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Abstract. When dark matter has a large cross section for self scattering, halos can undergo a
process known as gravothermal core collapse, where the inner core rapidly increases in density
and temperature. To date, several methods have been used to implement Self-Interacting
Dark Matter (SIDM) in N-body codes, but there has been no systematic study of these
different methods or their accuracy in the core-collapse phase. In this paper, we compare
three different numerical implementations of SIDM, including the standard methods from
the GIZMO and Arepo codes, by simulating idealized dwarf halos undergoing significant
dark matter self interactions (o/m = 50 cm?/g). When simulating these halos, we also
vary the mass resolution, time-stepping criteria, and gravitational force-softening scheme.
The various SIDM methods lead to distinct differences in a halo’s evolution during the core-
collapse phase, as each results in spurious scattering rate differences and energy gains/losses.
The use of adaptive force softening for gravity can lead to numerical heating that artificially
accelerates core collapse, while an insufficiently small simulation time step can cause core
evolution to stall or completely reverse. Additionally, particle numbers must be large enough
to ensure that the simulated halos are not sensitive to noise in the initial conditions. Even for
the highest-resolution simulations tested in this study (10° particles per halo), we find that
variations of order 10% in collapse time are still present. The results of this work underscore
the sensitivity of SIDM modeling on the choice of numerical implementation and motivate a
careful study of how these results generalize to halos in a cosmological context.
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1 Introduction

Dark matter (DM) self interactions provide the means to transfer heat and mass across
a halo [1]. When the self interactions are strong enough, they can impact the structure,
morphology and diversity of galaxies and their satellites—see Refs. [2, 3| for reviews. This
provides an exciting opportunity for Self-Interacting Dark Matter (SIDM) to be distinguished
from collision-less Cold Dark Matter (CDM) through purely gravitational interactions on
galactic and sub-galactic scales. Robust interpretations of such observations necessarily rely
on careful modeling of galaxy evolution in these different DM frameworks. Towards this goal,
this paper provides a first study of numerical challenges associated with simulating SIDM
halos whose cores contract to high densities.

The heat transfer provided by collisions of DM particles allows the inner-most regions
of a halo to heat up. During this core-expansion phase, the DM particles at the halo’s center
acquire kinetic energy and expand their orbits. This reduces the core density for as long as
heat is transferred inward [4-8|. Eventually, the core becomes hotter than the outer regions,
and the heat transfer flips so that heat is transferred from the isothermal core to the outer
halo. This leads to the core shrinking in spatial size and increasing in density [9, 10]—a slow
process because the temperature gradient in the inner halo is extremely shallow. The net
effect of the shrinking core and outward heat flow is an increase in the temperature of the
core as long as the system is in hydrostatic equilibrium. The increase in core temperature
further facilitates the outward heat flow resulting in the runaway process called gravothermal



core collapse. This process was first studied in the context of globular clusters—see e.g.,
Ref. [11]—and was later applied to the study of SIDM |6, 9, 12-18].

Self-scattering interactions with a cross section as small as 3 cm?/g have been shown to
increase the diversity of rotation curves in the inner parts and bring them closer in agreement
with observations [19, 20]. However, recent studies show that an interaction cross section
larger than 10 cm?/g [13, 21-23] and as high as 100 cm?/g [24-26] at the dwarf spheroidal
galaxy velocity scales of 10-30 km/s could reproduce the diversity of central densities mea-
sured in the satellite galaxies of the Milky Way. SIDM models that do not allow for core
collapse are disfavored by the Milky Way satellite kinematic data [27, 28|. Core collapse in
satellites could contribute to the large galaxy-galaxy strong lensing excess observed in several
galaxy clusters [29, 30| and the anomalous densities of subhalos detected in galaxy-galaxy
lensing [31-33]. Core collapse could additionally provide the seeds for Super Massive Black
Holes (SMBH) observed at high redshift (z > 7) [34-38|. Such early core collapse would
require a large interaction cross section, or dissipative scattering, or a more complex dark
sector, e.g mirror DM (34, 37, 39-42].

