, for

nstance, V alli & Y u ( 2018 ); Read et al. ( 2018 ); Kaplinghat et al.
 2019 ); Nadler et al. ( 2019 , 2021a , b ); Correa ( 2021 ); Kim & Peter
 2021 ); Slone et al. ( 2021 ); Yang, Nadler & Yu ( 2023 )] and provides
onstraints on dark matter models [see the recent re vie w of Adhikari
t al. ( 2022 ) in this regard]. In particular, we show that the central
ensities (inferred within 150 pc) of the bright MW dSphs vary by a
actor of ∼5, with Fornax and Carina on the low end, and Draco and
eo I on the high end. 
When the inner densities of the MW dSphs are compared to

heir pericenter distances, an interesting anticorrelation emerges
Kaplinghat et al. 2019 ). We re-examine and confirm this relation.
he distribution of the MW dSphs in the density-pericenter plane
ppears to be in stark conflict with the result of the ‘Phat Elvis’ N -
ody simulation in Kelley et al. ( 2019 ), which examined MW-like
aloes with a disc potential. This is our second key result: we find
hat the distribution of the bright MW dSphs in density-pericenter
pace is starkly inconsistent with high-res � CDM N -body simulation
esults . Solutions to the TBTF problem and, in general, all particle
hysics models that predict deviations on subgalactic scales from the
 CDM model should include information about the orbits of dSphs
hen looking for consistency with dark matter density inferences. 
This paper is organized as follows: Section 2 develops the theory of

he DF approach and lays the foundation for our statistical analysis.
n Section 3 , we present the mock data validation. Section 4 contains
he results of applying the model to the bright MW dSphs, and, in
articular, constraints on r max and V max . In Section 5 , we zoom on
raco and Fornax as representatives of the diversity among the bright
W dSphs emerging from our DF approach. In Section 6 , we detail

ur inference for all the bright dSphs of r max , V max , ρ150 , as well as
ass estimates within various radii, offering also a direct comparison
ith the recent studies on the subject based on the Jeans approach.
e examine the anticorrelation of ρ150 and pericenter distance in

ection 7 . We present our conclusions in Section 8 . Further details
n our analysis and interesting cross-checks related to our study can
e found in Appendices A –O . 

 DF  MODELS  

et us start by describing our approach in modelling the stellar and
M distributions in dSphs. It is possible to describe the position and
elocity of stars (or other objects) in a galaxy using a phase-space
F in six dimensions, three for position and three for velocity. Our

ntent is to use DFs to analyse the bright dSphs of the MW, using the
tars as tracers to determine the DM distribution. 

We define a Cartesian coordinate system, centred on the galaxy
entre, with the z -axis along the line of sight (LOS) to the system.
he projected radius of a star as seen from the observer is then
 = 

√ 

x 2 + y 2 . An individual star will have a position coordinate
x , given by ( x , y , z ). The star will have a v elocity v ector v , with
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omponents ( v x , v y , v z ). We also define η to be the angle between x 
nd v . 

We can introduce the DF f such that f ( x , v , t)d 3 x d 3 v is the
robability of finding a star in the infinitesimal volume element 
 
3 x d 3 v . Under the assumption of dynamical equilibrium, the DF 

an be regarded as constant in time, f ( x , v ). We require DF to be
ormalized to one o v er all phase space according to the definition of
robability distribution. 
Motions of particles like stars in a stationary potential can 

e determined by the collisionless Boltzman equation. Under the 
pproximation of spherical symmetry, the Strong Jeans Theorem then 
ells us that solutions to the collisionless Boltzman equation depend 
nly upon two integrals of motion, the orbital energy E, and the total
ngular momentum L (Binney & Tremaine 2008 ). 

Given a spherically symmetric potential � , the energy of a star
er unit mass is given by E( r, v) = � ( r) + v 2 / 2, and the angular
omentum per unit mass corresponds to L ( r, v) = rv sin η. Several

seful quantities can be derived from the DF, including the density 
rofile, the radial velocity dispersion profile, and the tangential 
elocity dispersion profile (Binney & Tremaine 2008 ; Strigari et al. 
017 ): 

( r) = 

∫ 
d 3 v f ( x, v) = 2 π

∫ π
0 

d η sin η
∫ v lim 

0 
d v v 2 f ( E, L ) , (1) 

2 
r ( r) = 

2 π

μ

∫ π
0 

d η sin η cos 2 η
∫ v lim 

0 
d v f ( E, L ) v 4 , (2) 

2 
t ( r) = 

π

μ

∫ π
0 

d η sin 3 η
∫ v lim 

0 
d v f ( E, L ) v 4 , (3) 

We define μ( r) as the probability per unit volume of finding a star
t radius r . The number density of stars at radius r is then 

 ( r) = w μ( r) , (4) 

here w is the total number of stars in the population. We de-
ne the velocity above which stars become unbound as v lim = 

 

2( � lim − � ( r)) , where � ( r) and � lim are giv en e xplicitly in
ection 2.1 for specific cases that are rele v ant for our analysis. The

otal velocity dispersion can be found by combining the radial and 
angential components: 

2 
tot ( r) = σ 2 

r ( r) + 2 σ 2 
t ( r) . (5) 

The projected stellar density � ∗ at a radius R can be found by
nte grating o v er the LOS: 

 ∗( R) = 2 
∫ ∞ 

0 
d z n ( r) , (6) 

here r = z 2 + R 
2 . The LOS velocity dispersion can be found from 

� ∗( R ) σ 2 
LOS ( R ) = 2 

∫ ∞ 

0 
d z n ( r) 

z 2 σ 2 
r + R 

2 σ 2 
t 

z 2 + R 
2 

= 2 πw 

∫ π
0 

d η sin η
∫ v lim 

0 
d v v 4 

�
∫ ∞ 

0 
d z 

(2 z 2 cos 2 η + R 
2 sin 2 η) 

z 2 + R 
2 

f ( E, L ) , (7) 

Higher order moments of velocity can also be predicted by this
ethod. We will use a VSP that is the fourth moment of velocity in

ur analysis. For our purposes we opt to compute the global VSP
ather than one that varies with radius, which helps to minimize 
oise in the calculation. The deri v ation of the VSP is presented in
ppendix B . 
.1 Halo DM profiles 

e consider here the total stellar mass of the system to be negligible
n comparison to that of the DM – a good approximation for the study
f MW dSphs – and so the stars are tracers of the DM potential but
o not influence it. We will consider three potential/density profiles: 
NFW’, ‘cored’, and ‘cNFW’. The NFW and cored profiles can be
ompletely described by two parameters, while the cNFW profile has 
ne additional parameter, the core parameter ‘c’. The cNFW core 
arameter c ≡ r c /r s , where log 10 [ r c / kpc ] is the parameter used in
he model (which we distinguish from the core radius r core , defined
elow). We also use the scale radius r s and scale velocity v s as
pecifying parameters for all three profiles. The scale density ρs and 
he scale potential � s are determined via the relation � s = v 2 s =
 πGr 2 s ρs , where G represents Newton’s gravitational constant. 
Let x ≡ r/r s . The NFW profile density and potential pair is then 

( r) = 

ρs 

x ( x + 1) 2 
, (8) 

nd the corresponding gravitational potential becomes 

 ( r) = � s 

(
1 − log ( x + 1) 

x 

)
. (9) 

ote that � has been defined so that it is non-ne gativ e ev erywhere,
ith a value of zero at r = 0, and goes to � s as r → ∞ . 
Define the peak circular velocity in a potential as V max , and the

adius at which the peak occurs as r max . For the NFW profile, it can
e shown that r max = 2 . 163 r s , and V max = 0 . 465 v s . 
The ‘cored’ profile is a generalized Hernquist profile (Hernquist 

990 ; Zhao 1996 ) of the form 

( r) = 

ρs 

( x + 1) 3 
, (10) 

ith underlying gravitational potential 

 ( r) = � s 
x ( x + 2 ) − 2 ( x + 1 ) log ( x + 1 ) 

2 x ( x + 1 ) 
. 

he potential in the cored case has a zero value at r = 0, and goes to
 s / 2 as r → ∞ . For the cored case, r max = 4 . 4247 r s , and V max =
 . 3502 v s . 
The cNFW profile is defined as 

= 

ρs 

( x + c ) ( x + 1 ) 2 
, (11) 

ith potential being 

 ( r) = 

� s 

( c − 1) 2 

(
x ( c − 1 ) 

( x + 1 ) 
+ ( 1 − 2 c ) log ( x + 1) + c 2 log 

(
c + x 

c 

))
. 

his profile reduces to the canonical NFW form for c → 0 and
educes to the cored form when c → 1. The relation for conversion
etween r s and r max (and similarly between v s and V max ) becomes
on-linear but can be solved numerically. 
For all profiles, we define the core radius r core as the radius at

hich the DM density falls to 50 per cent of its central value. For
he NFW profile there is no core radius. For the cored profile, r core is
.26 r s . For the cNFW profile, the core radius is a nonlinear function
f c to be computed numerically . Finally , we define � ∞ as the value
f the potential as r → ∞ . 

.2 Stellar DF form 

e take the form of the stellar DF to be the product of an energy
unction and an angular momentum function, following the ansatz 
MNRAS 532, 4157–4186 (2024) 
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M

Table 1. Parameter limits for the top-hat priors in our MCMC analysis. Units are kpc for r s and r c , and km s −1 for v s . The units for w are the 
number of stars in the population. The other parameters are dimensionless. The parameters ˜ E c and ˜ � lim are made dimensionless by dividing by 
� ∞ for the distribution being used, and ˜ L β is made dimensionless by dividing by r s 

√ 

� ∞ . 

log 10 ( 
r s 

kpc ) log 10 ( 
v s 

km / s ) log 10 ( 
r c 

kpc ) a q ˜ E c d ˜ � lim e ˜ L β b in b out α log 10 ( 
w 

stars ) 

Lower limit −2.5 0 −2 −4 0.1 0.01 −12 0.01 0.1 0.01 −10 −10 0.1 1 

Upper limit 1 2.5 1 5 25 1 0 1 10 1 10 10 10 7 
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 ( E) = 

{
E 

a ( E 
q 
c + E 

q ) d/q ( � lim − E) e , E < � lim 

0 , E ≥ � lim 

(12) 

( L ) = 

( 

1 

2 

( (
L 

L β

) b in 
α

+ 

(
L 

L β

) b out 
α

) ) α

, (13) 

ith α non-ne gativ e for b in < = b out and α ne gativ e for b in > b out .
he total DF is their normalized product: 

 ( E, L ) = n f h ( E) g( L ) , (14) 

hat multiplied by w yields the total phase-space density distribution
f w stars. In these equations, n f is a normalizing factor that ensures
hat the DF integrates to unity over all phase space, i.e. 

 f = 

(∫ 
h ( E) g( L ) d 3 x d 3 v 

)−1 
. (15) 

The normalization factor is required so that the DF can be
nterpreted as a probability density for finding a particle in a given
ocation in phase space. It is computationally e xpensiv e, because it is
 multidimensional integral that must be calculated at every iteration
n a Monte Carlo Markov Chain (MCMC) analysis. It might be argued
hat n f changes little as the chain converges, so that its calculation
t every iteration is unnecessary. However, we found that changes
id indeed impact on the results, possibly through an impact on the
hape of the prior volume, and it is therefore necessary to calculate
t every iteration of the parameters. 

Note that these expressions correspond closely to those reported
n Strigari et al. ( 2017 ), except we have inserted a factor of 1/2 in the
ngular momentum function to ensure that the function transitions
moothly as α changes sign, a v oiding any parametric discontinuity in
ur ansatz. We compare the results of Strigari et al. ( 2017 ) with ours
n Appendix A . The parameter � lim is a limiting potential beyond
hich no stars exist, analogous to a tidal cut-off potential, and we
efine r lim as the radius at which this cut-off occurs for a particle with
ero velocity. The e parameter controls the shape of the tidal cut-off.
he parameters a and d control the log-slope of the energy response.
 c is a cut-of f energy, belo w which the log-slope is approximately a,

nd abo v e which the log-slope is approximately a + d . We restrict d 
uch that d < 0. 

