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ABSTRACT

We provide new constraints on the dark matter halo density profile of Milky Way (MW) dwarf spheroidal galaxies (dSphs) using
the phase-space distribution function (DF) method. After assessing the systematics of the approach against mock data from the
Gaia Challenge project, we apply the DF analysis to the entire kinematic sample of well-measured MW dwarf satellites for the
first time. Contrary to previous findings for some of these objects, we find that the DF analysis yields results consistent with
the standard Jeans analysis. In particular, in this study we rediscover (i) a large diversity in the inner halo densities of dSphs
(bracketed by Draco and Fornax), and (ii) an anticorrelation between inner halo density and pericenter distance of the bright
MW satellites. Regardless of the strength of the anticorrelation, we find that the distribution of these satellites in density versus
pericenter space is inconsistent with the results of the high-resolution N-body simulations that include a disc potential. Our
analysis motivates further studies on the role of internal feedback and dark matter microphysics in these dSphs.
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1 INTRODUCTION

The prevailing theory of the evolution of the Universe, Lambda cold
dark matter (ACDM), is quite successful in predicting the large scale
structures we observe today. On subgalactic scales, discrepancies
between predictions and observations begin to emerge (Bullock &
Boylan-Kolchin 2017; Simon 2019). Among the so-called small-
scale puzzles, the too-big-to-fail (TBTF) problem (Boylan-Kolchin,
Bullock & Kaplinghat 2011; Kaplinghat, Valli & Yu 2019) for the
observed bright dwarf spheroidal galaxies (dSphs), satellites of the
Milky Way (MW) has received a lot of attention.

MW dSph galaxies are dark matter (DM)-dominated objects
(Walker et al. 2006), primarily dispersion-supported (Wheeler et al.
2017), and benefit from the availability of increasingly precise stellar
data thanks to instruments such as the Gaia satellite (Brown et al.
2018). It follows that these galaxies may represent one of the most
important laboratories in order to investigate and decipher the nature
of DM (for example, see recent reviews of Buckley & Peter 2018;
Adhikari et al. 2022; Sales, Wetzel & Fattahi 2022).

Stars in dSphs can be typically modelled as tracers in a colli-
sionless system. By observing their position and velocity one can
draw conclusions about the nature of the underlying potential, and
consequently the distribution of DM. This kind of analysis commonly
employs one of three methods (Binney & Tremaine 2008; Strigari
2018; Battaglia & Nipoti 2022): (a) Jeans analysis, (b) Schwarzschild
modelling, or (c) phase-space distribution function (DF) modelling.

Jeans equations relate second-order velocity moments to the
density and total gravitational potential of a collisionless system
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(Jeans 1915; Binney & Tremaine 2008). Under the assumption of
spherical symmetry, the three Jeans equations stemming from the
collisionless Boltzmann equation collapse into a single one. Despite
the simplification, even the spherical Jeans equation suffers from
a well-known degeneracy between mass and velocity anisotropy
profile of the system (Binney & Mamon 1982), and several ideas
have been put forward to ameliorate this issue (see e.g. Binney &
Tremaine 2008; Walker & Penarrubia 2011; Diakogiannis, Lewis &
Ibata 2014; Pace et al. 2020). Utilizing moments of velocity higher
than second order is one method of addressing this issue (see e.g.
Lokas & Mamon 2003; Richardson & Fairbairn 2014; Kaplinghat
et al. 2019; Read, Walker & Steger 2019b).

The spherical Jeans equation has been a playground for a multitude
of studies on dSph kinematics (Strigari et al. 2007; Battaglia et al.
2008; Evans, An & Walker 2009; Strigari et al. 2008; Walker
et al. 2009; Hayashi & Chiba 2012; Zhu et al. 2016; Diakogiannis
et al. 2017; Hayashi, Chiba & Ishiyama 2020). More recently, Read
et al. (2019b) used the Jeans equation solver gravsphere and
fourth-order velocity moments to examine the inner densities of
MW classical dwarfs. Kaplinghat et al. (2019) also performed a
spherical Jeans analysis coupled with fourth-order velocity moments
to predict the inner densities of bright MW dSphs. Chang &
Necib (2021) and Guerra, Geha & Strigari (2021) used the Jeans
approach to examine the inner halo density profile in simulated
dwarf galaxies to eventually report that only with the radial velocity
data from (O(10%) stars could cusps and cores could be easily
distinguished.

Going back to the seminal paper of Schwarzchild (1980), orbit-
based models consist of integrating particle paths in a given potential
in order to create an ‘orbit library’. Consequently, a numerical
approximation to system’s phase space DF can be obtained as a
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superposition of the orbit library elements (Jardel & Gebhardt 2012;
Breddels et al. 2013; Breddels & Helmi 2013; Jardel et al. 2013;
Kowalczyk, Lokas & Valluri 2017, 2018; Hagen, Helmi & Breddels
2019; Kowalczyk et al. 2019). Contrary to the Jeans approach, the
Schwarzschild one does not require any assumption on the orbital
anisotropy profile of the system that can be a posteriori computed
without any a priori ansatz. For this reason, the Schwarzschild
modelling has been adopted to some extent to analyse mock and
observed MW dSph kinematic data (Van Den Bosch et al. 2008;
Breddels et al. 2012; Jardel & Gebhardt 2012; Jardel et al. 2013;
Kowalczyk et al. 2017; Kowalczyk & Lokas 2022, as examples).
The Schwarzschild method is quite general, relying essentially on
the assumption of dynamical equilibrium for the system and on the
geometry of the problem. Nevertheless, it remains computationally
demanding once a marginalization over unknowns related to the
assumed total gravitational potential has to be performed. Addition-
ally, it has the additional drawback of yielding an approximated DF
intelligible only numerically.

Differently from methods (a) and (b), method (c) — the phase-
space DF approach — requires an analytic ansatz in six dimensions
(3 in position, 3 in velocity) for the probability distribution of the
stellar system in their DM potential. The ansatz is typically obtained
exploiting Jeans’ theorem, i.e. expressing the DF via the integrals
of motion. This approach allows for flexible forms for the stellar
distribution, and can also allow consideration of velocity moments
above second order, potentially mitigating the mass-anisotropy
degeneracy of the spherical Jeans analysis. As examples, Wu &
Tremaine (2006) used the DF method to derive the mass distribution
of Messier 87 using its globular clusters as tracers. More recently,
regarding the case of MW dSphs Strigari, Frenk & White (2017)
used an approximate DF model to examine the DM profile of the
Sculptor dwarf galaxy.

Recent examples of hybrid applications of the DF approach with
the Jeans equation can be found in Lokas, Mamon & Prada (2005),
Lokas (2009), Strigari, Frenk & White (2010), Battaglia, Helmi &
Breddels (2013), Breddels & Helmi (2013), Ferrer & Hunter (2013),
Lacroix, Stref & Lavalle (2018), Petac, Ullio & Valli (2018), Li et al.
(2020), Li & Widrow (2021), and Read et al. (2021). On top of that,
examples of studies utilizing multiple chemo-dynamical populations
are also present in the literature (see Battaglia et al. 2008; Agnello &
Evans 2012; Amorisco & Evans 2012; Zhu et al. 2016; Strigari et al.
2017; Pascale et al. 2018).!

The central profiles and densities of dwarf galaxies have long
presented challenges to the ACDM model of galaxy formation
(Salucci & Burkert 2000; Hayashi et al. 2003; Governato et al.
2010; Weinberg et al. 2015). More recently, it has been asserted
that there is an anticorrelation between the central densities of the
MW dSphs and their pericentre distances (Kaplinghat et al. 2019).
In this work, we reexamine that relationship. Here, we apply the DF
method to the kinematic data of the bright MW dSphs with the aim of
providing a new, theoretically broad study of the DM content in these
galaxies that is completely decoupled and, hence, complementary to
the Jeans approach, along the lines of what was carried out originally
in Strigari et al. (2017). In order to validate our modelling method,
we first examine 32 mock data sets of various configurations from
the Gaia Challenge project (Read, Gieles & Kawata 2019a). We
then analyse the bright dSphs of the MW: Draco, Fornax, Sculptor,
Carina, Sextans, Leo I, Leo II, Ursa Minor, and Canes Venatici 1.

'Regarding this point, in this work we will not entail any metallicity
distinction in the stellar population of an MW satellite.
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We show that with the DF approach it is possible to constrain the
DM halo of these galaxies in the inner regions with similar precision
to the one previously obtained in literature with the Jeans approach
(Kaplinghat et al. 2019; Read et al. 2019b). We have chosen to use
the DM density at 150 pc, pis0, as the key metric for inner density.
While not perfect, it is a good parameter for encapsulating the inner
density for haloes in this size range, and is at a radial position that
lends itself well for inferences by stellar data. Moreover, it was used
by several prior authors (Read et al. 2018, 2019b; Kaplinghat et al.
2019; Hayashi et al. 2020) and thus facilitates comparisons.

A key result of this work is an inference of the inner density of
the bright MW dSphs using a uniform set of priors and a generalized
DF. It serves as a test of dark matter physics [see recent work, for
instance, Valli & Yu (2018); Read et al. (2018); Kaplinghat et al.
(2019); Nadler et al. (2019, 2021a, b); Correa (2021); Kim & Peter
(2021); Slone et al. (2021); Yang, Nadler & Yu (2023)] and provides
constraints on dark matter models [see the recent review of Adhikari
et al. (2022) in this regard]. In particular, we show that the central
densities (inferred within 150 pc) of the bright MW dSphs vary by a
factor of ~5, with Fornax and Carina on the low end, and Draco and
Leo I on the high end.

When the inner densities of the MW dSphs are compared to
their pericenter distances, an interesting anticorrelation emerges
(Kaplinghat et al. 2019). We re-examine and confirm this relation.
The distribution of the MW dSphs in the density-pericenter plane
appears to be in stark conflict with the result of the ‘Phat Elvis” N-
body simulation in Kelley et al. (2019), which examined MW-like
haloes with a disc potential. This is our second key result: we find
that the distribution of the bright MW dSphs in density-pericenter
space is starkly inconsistent with high-res ACDM N-body simulation
results. Solutions to the TBTF problem and, in general, all particle
physics models that predict deviations on subgalactic scales from the
ACDM model should include information about the orbits of dSphs
when looking for consistency with dark matter density inferences.

This paper is organized as follows: Section 2 develops the theory of
the DF approach and lays the foundation for our statistical analysis.
In Section 3, we present the mock data validation. Section 4 contains
the results of applying the model to the bright MW dSphs, and, in
particular, constraints on ry,x and V.. In Section 5, we zoom on
Draco and Fornax as representatives of the diversity among the bright
MW dSphs emerging from our DF approach. In Section 6, we detail
our inference for all the bright dSphs of 7max, Vinaxs 0150, as well as
mass estimates within various radii, offering also a direct comparison
with the recent studies on the subject based on the Jeans approach.
We examine the anticorrelation of p;s5p and pericenter distance in
Section 7. We present our conclusions in Section 8. Further details
on our analysis and interesting cross-checks related to our study can
be found in Appendices A-O.

2 DF MODELS

Let us start by describing our approach in modelling the stellar and
DM distributions in dSphs. It is possible to describe the position and
velocity of stars (or other objects) in a galaxy using a phase-space
DF in six dimensions, three for position and three for velocity. Our
intent is to use DFs to analyse the bright dSphs of the MW, using the
stars as tracers to determine the DM distribution.

We define a Cartesian coordinate system, centred on the galaxy
centre, with the z-axis along the line of sight (LOS) to the system.
The projected radius of a star as seen from the observer is then
R = /x% + y2. An individual star will have a position coordinate
x, given by (x, y, z). The star will have a velocity vector v, with
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components (vy, vy, v,). We also define 7 to be the angle between x
and v.

We can introduce the DF f such that f(x, v, )d’x d’v is the
probability of finding a star in the infinitesimal volume element
d*x d*v. Under the assumption of dynamical equilibrium, the DF
can be regarded as constant in time, f(x, v). We require DF to be
normalized to one over all phase space according to the definition of
probability distribution.

Motions of particles like stars in a stationary potential can
be determined by the collisionless Boltzman equation. Under the
approximation of spherical symmetry, the Strong Jeans Theorem then
tells us that solutions to the collisionless Boltzman equation depend
only upon two integrals of motion, the orbital energy E, and the total
angular momentum L (Binney & Tremaine 2008).