Modeling galaxy formation in the context of SIDM requires supplementing gravitational
scattering with DM self-scattering in standard N-body codes [4-8, 43-49|. Three commonly
used implementations include the Spline method written into Arepo [7], the Kernel-Overlap
method in GIZMO [8, 44|, and the Top-Hat method [4, 5, 45, 46]. These methods differ, in
part, in how they account for nearest neighbors and how they implement force softening. The
authors of these codes tested the methods by verifying the scattering rates in DM halos with
a Hernquist [50] or Navarro-Frenk-White (NFW) [51] profile, or by shooting individual DM
particles at a uniform field of background particles. Ref. [52] performed the first comparison
of the N-body codes Arepo and GIZMO in their base configuration for an isolated SIDM
halo in the core-expansion phase. In their high-resolution simulations, employing fixed force
softening much smaller than the DM core size, they found significant differences in the overall
scattering rate between the two methods and noted up to 30% differences in their density
profiles in the core-expansion phase. However, no convergence study has yet been performed
that compares different SIDM implementations in the same N-body code and also pushes this
comparison deep into the core-collapse phase.

In this paper, we perform a detailed comparison of the three aforementioned SIDM imple-
mentations and discuss the appropriate choices of numerical parameters and mass-resolution
limitations. In particular, we consider how choices in number of particles, time stepping, and
gravitational force-softening schemes impact a halo’s core density and collapse time scales.
As a specific example, we focus on an isolated dwarf galaxy of mass 1.15 x 109 M, at both a
high and low concentration. These two cases cover both early and late core collapse. For a
cross section of 50 cm? /g, we investigate how different SIDM implementations reproduce the
core collapse of a DM halo by comparing the evolution of core density and velocity dispersion.
As will be demonstrated, the evolution is highly sensitive to the numerical implementation of
both the gravitational and self-scattering processes.

This paper is organized as follows. The details of the simulation implementation are
described in Sec. 2. Section 3 discuses how halo evolution is affected by the SIDM imple-
mentation, mass resolution (number of particles), time-stepping criteria and gravitational
force-softening scheme. Section 4 comments on how our numerical results compare with a
fluid description of core-collapsing halos. We conclude in Sec. 5. An appendix is included
with some supplementary figures.



2 Simulation Framework

The DM-only halos studied in this work are evolved using the gravity-tree solver in GIZMO [53].
As a concrete case study, we consider a low- and high-concentration variant of a Msyg =
1.15 x 109M@ isolated halo with virial radius Rsgg = 22.1 kpc. The initial conditions for
these halos are set using Spheric [54] and assume an NFW density profile with some scale
radius, rg, and density, ps. All halos are exponentially truncated at ryune = 23.6 kpc be-
yond the virial radius (see Ref. [55] for details on the truncation form), similar to previous
studies [56].! The high-concentration halo has ps = 1.04 x 103 M, /kpc? and 75 = 0.715 kpc,
which corresponds to a concentration of copg = 31. The low-concentration halo has parame-
ters of ps = 2.73 x 10" M, /kpc® and rs = 1.18 kpc, corresponding to cogo = 19. This study
takes an SIDM cross section per unit DM particle mass of o/m = 50 cm?/g as a
benchmark scenario. These parameters result in a core-collapse time of ~ 3.5 (14) Gyr for
the high (low) concentration case, providing a good example of early versus late collapse in
cosmological time.

For the two halos under consideration, we vary several different inputs to the nu-
merical modeling, including the DM scattering implementation (Sec. 2.1), force-softening
scheme (Sec. 2.2), and time-stepping criteria (Sec. 2.3). Table 1 summarizes the simulations
used in this work. The halos are run at low, medium, and high resolution, which correspond
to Np = 3 x 104, 5 x 10°, and 10 total gravitationally-bound particles in the halo, respec-
tively. Additionally, all simulations are run with the same number of cores to minimize the
influence of hardware on the results.

2.1 Implementation of Dark Matter Scattering

The interactions are implemented using three different SIDM methods from the literature: the
Kernel-Overlap, Spline, and Top-Hat methods. The Kernel-Overlap method is available in the
public version of GIZMO, while the Top-Hat and Spline methods have been re-implemented
for this work.