The parameter L β characterizes the angular momentum scale, and
he parameters b in and b out control the inner and outer log-slopes of
he angular momentum function, respectively. At angular momenta

L β , the log-slope is approximately b out , and for angular momenta
L β the slope is approximately b in . As a result, the parameters

 in and b out determine the anisotropy of the system. The anisotropy
arameter β is given by 

( r) = 1 − σ 2 
t ( r) /σ 2 

r ( r) . (16) 

f b out ≈ 0, then β ≈ −b in / 2 for L 
 L β . Similarly, if b in ≈ 0, β ≈
b out / 2 for L 	 L β . 
NRAS 532, 4157–4186 (2024) 
.3 Approximate likelihood function 

rom the DF method, one can perform a statistical analysis to extract
he halo parameters and constrain the DM profile based on the full
ikelihood function discussed in Appendix C . A significant problem
ith the full likelihood function is its intensive computation require-
ent. For each star, we are required to perform a multidimensional

ntegration of our DF. In particular, for data sets with hundreds or even
housands of stars, the time to compute the normalized likelihood to
erform a Monte Carlo Markov Chain (MCMC) analysis becomes
omputationally prohibitive. To make the model faster to calculate,
e therefore employ an approximation of the full likelihood as
escribed below. 
Using the equations in Section 2 and Appendix B , the DF can be

sed to make predictions of the radial profiles of surface density and
elocity dispersion, and a prediction of the (global) VSP. We can
ompare these predictions to observed values from photometry (in
he case of surface brightness) or from spectroscopy (in the cases
f velocity dispersion and VSP). The surface density and dispersion
bservations use binned data, with bins at 8–25 radial locations,
ypically. The χ2 for each characteristic is calculated by comparison
f the predicted points with the observed v alues, relati ve to the
ncertainty in the observation: 

2 = 

( data − prediction ) 2 

uncertainty 2 
. (17) 

he total χ2 is then the result of 

2 
tot = χ2 

SD + χ2 
disp + χ2 

VSP , (18) 

here the subscripts refer to surface density, dispersion and VSP,
espectively. We construct the log likelihood according to log L =
χ2 

tot / 2. We perform a Bayesian analysis to derive parameter
osteriors. The model employs sampling via the EMCEE package
F oreman-Macke y et al. 2019 ). Table 1 shows the upper and lower
arameter limits for the uniform priors adopted. 
As described abo v e, it is necessary to bin the data to make use

f this approximation method. For surface density data, the binning
s straightforward, because the uncertainty in the measurement is
etermined by Poisson statistics. Ho we ver, for the dispersion data,
he uncertainty is a combination of spectroscopic measurement
ncertainty and the intrinsic random variations of velocities of the
tars in each bin. As such, the binning process can make nontrivial
ifferences in the data and resulting inferences. We discuss the
inning process in detail in Appendix D . Importantly, we found
hat using the logarithm of the dispersion resulted in Gaussian
istributions of the binned data values, while using the dispersion
tself did not. We use log 10 velocity dispersion as the variable of
nterest for χ2 

disp . 
To perform the multidimensional integrations, we used the VE-

AS integration routine (Lepage 1978 ), which employs adaptive
mportance sampling and is quite fast. We found that we had
o carefully check the convergence of the integrations, as some
arameter combinations would cause pathological problems. 
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Figure 1. Typical fits to surface density (top), velocity dispersion (bottom), 
and VSP (bottom, inset), in this case for mock data set 15 (ID bdaO 2677). 
The data is shown in red and the best-fitting DF solution is shown in green. 
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.4 Deri v ed parameters 

nce the parameters specifying the DM potential and the DF are 
nferred we can calculate distributions of surface density and velocity 
ispersion at a range of radii, and we can derive other quantities of
nterest such as the half-light radius r 1 / 2 , the stellar orbital anisotropy
, the DM density at 150 pc ρ150 , and the DM halo mass M 200 . 
Since the DF model makes a smooth prediction for surface density, 

alculation of the half-light radius r 1 / 2 is relatively straightforward. 
he two-dimensional (2D) half light radius R 1 / 2 satisfies the equation ∫ R 1 / 2 
0 � ∗( R ) R dR ∫ R max 

0 � ∗( R ) R dR 

= 

1 

2 
, (19) 

here R max is the radius of the outermost surface density data point.
e verified that using R max rather than an infinite limit did not

ave a significant effect on the result. This equation can be solved
umerically; we then multiply the result by 1.33 to derive the three-
imensional (3D) half-light radius. Wolf et al. ( 2010 ) found that the
atio of 1.33 is valid for a variety of stellar profile shapes, and we
onfirmed this to be a very good approximation for our own mock
ata sets. We also verified that for the mock data sets, the value
btained by this method was very close to the median radius of the
tars in the data set. We use the photometry integration method to
alculate the half-light radius posteriors directly from the density 
redicted by the DF (see equation 1 ). In what follows, we will also
alculate M( < r 1 / 2 ), the mass enclosed within the half-light radius. 

 MOCK  DATA  MODELLING  

esting the model with mock data allows us to validate our approach
nd provides an indication of what we can reliably infer via our DF
ethod. We use mock data from the Gaia Challenge spherical data 

ets (Read et al. 2019a ). The Gaia Challenge data were developed
or the express purpose of modelling collisionless stellar systems 
uch as dwarf galaxies. We use the spherical versions to match our
odelling assumptions. Gaia Challenge emplo ys tw o types of DM 

istributions: cuspy (‘NFW’) and cored. There is also a variety of
tellar and anisotropy profile configurations, as we describe below. 

.1 Mock data characteristics 

he stellar density profile in the mock data is given by a generalized
ernquist profile (Hernquist 1990 ; Zhao 1996 ): 

∗( r) = ν0 

( r 

r ∗

)−γ∗
(

1 + 

( r 

r ∗

)2 
) ( γ∗−5) 

2 

. (20) 

The parameter γ∗ is set to 0.1 for the cored stellar profile and
.0 for the cuspy stellar profile. The parameter r ∗ determines how 

mbedded the star population is placed in the DM potential, and was
aried among four values: 0.1, 0.25, 0.5, and 1.0 kpc. 

The DM potential in the mock data is either ‘cored’ or ‘NFW’,
s described in Section 2.1 . The DM central density ρ0 is also
etermined by this choice, with ρ0 = 400 × 10 6 M �kpc −3 for the 
ored case and ρ0 = 64 × 10 6 M �kpc −3 for the NFW case. All of the
ock data sets have scale radius r s = 1 kpc. The scale velocity v s is

47.1 km s −1 in the cored case and 58.8 km s −1 in the NFW case. 
The stellar velocity anisotropy profile is also varied among two 

ases. The orbital anisotropy profile is varied according to an 
sipkov–Merrit form (Binney & Tremaine 2008 ): β( r) = r 2 / ( r 2 +
 
2 
a ), where r a is the anisotropy radius. The parameter r a takes the
alues of either 1 kpc or 10 000 kpc. A value of 1 kpc creates
 profile in which β rises from 0 in the centre to 1 in the outer
arts, reaching 0.5 at a radius of 1 kpc. A value of r a > 10 2 kpc
reates essentially isotropic profiles with β = 0 everywhere. The 
ock data sets therefore have 2 × 4 × 2 × 2 = 32 possible unique

onfigurations. 
The Gaia Challenge data sets provide good model validation cases 

or our model, since certain key parameters are known: r s , v s , and w.
he data sets contain multiple populations. We selected stars from 

nly one population in each set, and did not include non-member
oreground stars. The stars were binned into bins with equal number
f stars. We found that the data sets typically had a small fraction
f stars with very large orbital radii, which made the outer bins
ery wide and presented computational challenges. To address this, 
e opted to exclude the outermost stars from the data sets. Stars

arther than 5 half-light radii from the centre were excluded. Less
han 10 per cent of the stars from any data set were excluded in this
ashion, typically about 5 per cent. To simulate measurement error in
he line-of-sight velocities, Gaussian error was added with a standard 
eviation of 2 km s −1 . The data set characteristics are summarized
n Appendix O (Table O1 ). 

.2 Mock data modelling results 

he approximate DF model was applied to the 32 mock data sets,
he results of which are presented below. Since we wish to simulate
hat we do not have a priori knowledge of the DM profile, we used
MNRAS 532, 4157–4186 (2024) 
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M

Figure 2. Posteriors for r max versus V max for the 32 mock data sets. Left: 16 Cored profiles. Right: 16 NFW profiles. The 68 per cent and 95 per cent levels 
are shown, with the 68 per cent level in a darker colour. The black ‘x’ indicates the true value. The data sets are colour-coded by their embeddedness in the DM 

halo. There are four sets for each value of embeddedness in each plot, sharing the same colour. 
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Figure 3. Predicted and true values for the half-light radius for the 32 mock 
data sets, colour-coded by embeddedness. The predictions are determined 
from the DF (see equation 1 ) by calculating and integrating the surface 
density curve, finding the radius that yields have the total value (see equation 
19 ). The error bars indicate the 68 per cent confidence interval. The true 
value is taken to be the median radius of the stars in the given data set. 
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he cNFW profile in the model, in which the core size is a varying
arameter. The model found very good fits to the surface density
urv es, dispersion curv es and VSP values in all cases, with χ2 per
egree of freedom ≤ 1 . 3 for all data sets. A typical fit is shown in
ig. 1 . 
Fig. 2 shows the posterior inferences in r max versus V max for the

2 mock data sets, with the true v alue sho wn as an ‘x’ near the
entres. We used GetDist (Lewis 2019 ) for two-dimensional plots.
he models have a wide diversity of shapes in the r max –V max plane,
epending on the various profiles for DM density, stellar density,
nisotropy, and ‘embeddedness’ (i.e. the depth of the stars in the
M potential). The figure is colour-coded by embeddedness, and

ho ws ho w the embeddedness impacts the shape of the posteriors,
he de generac y characteristics between the two parameters, and the
nference capability. We found that the highly embedded data sets
 r ∗/r s = 0 . 1) were the least accurate in their inferences of r max and
 max , and that tendency carried over into inferences of many other
arameters. The model made reliable inferences for the data sets
ith r ∗/r s > = 0 . 25. The reason for the difference is that the highly

mbedded data sets do not trace the potential near the scale radius
 s , and so have limited accuracy in that region. 

Fig. 3 compares the posterior for the calculated half-light radius
o the true value, which is taken to be the median radius of the stars
n the data set. The accuracy is very good, with a difference of less
han 2 per cent between the median prediction and the true value for
ll data sets. 

The mass within the inferred half-light radius can be determined
or the cNFW profile by using the posterior values for r s , v s , and r c .
ig. 4 shows the true and predicted values for the mass within the
alf-light radius for the mock data sets. The predictions are fairly
ccurate for the data sets with r ∗/r s ≥ 0 . 25, i.e. those not deeply
mbedded in the DM potential. For the data sets with the lowest
ass enclosed (and correspondingly very deeply embedded in the
M halo), the model tends to systematically o v erestimate the mass

nclosed. 
Predictions for the density at 150 pc as compared to their true

alues are shown in Fig. 5 . The median predictions are generally
ithin 0.3 dex of the true value, with one case near 0.5 dex. In three

ases the true values were outside the 95 per cent confidence level of
he posterior, all of which were o v erestimations of the density. 
NRAS 532, 4157–4186 (2024) 
In Appendix E , we show the details for the inference of the core
adius for the mock data set, with comparison to the inferences of
he observed dSphs. In Appendix F , we provide details of the models
rediction performance for the anisotropy parameter β at the half-
ight radius. 

.3 Summary of model performance with mock data 

he approximate DF model makes accurate predictions in the r max –
 max plane and for half-light radius of the data sets (Figs 2 and
 , respectively). The mass within the half-light radius is predicted
ell for those data sets that are not too deeply embedded in the
M potential. For the highly embedded data sets, there is a modest

endency to overestimate the mass (Fig. 4 ). The density at 150 pc
 ρ150 ) is accurate to within 0.5 dex in all cases, and within 0.3 dex in
ost cases (Fig. 5 ). 
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Figure 4. Predicted and true values for the mass within the half-light radius 
for the 32 mock data sets, colour-coded by their embeddedness in the DM 

halo. The error bars indicate the 68 per cent confidence interval. The dashed 
diagonal line indicates equality, with dotted lines indicating ±0 . 1 dex. 
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The model shows some ability to distinguish between NFW and 
ored profiles, which is evident in Fig. E1 . The key difference lies in
ow sharply the posterior gets small at small values of core radius.
ur mock data analyses reveals that if the posterior is peaked in core

adius, then it is likely a sign of a non-zero core radius if the stars
re not too deeply embedded. For deeply embedded stellar profiles, 
t seems difficult to make this distinction. We also looked at the
redictions for β( r 1 / 2 ) and found them to be of limited accuracy. The
nferences become progressively less robust for cases that are deeply 
mbedded and that have rising β profiles (Fig. F1 ). 

 BRIGHT  DWARF  SPHEROIDAL  MODELS:  
ONSTRAINTS  ON  THE  HALO  PARAMETERS  

e selected as our sample the eight classical dSphs of the MW, plus
anes Venatici I, as shown in Table 2 . The results from applying the
F model are described here. We use cNFW as the DM profile, as

t is the most general of our profiles. For the distance to each target,
e adopt the median value of the distance shown in the second

olumn of Table 2 . We use surface density data from Mu ̃ noz et al.
 2018 ). Dispersion data is from Mateo, Olszewski & Walker ( 2008 ),
 alker et al. ( 2009 ), W alker, Olszewski & Mateo ( 2015 ), Spencer

t al. ( 2017 ), and Walker (pri v ate communication). VSP data is from
aplinghat et al. ( 2019 ). The results from the analysis are discussed
ere. 