Given a spherically symmetric potential ®, the energy of a star
per unit mass is given by E(r, v) = ®(r) + v2/2, and the angular
momentum per unit mass corresponds to L(r, v) = rv sinz. Several
useful quantities can be derived from the DF, including the density
profile, the radial velocity dispersion profile, and the tangential
velocity dispersion profile (Binney & Tremaine 2008; Strigari et al.
2017):

T Vlim
w(r) = /d% f(x,v)=27r/ dn sinn/ dvv? f(E, L), (1)
0 0
) 27-( 7T . ) Vlim 4
o (r)=— dn sinn cos“n dv f(E, L) v", 2)
Mn Jo 0
T T Ulim
ol(r) = 7/ dn sin®n / dv f(E, L) v*, 3)
n Jo 0

We define p(r) as the probability per unit volume of finding a star
at radius . The number density of stars at radius r is then

n(r)=w u(r), 4

where w is the total number of stars in the population. We de-
fine the velocity above which stars become unbound as vy, =

V2(Pji — P(r)), where ®&(r) and Py, are given explicitly in
Section 2.1 for specific cases that are relevant for our analysis. The
total velocity dispersion can be found by combining the radial and
tangential components:

oo(r) = a7 (r) + 207 (r). )

The projected stellar density X, at a radius R can be found by
integrating over the LOS:

oo
%(R) = 2/ dz n(r), (6)
0
where r = z2 + R?. The LOS velocity dispersion can be found from

0o 252 4 R252
.(R) USOS(R) — 2/ dz n(r)u
0

Z2 +R2

7T Vlim
= 27rw/ dn sinn/ dvv*

0 0

00 2 (e 2 in2

(2z° cos™ n + R”sin“ n)
./ d E, L), 7
/0 z s f(E. L) @)

Higher order moments of velocity can also be predicted by this
method. We will use a VSP that is the fourth moment of velocity in
our analysis. For our purposes we opt to compute the global VSP
rather than one that varies with radius, which helps to minimize
noise in the calculation. The derivation of the VSP is presented in
Appendix B.
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2.1 Halo DM profiles

We consider here the total stellar mass of the system to be negligible
in comparison to that of the DM — a good approximation for the study
of MW dSphs — and so the stars are tracers of the DM potential but
do not influence it. We will consider three potential/density profiles:
‘NFW’, ‘cored’, and ‘cNFW’. The NFW and cored profiles can be
completely described by two parameters, while the cNFW profile has
one additional parameter, the core parameter ‘c’. The cNFW core
parameter ¢ = r./rs, where log,,[r./kpc] is the parameter used in
the model (which we distinguish from the core radius 7o, defined
below). We also use the scale radius ry and scale velocity v as
specifying parameters for all three profiles. The scale density ps and
the scale potential & are determined via the relation &3 = U52 =
4 Grs2 ps, where G represents Newton’s gravitational constant.

Let x = r/r,. The NFW profile density and potential pair is then

Ps
=, 8
= ®)
and the corresponding gravitational potential becomes
1 1
() = o, (1 _ gt D )> . ©)
X

Note that ® has been defined so that it is non-negative everywhere,
with a value of zero at r = 0, and goes to &, as r — oo.

Define the peak circular velocity in a potential as Vi, and the
radius at which the peak occurs as ry.x. For the NFW profile, it can
be shown that rp. = 2.163 rg, and Ve = 0.465 vs.

The ‘cored’ profile is a generalized Hernquist profile (Hernquist
1990; Zhao 1996) of the form

Ps
(x+ 137

with underlying gravitational potential

x(x+2)—2x+ Dlog(x + 1)
2x (x + 1) '

pr) =

(10)

Q)(r): Dy

The potential in the cored case has a zero value at r = 0, and goes to
®,/2 as r — oo. For the cored case, ry.x = 4.4247 ry, and Vipx =
0.3502 vy.
The cNFW profile is defined as
_ Ps

x+o)(x+ 1>’

with potential being

[N x(c—=1)
(c—1)? ( x+1

p an

o(r) =

+ (1 —2¢)log(x + 1) + * log <¥>> .

This profile reduces to the canonical NFW form for ¢ — 0 and
reduces to the cored form when ¢ — 1. The relation for conversion
between 7 and rp,, (and similarly between vy and Vi) becomes
non-linear but can be solved numerically.

For all profiles, we define the core radius r.. as the radius at
which the DM density falls to 50 per cent of its central value. For
the NFW profile there is no core radius. For the cored profile, rcqe is
0.26 r,. For the cNFW profile, the core radius is a nonlinear function
of ¢ to be computed numerically. Finally, we define &, as the value
of the potential as r — oo.

2.2 Stellar DF form

We take the form of the stellar DF to be the product of an energy
function and an angular momentum function, following the ansatz

MNRAS 532, 4157-4186 (2024)
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Table 1. Parameter limits for the top-hat priors in our MCMC analysis. Units are kpc for r¢ and r., and km s~! for vs. The units for w are the
number of stars in the population. The other parameters are dimensionless. The parameters E. and ®jip, are made dimensionless by dividing by

@, for the distribution being used, and L, p is made dimensionless by dividing by rs+/®oo.

logio(g)  logio(ms)  logio(gs) a4

d  Oim e Lg bin bou o« logip(r)

Lower limit -2.5 0 -2 -4 01 001 -12 001 0.1 001 -10 -—-10 0.1 1
Upper limit 1 2.5 1 5 25 0 1 10 1 10 10 10 7
2.3 Approximate likelihood function
E4(EY + EOY1(Dyy — E)°, E < Dy - .
h(E) = 0 E > dy, 12) From the DF method, one can perform a statistical analysis to extract

bin bout a
1 L\ L\ «
g“’Z(z((Lﬁ) *(a) )) (3

with @ non-negative for by, <= by, and o negative for by, > boy.
The total DF is their normalized product:

J(E, L) =ns h(E) g(L), (14)

that multiplied by w yields the total phase-space density distribution
of w stars. In these equations, n¢ is a normalizing factor that ensures
that the DF integrates to unity over all phase space, i.e.

np = (/h(E)g(L)d3x d%)fl. (15)

The normalization factor is required so that the DF can be
interpreted as a probability density for finding a particle in a given
location in phase space. It is computationally expensive, because it is
a multidimensional integral that must be calculated at every iteration
in a Monte Carlo Markov Chain (MCMC) analysis. It might be argued
that ny changes little as the chain converges, so that its calculation
at every iteration is unnecessary. However, we found that changes
did indeed impact on the results, possibly through an impact on the
shape of the prior volume, and it is therefore necessary to calculate
at every iteration of the parameters.

Note that these expressions correspond closely to those reported
in Strigari et al. (2017), except we have inserted a factor of 1/2 in the
angular momentum function to ensure that the function transitions
smoothly as o changes sign, avoiding any parametric discontinuity in
our ansatz. We compare the results of Strigari et al. (2017) with ours
in Appendix A. The parameter &y, is a limiting potential beyond
which no stars exist, analogous to a tidal cut-off potential, and we
define ryip, as the radius at which this cut-off occurs for a particle with
zero velocity. The e parameter controls the shape of the tidal cut-off.
The parameters a and d control the log-slope of the energy response.
E. is a cut-off energy, below which the log-slope is approximately a,
and above which the log-slope is approximately a 4+ d. We restrict d
such that d < 0.

The parameter Lg characterizes the angular momentum scale, and
the parameters b;, and by, control the inner and outer log-slopes of
the angular momentum function, respectively. At angular momenta
> Lg, the log-slope is approximately by, and for angular momenta
<« Lpg the slope is approximately bj,. As a result, the parameters
b, and by, determine the anisotropy of the system. The anisotropy
parameter 8 is given by

B(r) =1 —0l(r)/al(r). (16)
If boy = 0, then B ~ —b;,/2 for L <« Lg. Similarly, if b, ~ 0, 8 ~
—bou/2 for L > Lyg.
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the halo parameters and constrain the DM profile based on the full
likelihood function discussed in Appendix C. A significant problem
with the full likelihood function is its intensive computation require-
ment. For each star, we are required to perform a multidimensional
integration of our DF. In particular, for data sets with hundreds or even
thousands of stars, the time to compute the normalized likelihood to
perform a Monte Carlo Markov Chain (MCMC) analysis becomes
computationally prohibitive. To make the model faster to calculate,
we therefore employ an approximation of the full likelihood as
described below.

Using the equations in Section 2 and Appendix B, the DF can be
used to make predictions of the radial profiles of surface density and
velocity dispersion, and a prediction of the (global) VSP. We can
compare these predictions to observed values from photometry (in
the case of surface brightness) or from spectroscopy (in the cases
of velocity dispersion and VSP). The surface density and dispersion
observations use binned data, with bins at 825 radial locations,
typically. The y? for each characteristic is calculated by comparison
of the predicted points with the observed values, relative to the
uncertainty in the observation:

, _ (data — prediction)”

17
uncertainty? an

The total x? is then the result of
Xiot = Xsp  Xisp + XVse- (18)

where the subscripts refer to surface density, dispersion and VSP,
respectively. We construct the log likelihood according to log £ =
—x2,/2. We perform a Bayesian analysis to derive parameter
posteriors. The model employs sampling via the EMCEE package
(Foreman-Mackey et al. 2019). Table 1 shows the upper and lower
parameter limits for the uniform priors adopted.

As described above, it is necessary to bin the data to make use
of this approximation method. For surface density data, the binning
is straightforward, because the uncertainty in the measurement is
determined by Poisson statistics. However, for the dispersion data,
the uncertainty is a combination of spectroscopic measurement
uncertainty and the intrinsic random variations of velocities of the
stars in each bin. As such, the binning process can make nontrivial
differences in the data and resulting inferences. We discuss the
binning process in detail in Appendix D. Importantly, we found
that using the logarithm of the dispersion resulted in Gaussian
distributions of the binned data values, while using the dispersion
itself did not. We use log,, velocity dispersion as the variable of
interest for Xdzisp'

To perform the multidimensional integrations, we used the VE-
GAS integration routine (Lepage 1978), which employs adaptive
importance sampling and is quite fast. We found that we had
to carefully check the convergence of the integrations, as some
parameter combinations would cause pathological problems.
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2.4 Derived parameters

Once the parameters specifying the DM potential and the DF are
inferred we can calculate distributions of surface density and velocity
dispersion at a range of radii, and we can derive other quantities of
interest such as the half-light radius r; >, the stellar orbital anisotropy
B, the DM density at 150 pc p;50, and the DM halo mass M.
Since the DF model makes a smooth prediction for surface density,
calculation of the half-light radius r,, is relatively straightforward.
The two-dimensional (2D) half light radius R; , satisfies the equation

Rip
fo Y(R)RAR _ l (19)

Sy S(RRR 2

where Ry, is the radius of the outermost surface density data point.
We verified that using Rp.x rather than an infinite limit did not
have a significant effect on the result. This equation can be solved
numerically; we then multiply the result by 1.33 to derive the three-
dimensional (3D) half-light radius. Wolf et al. (2010) found that the
ratio of 1.33 is valid for a variety of stellar profile shapes, and we
confirmed this to be a very good approximation for our own mock
data sets. We also verified that for the mock data sets, the value
obtained by this method was very close to the median radius of the
stars in the data set. We use the photometry integration method to
calculate the half-light radius posteriors directly from the density
predicted by the DF (see equation 1). In what follows, we will also
calculate M(< ry,,), the mass enclosed within the half-light radius.

3 MOCK DATA MODELLING

Testing the model with mock data allows us to validate our approach
and provides an indication of what we can reliably infer via our DF
method. We use mock data from the Gaia Challenge spherical data
sets (Read et al. 2019a). The Gaia Challenge data were developed
for the express purpose of modelling collisionless stellar systems
such as dwarf galaxies. We use the spherical versions to match our
modelling assumptions. Gaia Challenge employs two types of DM
distributions: cuspy (‘NFW’) and cored. There is also a variety of
stellar and anisotropy profile configurations, as we describe below.

3.1 Mock data characteristics

The stellar density profile in the mock data is given by a generalized
Hernquist profile (Hernquist 1990; Zhao 1996):

—5)

wor=n(2) (1 (2)) T 2

*

The parameter y, is set to 0.1 for the cored stellar profile and
1.0 for the cuspy stellar profile. The parameter r, determines how
embedded the star population is placed in the DM potential, and was
varied among four values: 0.1, 0.25, 0.5, and 1.0 kpc.

The DM potential in the mock data is either ‘cored’ or ‘NFW’,
as described in Section 2.1. The DM central density py is also
determined by this choice, with py = 400 x 10°Mokpc™ for the
cored case and py = 64 x 10°Mgkpc =2 for the NFW case. All of the
mock data sets have scale radius ry = 1 kpc. The scale velocity vy is
147.1 km s~! in the cored case and 58.8 km s~! in the NFW case.