2.1.1 Kernel-Overlap Method

The Kernel-Overlap procedure applies a scattering method derived from the collisional Boltz-
mann equation, treating each particle as a discrete element of the phase-space distribution of
the DM halo—see Ref. [8] Appendix A for a full derivation. Briefly, a particle i at position r is
associated with the density kernel W (r, h;) with “smoothing length” h;, which can be thought
of as the radius over which the particle is smeared to give it some non-zero volume. The
distance h; must be chosen carefully; setting it too large leads to non-local interactions, while
setting it smaller than the mean particle spacing leads to non-physical, two-body relaxation
effects. Throughout, we use hy; to refer to the smoothing length for the self interactions,
distinguishing it from hg;, the gravitational smoothing length (discussed in more detail in
Sec. 2.2).
In this framework, the scattering rate of some particle 7 from a target particle j is given
by
Fij = (U/m) My Vrel Gij » (21)
where my, is the mass of the DM simulation particle, v,e) = |v; — v;| is the relative velocity
of the two particles, and g;; is a number-density factor derived from the density kernel of the

'Ref. [13] found that the truncation radius has no effect on a halo’s evolution so long as it is larger than
several times the scale radius.



€200 Ts Ps Np hg,i hs,i K n
[kpe]  [Mo/kpc’] [kpc] [kpc]
1.18 273 x 107 3 x10* adaptive adaptive 0.02&0.002 0.02

(low)

(low) 1.18 2.73x107 5x 10° adaptive adaptive 0.02&0.002 0.02
19 (low) 1.18 2.73x 107 1x 10° adaptive adaptive 0.02&0.002 0.02
(low)
(low)
(low)

19 (low) 1.18 2.73x 107 3 x10* adaptive adaptive 0.002 0.002
19 (low) 1.18 2.73x107 5x10° 0.0353  adaptive 0.002 0.002
19 (low) 1.18 2.73x107 1x105 0.0353 adaptive 0.002 0.02
31 (high) 0.715 1.04 x 10® 3 x 10* adaptive adaptive 0.002 0.02
31 (high) 0.715 1.04 x 10® 5 x 10° adaptive adaptive 0.002 0.02
31 (high) 0.715 1.04 x 10® 1 x 10% adaptive adaptive 0.002 0.02

Table 1. Halo and simulation parameters used in this work, including the concentration (co00 =
Raoo/rs), NFW scale radius (rs) and density (ps), number of particles (NN,), force-softening length
for gravitational (h, ;) and self (h,;) interactions, time-stepping criterion (x), and tolerance param-
eter (n). The parameter x corresponds to the maximum probability that two particles scatter with
each other in a given time step and is defined in Sec. 2.3. The parameter 7 captures the fraction of
the gravitational softening length that a particle can travel in a specified time step; it is discussed in
Sec. 2.2. All of the listed configurations are simulated using the three SIDM methods described in
Sec. 2.1: Kernel Overlap, Spline, and Top Hat.

respective particles:

g = /d3xW(\x\,hs,,-) W (| + 0351, s ) (2.2)
where hg ;(;) is the self-interaction smoothing length for the ith (") particle. The angular
integral is taken over the entire volume of the kernel and 0x;; is the distance between the two
particles. W (r, h;) is generally chosen to be the cubic-spline kernel:?

2 3 1
oo (i) vo(n) 0<i<s
8 7 3 7 7
0 = >1.

7

In principle, other kernel forms could be used here, which may affect the simulation results.
As such, our results pertain specifically to this choice of the kernel. GIZMO approximates
the integral in Eq. 2.2 by taking the average of the particle smoothing lengths and treating
the result as a constant length, havg = (hs; + hs ;) /2, in the kernel expression. With this
simplification, a table of g;;(dx;;) can be generated at the start of a simulation and the integral
is simply a function of d2;;/haye.

2To ensure the resulting scattering probability matches Eq. 2.1, the kernel is normalized such that
4 foh dx 2°g;;(z) = 1. Consequently, the overlap factor: g;; = [0, 1]



Given Eq. (2.1), the probability that particle i scatters in a time step dt; is
Pij = Fij dti (24)
with the total probability of interaction between the particles being

P(i|7) + P(j)
Py — Py — (il4) ! () (2.5)
Whether the pair of particles actually scatter is determined by drawing a random number
R € [0,1] and comparing it to the probability. If R < P;;, then a kick is applied to both
particles in the center-of-mass frame. The post-interaction velocities are:
m; m;

/ J A / A
vV, =Vt Urel € Vi =Ve— Urel €, (2.6)
mj + my m; +m;

where v, is the center-of-mass velocity and & is a random direction.