.1 How surface density and velocity data constrain r max , V max , 
nd DM density 

ere we ask: How do the various components of the data set put
onstraints on key parameters such as r max , V max , and (indirectly)
he DM density ρ150 ? The parameters r max and V max are related in a
traightforw ard w ay to the scale radius r s and the velocity scale v s , so
et us turn our attention to these. The prediction for surface density
s given by equations ( 1 ), ( 4 ), and ( 6 ), which in turn depends on the
otential, which is defined in terms of v s . Therefore, at first blush,
urface density appears to depend intimately on v s . Ho we ver, it can
e demonstrated numerically that there is very little dependence. This 
an be explained as follows. Assume for the moment that a particle
s not near the tidal limit, so we can ignore the term ( � lim − E) e in
quation ( 12 ). Note that the energy of a particle is given by E( r, v) =
 ( r) + 

1 
2 v 

2 . For stars near the centre of the galaxy, the second term
s dominates, and E ∝ v 2 , independent of v s . For stars far from the
entre (but not near the tidal limit), the potential term dominates,
nd E ∝ � ( r) ∝ v 2 s . The energy term of the DF is given by equation
 12 ). If E 
 � lim , then h ( E ) ∝ E 

p , where the exponent p takes a
alue p ≈ a for small energies, with p ≈ a + d at lar ge ener gies.
ince the star is far from the centre, its potential energy will be large
nd the star will likely be in the region p ≈ a + d. Recall that d
ust be ne gativ e, and in fact all the mock data and observed dSph
odels prefer solutions with ( a + d) < 0. This then gives the energy

unction h ( E) ∝ v 2( a+ d) 
s + 

1 
2 v 

2 . The ne gativ e e xponent in the first
erm causes that term to be small compared to the second, and again
he result is insensitive to v s . If a particle is near the tidal limit, the
erm ( � lim − E) e will be small by definition, and there will be very
ew stars in that area of parameter space. 

To illustrate the constraining power of the various χ2 components 
f the DF model (ref. equation 18 ) we examine the results of the
raco and Fornax dwarfs as typical examples. Fig. 6 shows how

he three components of χ2 put restrictions on r max and V max for
hose dSphs. The surface density data strongly constrains r max but 
as virtually no constraining power for V max , as expected from the
bo v e discussion. This also matches the intuitive notion that without
tellar velocity information it is difficult to characterize the velocity 
cale of the DM potential. The velocity dispersion grossly constrains 
oth r max and V max , but it is the combination of surface density and
ispersion data that results in a tight constraint in the ( r max , V max )
lane. The fourth-order moment (VSP) adds a modest additional 
onstraint (see also Fig. 9 ). The constraint features illustrated here
or Draco and Fornax are very similar for the other dSphs as well. 

It is also interesting to examine how the constraints on r max and
 max translate to ρ150 (the DM density at 150 pc) and M( < r 1 / 2 ) (the
ass within the half-light radius). Fig. 7 shows the dependence of

hose parameters on r max and V max for the Draco and Fornax dSphs.
t illustrates that the lines of constant ρ150 and M( < r 1 / 2 ) for these
odels tend to run parallel to the long axis of the posterior, which

llows a strong constraint on those parameters even given the wide
ange of possible solutions in the ( r max , V max ) plane. 

.2 Inference of mass within key radii: comparisons with 
ispersion-based mass estimators 

t is informative to examine the inferences for the mass of the dSphs
nclosed within key radii, as such inferences can be readily compared
ith dispersion-based estimators. These key radii are the half-light 

adius ( r 1 / 2 ) and O(1) multiples of it, which are good places to
easure the mass and density of DM, since there is usually good

uminosity and dispersion data there, and the inferred density can tell
s something about the cores of the subject haloes. Wolf et al. ( 2010 )
sed the luminosity-weighted LOS velocity dispersion to derive an 
stimate for the mass within the half-light radius ( r 1 / 2 ) that was
elatively immune to the mass-anisotropy degeneracy problem. Other 
uthors followed suit, notably Errani et al. ( 2018 ), who found that the
ass enclosed within 1 . 8 r 1 / 2 was even better insulated from mass-

nisotropy fluctuations. Note that as described more fully in Sec- 
ion 4.4 , we use the spherical radius, and therefore convert the results
f other authors from elliptical radius to its sphericalized equi v alent.
In Fig. 8 , we compare the mass enclosed within 1 . 8 r 1 / 2 , cor-

esponding to the mass estimator of Errani et al. ( 2018 ), and also
he mass enclosed within r 1 / 2 , corresponding to the mass estimator
MNRAS 532, 4157–4186 (2024) 
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M

Figure 5. Predicted and true values for DM density at 150 pc for the 32 
mock data sets, colour-coded by embeddedness. The error bars indicate the 
95 per cent confidence interval. The labels for each data set are shown on the 
left and correspond to those in Table O1 . 
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f Wolf et al. ( 2010 ), for the observed dwarfs. The DF method
redicts masses that are fairly consistent with those predicted by the
ass estimator methods. The only substantial disagreement is for

he Fornax dSph, where our inference of M( < 1 . 8 r 1 / 2 ) is somewhat
igher than that derived by Errani et al. ( 2018 ), although our inference
or M( < r 1 / 2 ) is consistent with that of Wolf et al. ( 2010 ). 

.3 Inferences for r max and V max 

redictions for r max and V max for the observed sample are presented
n Fig. 9 . The two parameters show strong positive correlation.
ecause the halo scale density ρs ∝ r 2 s /v 

2 
s , this type of de generac y is

pproximately along lines of constant density, so that the density is
elatively well constrained, as discussed previously. To demonstrate
he effect of the VSP, the posteriors that result from excluding the
SP component in the analysis are shown in the figure with dotted
lack lines. The VSP does indeed add some predictive power, making
NRAS 532, 4157–4186 (2024) 

Table 2. The Dwarf Galaxy Sample. Adopted distance, 2D half-light radius R 1 / 2 a
angle θ are from Mu ̃ noz et al. ( 2018 ). Centre coordinates are from The NASA/IP
MW model (no LMC) of Battaglia et al. ( 2022 ). Stellar masses M ∗ are from McC

Adopted Centre Centre 
distance RA dec. R 1 / 2 

Name (kpc) (deg) (deg) (pc) 

Draco 82 .0 260 .051625 57 .915361 237 ± 17 

Fornax 139 .0 39 .997200 −34 .449187 792 ± 18 

Carina 106 .0 100 .402888 −50 .966196 311 ± 15 

CnV I 211 .0 202 .014583 33 .555833 437 ± 18 

Leo I 254 .0 152 .117083 12 .306389 270 ± 17 

Leo II 233 .0 168 .370000 22 .151667 171 ± 10 

Sculptor 86 .0 15 .038984 −33 .709029 279 ± 16 

Sextans 95 .0 153 .262319 −1 .614602 456 ± 15 

Ursa Minor 76 .0 227 .285379 67 .222605 405 ± 21 
he posteriors somewhat smaller and in some cases shifting them
odestly. 
In Fig. 9 , the black triangles show the 10 most massive subhaloes

rom the fiducial Phat Elvis halo (1107, which has a halo mass of
 . 9 × 10 11 M �) and restricted to those subhaloes that are more than
0 kpc from the centre. We chose this as our fiducial halo because
t is closest in mass to the light MW model used by Battaglia et al.
 2022 ). 

If we use a more massive Phat Elvis halo for fiducial comparison,
he triangles of the 10 largest subhaloes will tend to shift upward
nd to the right (i.e. they will have larger r max and V max ). The TBTF
roblem then becomes even more pronounced, i.e. the simulation
redicts a large number of dense and massive subhaloes, inconsistent
ith what is seen in the MW. Moreo v er, such a choice of fiducial
alo mass for the Phat Elvis simulation would be inconsistent with
he MW models used by Battaglia et al. ( 2022 ) in our analysis. The
imulated V max values would be systematically larger than those we
nfer for the MW satellites. (Comparing the r max and V max inferences
or the bright MW dwarfs to those of all of the subhaloes in the Phat
lvis suite of simulations, the results are similar: they are generally
onsistent in V max , but the inferences for the r max of the bright MW
warfs are generally higher than those in Phat Elvis.) 
Since our sample represents the brightest 9 MW dSphs, one would

xpect these to be of comparable V max to those in the Phat Elvis
imulation. This is generally true; the posteriors for Fornax and
culptor are centred near the top of the range and indeed extend
bo v e the top. The V max posteriors for Draco, Carina, and Ursa Minor
traddle the middle range, while the others are closer to the bottom
nd indeed extend beyond the lowest V max of the 10 most massive
ubhaloes. In contrast, the r max posteriors for many of the 9 bright

W dSphs seem to be systematically at larger values than those
f the Phat Elvis subhaloes, especially Draco, Fornax, Carina, and
culptor. This might be expected if the haloes are cored, as may
e indicated for Fornax and perhaps Carina. The posteriors of the
W dSphs all have the familiar de generac y between r max and V max 

i.e. they are positively correlated), very similar to that observed in
he mock data in Fig. 2 . We note that, in the mock data tests, there
as no systematic o v erprediction of r max . This also presents itself as
 generally lower central density inference of the subhaloes in the
ample as compared to the simulated subhaloes, as can be seen in
nd V -band magnitude M V are from Simon ( 2019 ). Ellipticity ε and position 
AC Extragalactic Database (NED). Pericenter distances are from the light 
onnachie ( 2012 ). 

ε θ Pericenter M V M ∗
(deg) (kpc) (10 6 M �) 

0.29 87 51 . 7 + 4 . 1 −6 . 1 −8 . 88 + 0 . 05 
−0 . 05 0.29 

0.29 45 89 + 31 
−26 −13 . 34 + 0 . 14 

−0 . 14 20 

0.36 60 106 . 7 + 6 . 4 −5 . 4 −9 . 45 + 0 . 05 
−0 . 05 0.38 

0.44 80 68 . 09 + 71 . 49 
−42 . 17 −8 . 73 + 0 . 06 

−0 . 06 0.23 

0.30 78 46 . 53 + 30 . 50 
−26 . 54 −11 . 78 + 0 . 28 

−0 . 28 5.5 

0.07 38 115 . 55 + 88 . 35 
−58 . 87 −9 . 74 + 0 . 04 

−0 . 04 0.74 

0.33 92 63 . 7 + 4 . 5 −3 . 1 −10 . 82 + 0 . 14 
−0 . 14 2.3 

0.30 57 74 . 45 + 4 . 38 
−5 . 68 −8 . 94 + 0 . 06 

−0 . 06 0.44 

0.55 50 48 . 9 + 3 . 4 −3 . 3 −9 . 03 + 0 . 05 
−0 . 05 0.29 

ine user on 24 July 2025
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Figure 6. Constraints on r max and V max from the χ2 components of surface density, velocity dispersion, and VSP. Top panel: Draco. Bottom panel: Fornax. The 
black contour lines indicate the 68 per cent and 95 per cent confidence levels. The first column shows the posterior distribution when only surface density is used 
in χ2 . The second column corresponds to only using velocity dispersion in χ2 . The third column corresponds to using surface density and velocity dispersion, 
but not the VSP. The fourth column corresponds to using all three components in the calculation of χ2 . 
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.4 Half-light radius of the obser v ed sample 

he half-light radius posteriors for the observed sample are shown 
n Table 3 . Comparison with previous authors is not straightforward, 
ecause of fundamentally different approaches in computation. We 
ompare to Mu ̃ noz et al. ( 2018 ), who fit a Sersic profile to 2D data
aps of the dwarfs. We multiply the Mu ̃ noz et al. ( 2018 ) result

y the axis ratio of its elliptical profile, 
√ 

1 − ε, to convert from
lliptical radius to a spherical one. The data used for our models is
 1-dimensional equi v alent of their data, also adjusted for ellipticity.
e also show the R 1 / 2 resulting from a 2-parameter Plummer profile 

Plummer 1911 ) fit of our input data. The DF approach does not
ely on any profile shape; we simply find the radius that encloses
alf of the stars. As can be seen in the table, there can be substantial
ifferences between the various methods. One notable difference is 
n Leo I, for which the DF predicts a median value of 0.315 kpc while
he Plummer fit to the same data yields 0.308 kpc, and Mu ̃ noz et al.
 2018 ) find 0.204 kpc. Possible reasons for the difference are (a)
he surface density map for Leo I is quite boxy, with ellipticity that
ppears to change with position angle, and (b) the surface density 
lateaus considerably at larger radii, making it a poor fit for most
arametrized profiles. We note that Read et al. ( 2019b ) used Jeans
nalysis combined with virial shape parameters to examine these 
bjects and found 2D half-light radii of 0.298 kpc and 0.194 kpc for
eo I and Leo II, respectively, consistent with our findings. 
Fig. 10 shows 2D posteriors for the half-light radius of the observed
ample versus the mass enclosed within that radius. The distribution 
f masses enclosed within the half-light radii seems to split into
wo groups. Fornax stands out with the largest half-light radius and
argest mass enclosed; ho we ver, it is in the group with the lowest
verage density within the half-light radius, accompanied by Carina 
nd Sextans. At the other end of the spectrum are Draco and Leo
I, which are the most compact, enclose the least mass but have the
ighest density within r 1 / 2 . 
We compare the results of our DF model to those of other

pproaches in Section 6 and find that our inferences for r max ,
 max , and ρ150 are generally consistent with the other methods, 
ith a few exceptions. The model inferences for core parameter 

 c = r c /r s ), anisotropy ( β), and embeddedness ( r 1 / 2 /r s ) are discussed
n Appendices G , H , and I , respectively. As the MW has strong tidal
orces, we investigate the possible impacts of tidal truncation in 
ppendix N , and conclude that the likely impacts on our inferences

or r max , V max , and ρ150 are small. 