The stellar velocity anisotropy profile is also varied among two
cases. The orbital anisotropy profile is varied according to an
Osipkov—Merrit form (Binney & Tremaine 2008): 8(r) = r2/(r* +
r2), where r, is the anisotropy radius. The parameter r, takes the
values of either 1 kpc or 10000 kpc. A value of 1 kpc creates
a profile in which B rises from 0 in the centre to 1 in the outer
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Figure 1. Typical fits to surface density (top), velocity dispersion (bottom),
and VSP (bottom, inset), in this case for mock data set 15 (ID bdaO_2677).
The data is shown in red and the best-fitting DF solution is shown in green.

parts, reaching 0.5 at a radius of 1 kpc. A value of r, > 10% kpc
creates essentially isotropic profiles with 8 = 0 everywhere. The
mock data sets therefore have 2 x 4 x 2 x 2 = 32 possible unique
configurations.

The Gaia Challenge data sets provide good model validation cases
for our model, since certain key parameters are known: rg, vg, and w.
The data sets contain multiple populations. We selected stars from
only one population in each set, and did not include non-member
foreground stars. The stars were binned into bins with equal number
of stars. We found that the data sets typically had a small fraction
of stars with very large orbital radii, which made the outer bins
very wide and presented computational challenges. To address this,
we opted to exclude the outermost stars from the data sets. Stars
farther than 5 half-light radii from the centre were excluded. Less
than 10 per cent of the stars from any data set were excluded in this
fashion, typically about 5 per cent. To simulate measurement error in
the line-of-sight velocities, Gaussian error was added with a standard
deviation of 2 km s~!. The data set characteristics are summarized
in Appendix O (Table O1).

3.2 Mock data modelling results

The approximate DF model was applied to the 32 mock data sets,
the results of which are presented below. Since we wish to simulate
that we do not have a priori knowledge of the DM profile, we used
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Figure 2. Posteriors for ryax versus Vimax for the 32 mock data sets. Left: 16 Cored profiles. Right: 16 NFW profiles. The 68 percent and 95 per cent levels
are shown, with the 68 per cent level in a darker colour. The black ‘X’ indicates the true value. The data sets are colour-coded by their embeddedness in the DM
halo. There are four sets for each value of embeddedness in each plot, sharing the same colour.

the cNFW profile in the model, in which the core size is a varying
parameter. The model found very good fits to the surface density
curves, dispersion curves and VSP values in all cases, with x? per
degree of freedom < 1.3 for all data sets. A typical fit is shown in
Fig. 1.

Fig. 2 shows the posterior inferences in ryax versus Vi, for the
32 mock data sets, with the true value shown as an ‘x’ near the
centres. We used GetDist (Lewis 2019) for two-dimensional plots.
The models have a wide diversity of shapes in the 7p.x—Vmax plane,
depending on the various profiles for DM density, stellar density,
anisotropy, and ‘embeddedness’ (i.e. the depth of the stars in the
DM potential). The figure is colour-coded by embeddedness, and
shows how the embeddedness impacts the shape of the posteriors,
the degeneracy characteristics between the two parameters, and the
inference capability. We found that the highly embedded data sets
(r«/rs = 0.1) were the least accurate in their inferences of rp,, and
Vmax, and that tendency carried over into inferences of many other
parameters. The model made reliable inferences for the data sets
with r, /r¢ >= 0.25. The reason for the difference is that the highly
embedded data sets do not trace the potential near the scale radius
75, and so have limited accuracy in that region.

Fig. 3 compares the posterior for the calculated half-light radius
to the true value, which is taken to be the median radius of the stars
in the data set. The accuracy is very good, with a difference of less
than 2 per cent between the median prediction and the true value for
all data sets.

The mass within the inferred half-light radius can be determined
for the cNFW profile by using the posterior values for r, v, and r..
Fig. 4 shows the true and predicted values for the mass within the
half-light radius for the mock data sets. The predictions are fairly
accurate for the data sets with r,/ry > 0.25, i.e. those not deeply
embedded in the DM potential. For the data sets with the lowest
mass enclosed (and correspondingly very deeply embedded in the
DM halo), the model tends to systematically overestimate the mass
enclosed.

Predictions for the density at 150 pc as compared to their true
values are shown in Fig. 5. The median predictions are generally
within 0.3 dex of the true value, with one case near 0.5 dex. In three
cases the true values were outside the 95 per cent confidence level of
the posterior, all of which were overestimations of the density.
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Figure 3. Predicted and true values for the half-light radius for the 32 mock
data sets, colour-coded by embeddedness. The predictions are determined
from the DF (see equation 1) by calculating and integrating the surface
density curve, finding the radius that yields have the total value (see equation
19). The error bars indicate the 68 percent confidence interval. The true
value is taken to be the median radius of the stars in the given data set.

In Appendix E, we show the details for the inference of the core
radius for the mock data set, with comparison to the inferences of
the observed dSphs. In Appendix F, we provide details of the models
prediction performance for the anisotropy parameter 8 at the half-
light radius.

3.3 Summary of model performance with mock data

The approximate DF model makes accurate predictions in the 7,x—
Vmax plane and for half-light radius of the data sets (Figs 2 and
3, respectively). The mass within the half-light radius is predicted
well for those data sets that are not too deeply embedded in the
DM potential. For the highly embedded data sets, there is a modest
tendency to overestimate the mass (Fig. 4). The density at 150 pc
(p150) is accurate to within 0.5 dex in all cases, and within 0.3 dex in
most cases (Fig. 5).
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Figure 4. Predicted and true values for the mass within the half-light radius
for the 32 mock data sets, colour-coded by their embeddedness in the DM
halo. The error bars indicate the 68 per cent confidence interval. The dashed
diagonal line indicates equality, with dotted lines indicating +0.1 dex.

The model shows some ability to distinguish between NFW and
cored profiles, which is evident in Fig. E1. The key difference lies in
how sharply the posterior gets small at small values of core radius.
Our mock data analyses reveals that if the posterior is peaked in core
radius, then it is likely a sign of a non-zero core radius if the stars
are not too deeply embedded. For deeply embedded stellar profiles,
it seems difficult to make this distinction. We also looked at the
predictions for B(r; ) and found them to be of limited accuracy. The
inferences become progressively less robust for cases that are deeply
embedded and that have rising 8 profiles (Fig. F1).

4 BRIGHT DWARF SPHEROIDAL MODELS:
CONSTRAINTS ON THE HALO PARAMETERS

We selected as our sample the eight classical dSphs of the MW, plus
Canes Venatici I, as shown in Table 2. The results from applying the
DF model are described here. We use cNFW as the DM profile, as
it is the most general of our profiles. For the distance to each target,
we adopt the median value of the distance shown in the second
column of Table 2. We use surface density data from Mufioz et al.
(2018). Dispersion data is from Mateo, Olszewski & Walker (2008),
Walker et al. (2009), Walker, Olszewski & Mateo (2015), Spencer
etal. (2017), and Walker (private communication). VSP data is from
Kaplinghat et al. (2019). The results from the analysis are discussed
here.

4.1 How surface density and velocity data constrain 7.y, Vinax,
and DM density

Here we ask: How do the various components of the data set put
constraints on key parameters such as 7y, Vmax, and (indirectly)
the DM density p;50? The parameters 7y, and Vi, are related in a
straightforward way to the scale radius r, and the velocity scale v, so
let us turn our attention to these. The prediction for surface density
is given by equations (1), (4), and (6), which in turn depends on the
potential, which is defined in terms of vs. Therefore, at first blush,
surface density appears to depend intimately on vs. However, it can
be demonstrated numerically that there is very little dependence. This
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can be explained as follows. Assume for the moment that a particle
is not near the tidal limit, so we can ignore the term (®yi,, — E) in
equation (12). Note that the energy of a particle is given by E(r, v) =
d(r) + %vz. For stars near the centre of the galaxy, the second term
is dominates, and E o v2, independent of vs. For stars far from the
centre (but not near the tidal limit), the potential term dominates,
and E o« ®(r) o v2. The energy term of the DF is given by equation
(12). If E « Py, then A(E) ox EP, where the exponent p takes a
value p ~ a for small energies, with p & a 4 d at large energies.
Since the star is far from the centre, its potential energy will be large
and the star will likely be in the region p ~ a + d. Recall that d
must be negative, and in fact all the mock data and observed dSph
models prefer solutions with (a 4+ d) < 0. This then gives the energy
function A(E) oc v + 192 The negative exponent in the first
term causes that term to be small compared to the second, and again
the result is insensitive to vs. If a particle is near the tidal limit, the
term (Py, — E)¢ will be small by definition, and there will be very
few stars in that area of parameter space.

To illustrate the constraining power of the various x> components
of the DF model (ref. equation 18) we examine the results of the
Draco and Fornax dwarfs as typical examples. Fig. 6 shows how
the three components of x2 put restrictions on 7y, and V. for
those dSphs. The surface density data strongly constrains rpyax but
has virtually no constraining power for Vp,,,, as expected from the
above discussion. This also matches the intuitive notion that without
stellar velocity information it is difficult to characterize the velocity
scale of the DM potential. The velocity dispersion grossly constrains
both ryax and Vi, but it is the combination of surface density and
dispersion data that results in a tight constraint in the (rmax, Vinax)
plane. The fourth-order moment (VSP) adds a modest additional
constraint (see also Fig. 9). The constraint features illustrated here
for Draco and Fornax are very similar for the other dSphs as well.

It is also interesting to examine how the constraints on ry,,x and
Vinax translate to ;50 (the DM density at 150 pc) and M (< ry,,) (the
mass within the half-light radius). Fig. 7 shows the dependence of
those parameters on rp,, and Vp,x for the Draco and Fornax dSphs.
It illustrates that the lines of constant py50 and M(< ry;) for these
models tend to run parallel to the long axis of the posterior, which
allows a strong constraint on those parameters even given the wide
range of possible solutions in the (max, Vimax) plane.

4.2 Inference of mass within key radii: comparisons with
dispersion-based mass estimators

It is informative to examine the inferences for the mass of the dSphs
enclosed within key radii, as such inferences can be readily compared
with dispersion-based estimators. These key radii are the half-light
radius (r1;2) and O(1) multiples of it, which are good places to
measure the mass and density of DM, since there is usually good
luminosity and dispersion data there, and the inferred density can tell
us something about the cores of the subject haloes. Wolf et al. (2010)
used the luminosity-weighted LOS velocity dispersion to derive an
estimate for the mass within the half-light radius (r;,;) that was
relatively immune to the mass-anisotropy degeneracy problem. Other
authors followed suit, notably Errani et al. (2018), who found that the
mass enclosed within 1.8 r;/, was even better insulated from mass-
anisotropy fluctuations. Note that as described more fully in Sec-
tion 4.4, we use the spherical radius, and therefore convert the results
of other authors from elliptical radius to its sphericalized equivalent.

In Fig. 8, we compare the mass enclosed within 1.8 ry/,, cor-
responding to the mass estimator of Errani et al. (2018), and also
the mass enclosed within ry,, corresponding to the mass estimator
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Figure 5. Predicted and true values for DM density at 150 pc for the 32
mock data sets, colour-coded by embeddedness. The error bars indicate the
95 per cent confidence interval. The labels for each data set are shown on the
left and correspond to those in Table O1.

of Wolf et al. (2010), for the observed dwarfs. The DF method
predicts masses that are fairly consistent with those predicted by the
mass estimator methods. The only substantial disagreement is for
the Fornax dSph, where our inference of M (< 1.8 ry,) is somewhat
higher than that derived by Errani et al. (2018), although our inference
for M(< ry)») is consistent with that of Wolf et al. (2010).

4.3 Inferences for ry, and Vpyay

Predictions for 7, and V.« for the observed sample are presented
in Fig. 9. The two parameters show strong positive correlation.
Because the halo scale density ps o< r2/v2, this type of degeneracy is
approximately along lines of constant density, so that the density is
relatively well constrained, as discussed previously. To demonstrate
the effect of the VSP, the posteriors that result from excluding the
VSP component in the analysis are shown in the figure with dotted
black lines. The VSP does indeed add some predictive power, making
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the posteriors somewhat smaller and in some cases shifting them
modestly.