2.1.2 Spline Method

The Spline method, based on the approach described in Ref. |7], is unique because the scat-
tering is not determined on a pair-by-pair basis. The total probability of scattering P; is
calculated first and then a neighbor is chosen to scatter with. This total probability is built
up from the individual interaction probabilities between two particles:

‘Pij = (U/m) W((Sxija hs,i) My Urel dt; (27)

where the cubic-spline kernel is taken for W (r, hs ;). For a given particle ¢, the total probability
of scattering is the sum

N N

Pi'

PZ' = z;) == zzo(d/m) W((S:vij, h&i) % Vrel dti, (2.8)
J= J=

where N is the discreet number of neighbors within the kernel length, and the factor of two
in the denominator arises because two particles participate in a scattering event. A collision
occurs if R < P;, for some uniform random number R € [0, 1]. To select the nearest neighbor
that participates in the scattering event, all the nearby particles are ranked by their distance
to . The target for the collision is chosen as the first particle [ that satisfies R < Zé P A
velocity kick is then applied following Eq. 2.6.

2.1.3 Top-Hat Method

The third DM collision method considered here was first introduced in Ref. [4]. It differs from
the previous two approaches because it uses a top-hat rather than a cubic-spline kernel. As
such, there is no explicit weighting of the scattering probability by the particle separation.
In this case, the probability of scattering between a pair of particles is

(o/m)my vyel dt;

P = . 2.9
J %Trhiz ( )

A DM-DM scattering event occurs if R < Pj; at a given time step, where R € [0,1] is a
uniform random number. The final particle kinematics is again set by Eq. 2.6.



2.2 Implementation of Force-Softening Scheme

The choice of force-softening length, h;, plays a key role in determining the robustness of the
SIDM halo evolution. If the force softening is adaptive, the scale h; is determined by

N
dm 4
?hi ; W (bij, hi) = Negt , (2.10)

where Neg is the effective number of neighbors [53, 57, 58]. We set a minimum softening of
h; = 3 pc for all adaptive runs. For the cubic-spline kernel, Nog = 32 is the standard choice
in GIZMO, providing a good balance between computational expense and accuracy [58].

In this work, adaptive softening is always used for self interactions and is the default
for gravitational interactions (h; = hg; = hs; in Eq. (2.10)). However, Sec. 3.4 also explores
the effect of using a fixed gravitational softening length for the low-concentration halo. The
fixed force softening (Plummer equivalent hy; = 2.8¢ for cubic spline) is determined using
the criteria of Ref. [56], which is based on the constraints previously described in Ref. [59]:

€200 ] \/0-32 (Np/1000) " _ (2.11)

1+ co00 1.12 6%0206

e=rs [In(1+ co00) —

This results in softening values much smaller than the criterion of Ref. [60], but comparable
to values determined by the adaptive softening algorithm, i.e. € ~ 10 pc. In general, the
gravitational softening length should have minimal direct impact on the halo evolution as it
is at least several times smaller than the core size. For the low-concentration halo, Eq. 2.11
yields € = 12.6 pc, which is more than an order-of-magnitude smaller than the core size until
far into core collapse.

2.3 Implementation of the Time-Stepping Criterion

The time step, dt;, is a key parameter to set when initializing an SIDM simulation run.
Considerations of a particle’s gravitational acceleration motivates setting the time step of
particle 7 as

dty = | (2.12)
where a is the magnitude of the acceleration that the particle experiences. The tolerance
parameter, 7, is a dimensionless number that describes the fraction of the force-softening
length that the particle is allowed to move in the given time step. The default value in
GIZMO is n = 0.02 [53]. In this work, we use n = 0.02 as the baseline scenario, but also
consider n = 0.002.

However, one must also take into account the number of scattering events that occur
between two DM particles in a single simulation time step. If a particle scatters multiple times
in dt;, and on different CPUs, energy and momentum may not be conserved. Therefore, dt;
should be small enough that the probability of multiple scatters is itself small.

For both the Kernel-Overlap and Top-Hat methods, a time-stepping criterion is applied
that requires P;; < k, where £ is the maximum probability of scattering for a pair of particles.?
In practice, this means that

Lij(o/m, havg) dti < K. (2.13)

3For comparison purposes, it is useful to implement a formalism for which the time steps across SIDM
implementations are equivalent for a given choice of k. For this reason, we use Eq. (2.13) for both Kernel
Overlap and Top Hat.