 THE  DIVERSITY  OF  DSPHS  

 convincing theory of DM will have to explain the diverse density
rofiles seen in the MW’s dwarf spheroidal galaxies, with Draco 
nd Fornax at the extreme ends. We find Draco to be the smallest
MNRAS 532, 4157–4186 (2024) 
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Figure 7. The r max , V max plane for Draco ( top row ), and Fornax ( bottom row ). The black contour lines indicate the 68 per cent and 95 per cent confidence levels. 
Left Column : ρ150 shown in colour. Right Column : M( < r 1 / 2 ) shown in colour. Lines of constant ρ150 and M( < r 1 / 2 ) are roughly parallel to the long axis of the 
posterior, allowing relatively strong constraints on both parameters. 

a  

a  

d  

f  

e  

l  

m  

a  

r  

C  

a  

w  

c  

i  

h  

w  

s  

e  

c
 

d  

i  

e  

o  

r  

c  

a  

C  

(  

e  

o  

(  

L  

e  

K  

N  

F  

b  

d  

r  

w

6
M

I  

K  

(  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/532/4/4157/7718108 by U
C

 - Irvine user on 24 July 2025
nd densest of the observed sample, with 3D half-light radius
pproximately 260 pc, while Fornax is the largest and among the least
ense, with half-light radius of approximately 760 pc (see Section 4.4
or a full discussion.) Carina looks similar to Fornax, though not as
xtreme, with a low DM core density and preference for a relatively
arge core. While it is difficult to predict the core radius from our

ethod accurately, the shape of the posteriors for Carina and Fornax
re clearly inconsistent with a cuspy profile (Fig. E2 ). We refer the
eader to Appendix E for more details on posteriors for the core radii.
onversely, Leo I and Leo II prefer small core radii or cuspy profiles,
nd high ρ150 . The posteriors of Draco and Sculptor are consistent
ith those dSphs being hosted by cored dark matter haloes, but with

ore sizes smaller than those of Fornax and Carina. For all dSphs, the
nferred core radii are smaller than or comparable to the respective
alf-light radii. We note that core collapse can occur in SIDM haloes,
ith a time scale sensitive to the (possibly velocity-dependent) cross-

ection per unit mass (Elbert et al. 2015 ; Shah & Adhikari 2023 ; Zeng
t al. 2023 ; Yang, Nadler & Yu 2023 ), although we do not explore
ore collapse in this work. 

Fig. 11 shows the this work’s DF model inferences for the DM
ensity as a function of radius compared to the Jeans analysis
nferences of the cored isothermal and NFW cases of Kaplinghat
t al. ( 2019 ). Noted on the plots are lines for logarithmic slopes
f 0 and −1, corresponding to cored and cuspy DM distributions,
NRAS 532, 4157–4186 (2024) 
espectiv ely. F or both dwarfs, the density profiles are similar to the
ored isothermal cases of Kaplinghat et al. ( 2019 ), showing a cusp (or
 very small core) in Draco and a core (or a very mild cusp) in Fornax.
uspy DM haloes are found in standard CDM only simulations

Navarro, Frenk & White 1996 ), whereas cored DM haloes require
ither non-gravitational DM microphysics such as self-interactions,
r explanations via baryonic mechanisms such as supernova feedback
Penarrubia, Navarro & McConnachie 2008 ; Vogelsberger, Zavala &
oeb 2012 ; Rocha et al. 2013 ; Di Cintio et al. 2014 ; Vogelsberger
t al. 2014 ; Elbert et al. 2015 ; Sawala et al. 2016 ; Bullock & Boylan-
olchin 2017 ; Ben ́ıtez-Llambay et al. 2019 ; Despali et al. 2022 ).
ote that while most of the MW dSphs are highly DM dominated,
ornax has a stellar mass of approximately 2 × 10 7 M � (see Table 2 ),
y far the largest in the sample, amounting to a few per cent of the
ynamical mass. This may suggest that baryonic effects could be
esponsible for the cored profile in Fornax. Further comparisons
ith prior works are noted in Battaglia & Nipoti ( 2022 ). 

 COMPARING  THE  DF  METHOD  TO  OTHER  

ETHODS  

n Fig. 12 , we compare the r max and V max inferences to those of
aplinghat et al. ( 2019 ) and Errani et al. ( 2018 ). Kaplinghat et al.

 2019 ) used Jeans analysis for their inference and also utilized the
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Figure 8. Comparison of mass estimators from Errani, Pe ̃ narrubia & Walker 
( 2018 ) and Wolf et al. ( 2010 ), which utilize luminosity-weighted velocity 
dispersion, with the results of this work. The result of the DF method from this 
work are shown in black. Top: log 10 [ M( < 1 . 8 r 1 / 2 ) / M �], which is the mass 
estimator of Errani et al. ( 2018 ), shown in red. Bottom: log 10 [ M( < r 1 / 2 ) / M �], 
which is the mass estimator of Wolf et al. ( 2010 ), shown in red. 
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SP. They analysed two cases, one for an NFW profile and a second
or a cored isothermal profile. Their results are similar to ours, with
nferences from the DF and Jeans methods generally o v erlapping 
t their 1 σ boundaries. The exceptions are for the V max of Carina,
ornax and Draco, and the r max of Fornax. In those, the DF predictions
re larger than those from either profile in the Jeans analysis. The
wo methods have fundamental differences, namely the different 
odelling of stellar velocity anisotropy and the assumption of a 
lummer surface density profile in the Jeans analysis. Our analysis 

s more general, as the DF approach accommodates a wide variety of
istributions for the stellar population. Possible other reasons for the 
ifferences could include (1) different prior assumptions between 
he two methods and (2) for Fornax, that Kaplinghat et al. ( 2019 )
ccounted for the stellar mass in the potential, in contrast to this work
here we have assumed that the stars are massless tracers of the DM
otential. We note that for Fornax, we infer V max > 45 km s −1 at the
 σ level, substantially higher than either of the Jeans analysis cases.
Errani et al. ( 2018 ) derived r max and V max by using the observed

inematics of the dwarfs in combination with a population of 
imulated subhaloes. Errani et al. ( 2018 ) used spherical Plummer
rofiles for the stellar population. For the DM, they used an NFW
rofile for their cuspy case. For the cored case, they use 

( r) = ρs [1 + ( r/r s )] 
−5 . (21) 

The inferences from their cuspy and cored cases can be seen in the
range solid lines and orange dashed lines, respectively, of Fig. 12 .
ur results are consistent with their cuspy cases, except for Carina

nd Fornax (and, to a lesser extent, Sextans), where their cored case
s a better match. 

Table 4 and Fig. 13 compare our findings for ρ150 to those of Read
t al. ( 2019b ), Kaplinghat et al. ( 2019 ), and Hayashi et al. ( 2020 ). The
esults are generally comparable within errors. Ho we ver, our finding
or Carina at 4 . 7 + 0 . 9 

−0 . 7 M � kpc −3 is lower than the others, inconsistent
ith that of Read et al. ( 2019b ), Hayashi et al. ( 2020 ) and the NFW

ase of Kaplinghat et al. ( 2019 ), but compatible with their isothermal
ase. Our finding is consistent with a cored halo, as is suggested by
he posterior for r core (see Fig. E1 ). We checked to see if excluding
arge values of c in the cNFW profile would change this inference
ignificantly, but it does not; we found that if the core parameter is
estricted so that 0 < c < 1, the inference for ρ150 increases only
pproximately 0.1 dex. 

 INCONSISTENCY  WITH  SIMULATION:  
ENSITY  AT  150  PC  VERSUS  PERICENTER  

ISTANCE  

n anticorrelation between the density at 150 pc ( ρ150 ) and the orbital
ericenter distance ( r p ) for the MW dSphs was noted in Kaplinghat
t al. ( 2019 ), and is the subject of some debate (Hayashi et al. 2020 ;
ardona-Barrero et al. 2023 ). A closely related and perhaps more
ogent question is whether the ρ150 –r p relationship is consistent with 
 -body simulations of MW analogues, for if they are not, it is a
hallenge for � CDM that could require more sophisticated physics 
n such simulations, or could point to new physics such as DM self-
nteraction Correa ( 2021 ). 

For orbital pericenter data we turn to the work of Battaglia et al.
 2022 ), which calculated the pericenter distances for the MW dwarfs
sing Gaia data release 3 and which attempts to account for the
mpact of the Large Magellanic Cloud (LMC) on the potential and
rbits. The y e xamined two MW mass scenarios, a ‘light’ v ersion
ith mass 10 12 M � and a ‘heavy’ version with mass 1 . 6 × 10 12 M �.
hey also examine the light version without the LMC. We use their

ight model (both with and without the LMC) for our comparisons,
lthough we check the result against the heavy model in Appendix L .
ote that the pericenter distances quoted are those of the last calcu-

ated pericenter passages, although the orbit integration calculations 
re carried backward in time to approximately 8 Gyr ago. Prior to
hat study, Patel et al. ( 2020 ) published an analysis accounting for
he effect of the LMC in five of the MW dwarf pericenters: Carina,
raco, Fornax, Sculptor and Ursa Minor. Subsequent to our main 

nalysis, another study was published that attempts to account for 
he LMC in their pericenter projections: Pace, Erkal & Li ( 2022 ). The
MNRAS 532, 4157–4186 (2024) 
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Figure 9. Posterior inferences for r max versus V max for the observed sample. The 68 per cent and 95 per cent levels are shown, with the 68 per cent level in a 
darker colour. The dotted black lines indicate the posterior result without the VSP χ2 component. The black triangles represent the 10 subhaloes from the Phat 
Elvis simulation (halo 1107, with disc) that are more than 50 kpc from the centre of the halo and have the highest V max . The grey triangles show the subhaloes 
with 10th through 20th highest V max . 

Table 3. Comparison of 2D projected half-light radius ( R 1 / 2 ), in kpc. The 
‘DF’ column is the r 1 / 2 posterior result from the DF, converted to 2D projected 
R 1 / 2 by dividing by 1.33. The ‘Plummer Fit’ is the result from the best 
fitting 2-parameter Plummer profile, as applied to the (one-dimensional) 
sphericalized surface density data. The rightmost column is the half-light 
radius reported by Mu ̃ noz et al. ( 2018 ) for a Sersic profile fit to 2D surface 
density maps, sphericalized as described in the text. 

dSph name DF Plummer fit Mu ̃ noz et al. ( 2018 ) 