In Fig. 9, the black triangles show the 10 most massive subhaloes
from the fiducial Phat Elvis halo (1107, which has a halo mass of
8.9 x 10'""M,) and restricted to those subhaloes that are more than
50 kpc from the centre. We chose this as our fiducial halo because
it is closest in mass to the light MW model used by Battaglia et al.
(2022).

If we use a more massive Phat Elvis halo for fiducial comparison,
the triangles of the 10 largest subhaloes will tend to shift upward
and to the right (i.e. they will have larger 7, and Viax). The TBTF
problem then becomes even more pronounced, i.e. the simulation
predicts a large number of dense and massive subhaloes, inconsistent
with what is seen in the MW. Moreover, such a choice of fiducial
halo mass for the Phat Elvis simulation would be inconsistent with
the MW models used by Battaglia et al. (2022) in our analysis. The
simulated Vp,x values would be systematically larger than those we
infer for the MW satellites. (Comparing the ry,,x and Vi,.x inferences
for the bright MW dwarfs to those of all of the subhaloes in the Phat
Elvis suite of simulations, the results are similar: they are generally
consistent in Vp,x, but the inferences for the r,x of the bright MW
dwarfs are generally higher than those in Phat Elvis.)

Since our sample represents the brightest 9 MW dSphs, one would
expect these to be of comparable Vi« to those in the Phat Elvis
simulation. This is generally true; the posteriors for Fornax and
Sculptor are centred near the top of the range and indeed extend
above the top. The Vpy,, posteriors for Draco, Carina, and Ursa Minor
straddle the middle range, while the others are closer to the bottom
and indeed extend beyond the lowest Vp,x of the 10 most massive
subhaloes. In contrast, the ry,x posteriors for many of the 9 bright
MW dSphs seem to be systematically at larger values than those
of the Phat Elvis subhaloes, especially Draco, Fornax, Carina, and
Sculptor. This might be expected if the haloes are cored, as may
be indicated for Fornax and perhaps Carina. The posteriors of the
MW dSphs all have the familiar degeneracy between rpax and Vipay
(i.e. they are positively correlated), very similar to that observed in
the mock data in Fig. 2. We note that, in the mock data tests, there
was no systematic overprediction of ry,. This also presents itself as
a generally lower central density inference of the subhaloes in the
sample as compared to the simulated subhaloes, as can be seen in
Section 7.

Table 2. The Dwarf Galaxy Sample. Adopted distance, 2D half-light radius R/, and V-band magnitude My are from Simon (2019). Ellipticity € and position
angle 0 are from Muioz et al. (2018). Centre coordinates are from The NASA/IPAC Extragalactic Database (NED). Pericenter distances are from the light
MW model (no LMC) of Battaglia et al. (2022). Stellar masses M, are from McConnachie (2012).

Adopted Centre Centre

distance RA dec. Ry € 0 Pericenter My M,
Name (kpe) (deg) (deg) (pc) (deg) (kpe) (10°Mp)
Draco 82.0 260.051625 57.915361 237+ 17 0.29 87 5177 —8.88100: 0.29
Fornax 139.0 39.997200  —34.449187 792+ 18 0.29 45 8913¢ —13.341014 20
Carina 106.0 100.402888  —50.966196 311+ 15 0.36 60 106.71¢5 —9.451002 0.38
CnV1 211.0 202.014583 33.555833 437+ 18 0.44 80 68.097731 —8.73%0:0¢ 0.23
Leol 254.0 152.117083 12.306389 270 + 17 0.30 78 46.5313030 11781028 55
Leo Il 233.0 168.370000 22.151667 171 £ 10 0.07 38 115.55188-3 —9.7410:04 0.74
Sculptor 86.0 15038984  —33.709029 279+ 16 0.33 92 63.7753 —10.827014 23
Sextans 95.0 153.262319 —1.614602 456 + 15 0.30 57 74457338 —8.9410:06 0.4
Ursa Minor 76.0 227.285379 67.222605 405 £ 21 0.55 50 48.9134 -9.0375:03 0.29
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Figure 6. Constraints on ryax and Viax from the x2 components of surface density, velocity dispersion, and VSP. Top panel: Draco. Bottom panel: Fornax. The
black contour lines indicate the 68 per cent and 95 per cent confidence levels. The first column shows the posterior distribution when only surface density is used
in x2. The second column corresponds to only using velocity dispersion in x2. The third column corresponds to using surface density and velocity dispersion,
but not the VSP. The fourth column corresponds to using all three components in the calculation of x2.

4.4 Half-light radius of the observed sample

The half-light radius posteriors for the observed sample are shown
in Table 3. Comparison with previous authors is not straightforward,
because of fundamentally different approaches in computation. We
compare to Muiioz et al. (2018), who fit a Sersic profile to 2D data
maps of the dwarfs. We multiply the Mufloz et al. (2018) result
by the axis ratio of its elliptical profile, 4/1 — €, to convert from
elliptical radius to a spherical one. The data used for our models is
a 1-dimensional equivalent of their data, also adjusted for ellipticity.
We also show the R, resulting from a 2-parameter Plummer profile
(Plummer 1911) fit of our input data. The DF approach does not
rely on any profile shape; we simply find the radius that encloses
half of the stars. As can be seen in the table, there can be substantial
differences between the various methods. One notable difference is
in Leo I, for which the DF predicts a median value of 0.315 kpc while
the Plummer fit to the same data yields 0.308 kpc, and Mufioz et al.
(2018) find 0.204 kpc. Possible reasons for the difference are (a)
the surface density map for Leo I is quite boxy, with ellipticity that
appears to change with position angle, and (b) the surface density
plateaus considerably at larger radii, making it a poor fit for most
parametrized profiles. We note that Read et al. (2019b) used Jeans
analysis combined with virial shape parameters to examine these
objects and found 2D half-light radii of 0.298 kpc and 0.194 kpc for
Leo I and Leo II, respectively, consistent with our findings.

Fig. 10 shows 2D posteriors for the half-light radius of the observed
sample versus the mass enclosed within that radius. The distribution
of masses enclosed within the half-light radii seems to split into
two groups. Fornax stands out with the largest half-light radius and
largest mass enclosed; however, it is in the group with the lowest
average density within the half-light radius, accompanied by Carina
and Sextans. At the other end of the spectrum are Draco and Leo
II, which are the most compact, enclose the least mass but have the
highest density within ry ;.

We compare the results of our DF model to those of other
approaches in Section 6 and find that our inferences for ry,y,
Vimax, and pyso are generally consistent with the other methods,
with a few exceptions. The model inferences for core parameter
(¢ = r¢/rs), anisotropy (B), and embeddedness (ry 2 /r) are discussed
in Appendices G, H, and I, respectively. As the MW has strong tidal
forces, we investigate the possible impacts of tidal truncation in
Appendix N, and conclude that the likely impacts on our inferences
for 7max, Vinax, and pjso are small.

5 THE DIVERSITY OF DSPHS

A convincing theory of DM will have to explain the diverse density
profiles seen in the MW’s dwarf spheroidal galaxies, with Draco
and Fornax at the extreme ends. We find Draco to be the smallest
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Figure 7. The rmax, Vmax plane for Draco (top row), and Fornax (bottom row). The black contour lines indicate the 68 per cent and 95 per cent confidence levels.
Left Column: p150 shown in colour. Right Column: M(< ry/2) shown in colour. Lines of constant p159 and M (< ry,2) are roughly parallel to the long axis of the

posterior, allowing relatively strong constraints on both parameters.

and densest of the observed sample, with 3D half-light radius
approximately 260 pc, while Fornax is the largest and among the least
dense, with half-light radius of approximately 760 pc (see Section 4.4
for a full discussion.) Carina looks similar to Fornax, though not as
extreme, with a low DM core density and preference for a relatively
large core. While it is difficult to predict the core radius from our
method accurately, the shape of the posteriors for Carina and Fornax
are clearly inconsistent with a cuspy profile (Fig. E2). We refer the
reader to Appendix E for more details on posteriors for the core radii.
Conversely, Leo I and Leo II prefer small core radii or cuspy profiles,
and high p59. The posteriors of Draco and Sculptor are consistent
with those dSphs being hosted by cored dark matter haloes, but with
core sizes smaller than those of Fornax and Carina. For all dSphs, the
inferred core radii are smaller than or comparable to the respective
half-light radii. We note that core collapse can occur in SIDM haloes,
with a time scale sensitive to the (possibly velocity-dependent) cross-
section per unit mass (Elbert et al. 2015; Shah & Adhikari 2023; Zeng
et al. 2023; Yang, Nadler & Yu 2023), although we do not explore
core collapse in this work.

Fig. 11 shows the this work’s DF model inferences for the DM
density as a function of radius compared to the Jeans analysis
inferences of the cored isothermal and NFW cases of Kaplinghat
et al. (2019). Noted on the plots are lines for logarithmic slopes
of 0 and —1, corresponding to cored and cuspy DM distributions,
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respectively. For both dwarfs, the density profiles are similar to the
cored isothermal cases of Kaplinghat et al. (2019), showing a cusp (or
a very small core) in Draco and a core (or a very mild cusp) in Fornax.
Cuspy DM haloes are found in standard CDM only simulations
(Navarro, Frenk & White 1996), whereas cored DM haloes require
either non-gravitational DM microphysics such as self-interactions,
or explanations via baryonic mechanisms such as supernova feedback
(Penarrubia, Navarro & McConnachie 2008; Vogelsberger, Zavala &
Loeb 2012; Rocha et al. 2013; Di Cintio et al. 2014; Vogelsberger
etal. 2014; Elbert et al. 2015; Sawala et al. 2016; Bullock & Boylan-
Kolchin 2017; Benitez-Llambay et al. 2019; Despali et al. 2022).
Note that while most of the MW dSphs are highly DM dominated,
Fornax has a stellar mass of approximately 2 x 107 M, (see Table 2),
by far the largest in the sample, amounting to a few per cent of the
dynamical mass. This may suggest that baryonic effects could be
responsible for the cored profile in Fornax. Further comparisons
with prior works are noted in Battaglia & Nipoti (2022).

6 COMPARING THE DF METHOD TO OTHER
METHODS

In Fig. 12, we compare the rp,, and Vp, inferences to those of
Kaplinghat et al. (2019) and Errani et al. (2018). Kaplinghat et al.
(2019) used Jeans analysis for their inference and also utilized the
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Figure 8. Comparison of mass estimators from Errani, Pefiarrubia & Walker
(2018) and Wolf et al. (2010), which utilize luminosity-weighted velocity
dispersion, with the results of this work. The result of the DF method from this
work are shown in black. Top:log,o[M(< 1.8r1/2)/Mg], which is the mass
estimator of Errani et al. (2018), shown inred. Bottom:log,y[M(< r1,2)/Mp],
which is the mass estimator of Wolf et al. (2010), shown in red.

VSP. They analysed two cases, one for an NFW profile and a second
for a cored isothermal profile. Their results are similar to ours, with
inferences from the DF and Jeans methods generally overlapping
at their 1o boundaries. The exceptions are for the Vi,a.x of Carina,
Fornax and Draco, and the r,,x of Fornax. In those, the DF predictions
are larger than those from either profile in the Jeans analysis. The
two methods have fundamental differences, namely the different
modelling of stellar velocity anisotropy and the assumption of a
Plummer surface density profile in the Jeans analysis. Our analysis
is more general, as the DF approach accommodates a wide variety of
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distributions for the stellar population. Possible other reasons for the
differences could include (1) different prior assumptions between
the two methods and (2) for Fornax, that Kaplinghat et al. (2019)
accounted for the stellar mass in the potential, in contrast to this work
where we have assumed that the stars are massless tracers of the DM
potential. We note that for Fornax, we infer Vi, > 45 kms™' at the
1o level, substantially higher than either of the Jeans analysis cases.

Errani et al. (2018) derived rpyax and Vi by using the observed
kinematics of the dwarfs in combination with a population of
simulated subhaloes. Errani et al. (2018) used spherical Plummer
profiles for the stellar population. For the DM, they used an NFW
profile for their cuspy case. For the cored case, they use

p(r) = pul1 + (r/ro] 7. @n

The inferences from their cuspy and cored cases can be seen in the
orange solid lines and orange dashed lines, respectively, of Fig. 12.
Our results are consistent with their cuspy cases, except for Carina
and Fornax (and, to a lesser extent, Sextans), where their cored case
is a better match.