We consider two possible limits for the time-stepping criterion: x« = 0.02 and 0.002. By
default, K = 0.2 [8] in GIZMO and x = 0.02 in Arepo [7]. As will be discussed in Sec. 3.3,
the difference between a 2% and 0.2% probability is enough to generate noticeable differences
in the late-time evolution of an SIDM halo.

The time-stepping criterion will be different for the Spline method, given that the prob-
ability that particle ¢ scatters depends on its nearest neighbors. In this case, the constraint
becomes

T Ploc Vioe dt; < K, (2.14)

where vy, is the local velocity dispersion, which is estimated as the maximum relative velocity
between a neighbor and particle i—see Refs. [53, 57]—and the local density is

N
Ploc = Y mp W (0zij, hsi) - (2.15)
j=0

In practice, the value chosen for dt; is the minimum of the two estimated with Eq. 2.12
and Eq. 2.13 (or Eq. 2.14). This ensures that the time stepping is small enough to address
concerns regarding both the gravitational and self interactions.

2.4 Characterization of the Halo Core

For the purposes of this study, it is necessary to characterize halo properties such as the
central density and core size. To recover a density profile for a halo, the location of its
center must be known. To determine this, we calculate the center-of-mass of the particles
with the highest local densities, as determined by the estimation of p,. in Eq. (2.15) and
assuming a cubic-spline kernel. The number of particles used for this evaluation is resolution-
dependent. For the low-, medium- and high-resolution simulations, we choose 200, 3000, and
6000 particles, respectively. In general, the center-of-mass of the entire halo does not coincide
with the center-of-mass of the halo’s core because, over time, the core shifts relative to the
outer regions of the halo, especially for the low-resolution simulations. Using the core’s center-
of-mass allows for a more reliable determination of the core density and velocity dispersion
profiles.

Once the core’s center-of-mass is determined, the particles in the halo are divided into
100 evenly-spaced radial logarithmic bins for which the density and velocity dispersion are
obtained. To quantify the core density and size, the following density profile is fit to the inner
region of the halo,

Pcore

) = ey (210
where peore 18 the core density and rq is the characteristic radius beyond which the slope of the
log profile transitions from a constant to —3. This density profile is a good approximation to
the isothermal density profile in the inner regions. The fitting is done with a non-linear least-
square method. However, the outer slope of this profile will not hold far outside of the core,
where the slope of the log profile transitions to —2. For this reason, we determine appropriate
fitting boundaries at every simulation snapshot. First, the central density pcore is estimated
by averaging the local densities of the 200 central-most particles and then the profile is fit out
to the radius where the density drops to peore/5. We define the core radius, rcore, as the radius

where the density drops to half the core density, which implies 7¢ore = 70V 272/3 — 1. Given

the expectation that the core is isothermal throughout the halo’s evolution, we compute the



instantaneous core velocity dispersion using all the particles within r.oe and relate the 3D

. . . . . . . . . 2 _ 2
and 1D dispersions assuming an isotropic velocity distribution, vZ,.. sp = 3vcore-

3 Numerical Effects on SIDM Halo Evolution

This section explores how various numerical implementations of an N-body code affect the
evolution of an SIDM halo. In particular, we consider effects of the SIDM implementation
method (Kernel Overlap, Spline, or Top Hat), the numerical resolution, the gravitational
force softening, and the time-stepping criterion. Fach of the following subsections examines
the effects of these variations on outputs such as the density profile evolution or the total
energy of the system.

3.1 SIDM Methods

One of the main goals of this study is to compare between different SIDM implementation
methods. Fig. 1 shows the core density normalized to the NFW scale density, pcore/ps (top
panels), and core velocity dispersion normalized to the maximal circular velocity of the halo,
Vcore/Umax (bottom panels), for the Spline (red), Kernel-Overlap (blue) and Top-Hat (green)
methods. For each curve, time is plotted in units of the thermal relaxation timescale of
the halo, t/tg, where tg = (\/16/mpsvoo/m)~1 and vy = /47Gpsr? [13, 61]. Shown on
the same plot are variations on the number of particles, the time-stepping criterion, and the
concentration of the halo used for the initial conditions of the simulation. The effects of some
of these variations will be discussed below.