Draco 0.197 ± 0.003 0.235 0.183 
Fornax 0.574 ± 0.004 0.688 0.668 
Carina 0.327 ± 0.003 0.344 0.277 
CVn I 0.381 ± 0.010 0.445 0.357 
Leo I 0.315 ± 0.004 0.308 0.204 
Leo II 0.200 ± 0.002 0.206 0.162 
Sculptor 0.243 ± 0.002 0.276 0.244 
Sextans 0.397 ± 0.005 0.470 0.370 
Ursa minor 0.299 ± 0.004 0.325 0.257 

v  

t  

b  

B  

t  

Figure 10. Posteriors for the half-light radius and mass within that radius 
for the observed sample. The 68 per cent and 95 per cent levels are shown, 
with the 68 per cent level in a darker colour. Isodensity contours are shown 
as dotted lines, with the density value indicated, in units of 10 7 M � kpc −3 . 
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arious sources for pericenter are compared in Appendix L . Although
here are some differences, there is a fair amount of consistency
etween them after considering their stated uncertainties. D’Souza &
ell ( 2022 ) showed that care must be taken when back-integrating

he orbits of MW satellites in parametric potentials, and that the
NRAS 532, 4157–4186 (2024) 
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Figure 11. Inferences for dark matter density versus radius compared to 
those of Kaplinghat et al. ( 2019 ), for Draco (top panel) and Fornax (bottom 

panel). The shaded bands indicate the 68 per cent confidence interval. The 
DF inferred (3D) half-light radius is shown as a dotted vertical line. 
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MC does have a substantial effect on the projection, a result that
s underlined by the differences in the pericenters obtained in the 
ith-LMC and without-LMC models of Battaglia et al. ( 2022 ). 
The posteriors for the density at 150 pc ( ρ150 ) for the observed

ample are shown in Fig. 14 , plotted against the orbital pericenter
istance ( r p ) of each dwarf, in the left panel without considering
he LMC, and in the right panel accounting for the LMC. In both
gures, there is a clear anticorrelation between the pericenter distance 
nd the density at 150 pc, as was also noted in Kaplinghat et al.
 2019 ); ho we ver, the correlation appears somewhat stronger in that
ork than it does here. The best-fitting line is shown in dashed red

n Fig. 14 . We infer that the slope of the best fit line is ne gativ e, as
etailed in Appendix J . We examined this correlation using a variety
f alternative sources for pericenter distances, including Fritz et al. 
 2018 ), Patel et al. ( 2020 ), and Battaglia et al. ( 2022 ) (including the
heavy’ MW variations in Patel et al. ( 2020 ) and Battaglia et al.
 2022 ); see Appendix L ), and also using Read et al. ( 2019b ) data
or ρ150 rather than our own. The ne gativ e correlation between ρ150 

nd pericenter distance persists in all cases. Hayashi et al. ( 2020 )
lso found an anticorrelation in their work, although their analysis is
ot as directly comparable because they use an axisymmetric model 
or their DM halo, leading to more parameters, more degrees of
reedom and large uncertainties in parameter inferences. We have 
sed more recent pericenter data than Kaplinghat et al. ( 2019 ) and
ayashi et al. ( 2020 ). Cardona-Barrero et al. ( 2023 ) examines the

orrelation in some detail for various data sets, and concludes that
he anticorrelation is statistically significant at the 3 σ level in only a

inority of the various combinations. We discuss their comparison 
n Appendix L . 

For comparison with simulation, we turn to the Phat ELVIS 

imulations (Kelley et al. 2019 ), a suite of 12 MW-similar haloes
ith a disk potential, with masses ranging from 7 . 1 × 10 11 M �

o 1 . 95 × 10 12 M �. We use their host halo 1107 for our fiducial
omparison, which has a mass of 8 . 88 × 10 11 M � [the most similar
o the light MW model of Battaglia et al. ( 2022 )], but the results
re similar for all 12 host haloes (see Appendix K and Fig. K1 ).
he Phat ELVIS simulation did not attempt to account for the effect
f such a large satellite as the LMC, so we present comparisons to
oth the with- and without-LMC models of Battaglia et al. ( 2022 ).
hown in Fig. 14 are the 20 subhaloes in the fiducial host halo
ith the largest V peak (i.e. the largest V max since their infall) that

re currently located more than 50 kpc from galactic center, plotted
s black and grey circles. There is a clear discrepancy between the
imulated and observed haloes, with the simulated haloes at distances 
reater than 50 kpc exhibiting a positive correlation between ρ150 

nd pericenter. Note that significant ne gativ e correlation between 
150 and pericenter is not a requirement for inconsistency here; even 
n absence of correlation would appear to be inconsistent with the
imulated haloes. We note that Hayashi et al. ( 2020 ) did a similar
nalysis but did not restrict their regression to the largest haloes.
maller haloes tend to show some survivor bias in that less dense
ubhaloes are more likely to be disrupted by tides, thus removing
aloes from the lower left of the plot, as described in Kaplinghat
t al. ( 2019 ). Artificial numerical disruption of subhaloes on orbits
ith small pericenters is also a crucial factor to consider here but the
ost massive subhaloes should be the ones that are the least impacted

y this (Diemand, Kuhlen & Madau 2007 ; D’Souza & Bell 2022 ).
n addition, if we choose to populate the bright MW dwarfs in lower
ass subhaloes, then we will be left with an even more pronounced

oo-big-to-fail problem. For these reasons, we restrict the analysis to 
he 20 largest subhaloes. Our results show that the density-pericenter 
ata still remains a challenge that be met by galaxy formation models. 
n this regard, it is useful to note that the orbital radii and densities
re expected to have an anticorrelation in SIDM models with large
ross-sections (Nishikawa, Boddy & Kaplinghat 2020 ; Sameie et al. 
020 ; Correa 2021 ; Yang et al. 2023 ), and that baryonic effects may
lso indirectly impact this (Read et al. 2019b ). 

One might wonder if using the heavier MW models would alter
he conclusion, but it does not (see Appendix L , Fig. L1 ). The
ericenter projections of Patel et al. ( 2020 ), Battaglia et al. ( 2022 ),
nd Pace et al. ( 2022 ) are the current state-of-the-art for the MW
Sph pericenters but rely on static, axisymmetric potentials for the 
W. We look for possible biases in this approach in Appendix M ,

y performing a reprojection of Phat Elvis pericenters using the 
 = 0 positions and velocities of the subhaloes and a static MW-like
otential. We conclude that pericenters calculated using this approach 
sually have good agreement with the true pericenter, albeit with a
inor tendency to underestimate the pericenter and with occasional 

utliers. 

 CONCLUSIONS  

n this work, we presented a comprehensive study of the internal
ynamics of the brightest dSphs of the MW based on a flexible
F model. Going beyond the standard Jeans analysis often adopted 
MNRAS 532, 4157–4186 (2024) 
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Figure 12. Inferences for r max and V max for the observed sample from this work, shown in black, compared to the Jeans analysis results of Kaplinghat et al. 
( 2019 ), shown in blue, with their NFW case shown as blue solid lines and their cored isothermal case as blue dashed lines. We also compare to the analysis of 
Errani et al. ( 2018 ), in orange, with their cuspy case as orange solid lines and their cored case as orange dashed lines. 

Table 4. Comparison of findings for DM density at 150 pc ( ρ150 ), in units 
of 10 7 M � kpc −3 . The median posterior value and the 68 per cent confidence 
intervals are indicated. The references for comparison are (A) Read et al. 
( 2019b ), (B) Kaplinghat et al. ( 2019 ), isothermal case, (C) Kaplinghat et al. 
( 2019 ), NFW case, and (D) Hayashi et al. ( 2020 ). Note that CVn I was not 
studied in references (A) or (D). 

Name This work Ref A Ref B Ref C Ref D 

Draco 18 . 8 + 3 . 7 −2 . 7 23 . 6 + 2 . 0 −2 . 9 21 . 2 + 5 . 4 −4 . 6 21 . 7 + 2 . 5 −2 . 2 23 . 5 + 12 . 8 
−6 . 3 

Fornax 4 . 8 + 0 . 9 −0 . 5 7 . 9 + 2 . 7 −1 . 9 3 . 4 + 1 . 7 −1 . 3 7 . 5 + 2 . 0 −1 . 4 12 . 2 + 3 . 2 −2 . 3 

Carina 4 . 7 + 0 . 9 −0 . 7 11 . 6 + 2 . 0 −2 . 2 5 . 7 + 3 . 2 −1 . 7 10 . 2 + 1 . 1 −0 . 9 10 . 9 + 8 . 2 −3 . 2 

CVn I 10 . 5 + 5 . 4 −3 . 7 – 13 . 5 + 5 . 3 −6 . 6 13 . 4 + 3 . 1 −2 . 4 –

Leo I 20 . 7 + 2 . 9 −2 . 9 17 . 7 + 3 . 3 −3 . 4 14 . 1 + 5 . 5 −4 . 5 15 . 0 + 3 . 3 −2 . 4 26 . 4 + 23 . 3 
−9 . 1 

Leo II 17 . 1 + 2 . 1 −2 . 0 18 . 4 + 1 . 7 −1 . 6 13 . 4 + 4 . 3 −1 . 6 17 . 0 + 2 . 3 −3 . 7 20 . 2 + 12 . 7 
−6 . 1 

Sculptor 14 . 7 + 1 . 8 −2 . 0 14 . 9 + 2 . 8 −2 . 3 16 . 1 + 2 . 9 −3 . 3 17 . 1 + 2 . 1 −2 . 1 21 . 4 + 12 . 6 
−6 . 3 

Sextans 6 . 8 + 2 . 8 −1 . 9 12 . 8 + 3 . 4 −2 . 9 8 . 6 + 5 . 1 −3 . 5 10 . 9 + 2 . 9 −1 . 8 5 . 2 + 3 . 6 −2 . 3 

Ursa minor 17 . 5 + 7 . 3 −5 . 2 15 . 3 + 3 . 5 −3 . 2 25 . 4 + 6 . 2 −5 . 6 25 . 1 + 3 . 0 −4 . 3 23 . 8 + 38 . 6 
−7 . 2 
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Figure 13. Inference of ρ150 from this work (black solid lines), compared to 
those of Read et al. ( 2019b ) (red solid lines), the Jeans analysis of Kaplinghat 
et al. ( 2019 ) (NFW case: blue solid lines, cored isothermal case: blue dashed 
lines) and axisymmetric Jeans modelling of Hayashi et al. ( 2020 ) (grey solid 
lines). 
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or these systems, our method relies on a separable DF (Strigari
t al. 2017 ) that describes the phase space of stellar tracers via 10
arameters, shaping the energy and angular momentum functional
orm. The DF approach we follow here is completed by the modelling
f the gravitational potential of the system, for which we adopted a
hree-parameter cNFW distribution. This distribution is suitable for
n investigation of both cuspy and cored DM haloes. For the first
ime in literature, we apply such a general approach to the set of 9
right dSphs with well-measured kinematics, and perform a data-
riven Bayesian analysis on the photometric and spectroscopic data
vailable for these objects. 

Our analysis via DF modelling is validated by the use of mock data
xtracted from the Gaia Challenge project. In particular, we adopted
ock data sets to test the predictive capability of our approach both

or cuspy and cored DM profiles, for cuspy and cored stellar profiles,
NRAS 532, 4157–4186 (2024) 
or different level of embeddedness of the stellar distribution within
he DM halo of the system and for spatially varying stellar orbital
nisotropy profiles. From the study of the mock data we find that
ur DF approach is able to reco v er the true values of the V max and
 max shape parameters of the underlying DM profile remarkably well,
sually within the 68 per cent posterior probability region (see Fig.
 ). It also has high accuracy for the reco v ery of ke y dynamical
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Figure 14. DM density at 150 pc ( ρ150 ) inferred from the DF fits for the bright MW dSphs versus orbital pericenter distance ( r p ), in red, using the light MW 

model of Battaglia et al. ( 2022 ) and comparing to host halo 1107 of the Phat Elvis simulation (Kelley et al. 2019 ). The right panel uses the light MW model 
without the LMC, while the left panel uses the light MW model including the effect of the LMC. The error bars indicate the 68 per cent confidence interval. The 
best-fitting line through the observations is shown in dashed red, with the 68 per cent confidence interval in light red. The black circles indicate the 10 subhaloes 
with current radial positions greater than 50 kpc and with the largest V peak for host halo 1107 of the Phat Elvis simulation. The grey circles denote the 10th 
through 20th largest V peak subhaloes. The best-fitting regression line for the Phat Elvis points is shown as a black dashed line. The MW dSphs are numbered as 
follows: 1: Draco, 2: Fornax, 3: Carina, 4: CVn I, 5: Leo I, 6: Leo II, 7: Sculptor, 8: Sextans, 9: Ursa Minor. 
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uantities such as the total mass within the half-light radius, M 1 / 2 

see Fig. 4 ) and the inner local density of the system at 150 pc, ρ150 

Fig. 5 ). In contrast, the mock data show us that with this approach it
emains difficult to reliably determine the size of the core of the DM
nner halo or to obtain robust information about the orbital anisotropy 
rofile of stellar tracers, both of which are difficulties also suffered
y Jeans analysis. The accuracy of these predictions is higher for the
ases where the stellar population is not too deeply embedded with 
he DM halo. 

Equipped with these findings, our detailed study of the MW 

Sphs allowed us to revisit, reiterate and reinforce some well-known 
onclusions already drawn in literature within the standard Jeans 
nalysis. Our study of the Classical dSphs via DF modelling provides 
 state-of-the-art inference of ρ150 in these objects. In particular, we 
nd a low inner density for systems like Carina and Sextans, in
ontrast to galaxies like Draco and Leo II, characterized by inner 
ensities approximately four times larger (Fig. 10 ). With the DF 

pproach, we are then able to confirm the large diversity in the
ark matter densities of these dark-matter dominated objects. These 
nferences of the inner density constitute key dynamical information 
hat needs to be captured by any successful model of galaxy formation 
ithin the � CDM cosmological model, or another model where 

he dark matter is not made up of cold and collisionless DM
articles. 
We hav e ree xamined the anticorrelation between dwarf spheroidal 

ericenters and density at 150 pc found in Kaplinghat et al. ( 2019 ),
sing our method rather than Jeans analysis and using more recent 
ssessments of the pericenter determination by Battaglia et al. ( 2022 ). 
e also observe a negative correlation. This is inconsistent with both 

he dark-matter-only and disc versions of the Phat Elvis N -body sim-
lation of Kelley et al. ( 2019 , see Fig. 14 ). This inconsistency remains
 compelling clue for investigating dark matter microphysics. 