Table 4 and Fig. 13 compare our findings for p;s to those of Read
etal. (2019b), Kaplinghat et al. (2019), and Hayashi et al. (2020). The
results are generally comparable within errors. However, our finding
for Carina at 4.7709M, kpc ™ is lower than the others, inconsistent
with that of Read et al. (2019b), Hayashi et al. (2020) and the NFW
case of Kaplinghat et al. (2019), but compatible with their isothermal
case. Our finding is consistent with a cored halo, as is suggested by
the posterior for r.oe (see Fig. E1). We checked to see if excluding
large values of ¢ in the cNFW profile would change this inference
significantly, but it does not; we found that if the core parameter is
restricted so that 0 < ¢ < 1, the inference for p;s5p increases only
approximately 0.1 dex.

7 INCONSISTENCY WITH SIMULATION:
DENSITY AT 150 PC VERSUS PERICENTER
DISTANCE

An anticorrelation between the density at 150 pc (p;50) and the orbital
pericenter distance (r,) for the MW dSphs was noted in Kaplinghat
et al. (2019), and is the subject of some debate (Hayashi et al. 2020;
Cardona-Barrero et al. 2023). A closely related and perhaps more
cogent question is whether the p;s50—7, relationship is consistent with
N-body simulations of MW analogues, for if they are not, it is a
challenge for ACDM that could require more sophisticated physics
in such simulations, or could point to new physics such as DM self-
interaction Correa (2021).

For orbital pericenter data we turn to the work of Battaglia et al.
(2022), which calculated the pericenter distances for the MW dwarfs
using Gaia data release 3 and which attempts to account for the
impact of the Large Magellanic Cloud (LMC) on the potential and
orbits. They examined two MW mass scenarios, a ‘light’ version
with mass 10'> Mg, and a ‘heavy’ version with mass 1.6 x 10'> M,
They also examine the light version without the LMC. We use their
light model (both with and without the LMC) for our comparisons,
although we check the result against the heavy model in Appendix L.
Note that the pericenter distances quoted are those of the last calcu-
lated pericenter passages, although the orbit integration calculations
are carried backward in time to approximately 8 Gyr ago. Prior to
that study, Patel et al. (2020) published an analysis accounting for
the effect of the LMC in five of the MW dwarf pericenters: Carina,
Draco, Fornax, Sculptor and Ursa Minor. Subsequent to our main
analysis, another study was published that attempts to account for
the LMC in their pericenter projections: Pace, Erkal & Li (2022). The

MNRAS 532, 4157-4186 (2024)

20z AIn tz uo Josn suinl| - ON AQ 80181 LL/LSL/v/ZES/PoIE/SeIuw /W00 dno-ojwapede/:sdny woly papeojumoq



4168

K. E. Andrade, M. Kaplinghat, and M. Valli

2.0 2.0 2.0
Draco Fornax Carina
18 18F 18
w ‘4
=
3
8 1.6 . 1.6 . . 1.6 . .
=
i A Y
Sab 14f a 14f “a
N AL, T R &
= L, Ly a Ly A .
o0 1.2 1.2 1.2
=2
1.0 1.0 1.0
1 1 1 1 1 1 1 1 1
-1 0 1 -1 0 1 -1 0 1
2.0 2.0 2.0
CVn | Leo | Leo Il
18 18 18
D a N a
=
s = = A = A
\% 1.6 1.6 . . 1.6 . .
\H a a
S 14f 14}
52 R La s
o0 1.2 [~ 1.2
=
1.0 1.0
1 1 1 1 1 1 1 1 1
-1 0 1 -1 0 1 -1 0 1
2.0 2.0 2.0
Sculptor Sextans Ursa Minor
_1s8f 18} 18
5 a
=
é 1.6 - . . 1.6 - . 1.6 - .
214 . 14 14
> A AA “ A AA - AA
= L oay, A L oay, L a,
o0 1.2 [~ 1.2 1.2
=
1.0 1.0 1.0~
1 1 1 1 1 1 1 1 1
-1 0 1 -1 0 1 -1 0 1

1014 [T'maz/kpc]

Figure 9. Posterior inferences for rmax versus Vinax for the observed sample. The 68 per cent and 95 per cent levels are shown, with the 68 percent level in a

10g 1o [1maz/kpc]

log o [rmaz/kpc]

darker colour. The dotted black lines indicate the posterior result without the VSP x2 component. The black triangles represent the 10 subhaloes from the Phat
Elvis simulation (halo 1107, with disc) that are more than 50 kpc from the centre of the halo and have the highest Viax. The grey triangles show the subhaloes

with 10th through 20th highest Viax.

Table 3. Comparison of 2D projected half-light radius (Ry/2), in kpc. The
‘DF’ column is the r1 2 posterior result from the DF, converted to 2D projected
R1,> by dividing by 1.33. The ‘Plummer Fit’ is the result from the best
fitting 2-parameter Plummer profile, as applied to the (one-dimensional)
sphericalized surface density data. The rightmost column is the half-light
radius reported by Mufioz et al. (2018) for a Sersic profile fit to 2D surface
density maps, sphericalized as described in the text.

dSph name DF Plummer fit Muiioz et al. (2018)
Draco 0.197 £ 0.003 0.235 0.183
Fornax 0.574 £ 0.004 0.688 0.668
Carina 0.327 £ 0.003 0.344 0.277
CVnl 0.381 £ 0.010 0.445 0.357
Leol 0.315 £ 0.004 0.308 0.204
Leo Il 0.200 + 0.002 0.206 0.162
Sculptor 0.243 £ 0.002 0.276 0.244
Sextans 0.397 £ 0.005 0.470 0.370
Ursa minor 0.299 + 0.004 0.325 0.257

various sources for pericenter are compared in Appendix L. Although
there are some differences, there is a fair amount of consistency
between them after considering their stated uncertainties. D’Souza &
Bell (2022) showed that care must be taken when back-integrating
the orbits of MW satellites in parametric potentials, and that the
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LMC does have a substantial effect on the projection, a result that
is underlined by the differences in the pericenters obtained in the
with-LMC and without-LMC models of Battaglia et al. (2022).

The posteriors for the density at 150 pc (p;50) for the observed
sample are shown in Fig. 14, plotted against the orbital pericenter
distance (r,) of each dwarf, in the left panel without considering
the LMC, and in the right panel accounting for the LMC. In both
figures, there is a clear anticorrelation between the pericenter distance
and the density at 150 pc, as was also noted in Kaplinghat et al.
(2019); however, the correlation appears somewhat stronger in that
work than it does here. The best-fitting line is shown in dashed red
in Fig. 14. We infer that the slope of the best fit line is negative, as
detailed in Appendix J. We examined this correlation using a variety
of alternative sources for pericenter distances, including Fritz et al.
(2018), Patel et al. (2020), and Battaglia et al. (2022) (including the
‘heavy’ MW variations in Patel et al. (2020) and Battaglia et al.
(2022); see Appendix L), and also using Read et al. (2019b) data
for pys¢ rather than our own. The negative correlation between pso
and pericenter distance persists in all cases. Hayashi et al. (2020)
also found an anticorrelation in their work, although their analysis is
not as directly comparable because they use an axisymmetric model
for their DM halo, leading to more parameters, more degrees of
freedom and large uncertainties in parameter inferences. We have
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used more recent pericenter data than Kaplinghat et al. (2019) and
Hayashi et al. (2020). Cardona-Barrero et al. (2023) examines the
correlation in some detail for various data sets, and concludes that
the anticorrelation is statistically significant at the 30 level in only a
minority of the various combinations. We discuss their comparison
in Appendix L.

For comparison with simulation, we turn to the Phat ELVIS
simulations (Kelley et al. 2019), a suite of 12 MW-similar haloes
with a disk potential, with masses ranging from 7.1 x 10'"Mg
to 1.95 x 10'2Mg. We use their host halo 1107 for our fiducial
comparison, which has a mass of 8.88 x 10'! Mg, [the most similar
to the light MW model of Battaglia et al. (2022)], but the results
are similar for all 12 host haloes (see Appendix K and Fig. K1).
The Phat ELVIS simulation did not attempt to account for the effect
of such a large satellite as the LMC, so we present comparisons to
both the with- and without-LMC models of Battaglia et al. (2022).
Shown in Fig. 14 are the 20 subhaloes in the fiducial host halo
with the largest Ve, (i.e. the largest V. since their infall) that
are currently located more than 50 kpc from galactic center, plotted
as black and grey circles. There is a clear discrepancy between the
simulated and observed haloes, with the simulated haloes at distances
greater than 50 kpc exhibiting a positive correlation between pjso
and pericenter. Note that significant negative correlation between
p1s0 and pericenter is not a requirement for inconsistency here; even
an absence of correlation would appear to be inconsistent with the
simulated haloes. We note that Hayashi et al. (2020) did a similar
analysis but did not restrict their regression to the largest haloes.
Smaller haloes tend to show some survivor bias in that less dense
subhaloes are more likely to be disrupted by tides, thus removing
haloes from the lower left of the plot, as described in Kaplinghat
et al. (2019). Artificial numerical disruption of subhaloes on orbits
with small pericenters is also a crucial factor to consider here but the
most massive subhaloes should be the ones that are the least impacted
by this (Diemand, Kuhlen & Madau 2007; D’Souza & Bell 2022).
In addition, if we choose to populate the bright MW dwarfs in lower
mass subhaloes, then we will be left with an even more pronounced
too-big-to-fail problem. For these reasons, we restrict the analysis to
the 20 largest subhaloes. Our results show that the density-pericenter
data still remains a challenge that be met by galaxy formation models.
In this regard, it is useful to note that the orbital radii and densities
are expected to have an anticorrelation in SIDM models with large
cross-sections (Nishikawa, Boddy & Kaplinghat 2020; Sameie et al.
2020; Correa 2021; Yang et al. 2023), and that baryonic effects may
also indirectly impact this (Read et al. 2019b).

One might wonder if using the heavier MW models would alter
the conclusion, but it does not (see Appendix L, Fig. L1). The
pericenter projections of Patel et al. (2020), Battaglia et al. (2022),
and Pace et al. (2022) are the current state-of-the-art for the MW
dSph pericenters but rely on static, axisymmetric potentials for the
MW. We look for possible biases in this approach in Appendix M,
by performing a reprojection of Phat Elvis pericenters using the
z = 0 positions and velocities of the subhaloes and a static MW-like
potential. We conclude that pericenters calculated using this approach
usually have good agreement with the true pericenter, albeit with a
minor tendency to underestimate the pericenter and with occasional
outliers.

8 CONCLUSIONS

In this work, we presented a comprehensive study of the internal
dynamics of the brightest dSphs of the MW based on a flexible
DF model. Going beyond the standard Jeans analysis often adopted
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Figure 12. Inferences for rmax and Vipax for the observed sample from this work, shown in black, compared to the Jeans analysis results of Kaplinghat et al.

(2019), shown in blue, with their NFW case shown as blue solid lines and their cored isothermal case as blue dashed lines. We also compare to the analysis of

Errani et al. (2018), in orange, with their cuspy case as orange solid lines and their cored case as orange dashed lines.

Table 4. Comparison of findings for DM density at 150 pc (p150), in units
of 10’Mg kpc™3. The median posterior value and the 68 per cent confidence
intervals are indicated. The references for comparison are (A) Read et al.
(2019b), (B) Kaplinghat et al. (2019), isothermal case, (C) Kaplinghat et al.
(2019), NFW case, and (D) Hayashi et al. (2020). Note that CVn I was not
studied in references (A) or (D).

Name This work Ref A Ref B Ref C Ref D
Draco 18.8737 236720 21273% 217735 2357038
Fornax 48702 79t 3407 75T 122733
Carina 47799 116t 57732 1027y 109782
CVnl 105735 - 13.5732 13473 -
Leol 207135 177733 14173 150033 26470
Leo Il 17.1720 184717 134T 17.0723 20270
+1.8 +2.8 +2.9 +2.1 +12.6
Sculptor 147518 149428 16072 170720 21443
Sextans 6.8 128735 8.673F 109742 52738
H +7.3 +3.5 +6.2 +3.0 +38.6
Ursa minor 17.57542 15.3733 25.475.6 25.1743 23.875%

for these systems, our method relies on a separable DF (Strigari
et al. 2017) that describes the phase space of stellar tracers via 10
parameters, shaping the energy and angular momentum functional
form. The DF approach we follow here is completed by the modelling
of the gravitational potential of the system, for which we adopted a
three-parameter cNFW distribution. This distribution is suitable for
an investigation of both cuspy and cored DM haloes. For the first
time in literature, we apply such a general approach to the set of 9
bright dSphs with well-measured kinematics, and perform a data-
driven Bayesian analysis on the photometric and spectroscopic data
available for these objects.