We observe that for Fornax and Carina, the results of our analysis
ith the cNFW profile point to the presence of a large core in these

ystems (Fig. E1 ). Most of the other dSphs have smaller cores or show
o evidence for cores. Some care should be taken in considering this
nference given the limited ability in inferring the core sizes in the
ock data sets. Overall, our results argue that the DM core sizes are

maller than the respective half-light radii, which could be a further
lue. 

The results of our work are promising in the regard that the DF
odelling has a similar constraining power to that of the spherical

ean analysis and other methods, despite varying a larger set of
arameters needed for a broad description of the tracer phase-space 
F. Natural extensions of this work will involve DF models that

llow for multiple populations with separate metallicity distributions 
nd non-sphericity in the stellar profiles. 

This could allow for more robust inferences of the sizes of constant
ensity cores in MW dSphs, and provide significant new constraints 
n proposed solutions to the too-big-to-fail problem. 
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PPENDIX  A:  COMPARISON  TO  STRIGARI  ET  

L.  (  2017  )  FOR  SCULPTOR  

ecause our approach is similar to that of Strigari et al. ( 2017 ),
e created a modified version of our model that maximizes its

omparability to the one in that work, and compare the results of the
wo models here. To maximize comparability, we make the following 
hanges to our model: (a) remo v e the factor of 1 

2 from equation ( 13 ),
b) remo v e the normalization term n f in equation ( 14 ) and allow the
arameter w to vary freely in the MCMC analysis, (c) set b in = 0,
d) set α = 1, (e) set c = 0, which forces the DM profile to be an
FW profile, and (f) remo v e the VSP chi square component. We

hen run our model on the same Sculptor metal poor and metal-rich
opulation data as was used in Strigari et al. ( 2017 ), i.e. the surface
igure A1. Comparison of the results of the modified model (shown in black) fo
he lines indicate the 68 per cent and 90 per cent confidence levels. Top panel: 
lue. Bottom Panel: Metal-rich stellar population. The results from Strigari et al. ( 2
trigari et al. ( 2017 ) that the outer contour lines represent the 90 per cent confiden
ensity and dispersion data from Battaglia et al. ( 2008 ). The results
re shown in Fig. A1 . The top panel shows the results for the metal
oor case, the bottom panel shows the metal-rich case. Our results
re shown in black and the results from fig. 4 of Strigari et al. ( 2017 )
re shown in blue (metal poor) and red (metal rich), respectively.
heir result correspond fairly closely with ours. 

PPENDIX  B:  VIRIAL  SHAPE  PARAMETER  

he virial shape parameter is derived from the fourth-order projected 
irial theorem (Merrifield & Kent 1990 ), and for approximately 
pherical systems it can take two forms (Richardson & Fairbairn 
014 ). Following Kaplinghat et al. ( 2019 ), we utilize the first form,
hich we label here the VSP: 

SP = 

1 

2 

∫ ∞ 

0 
d R 

2 �〈 v 4 los 〉 = 

G 

5 

∫ ∞ 

0 
d r 2 M(5 − 2 β) νσ 2 

r , (B1) 

here M denotes the mass DF, β is the anisotropy parameter, ν is
he stellar density and 〈 v 4 los 〉 is the fourth moment of the line-of-sight
elocity distribution. To calculate the VSP from the DF, we integrate
MNRAS 532, 4157–4186 (2024) 

r r max versus V max to the NFW results of Strigari et al. ( 2017 ) for Sculptor. 
Metal-poor stellar population. The results from Strigari et al. ( 2017 ) are in 
017 ) are in red. Note that for this figure only we follow the convention from 

ce level rather than 95 per cent. 
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he fourth velocity moment as follows: 

2 π) vsp = 

∫ 
d 3 rd 3 v v 4 z f ( E, L ) . 

ote that there is no factor of N ∗ because the DF is normalized to
nity o v er the entire phase space. Now write 

 r = v cos η, v θ = v sin η cos ψ. 

Then, 

 z = ˆ z × � v = v r cos θ − v θ sin θ = v( cos θ cos η − sin θ sin η cos ψ)

nd 

SP = 

∫ 
r 2 d r d cos θ v 2 d v d ψd cos η v 4 z f ( E, L ) . 

ince E = � − v 2 / 2 and L = r v t = r v sin η, we can first do the θ
nd ψ integrals over v 4 z . It can be shown that ∫ 2 π

0 
d ψ 

∫ 1 

−1 
d cos θ ( cos θ cos η − sin θ sin η cos ψ) 4 = 4 π/ 5 

ence, 

SP = (4 π/ 5) 
∫ r t 

0 
r 2 d r 

∫ √ 

2 �( r) 

0 
v 6 d v 

∫ 1 

−1 
d cos η f ( E, L ) . (B2) 

or data sets with measured line-of-sight velocities, the VSP can be
alculated as follows. In our coordinate system, the z -axis is the line
f sight. First, the mean value of v z is subtracted from each v z , i to
emo v e bulk motion of the galaxy. The VSP is then 

SP = 

1 

2 πN ∗

N ∗∑ 

i= 1 

v 4 z , i . (B3) 

or the mock data sets, we wish to find the an estimate of the
istribution of the VSP given the one set of sampled velocities. We
o so by generating 10 000 ensembles of binned velocity data, each
ith length N ∗, from a Pearson distribution of Type VII, with the

ame star count and velocity dispersion in each bin as the original
ata set. To simulate measurement uncertainty, we add Gaussian
rror with a standard deviation of 2 km s −1 . The kurtosis of the
earson distribution is adjustable via a parameter, and that parameter

s iteratively varied until the kurtosis of the entire ensemble matches
hat of the original data set. We then tabulate the 15.9, 50, and 84.1
ercentile values of the VSP of the entire ensemble, which are used
s estimators for the mean and standard deviation of the VSP. Those
alues are used as data for the DF model and are tabulated for the
ock data sets in Table O1 . 

PPENDIX  C:  FULL  LIKELIHOOD  FUNCTION  

onsider a population of w stars in a potential � and with a DF f .
ur goal is to estimate � and f based on the star population. For

tar i, we have position coordinates R i = 

√ 

x 2 i + y 2 i , and we have
elocity coordinate v z , i (but we do not generally know z i , v x , i or v y , i ).
he best estimate of � and f is the one that maximizes the likelihood

unction 

H ( �, f | [ R i , v z , i ]) . (C1) 

y Bayes Theorem, we instead estimate the posterior and prior
robabilities 

H ( �, f | [ R i , v z , i ]) = LH ([ R i , v z , i ] | �, f ) 
P ( �, f ) 

P ([ R i , v z , i ]) 
, (C2) 
NRAS 532, 4157–4186 (2024) 
here LH ([ R i , v z , i ] | �, f ) is the posterior probability of observing
he given data with a particular � and f , and P ( �, f ) is the prior
robability for observing � and f , and incorporates any prior beliefs.
he probability of observing the data for our model, P ([ R i , v z , i ]),
lso known as the ‘evidence’, is not generally known, but as it is
 constant factor it will not affect our attempts to maximize the
ikelihood function. 

We wish to employ the DF as a probability of finding a star i at
adius R and line-of-sight velocity v z . The probability can be written
s 

 ∗, i ( R i , v z , i ) = 2 π
∫ ∞ 

−∞ 

v R dv R 

∫ ∞ 

−∞ 

d z f ( E i , L i ) . (C3) 

he composite likelihood for all stars in the data set is then 

H ([ R, v z ] | �, f ) = 

w ∏ 

i= 1 

p ∗, i ( R i , v z , i ) , (C4) 

nd the log likelihood is then 

LH � log ( LH ([ R, v z ] | �, f ))) = 

w ∑ 

i= 1 

log ( p ∗, i ( R i , v z , i )) . (C5) 

omputationally, we have a vector of parameters p =
 r s , v s , � lim , e, a, q, E c , d, L β, b in , b out , w} for which we want to
alculate a given likelihood. The normalization factor n f may be
actored out of the sum, and LLH becomes 

LH ( p ) = n f ( p ) 
w ∑ 

i= 1 
log 

(∫ ∞ 

−∞ 

d v R 

∫ ∞ 

−∞ 

d z h 
(
p , E( x i , v i ) 

)
g 
(
p , L ( x i , v i ) 

))
, 

(C6)

here the functions h and g are given in equations ( 12 ) and ( 13 ). 

PPENDIX  D:  BINNING  OF  VELOCITY  

ISPERSION  DATA  

ere, we describe our procedure for binning the velocity dispersion
ata. For the observed sample, the data consists of the right ascension
nd declination coordinates for each star, the LOS velocity for each
tar, and the uncertainty of the LOS velocity measurement. The
osition data is converted to physical δx and δy coordinates using
he adopted distance to the galaxy specified in Table 2 . The centroid
s calculated as the coordinates that minimize the sum of the squared
istances from each star to the center. These correspond closely to the
alaxy coordinates cited in the NASA/IPAC Extragalactic Database
 https://ned.ipac.caltech.edu ). To account for the ellipticity of the
alaxies, we draw elliptical bins based on the position angle and
llipticity noted in Table 2 . We use Sturges’ Rule to determine the
umber of bins, i.e. B = log 2 ( N stars ) + 1. The bin boundaries are
hosen so that there are an equal number of stars in each bin to the
aximum extent possible. For the Gaia Challenge data, the same

rocess is used, but is simplified because the data center coordinates
re known, and the data were generated with spherical symmetry so
o adjustment for ellipticity is required. 
Our method for estimating the binned velocity dispersions closely

ollows the maximum likelihood approach described in Walker et al.
 2006 ). We let v ij , u ij and σij be the measured LOS velocity, the
rue LOS velocity and the measurement uncertainty, for star i of N j 

tars in bin j of B bins. Then v ij = u ij + σij εij , and the εij have a
tandard Gaussian distribution. The variability in v ij comes from two
ources: the intrinsic LOS velocity dispersion in the u ij , which we
enote σj , and the measurement uncertainties σij . We assume that
he v ij have a Gaussian distribution with mean equal to the mean

https://ned.ipac.caltech.edu
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rue velocity 〈 u 〉 . The joint probability over all of the observations is
herefore: 

H = 

B ∏ 

j= 1 

N j ∏ 

i= 1 

1 √ 

2 π
(
σ 2 

ij + σ 2 
j 

) exp 

( 

− ( v ij − 〈 u 〉 ) 2 
2 
(
σ 2 

ij + σ 2 
j 

)
) 

. (D1) 

e use MCMC analysis to determine posterior distributions for 〈 u 〉
nd the σj . We use the EMCEE sampler (F oreman-Macke y et al. 2019 ).
e explored using velocity dispersion directly as the parameter of 

nterest, as well as using log 10 of the velocity dispersions, and found 
hat using the logarithm resulted in Gaussian distributions for the 
osterior distributions, while using the dispersions themselves did 
ot. We therefore use 〈 u 〉 and log 10 ( σj ) as parameters in the MCMC
nalysis. The resulting binned data values and their uncertainties are 
vailable in the online material. 

PPENDIX  E:  CORE  RADII  INFERENCES  FOR  

OCK  DATA  AND  OBSERVED  DWARFS  

he parameter log 10 [ r c / kpc ] is allowed to vary in the model to ex-
lore the best fitting value, with prior limits −2 < log 10 [ r c / kpc ] < 1.
s described in Section 2.1 , the core radius r core is calculated as

he radius at which the density falls to one-half its central value.
he true core radii of the mock data sets are either 0 kpc (NFW)
r 0.26 kpc (cored), corresponding to log 10 values of −∞ and 
0 . 585, respectively, although we use -2 as a practical lower limit,

orresponding to r core = 0 . 01 kpc. The top panels of Fig. E1 shows
 composite plot of the posteriors for the 16 NFW data sets in the
eft panel and the 16 cored data sets in the right panel. The model
igure E1. Posterior histograms of log 10 [ r core / kpc ], with mock data sets. Left: The
s −∞ (corresponding to r core = 0 kpc), although we limit the parameter to −2 in
ets with cored DM profiles. The true value is −0.585 (corresponding to r core = 0 .
hows some ability to distinguish between the two profiles, with 
n uncertainty of approximately 0.5–1.0 dex, although there is bias 
o wards lo wer v alues for the cored profiles. The NFW data sets
niformly prefer small cores. The cored data sets generally prefer 
arge core solutions, except for some of the most deeply embedded
ata sets with r ∗/r s = 0 . 1. 
We also present the core radius posteriors of the observed sample

ere, for easier comparison to the mock data results. As shown in
he bottom panels of Fig. E1 , many of the observed sample prefer
mall cores, consistent with the NFW profile. Ho we v er, F ornax and
arina prefer non-zero cores with large radii of approximately 0.5 
nd 0.3 kpc, respectively. We note that Pe ̃ narrubia et al. ( 2012 )
ound cores in Fornax and Sculptor by exploiting separate chemo- 
ynamical subcomponents, although Strigari et al. ( 2017 ) found only
 weak preference for a core in Sculptor and that both cored and NFW
rofiles were good fits. Hayashi et al. ( 2020 ) found that Carina,
e xtans, Sculptor, and F ornax fa v our smaller (core-like) DM inner
lopes, using axisymmetric Jeans analysis. Other authors finding a 
ikely core in Fornax include Walker & Penarrubia ( 2011 ), Jardel &
ebhardt ( 2012 ), and Pascale et al. ( 2018 ). A key difference between
ur work and previous work is the use of mock data to validate our
nferences. 

On the other hand, Draco, Sculptor, and Sextans show evidence for
 small core of about 100 pc. The left panel of Fig. E1 demonstrates
hat if the true profile is an NFW profile, the model posterior is
nlikely to resemble those of Draco, Fornax, Carina, Sculptor, and 
extans. Draco has been thought to be cuspy in prior works (Read
t al. 2018 , 2019b ; Hayashi et al. 2020 ); our finding is for a small
ore but with a high density, so in that regard all studies seem to
gree with each other. 
MNRAS 532, 4157–4186 (2024) 

 16 mock data sets with NFW DM profiles. The true value of log 10 [ r core / kpc ] 
 log 10 space (corresponding to r core = 0 . 01 kpc). Right: The 16 mock data 
 26 kpc) and is indicated by the black dotted line. 
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M

Figure E2. Posterior histograms of log 10 [ r core / kpc ], with observed dSphs in the three rows. Left: The 16 mock data sets with NFW DM profiles. The true value 
of log 10 [ r core / kpc ] is −∞ (corresponding to r core = 0 kpc), although we limit the parameter to −2 in log 10 space (corresponding to r core = 0 . 01 kpc). Right: 
The 16 mock data sets with cored DM profiles. The true value is −0.585 (corresponding to r core = 0 . 26 kpc) and is indicated by the black dotted line. Bottom 

three rows: Inferences of log 10 [ r core / kpc ] for the observed sample. The modes for Fornax and Carina are at approximately log 10 [ r core / kpc ] of −0.3 and −0.5, 
respectively, which correspond to r core of 0.3 and 0.5 kpc. The other galaxies have modes at or less than ∼ 0.1 kpc. 
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PPENDIX  F:  ANISOTROPY  AT  HALF-LIGHT  

ADIUS  

ig. F1 shows the true and predicted posteriors for the anisotropy
arameter β at the half-light radius for the mock data sets. Half of
he mock data sets are anisotropic o v er their entire range, while the
NRAS 532, 4157–4186 (2024) 
ther half have rising β profiles, with a true value between 0.4 and
.6 at the half-light radius. For the isotropic data sets, the model
redictions have median values centred near zero and with a range
f −0.2 to 0.2. For the anisotropic data sets, the model tends to
ystematically underestimate β, except for least embedded data sets
enoted in red. 
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Figure F1. True and predicted values for β( r 1 / 2 ) for the 32 mock data sets, se gre gated by embeddedness. The diagonal line indicates equality between the true 
and predicted values. 
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PPENDIX  G:  CORE  PARAMETER  

OSTERIORS  OF  THE  OBSERVED  SAMPLE  

he posteriors for c = r c /r s are shown in Fig. G1 . Most of the sample
hows a preference for nearly zero values of the core parameter, 
ndicating a density profile that is close to the NFW profile. Ho we ver,
ornax and Carina do have significant tails abo v e c = 1. In that area
f parameter space, the scale radius r s is smaller than the core radius
 c , so that they can be said to switch roles in defining the shape of
he profile (see equation 11 ). 
MNRAS 532, 4157–4186 (2024) 
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Figure G1. Posteriors of the core parameter, c = r c /r s for the bright MW dSphs. Only Fornax and Carina show a significant posterior above c = 1. 
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PPENDIX  H:  VELOCITY  DISPERSION  

NISOTROPY  IN  THE  OBSERVED  SAMPLE  

he posteriors for the anisotropy parameter β( r 1 / 2 ) for the observed
ample are shown in Fig. H1 . In the tests of the mock data in
redicting this parameter, the inferences had limited accuracy and
ended to understate the true value of β where the value was positive,
NRAS 532, 4157–4186 (2024) 
lthough the accuracy was better where the star populations were the
east embedded. Here, the inferences for Draco and Carina are for
ositive anisotropy, and as neither of the two are particularly deeply
mbedded (see Fig. I1 ), and given that a bias lower will cause their
rue anisotropy to be even higher, it seems likely that Draco and
arina are indeed likely to hav e positiv e anisotropy at their half-light

adii. 
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Figure H1. Posteriors of anisotropy parameter β at the half-light radius for the bright MW dSphs. 
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PPENDIX  I :  EMBEDDEDNESS  OF  THE  

BSERVED  SAMPLE  

ecause the degree to which the stellar population is embed- 
ed in the DM potential is an important factor for the accuracy
f the model, we examine this in Fig. I1 , which shows r 1 / 2 /r s 
or the observed sample. Sculptor and Fornax have lowest in- 
erences, with median values of 0.23 and 0.25, respectively. 
hough still less embedded than the most embedded mock data 
ets, the inferences for Sculptor and Fornax could be vulnerable 
o the types of biases seen in the most embedded mock data
ets. 
MNRAS 532, 4157–4186 (2024) 
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M

Figure I1. The posterior inference for r 1 / 2 /r s , which indicates the degree to which the stellar population is embedded in its DM halo, for the observed sample. 
The 68 per cent confidence intervals are shown. 
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PPENDIX  J :  LINE  FIT  FOR  DENSITY  VERSUS  

ERICENTER  

he power-law fit for the density ( ρ150 ) versus pericenter ( r p ) data
as determined by fitting a line of the form x = f + gy, with f and
 representing the intercept and slope, respectively. We have defined
 = log 10 [ r p / kpc ], y = log 10 [ ρ150 / (10 7 M �kpc −3 )], with δx and δy 
NRAS 532, 4157–4186 (2024) 
orresponding to the uncertainties on x and y , respectively. The fit
as determined according to the likelihood 

log ( L ) = −1 

2 

∑ 

i 

(
( x i − f − gy i ) 2 

σ 2 
i 

+ log 
(
2 πσ 2 

i 

))
, (J1) 

here σ 2 
i = g 2 δy 2 i + δx 2 i . The posteriors are shown in Fig. J1 . 
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Figure J1. Parameter posteriors and correlation for the best-fitting line of the 
form log 10 [ r p / kpc ] = f + g log 10 [ ρ150 / (M �kpc −3 )]. The shaded regions 
indicate the 1, 2, and 3 σ regions, respectively. The dotted lines indicate 
the 15.9, 50, and 84.1 percentiles, respectively, from left to right. 
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PPENDIX  K:  PERICENTER  VERSUS  DENSITY  

OMPARISONS  FOR  ALL  PHAT  ELVIS  HALOES  

ere we compare the DM density at 150 pc ( ρ150 ) versus orbital
ericenter distance to each of the Phat Elvis haloes (Kelley et al.
019 ). We examine subhaloes that are greater than 50 kpc from the
alactic center, and show the 20 subhaloes with the largest V peak . Fig.
1 shows the regression for the bright MW dSphs in red, and the
ost haloes from the Phat Elvis simulation in black and grey. 
MNRAS 532, 4157–4186 (2024) 
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Figure K1. The DM density at 150 pc ( ρ150 ) inferred from the DF fits for the bright MW dSphs versus orbital pericenter distance, in red, compared to the host 
haloes from the Phat Elvis simulation. For the simulated haloes, the black circles represent the 10 subhaloes with the largest V peak (i.e. the largest V max since 
their infall) that are currently more than 50 kpc from galactic center. The grey circles denote the 10th through 20th V peak subhaloes. 
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PPENDIX  L:  COMPARISON  WITH  OTHER  

OURCES  

o address the concern that the heavier MW models of Battaglia 
t al. ( 2022 ) might result in a different result as to the anticorrelation
igure L1. DM density at 150 pc ( ρ150 ) inferred from the DF fits for the 
right MW dSphs versus orbital pericenter distance ( r p ), in blue, similar 
o Fig. 14 but now using the heavy MW model of Battaglia et al. ( 2022 ) 
nd comparing to host halo 609 of the Phat Elvis simulation (Kelley et al. 
019 ). The error bars indicate the 68 per cent confidence interval. The best fit 
ine through the observations is shown in dashed blue, with the 68 per cent 
onfidence interval in light blue. The black circles indicate the 10 subhaloes 
ith current radial positions greater than 50 kpc and with the largest V peak for 
ost halo 609 of the Phat Elvis simulation. The grey circles denote the 10th 
hrough 20th largest V peak subhaloes. The best-fitting regression line for the 
hat Elvis points is shown as a black dashed line. 
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igure L2. Comparison of recent orbital pericenter data sets. The values used in t
o LMC) noted with ∗∗. 
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etween density and pericenter, we examine the heavier case in 
ig. L1 . In that figure we use the pericenters from the heavier MW
odel, with mass 1 . 6 × 10 12 M �. The anticorrelation between ρ150 

nd pericenter is evident. The black and grey dots in the figure are
rom Phat Elvis halo 609, which has a mass of 1 . 58 × 10 12 M �, the
ost similar to that of the heavy MW model. 
In Fig. L2 , we compare orbital pericenter data from Patel et al.

 2020 ), Battaglia et al. ( 2022 ), and Pace et al. ( 2022 ). We note the
ersion we adopt in our main analysis in black. The data sets are
airly consistent given their stated uncertainties. The most tension 
ppears in the projections for Sculptor, which has the smallest error
ars of the nine dSphs. 
In Cardona-Barrero et al. ( 2023 ), the authors closely examine

he correlation of ρ150 with pericenter between a variety of data 
ets. F or central densities, the y use the density results of Kaplinghat
t al. ( 2019 ), Read et al. ( 2019b ), and Hayashi et al. ( 2020 ). For
ericenter distance they use the data of Fritz et al. ( 2018 ), Battaglia
t al. ( 2022 ), and Pace et al. ( 2022 ), some of which have different
ass assumptions for the MW and may or may not attempt to

ccount for the LMC. They conclude that the anticorrelation appears 
tatistically significant in some combinations of data sets but not 
thers. Specifically, they find that the Kaplinghat et al. ( 2019 ) density
ata yields a substantial correlation, the Hayashi et al. ( 2020 ) data
ead to weak correlation, and that the uncertainties in the density are a
ey determinant of the strength of the correlation. This lends support
o our results since the ρ150 uncertainties are generally smaller than 
hose of other results. Fig. 13 compares those results, and we point
ut that we assess an uncertainty which is much smaller than that
btained by Hayashi et al. ( 2020 ), which used a completely different
ethod. The caveat here is that spherical symmetry needs to be
 good working hypothesis for dSph DM haloes, as our analysis
ssumes such symmetry but the analysis of Hayashi et al. ( 2020 )
oes not. Furthermore, Cardona-Barrero et al. ( 2023 ) find that the
ata is better described by models in which the central density ρ150 

ecreases as function of r p , which contrasts with most of the Phat
lvis simulations (Fig. K1 ). 
MNRAS 532, 4157–4186 (2024) 

he main analysis of this work are those of Battaglia et al. ( 2022 )(light MW, 
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Figure M2. A histogram of the error between the reprojected pericen- 
ters and the true values from the Phat Elvis simulation, in dex (i.e. 
log 10 [ peri reproj / peri true ]). The 16th, 50th, and 84th percentile values are 
indicated with vertical lines. 
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PPENDIX  M:  PERICENTER  REPROJECTIONS  

OR  PHAT  ELVIS  SUBHALOES  

ere, we examine the impact of using static, axisymmetric potentials
nd z = 0 initial conditions to project subhalo pericenter distances,
s is done in Patel et al. ( 2020 ), Battaglia et al. ( 2022 ), and Fritz
t al. ( 2018 ). Our subhalo sample is constructed by starting with the
ubhaloes of all 12 host haloes from the Phat Elvis simulation (Kelley
t al. 2019 ), then selecting the 20 subhaloes with the largest V peak from
ach host family that are within the host’s virial radius. As a starting
oint for orbital integration, we use the positions and velocities of the
ubhaloes at z = 0, and project backwards in time to find pericenter.
he orbital integrations are done in the GALPY software package