Our analysis via DF modelling is validated by the use of mock data
extracted from the Gaia Challenge project. In particular, we adopted
mock data sets to test the predictive capability of our approach both
for cuspy and cored DM profiles, for cuspy and cored stellar profiles,
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Figure 13. Inference of p;50 from this work (black solid lines), compared to
those of Read et al. (2019b) (red solid lines), the Jeans analysis of Kaplinghat
et al. (2019) (NFW case: blue solid lines, cored isothermal case: blue dashed
lines) and axisymmetric Jeans modelling of Hayashi et al. (2020) (grey solid
lines).

for different level of embeddedness of the stellar distribution within
the DM halo of the system and for spatially varying stellar orbital
anisotropy profiles. From the study of the mock data we find that
our DF approach is able to recover the true values of the Vi, and
I'max Shape parameters of the underlying DM profile remarkably well,
usually within the 68 per cent posterior probability region (see Fig.
2). It also has high accuracy for the recovery of key dynamical
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Figure 14. DM density at 150 pc (p150) inferred from the DF fits for the bright MW dSphs versus orbital pericenter distance (r}), in red, using the light MW
model of Battaglia et al. (2022) and comparing to host halo 1107 of the Phat Elvis simulation (Kelley et al. 2019). The right panel uses the light MW model
without the LMC, while the left panel uses the light MW model including the effect of the LMC. The error bars indicate the 68 per cent confidence interval. The
best-fitting line through the observations is shown in dashed red, with the 68 per cent confidence interval in light red. The black circles indicate the 10 subhaloes
with current radial positions greater than 50 kpc and with the largest Veak for host halo 1107 of the Phat Elvis simulation. The grey circles denote the 10th
through 20th largest Vpeax subhaloes. The best-fitting regression line for the Phat Elvis points is shown as a black dashed line. The MW dSphs are numbered as
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quantities such as the total mass within the half-light radius, M;,
(see Fig. 4) and the inner local density of the system at 150 pc, piso
(Fig. 5). In contrast, the mock data show us that with this approach it
remains difficult to reliably determine the size of the core of the DM
inner halo or to obtain robust information about the orbital anisotropy
profile of stellar tracers, both of which are difficulties also suffered
by Jeans analysis. The accuracy of these predictions is higher for the
cases where the stellar population is not too deeply embedded with
the DM halo.

Equipped with these findings, our detailed study of the MW
dSphs allowed us to revisit, reiterate and reinforce some well-known
conclusions already drawn in literature within the standard Jeans
analysis. Our study of the Classical dSphs via DF modelling provides
a state-of-the-art inference of p;so in these objects. In particular, we
find a low inner density for systems like Carina and Sextans, in
contrast to galaxies like Draco and Leo II, characterized by inner
densities approximately four times larger (Fig. 10). With the DF
approach, we are then able to confirm the large diversity in the
dark matter densities of these dark-matter dominated objects. These
inferences of the inner density constitute key dynamical information
that needs to be captured by any successful model of galaxy formation
within the ACDM cosmological model, or another model where
the dark matter is not made up of cold and collisionless DM
particles.

We have reexamined the anticorrelation between dwarf spheroidal
pericenters and density at 150 pc found in Kaplinghat et al. (2019),
using our method rather than Jeans analysis and using more recent
assessments of the pericenter determination by Battaglia et al. (2022).
We also observe a negative correlation. This is inconsistent with both
the dark-matter-only and disc versions of the Phat Elvis N-body sim-
ulation of Kelley et al. (2019, see Fig. 14). This inconsistency remains
a compelling clue for investigating dark matter microphysics.

We observe that for Fornax and Carina, the results of our analysis
with the cNFW profile point to the presence of a large core in these
systems (Fig. E1). Most of the other dSphs have smaller cores or show

no evidence for cores. Some care should be taken in considering this
inference given the limited ability in inferring the core sizes in the
mock data sets. Overall, our results argue that the DM core sizes are
smaller than the respective half-light radii, which could be a further
clue.

The results of our work are promising in the regard that the DF
modelling has a similar constraining power to that of the spherical
Jean analysis and other methods, despite varying a larger set of
parameters needed for a broad description of the tracer phase-space
DF. Natural extensions of this work will involve DF models that
allow for multiple populations with separate metallicity distributions
and non-sphericity in the stellar profiles.

This could allow for more robust inferences of the sizes of constant
density cores in MW dSphs, and provide significant new constraints
on proposed solutions to the too-big-to-fail problem.
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APPENDIX A: COMPARISON TO STRIGARI ET
AL. (2017) FOR SCULPTOR

Because our approach is similar to that of Strigari et al. (2017),
we created a modified version of our model that maximizes its
comparability to the one in that work, and compare the results of the
two models here. To maximize comparability, we make the following
changes to our model: (a) remove the factor of % from equation (13),
(b) remove the normalization term 7y in equation (14) and allow the
parameter w to vary freely in the MCMC analysis, (c) set by, = 0,
(d) set o =1, (e) set ¢ = 0, which forces the DM profile to be an
NFW profile, and (f) remove the VSP chi square component. We
then run our model on the same Sculptor metal poor and metal-rich
population data as was used in Strigari et al. (2017), i.e. the surface

:nr(u.r'/('l‘"";"'/'f")]

log, o[V

1 0 1
IOgIE)[""mn.r/kP(']

Halo densities of the bright MW satellites 4173

density and dispersion data from Battaglia et al. (2008). The results
are shown in Fig. Al. The top panel shows the results for the metal
poor case, the bottom panel shows the metal-rich case. Our results
are shown in black and the results from fig. 4 of Strigari et al. (2017)

are shown in blue (metal poor) and red (metal rich), respectively.
Their result correspond fairly closely with ours.

APPENDIX B: VIRIAL SHAPE PARAMETER

The virial shape parameter is derived from the fourth-order projected
virial theorem (Merrifield & Kent 1990), and for approximately
spherical systems it can take two forms (Richardson & Fairbairn
2014). Following Kaplinghat et al. (2019), we utilize the first form,
which we label here the VSP:

1 [*® G [*®

VSP = 7/ dR®Z (v) = —/ &*M(5 — 2B)vo?, (B1)
2 Jo 5 Jo

where M denotes the mass DF, g is the anisotropy parameter, v is

the stellar density and (v;\) is the fourth moment of the line-of-sight
velocity distribution. To calculate the VSP from the DF, we integrate

/(km /)

maxr

logy[V.

0.6

1
—1.0 —0.5 0.0 0.5 1.0
logyp[rmaz/kpe]

Figure A1. Comparison of the results of the modified model (shown in black) for rmax versus Vimax to the NFW results of Strigari et al. (2017) for Sculptor.
The lines indicate the 68 percent and 90 percent confidence levels. Top panel: Metal-poor stellar population. The results from Strigari et al. (2017) are in
blue. Bottom Panel: Metal-rich stellar population. The results from Strigari et al. (2017) are in red. Note that for this figure only we follow the convention from
Strigari et al. (2017) that the outer contour lines represent the 90 per cent confidence level rather than 95 per cent.
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the fourth velocity moment as follows:

2m)vsp = /d3rd3v vff(E, L).
Note that there is no factor of N, because the DF is normalized to
unity over the entire phase space. Now write
v, = VCOS 1, Vg = vsinncos .
Then,
vV, =2 X U =1,c086 — vy sinf = v(cos cosn — siné sin 1 cos yr)

and

VSP = / r2dr deosd vdv dyydcosn v? f(E, L).

Since E =W — v?/2 and L = rv, = rvsiny, we can first do the 8
and v integrals over v?. It can be shown that

27 1
/ dyr / dcosA(cos @ cos 1) — sin 6 sin 5 cos ¥)* = 4m/5
0 -1

hence,

Tt V2U(r) 1
VSP = (471/5) / r2dr / vid / dcosny f(E,L). (B2)
0 0 -1
For data sets with measured line-of-sight velocities, the VSP can be
calculated as follows. In our coordinate system, the z-axis is the line
of sight. First, the mean value of v, is subtracted from each v,; to
remove bulk motion of the galaxy. The VSP is then

Ny

1
VSP = vhi . (B3)
27N, P

For the mock data sets, we wish to find the an estimate of the
distribution of the VSP given the one set of sampled velocities. We
do so by generating 10 000 ensembles of binned velocity data, each
with length N,, from a Pearson distribution of Type VII, with the
same star count and velocity dispersion in each bin as the original
data set. To simulate measurement uncertainty, we add Gaussian
error with a standard deviation of 2 km s~!'. The kurtosis of the
Pearson distribution is adjustable via a parameter, and that parameter
is iteratively varied until the kurtosis of the entire ensemble matches
that of the original data set. We then tabulate the 15.9, 50, and 84.1
percentile values of the VSP of the entire ensemble, which are used
as estimators for the mean and standard deviation of the VSP. Those
values are used as data for the DF model and are tabulated for the
mock data sets in Table O1.

APPENDIX C: FULL LIKELITHOOD FUNCTION

Consider a population of w stars in a potential & and with a DF f.
Our goal is to estimate & and f based on the star population. For
star i, we have position coordinates R; = y/x? + y?, and we have
velocity coordinate v, ; (but we do not generally know z;, vy ; or vy ;).
The best estimate of @ and f is the one that maximizes the likelihood
function

LH(®D, fI[R;, vz,iD)- (3Y)

By Bayes Theorem, we instead estimate the posterior and prior
probabilities

P(®, f)

LH(®, fI[R;, v,i]) = LH([R;, v;]| D, f)m ,

(C2)
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where LH([R;, v,i]|®, f) is the posterior probability of observing
the given data with a particular ® and f, and P(®, f) is the prior
probability for observing ® and f, and incorporates any prior beliefs.
The probability of observing the data for our model, P([R;, v,;]),
also known as the ‘evidence’, is not generally known, but as it is
a constant factor it will not affect our attempts to maximize the
likelihood function.

We wish to employ the DF as a probability of finding a star i at
radius R and line-of-sight velocity v,. The probability can be written
as

Dwi(Ri, v,5) =27 /°° VrdUg /°° dz f(Ei, L;) . (C3)

—00 o0

The composite likelihood for all stars in the data set is then

LH([R, v)|®, ) = [ ] pei(Ri, v, (C4)

i=1
and the log likelihood is then

LLH £ log(LH(R. v,]|®. /) = >_log(psi(Ri.v,)) . (C5)
i=1

Computationally, we have a vector of parameters p =

{rs, v, Piim, €, a,q, Ec,d, Lg, bin, bow, w} for which we want to

calculate a given likelihood. The normalization factor ny may be

factored out of the sum, and LLH becomes

LLH(p) = ni(p) D log ( / dvg / az h(p. (i v)g (. L(xis ) )
i=1 - -
(Co)

where the functions 4 and g are given in equations (12) and (13).

APPENDIX D: BINNING OF VELOCITY
DISPERSION DATA

Here, we describe our procedure for binning the velocity dispersion
data. For the observed sample, the data consists of the right ascension
and declination coordinates for each star, the LOS velocity for each
star, and the uncertainty of the LOS velocity measurement. The
position data is converted to physical éx and §y coordinates using
the adopted distance to the galaxy specified in Table 2. The centroid
is calculated as the coordinates that minimize the sum of the squared
distances from each star to the center. These correspond closely to the
galaxy coordinates cited in the NASA/IPAC Extragalactic Database
(https://ned.ipac.caltech.edu). To account for the ellipticity of the
galaxies, we draw elliptical bins based on the position angle and
ellipticity noted in Table 2. We use Sturges’ Rule to determine the
number of bins, i.e. B =10g,(Nyars) + 1. The bin boundaries are
chosen so that there are an equal number of stars in each bin to the
maximum extent possible. For the Gaia Challenge data, the same
process is used, but is simplified because the data center coordinates
are known, and the data were generated with spherical symmetry so
no adjustment for ellipticity is required.

Our method for estimating the binned velocity dispersions closely
follows the maximum likelihood approach described in Walker et al.
(2006). We let v;;, u;; and oy be the measured LOS velocity, the
true LOS velocity and the measurement uncertainty, for star i of N;
stars in bin j of B bins. Then vj; = ujj + ojj€jj, and the € have a
standard Gaussian distribution. The variability in v;; comes from two
sources: the intrinsic LOS velocity dispersion in the uj;;, which we
denote oj, and the measurement uncertainties oj;. We assume that
the v;; have a Gaussian distribution with mean equal to the mean
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true velocity (). The joint probability over all of the observations is
therefore:

B N;j

L=]11]

j=1i=1

! exp <— (v; — ) > . DD
2m (o2 + 02) 2 (o5 +7)

We use MCMC analysis to determine posterior distributions for (u)
and the 0. We use the EMCEE sampler (Foreman-Mackey et al. 2019).
We explored using velocity dispersion directly as the parameter of
interest, as well as using log,, of the velocity dispersions, and found
that using the logarithm resulted in Gaussian distributions for the
posterior distributions, while using the dispersions themselves did
not. We therefore use (1) and log,y(oj) as parameters in the MCMC
analysis. The resulting binned data values and their uncertainties are
available in the online material.

APPENDIX E: CORE RADII INFERENCES FOR
MOCK DATA AND OBSERVED DWARFS

The parameter log,,[r./kpc] is allowed to vary in the model to ex-
plore the best fitting value, with prior limits —2 < log,[rc/kpc] < 1.
As described in Section 2.1, the core radius r.o. is calculated as
the radius at which the density falls to one-half its central value.
The true core radii of the mock data sets are either 0 kpc (NFW)
or 0.26 kpc (cored), corresponding to log,, values of —oo and
—0.585, respectively, although we use -2 as a practical lower limit,
corresponding to r¢ore = 0.01 kpc. The top panels of Fig. E1 shows
a composite plot of the posteriors for the 16 NFW data sets in the
left panel and the 16 cored data sets in the right panel. The model
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shows some ability to distinguish between the two profiles, with
an uncertainty of approximately 0.5-1.0 dex, although there is bias
towards lower values for the cored profiles. The NFW data sets
uniformly prefer small cores. The cored data sets generally prefer
large core solutions, except for some of the most deeply embedded
data sets with r,, /ry = 0.1.

We also present the core radius posteriors of the observed sample
here, for easier comparison to the mock data results. As shown in
the bottom panels of Fig. E1, many of the observed sample prefer
small cores, consistent with the NFW profile. However, Fornax and
Carina prefer non-zero cores with large radii of approximately 0.5
and 0.3 kpc, respectively. We note that Pefarrubia et al. (2012)
found cores in Fornax and Sculptor by exploiting separate chemo-
dynamical subcomponents, although Strigari et al. (2017) found only
a weak preference for a core in Sculptor and that both cored and NFW
profiles were good fits. Hayashi et al. (2020) found that Carina,
Sextans, Sculptor, and Fornax favour smaller (core-like) DM inner
slopes, using axisymmetric Jeans analysis. Other authors finding a
likely core in Fornax include Walker & Penarrubia (2011), Jardel &
Gebhardt (2012), and Pascale et al. (2018). A key difference between
our work and previous work is the use of mock data to validate our
inferences.

On the other hand, Draco, Sculptor, and Sextans show evidence for
a small core of about 100 pc. The left panel of Fig. E1 demonstrates
that if the true profile is an NFW profile, the model posterior is
unlikely to resemble those of Draco, Fornax, Carina, Sculptor, and
Sextans. Draco has been thought to be cuspy in prior works (Read
et al. 2018, 2019b; Hayashi et al. 2020); our finding is for a small
core but with a high density, so in that regard all studies seem to
agree with each other.

1 r./rs=0.1
1 r/ry=0.25
1 r/ry=05
O or/rs=1

Density (norm arbitrary)

—2.0

IOgIO[Tcore (kPC)]

re/rs = 0.1
re/rs = 0.25

ro/rs =0.5

D000

Density (norm arbitrary)

Figure E1. Posterior histograms of log[7core /kpc], with mock data sets. Left: The 16 mock data sets with NFW DM profiles. The true value of log;¢[7core /kpc]
is —oo (corresponding to reore = 0 kpc), although we limit the parameter to —2 in log space (corresponding to rcore = 0.01 kpc). Right: The 16 mock data
sets with cored DM profiles. The true value is —0.585 (corresponding to rcore = 0.26 kpc) and is indicated by the black dotted line.

MNRAS 532, 4157-4186 (2024)
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Draco Fornax Carina
1 1 1 1 1 1 1L 1 1 1
—2.0 —1.5 —1.0 —0.5 0.0 —2.0 —1.5 —1.0 —0.5 0.0 —2.0 —1.5 —1.0 —0.5 0.0
CVn l Leo | Leo Il
1 1 1 1 1 1 1 1 1 1 1 1
—2.0 —-1.5 —-1.0 —0.5 0.0 —2.0 —-1.5 —-1.0 —0.5 0.0 —2.0 —1.5 —-1.0 —0.5 0.0
Sculptor Sextans Ursa Minor
1 1 1 1 1 1 1 1 1 1 1 1
—2.0 —1.5 —1.0 —0.5 0.0 —2.0 —1.5 —1.0 —0.5 0.0 —2.0 —1.5 —1.0 —0.5 0.0

logyg[reore (kpe)]

10g0[rcore (kpe)] 10gg[reore (kpe)]

Figure E2. Posterior histograms of log;o[7core /kpc], with observed dSphs in the three rows. Left: The 16 mock data sets with NFW DM profiles. The true value
of logy[7rcore/kpe] is —oo (corresponding to rcore = 0 kpc), although we limit the parameter to —2 in log;, space (corresponding to rcore = 0.01 kpc). Right:
The 16 mock data sets with cored DM profiles. The true value is —0.585 (corresponding to reore = 0.26 kpc) and is indicated by the black dotted line. Bottom
three rows: Inferences of log;([7core /kpc] for the observed sample. The modes for Fornax and Carina are at approximately log;o[7core/kpc] of —0.3 and —0.5,
respectively, which correspond to reore 0f 0.3 and 0.5 kpc. The other galaxies have modes at or less than ~ 0.1 kpc.

APPENDIX F: ANISOTROPY AT HALF-LIGHT

RADIUS

Fig. F1 shows the true and predicted posteriors for the anisotropy
parameter S at the half-light radius for the mock data sets. Half of
the mock data sets are anisotropic over their entire range, while the

MNRAS 532, 4157-4186 (2024)

other half have rising 8 profiles, with a true value between 0.4 and
0.6 at the half-light radius. For the isotropic data sets, the model
predictions have median values centred near zero and with a range
of —0.2 to 0.2. For the anisotropic data sets, the model tends to
systematically underestimate 8, except for least embedded data sets
denoted in red.
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r./Ts = 0.1 re/Ts = 0.25

.
.
.
.

B(r1/2), Predicted

—1 0 1 -1 0 1
B(r1/2), True

Figure F1. True and predicted values for B(r1,2) for the 32 mock data sets, segregated by embeddedness. The diagonal line indicates equality between the true
and predicted values.

indicating a density profile that is close to the NFW profile. However,
Fornax and Carina do have significant tails above ¢ = 1. In that area
of parameter space, the scale radius r; is smaller than the core radius
The posteriors for ¢ = r./r, are shown in Fig. G1. Most of the sample 7¢, so that they can be said to switch roles in defining the shape of
shows a preference for nearly zero values of the core parameter, the profile (see equation 11).

APPENDIX G: CORE PARAMETER
POSTERIORS OF THE OBSERVED SAMPLE

MNRAS 532, 4157-4186 (2024)
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Draco Fornax Carina
1 1 r——— 1 1 1 1 1 1 1 1
0 1 2 3 4 5 0 1 2 3 4 5 0 2 3 4 5
CVn | Leo | Leo Il
]111\,— s B — 1 J— 1 1 1 1 1 1
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
Sculptor Sextans Ursa Minor
— 1 L L - 1 L p—
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
c c

Figure G1. Posteriors of the core parameter, ¢ = r¢/rs for the bright MW dSphs. Only Fornax and Carina show a significant posterior above ¢ = 1.

APPENDIX H: VELOCITY DISPERSION
ANISOTROPY IN THE OBSERVED SAMPLE

The posteriors for the anisotropy parameter 8(ry,,) for the observed
sample are shown in Fig. H1. In the tests of the mock data in
predicting this parameter, the inferences had limited accuracy and
tended to understate the true value of 8 where the value was positive,

MNRAS 532, 4157-4186 (2024)

although the accuracy was better where the star populations were the
least embedded. Here, the inferences for Draco and Carina are for
positive anisotropy, and as neither of the two are particularly deeply
embedded (see Fig. I1), and given that a bias lower will cause their
true anisotropy to be even higher, it seems likely that Draco and
Carina are indeed likely to have positive anisotropy at their half-light
radii.
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B(ri)

Draco Fornax Carina
1 1 1 =1 P T
—1.0 ~05 ~08 —06 -04 —02 00 —1.0 —0.5 0.0
CVn | Leo | Leo Il
R — 1 1 1 LI-L_‘- L 1 1 1
-4 -3 -2 —20 -15 -10 -05 00 05 -3 ) —1 0
Sculptor Sextans Ursa Minor
1 p— 1 1 1 1 1 1 1 —l
—1.00 —0.75 —0.50 —0.2 —15 —-10 05 0.0 -4 -3 -2 -1 0 1

B(r1)2) B(r1/2)

Figure H1. Posteriors of anisotropy parameter 8 at the half-light radius for the bright MW dSphs.

APPENDIX I: EMBEDDEDNESS OF THE

OBSERVED SAMPLE

for the observed sample. Sculptor and Fornax have lowest in-
ferences, with median values of 0.23 and 0.25, respectively.
Though still less embedded than the most embedded mock data

Because the degree to which the stellar population is embed- sets, the inferences for Sculptor and Fornax could be vulnerable
ded in the DM potential is an important factor for the accuracy to the types of biases seen in the most embedded mock data
of the model, we examine this in Fig. I1, which showsry,/r, sets.

MNRAS 532, 4157-4186 (2024)
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Draco
I < |
Fornax
Carina
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CVn |
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Leo Il
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Sextans
Ursa Minor
| 1 L 1 1 L1 11 L L 1 1 L1 11

0.1 1

Tl/?/TS

Figure I1. The posterior inference for ry 2 /rs, which indicates the degree to which the stellar population is embedded in its DM halo, for the observed sample.

The 68 per cent confidence intervals are shown.

APPENDIX J: LINE FIT FOR DENSITY VERSUS
PERICENTER

The power-law fit for the density (po;50) versus pericenter (r,) data
was determined by fitting a line of the form x = f + gy, with fand
g representing the intercept and slope, respectively. We have defined
x = logylrp/kpcl, y = log,O[p15o/(107M@kpc_3)], with dx and dy

MNRAS 532, 4157-4186 (2024)

corresponding to the uncertainties on x and y, respectively. The fit
was determined according to the likelihood

— f — ov)?
log(£) = —% > ((xj;izgy) + log (2mi2)) , an

where o = g?8y? + &?. The posteriors are shown in Fig. J1.
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Figure J1. Parameter posteriors and correlation for the best-fitting line of the
form logo[rp/kpc]l = f + glogm[p150/(M@kpc*3)]. The shaded regions
indicate the 1, 2, and 30 regions, respectively. The dotted lines indicate
the 15.9, 50, and 84.1 percentiles, respectively, from left to right.
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APPENDIX K: PERICENTER VERSUS DENSITY
COMPARISONS FOR ALL PHAT ELVIS HALOES

Here we compare the DM density at 150 pc (p;50) versus orbital
pericenter distance to each of the Phat Elvis haloes (Kelley et al.
2019). We examine subhaloes that are greater than 50 kpc from the
galactic center, and show the 20 subhaloes with the largest Vjca. Fig.
K1 shows the regression for the bright MW dSphs in red, and the
host haloes from the Phat Elvis simulation in black and grey.

MNRAS 532, 4157-4186 (2024)
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Figure K1. The DM density at 150 pc (p150) inferred from the DF fits for the bright MW dSphs versus orbital pericenter distance, in red, compared to the host
haloes from the Phat Elvis simulation. For the simulated haloes, the black circles represent the 10 subhaloes with the largest Vpeak (i.e. the largest Vinax since
their infall) that are currently more than 50 kpc from galactic center. The grey circles denote the 10th through 20th Ve subhaloes.
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APPENDIX L: COMPARISON WITH OTHER
SOURCES

To address the concern that the heavier MW models of Battaglia
et al. (2022) might result in a different result as to the anticorrelation

N,
100; N ® o ®

50 N ]

20 3 P
I T

10

p150[10"Mokpe ]
ol

; Heavy MW, no LMC S
05f
i ~
PE halo 609, with disk ~ —++— MW dSphs
1 L A L . .
0.2 20 50 100 200

r, (pericenter) [kpc]

Figure L1. DM density at 150 pc (p150) inferred from the DF fits for the
bright MW dSphs versus orbital pericenter distance (r), in blue, similar
to Fig. 14 but now using the heavy MW model of Battaglia et al. (2022)
and comparing to host halo 609 of the Phat Elvis simulation (Kelley et al.
2019). The error bars indicate the 68 per cent confidence interval. The best fit
line through the observations is shown in dashed blue, with the 68 per cent
confidence interval in light blue. The black circles indicate the 10 subhaloes
with current radial positions greater than 50 kpc and with the largest Vpeak for
host halo 609 of the Phat Elvis simulation. The grey circles denote the 10th
through 20th largest Vpeax subhaloes. The best-fitting regression line for the
Phat Elvis points is shown as a black dashed line.
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between density and pericenter, we examine the heavier case in
Fig. L1. In that figure we use the pericenters from the heavier MW
model, with mass 1.6 x 10'2M. The anticorrelation between p;sq
and pericenter is evident. The black and grey dots in the figure are
from Phat Elvis halo 609, which has a mass of 1.58 x 10'2M,, the
most similar to that of the heavy MW model.