Bo vy 2015 ). F or each of the 12 host haloes, the potential is based
n the ‘MWPotential2014’ potential of GALPY , which was obtained
y fitting to a wide variety of data on the MW. It is the sum of three
omponents: (i) a ‘Power Spherical Potential with Cutoff’ with mass
 . 5 × 10 9 M �, (ii) a Miyamoto Nagai Potential with mass 6 . 81 ×
0 10 M �, and (iii) an NFW potential. For our purposes, the NFW
omponent’s mass is adjusted so that the sum of the masses of the
odelled potentials are the same as that of the corresponding Phat
lvis host halo. 
Fig. M1 compares the reprojections of pericenter using the method

escribed abo v e to the true values for the Phat Elvis subhaloes. In
eneral, there is good agreement with the true value, although the
eprojections exhibit a mild tendency to be underestimated, and there
re more outliers on the side of underprojection. The 16th, 50th, and
4th percentile values of the errors are −0.14, −0.01, and 0.05 dex,
espectively, as shown in the histogram of Fig. M2 . 
NRAS 532, 4157–4186 (2024) 

igure M1. Comparison of the true pericenter distances ( y -axis) with 
rojections of pericenter using a static, axisymmetric potential ( x -axis) for 
he subhaloes with the largest V peak in the 12 Phat Elvis hosts. The solid black 
ine indicates equality, the dashed blue line indicates 25 per cent error, and 
he dotted red line indicates 50 per cent error. 
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PPENDIX  N:  POSSIBLE  EFFECTS  FROM  

IDAL  TRUNCATION  

s a satellite galaxy falls into the potential well of our Galaxy, the
uter part of the satellite’s DM halo may become stripped by tidal
orces, resulting in a DM profile that may not be well modelled by
he cNFW profile. To investigate the possible effects of this tidal
runcation, we calculate the radius of truncation based on the method
n Jiang et al. ( 2021 ), equation (S9), which is 

 
3 
t ≈ r 3 

(
m sat ( r t ) /M host ( r) 

)/ (
2 − d ln M host / d ln r + v 2 tan /v 

2 
circ 

)
, 

(N1)

here r t is the tidal truncation radius of the satellite, m sat ( r t ) is the
ass of the satellite within the tidal truncation radius, r is the distance

f the satellite from the host centre, M host ( r) is the mass of the host
alaxy within radius r , v tan is the tangential velocity of the satellite,
nd v circ is the circular velocity of the host potential at the radius in
uestion. For m sat ( r t ), we compute the mass using the cNFW profile.
or M host ( r), we use the ‘MWPotential2014’ model in the GALPY

oftware package (Bovy 2015 ). 
For our purposes, we wish to calculate the truncation radius at

ericenter, as any satellite that has made at least one pericenter
assage will have been truncated to the maximum extent. To obtain
he tangential velocity at pericenter, we assume that the satellite’s

otion conserves angular momentum about the galactic center, so
hat v tan ( r p ) = v tan ( r 0 ) r 0 /r p . F or consistenc y, we use Fritz et al. ( 2018 )
ables 2 and 3 for the values of v tan ( r 0 ), r 0 and r p , corresponding

o their Milky Way mass model with mass 10 12 M �. The resulting
runcation radii r t and the ratios for r t /r max for the observed sample
re shown in Table N1 . None of the satellites in the sample are
e verely truncated. Relati ve to their r max , the most truncation occurs
n Sextans and Ursa Minor. 
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Table N1. Calculated tidal radii for the bright MW dSphs, as compared to 
r max and in kpc. The median posterior value and the 68 per cent confidence 
intervals are indicated. 

MW dSph Name r t /r max r t ( kpc ) 

Draco 1 . 40 + 0 . 89 
−0 . 56 3 . 61 + 2 . 28 

−1 . 36 

Fornax 1 . 48 + 0 . 66 
−0 . 63 20 . 00 + 10 . 20 

−8 . 59 

Carina 1 . 60 + 0 . 36 
−0 . 47 10 . 69 + 3 . 60 

−3 . 21 

CVn I 2 . 22 + 3 . 80 
−1 . 65 5 . 04 + 6 . 63 

−3 . 89 

Leo I 3 . 14 + 5 . 19 
−2 . 20 4 . 44 + 7 . 54 

−3 . 10 

Leo II 4 . 79 + 10 . 75 
−3 . 47 3 . 62 + 7 . 81 

−2 . 62 

Sculptor 1 . 66 + 0 . 53 
−0 . 51 7 . 09 + 3 . 00 

−1 . 76 

Sextans 1 . 29 + 0 . 77 
−0 . 42 4 . 67 + 1 . 77 

−1 . 20 

Ursa Minor 1 . 34 + 1 . 20 
−0 . 59 3 . 73 + 2 . 66 

−1 . 46 
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As a check on the possible impact of tidal truncation on our models,
e modelled an abruptly truncated halo with truncation radius of 1.5 
 max . That is, we define a new profile as follows: 

( r) = 

{
ρNFW ( r) , r < = 1 . 5 r max , 

0 , r > 1 . 5 r max 
(N2) 

e chose 1 . 5 r max as a test value because several of the observed
Sphs in Table N1 have truncation radii approximating that value. 
e reran the DF model using this density profile and its associated

otential for three of the observ ed dSphs: Draco, Se xtans and Ursa
inor. We found that the impact of the truncation is modest, with

 max increasing 0.1 to 0.2 dex, V max increasing typically ≈ 0 . 1 dex,
nd ρ150 decreasing 0 to 0.2 dex. A more robust approach would
e to allow the truncation radius to be a varying parameter in the
odel; we hope to do so in future work. At present, we are satisfied

hat abrupt tidal truncation at 1.5 r max does not seem to have a strong
mpact on our inferences. 

PPENDIX  O:  MOCK  DATA  

HARACTERISTICS  

n the Table O1 , we report the main ingredients characterizing the
ock data set analysed in our study. 
MNRAS 532, 4157–4186 (2024) 
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Table O1. Mock data characteristics. The columns, from left, are (1) ID number, (2) ID string, (3) the number 
of stars in the data set, (4) DM profile type, (5) log slope of the inner stellar profile, (4) scale radius of the stellar 
profile, (6) anisotropy radius of the stellar profile, (7) 3D half-light radius, and (8) VSP of the data set. 

Number ID w DM profile γ∗ r ∗ (kpc) r a (kpc) r 1 / 2 (kpc) VSP (10 3 km 
4 / sec 4 ) 

1 aaaO-4639 4639 Cored 0.1 0 .1 1 0.122 4 . 25 + 1 . 59 
−0 . 75 

2 aabO-4941 4941 Cored 0.1 0 .1 10000 0.119 3 . 08 + 0 . 62 
−0 . 43 

3 abaO-1801 1801 Cored 0.1 0 .25 1 0.310 25 . 87 + 6 . 29 
−3 . 95 

4 abbO-5483 5483 Cored 0.1 0 .25 10000 0.300 23 . 00 + 2 . 20 
−1 . 79 

5 acaO-3904 3904 Cored 0.1 0 .5 1 0.596 94 . 09 + 10 . 67 
−7 . 99 

6 acbO-2607 2607 Cored 0.1 0 .5 10000 0.588 84 . 75 + 12 . 34 
−9 . 30 

7 adaO-1980 1980 Cored 0.1 1 .0 1 1.233 231 . 66 + 25 . 55 
−22 . 09 

8 adbO-1441 1441 Cored 0.1 1 .0 10000 1.251 172 . 54 + 15 . 29 
−14 . 22 

9 baaO-1826 1826 Cored 1.0 0 .1 1 0.093 2 . 89 + 2 . 26 
−0 . 80 

10 babO-2156 2156 Cored 1.0 0 .1 10000 0.090 1 . 80 + 0 . 72 
−0 . 40 

11 bbaO-1776 1776 Cored 1.0 0 .25 1 0.238 17 . 31 + 5 . 25 
−3 . 04 

12 bbbO-3368 3368 Cored 1.0 0 .25 10000 0.227 15 . 07 + 2 . 67 
−1 . 87 

13 bcaO-2107 2107 Cored 1.0 0 .5 1 0.463 70 . 06 + 12 . 83 
−9 . 49 

14 bcbO-2349 2349 Cored 1.0 0 .5 10000 0.464 50 . 70 + 8 . 25 
−5 . 63 

15 bdaO-2677 2677 Cored 1.0 1 .0 1 0.913 164 . 09 + 17 . 59 
−14 . 81 

16 bdbO-2456 2456 Cored 1.0 1 .0 10000 0.914 113 . 42 + 8 . 75 
−8 . 47 

17 aaaN-2358 2358 NFW 0.1 0 .1 1 0.121 3 . 73 + 0 . 45 
−0 . 39 

18 aabN-3539 3539 NFW 0.1 0 .1 10000 0.122 3 . 04 + 0 . 23 
−0 . 21 

19 abaN-2975 2975 NFW 0.1 0 .25 1 0.294 12 . 40 + 1 . 23 
−1 . 04 

20 abbN-4239 4239 NFW 0.1 0 .25 10000 0.300 9 . 06 + 0 . 52 
−0 . 47 

21 acaN-1088 1088 NFW 0.1 0 .5 1 0.600 20 . 78 + 2 . 64 
−2 . 22 

22 acbN-550 550 NFW 0.1 0 .5 10000 0.603 15 . 12 + 2 . 46 
−2 . 17 

23 adaN-1860 1860 NFW 0.1 1 .0 1 1.238 30 . 86 + 3 . 40 
−2 . 96 

24 adbN-826 826 NFW 0.1 1 .0 10000 1.226 23 . 92 + 3 . 38 
−2 . 76 

25 baaN-1533 1533 NFW 1.0 0 .1 1 0.096 2 . 96 + 0 . 49 
−0 . 36 

26 babN-1491 1491 NFW 1.0 0 .1 10000 0.092 2 . 43 + 0 . 37 
−0 . 28 

27 bbaN-1214 1214 NFW 1.0 0 .25 1 0.238 6 . 68 + 0 . 75 
−0 . 65 

28 bbbN-1153 1153 NFW 1.0 0 .25 10000 0.224 7 . 27 + 0 . 76 
−0 . 71 

29 bcaN-2054 2054 NFW 1.0 0 .5 1 0.453 16 . 46 + 1 . 61 
−1 . 40 

30 bcbN-1222 1222 NFW 1.0 0 .5 10000 0.434 14 . 89 + 1 . 57 
−1 . 38 

31 bdaN-2912 2912 NFW 1.0 1 .0 1 0.953 25 . 33 + 2 . 03 
−1 . 80 

32 bdbN-1524 1524 NFW 1.0 1 .0 10000 0.925 24 . 24 + 2 . 18 
−2 . 07 

This paper has been typeset from a T E 
X/L A T E 

X file prepared by the author. 

© 2024 The Author(s). 
Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative Commons Attribution License 

( https://cr eativecommons.or g/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/532/4/4157/7718108 by U
C

 - Irvine user on 24 July 2025

https://creativecommons.org/licenses/by/4.0/

	1 INTRODUCTION
	2 DF MODELS
	3 MOCK DATA MODELLING
	4 BRIGHT DWARF SPHEROIDAL MODELS: CONSTRAINTS ON THE HALO PARAMETERS
	5 THE DIVERSITY OF DSPHS
	6 COMPARING THE DF METHOD TO OTHER METHODS
	7 INCONSISTENCY WITH SIMULATION: DENSITY AT 150PC VERSUS PERICENTER DISTANCE
	8 CONCLUSIONS
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY
	REFERENCES
	APPENDIX A: COMPARISON TO STRIGARI ET AL. (2017)
FOR SCULPTOR
	APPENDIX B: VIRIAL SHAPE PARAMETER
	APPENDIX C: FULL LIKELIHOOD FUNCTION
	APPENDIX D: BINNING OF VELOCITY DISPERSION DATA
	APPENDIX E: CORE RADII INFERENCES FOR MOCK DATA AND OBSERVED DWARFS
	APPENDIX F: ANISOTROPY AT HALF-LIGHT RADIUS
	APPENDIX G: CORE PARAMETER POSTERIORS OF THE OBSERVED SAMPLE
	APPENDIX H: VELOCITY DISPERSION ANISOTROPY IN THE OBSERVED SAMPLE
	APPENDIX I: EMBEDDEDNESS OF THE OBSERVED SAMPLE
	APPENDIX J: LINE FIT FOR DENSITY VERSUS PERICENTER
	APPENDIX K: PERICENTER VERSUS DENSITY COMPARISONS FOR ALL PHAT ELVIS HALOES
	APPENDIX L: COMPARISON WITH OTHER SOURCES
	APPENDIX M: PERICENTER REPROJECTIONS FOR PHAT ELVIS SUBHALOES
	APPENDIX N: POSSIBLE EFFECTS FROM TIDAL TRUNCATION
	APPENDIX O: MOCK DATA CHARACTERISTICS