In Fig. L2, we compare orbital pericenter data from Patel et al.
(2020), Battaglia et al. (2022), and Pace et al. (2022). We note the
version we adopt in our main analysis in black. The data sets are
fairly consistent given their stated uncertainties. The most tension
appears in the projections for Sculptor, which has the smallest error
bars of the nine dSphs.

In Cardona-Barrero et al. (2023), the authors closely examine
the correlation of p;sp with pericenter between a variety of data
sets. For central densities, they use the density results of Kaplinghat
et al. (2019), Read et al. (2019b), and Hayashi et al. (2020). For
pericenter distance they use the data of Fritz et al. (2018), Battaglia
et al. (2022), and Pace et al. (2022), some of which have different
mass assumptions for the MW and may or may not attempt to
account for the LMC. They conclude that the anticorrelation appears
statistically significant in some combinations of data sets but not
others. Specifically, they find that the Kaplinghat et al. (2019) density
data yields a substantial correlation, the Hayashi et al. (2020) data
lead to weak correlation, and that the uncertainties in the density are a
key determinant of the strength of the correlation. This lends support
to our results since the p;so uncertainties are generally smaller than
those of other results. Fig. 13 compares those results, and we point
out that we assess an uncertainty which is much smaller than that
obtained by Hayashi et al. (2020), which used a completely different
method. The caveat here is that spherical symmetry needs to be
a good working hypothesis for dSph DM haloes, as our analysis
assumes such symmetry but the analysis of Hayashi et al. (2020)
does not. Furthermore, Cardona-Barrero et al. (2023) find that the
data is better described by models in which the central density p;so
decreases as function of r,, which contrasts with most of the Phat
Elvis simulations (Fig. K1).

Ursa Minor - e ——+— Battaglia (w/ LMC)
- ——— Battaglia (light MW, no LMC)**
Sextans - —— ——+— Battaglia (heavy MW, no LMC)
e ——— Pace (w/ LMC)
Sculptor = —— Patel (light MW w/ LMC)
Leo Il -
Leo If —/—/———
CVn I
Carinaf ———e—i
Fornax —_—
Dracof —_—

1
150 200
rp (kpe)

Figure L2. Comparison of recent orbital pericenter data sets. The values used in the main analysis of this work are those of Battaglia et al. (2022)(light MW,

no LMC) noted with .
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APPENDIX M: PERICENTER REPROJECTIONS
FOR PHAT ELVIS SUBHALOES

Here, we examine the impact of using static, axisymmetric potentials
and z = 0 initial conditions to project subhalo pericenter distances,
as is done in Patel et al. (2020), Battaglia et al. (2022), and Fritz
et al. (2018). Our subhalo sample is constructed by starting with the
subhaloes of all 12 host haloes from the Phat Elvis simulation (Kelley
etal. 2019), then selecting the 20 subhaloes with the largest Vo from
each host family that are within the host’s virial radius. As a starting
point for orbital integration, we use the positions and velocities of the
subhaloes at z = 0, and project backwards in time to find pericenter.
The orbital integrations are done in the GALPY software package
(Bovy 2015). For each of the 12 host haloes, the potential is based
on the ‘MWPotential2014° potential of GALPY, which was obtained
by fitting to a wide variety of data on the MW. It is the sum of three
components: (i) a ‘Power Spherical Potential with Cutoff” with mass
4.5 x 10° Mg, (ii) a Miyamoto Nagai Potential with mass 6.81 x
10'°M, and (iii) an NFW potential. For our purposes, the NFW
component’s mass is adjusted so that the sum of the masses of the
modelled potentials are the same as that of the corresponding Phat
Elvis host halo.

Fig. M1 compares the reprojections of pericenter using the method
described above to the true values for the Phat Elvis subhaloes. In
general, there is good agreement with the true value, although the
reprojections exhibit a mild tendency to be underestimated, and there
are more outliers on the side of underprojection. The 16th, 50th, and
84th percentile values of the errors are —0.14, —0.01, and 0.05 dex,
respectively, as shown in the histogram of Fig. M2.

Pericenter from Phat Elvis Sim. (kpc)

a L L MR | L L
10! 102
Pericenter recalculated from static potential (kpc)

Figure M1. Comparison of the true pericenter distances (y-axis) with
projections of pericenter using a static, axisymmetric potential (x-axis) for
the subhaloes with the largest Vpeax in the 12 Phat Elvis hosts. The solid black
line indicates equality, the dashed blue line indicates 25 per cent error, and
the dotted red line indicates 50 per cent error.
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Error in pericenter reprojection (dex)

Figure M2. A histogram of the error between the reprojected pericen-
ters and the true values from the Phat Elvis simulation, in dex (i.e.
logg[perireproj/Petiye])- The 16th, 50th, and 84th percentile values are
indicated with vertical lines.

APPENDIX N: POSSIBLE EFFECTS FROM
TIDAL TRUNCATION

As a satellite galaxy falls into the potential well of our Galaxy, the
outer part of the satellite’s DM halo may become stripped by tidal
forces, resulting in a DM profile that may not be well modelled by
the ctNFW profile. To investigate the possible effects of this tidal
truncation, we calculate the radius of truncation based on the method
in Jiang et al. (2021), equation (S9), which is

Py (msm(rt)/Mhost(r)) / (2 — dIn Myog/dInr + 02, /03)
(NT)

where r is the tidal truncation radius of the satellite, mg,(r,) is the
mass of the satellite within the tidal truncation radius, ris the distance
of the satellite from the host centre, M (r) is the mass of the host
galaxy within radius r, vy, is the tangential velocity of the satellite,
and v 1s the circular velocity of the host potential at the radius in
question. For m,(r,), we compute the mass using the cNFW profile.
For M (r), we use the ‘MWPotential2014’ model in the GALPY
software package (Bovy 2015).

For our purposes, we wish to calculate the truncation radius at
pericenter, as any satellite that has made at least one pericenter
passage will have been truncated to the maximum extent. To obtain
the tangential velocity at pericenter, we assume that the satellite’s
motion conserves angular momentum about the galactic center, so
that v, (rp) = Vian(ro)ro/rp. For consistency, we use Fritz et al. (2018)
Tables 2 and 3 for the values of vy, (7o), 7o and rp,, corresponding
to their Milky Way mass model with mass 10'> My. The resulting
truncation radii r, and the ratios for r/ry.x for the observed sample
are shown in Table N1. None of the satellites in the sample are
severely truncated. Relative to their 7y, the most truncation occurs
in Sextans and Ursa Minor.
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Table N1. Calculated tidal radii for the bright MW dSphs, as compared to
rmax and in kpc. The median posterior value and the 68 per cent confidence
intervals are indicated.

MW dSph Name rt/Tmax r(kpe)
Draco 1.40i8j§2 3~61t%§§
Fornax 1.48 tgjgg 20-00:1;9550
Carina 1.601'8:23 10‘691';2?
Cvnl 2227380 5.0475%
Leol 314133 4.4417%
Leo I 47941075 3.62156)
Sculptor 1 .66t8j§? 7.0973%
Sextans 1 .29f8£ 4-67t{:;(7)
. +1.20 +2.66
Ursa Minor 1.347 59 3.7377 46

As acheck on the possible impact of tidal truncation on our models,
we modelled an abruptly truncated halo with truncation radius of 1.5
Tmax- That is, we define a new profile as follows:

r), r <= 1.5rnax,
o(r) = {pNFW( )

0, r > 1.57max (N2)

We chose 1.5r.x as a test value because several of the observed
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dSphs in Table N1 have truncation radii approximating that value.
We reran the DF model using this density profile and its associated
potential for three of the observed dSphs: Draco, Sextans and Ursa
Minor. We found that the impact of the truncation is modest, with
Tmax increasing 0.1 to 0.2 dex, Vi, increasing typically ~ 0.1 dex,
and p;s50 decreasing 0 to 0.2 dex. A more robust approach would
be to allow the truncation radius to be a varying parameter in the
model; we hope to do so in future work. At present, we are satisfied
that abrupt tidal truncation at 1.5r,,, does not seem to have a strong
impact on our inferences.

APPENDIX O: MOCK DATA
CHARACTERISTICS

In the Table O1, we report the main ingredients characterizing the
mock data set analysed in our study.

MNRAS 532, 4157-4186 (2024)
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Table O1. Mock data characteristics. The columns, from left, are (1) ID number, (2) ID string, (3) the number
of stars in the data set, (4) DM profile type, (5) log slope of the inner stellar profile, (4) scale radius of the stellar
profile, (6) anisotropy radius of the stellar profile, (7) 3D half-light radius, and (8) VSP of the data set.

Number ID w DM profile  y.  rx(kpc) 1o (kpe) 112 (kpe) VSP (103 km*/sec*)
1 22a0-4639 4639 Cored 0.1 0.1 1 0.122 4.25%032
2 aab0-4941 4941 Cored 0.1 0.1 10000 0.119 3.087062

3 abaO-1801 1801 Cored 0.1 0.25 1 0.310 25.87152
4 abbO-5483 5483 Cored 0.1 025 10000  0.300 23.001779
5 aca0-3904 3904 Cored 0.1 0.5 1 0.596 94.0971%:67
6 acb0-2607 2607 Cored 0.1 0.5 10000 0.588 847513234
7 adaO-1980 1980 Cored 0.1 1.0 1 1.233 231.667235
8 adbO-1441 1441 Cored 0.1 1.0 10000 1.251 172.54713%
9 baaO-1826 1826 Cored 1.0 0.1 1 0.093 2.897226
10 bab0-2156 2156 Cored 1.0 0.1 10000 0.090 1.807972
11 bba0-1776 1776 Cored 1.0 0.25 1 0.238 17.31732
12 bbb0-3368 3368 Cored 1.0 0.25 10000 0.227 15.07+247
13 bca0-2107 2107 Cored 1.0 0.5 1 0.463 70.067 %83
14 bcb0-2349 2349 Cored 1.0 0.5 10000 0.464 50.70782
15 bda0-2677 2677 Cored 1.0 1.0 1 0.913 164.097]7-37
16 bdbO-2456 2456 Cored 1.0 1.0 10000 0.914 113.42787%
17 aaaN-2358 2358 NFW 0.1 0.1 1 0.121 3.7370%
18 aabN-3539 3539 NFW 0.1 0.1 10000 0.122 3.047923
19 abaN-2975 2975 NFW 0.1 0.25 1 0.294 12,407} 2
20 abbN-4239 4239 NFW 0.1 0.25 10000 0.300 9.06%032
21 acaN-1088 1088 NFW 0.1 0.5 1 0.600 20.78%2%3
22 acbN-550 550 NFW 0.1 0.5 10000 0.603 15.127248
23 adaN-1860 1860 NFW 0.1 1.0 1 1.238 30.8613:90
24 adbN-826 826 NFW 0.1 1.0 10000 1.226 23.921338
25 baaN-1533 1533 NFW 1.0 0.1 1 0.096 2.967949
26 babN-1491 1491 NFW 1.0 0.1 10000 0.092 2.437937
27 bbaN-1214 1214 NFW 1.0 0.25 1 0.238 6.6810-7
28 bbbN-1153 1153 NFW 1.0 0.25 10000 0.224 7.27797¢
29 bcaN-2054 2054 NFW 1.0 0.5 1 0.453 16.4671 5
30 becbN-1222 1222 NFW 1.0 0.5 10000 0.434 14.89+137
31 bdaN-2912 2912 NFW 1.0 1.0 1 0.953 25.3313%
32 bdbN-1524 1524 NFW 1.0 1.0 10000 0.925 24241218
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