For all cases plotted in Fig. 1, the general behavior of the density evolution follows the
characteristic trajectory expected from the SIDM fluid model [6, 12, 13, 15, 17, 61, 62|. In
the initial stages of halo evolution, heat flows inwards and the core grows in size until it
reaches a maximum radius, corresponding to some minimum central density. At this point,
the central region of the halo is much hotter than its surroundings and eventually heat flow
reverses direction, triggering the onset of runaway core collapse. During this final stage, the
core rapidly shrinks in size and increases in both temperature and density. However, as is
evident from Fig. 1, the detailed features of this evolution can vary significantly depending
on the numerical implementation.

A general finding is that during the core-expansion phase, the core temperature is more
robust than the core density to the different implementations and resolutions and always gives
results that are close to the expectation from the fluid approach to within about 2%vmax
(this will be further discussed below). The different implementations do significantly affect
the core density during core expansion, the general trend being that simulations for which
the minimum core density is larger collapse faster (and vise-versa). Thus, capturing physical
SIDM behavior at early times in a halo’s evolution significantly affects the late-time behavior.

In all high-resolution simulations, the Spline method produces the earliest core collapse,
followed by the Kernel-Overlap and then the Top-Hat method. To quantify this comparison,
one can define the collapse time, t.,, as the time at which the core density reaches 100
times the scale density, peore(tcon) = 100ps (evolving halos to higher core densities involves
significantly higher computational cost). For the high-concentration halos, the collapse time
is teon ~ 416tg,461ty, and 500ty for the Spline, Kernel-Overlap, and Top-Hat method, re-
spectively. For the low-concentration halos simulated with x = 0.002, t.on ~ (338-394)ty,
depending on the SIDM method. Holding all other variables constant, the higher x = 0.02
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Figure 1. The evolution of a 1.15 x 10° Mg halo with either a cog9p = 19 or 31 concentration,
assuming a self-interaction cross section of o/m = 50 cm?/g. The low-concentration halo, which
collapses late in cosmological time, is generated for both x = 0.002 and 0.02. The high-concentration
halo, which collapses earlier, is only generated for x = 0.002. The halo evolution is shown as a function
of dimensionless time, normalized in terms of the thermal relaxation time of the halo, 3. The top
axis provides the dimensionful time in Gyr. Top: The evolution of core density, pcore, normalized
to the NFW scale radius, ps. Note the two vertical axes: a linear (log) scale is used for densities
below (above) 3ps. Results for the Spline, Kernel-Overlap, and Top-Hat SIDM implementations are
shown in red, blue, and green, respectively. The solid (dashed) lines correspond to the high (low)-
resolution simulations. Bottom: The evolution of velocity dispersion, veore, normalized to the halo’s
maximum velocity, vmax. All plotted curves have been smoothed by averaging over the six nearest
snapshots, which span about 10t¢y, with the exception of very early or late times where the halo
evolution is rapid and no smoothing is necessary. For the high-resolution simulations, all three SIDM
methods predict similar evolution during core formation, but diverge during core collapse. Specifically,
the Spline method leads to the most rapid halo evolution, while the Top-Hat method leads to the
slowest. The low-resolution simulations show considerable variation in the minimum density, which
ultimately affects the core-collapse timescale. As discussed in Sec. 3.2, this is traced back to numerical
noise in the initial conditions. Lastly, simulations with x = 0.02 experience a failure at late times
where core-collapse reverses, regardless of the SIDM method and resolution. These results pertain
specifically to halos simulated with adaptive force softening for gravity.

simulations tend to collapse ~ 2% faster. Additionally, for some cases, the behavior of both
central density and velocity dispersion stall and become non-physical at late times.

One possible cause for the differences in halo evolution is the scattering rate of particles
within the simulation. Theoretically, the rate is expected to be,

p(x)?
Toxp = / (ovpel) AV, (3.1)
p vV Qm%

where p(x) is the halo’s density profile and (owv,e) is the thermal average of the cross sec-
tion times the relative velocity. The thermal averaging can be calculated by assuming
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Figure 2. The evolution of core density as a function of the total scattered mass for the high-
resolution simulations with x = 0.002. The solid opaque lines correspond to the low-concentration
halo, while the dashed lines are for the high-concentration halo. The Kernel-Overlap and Top-Hat
methods achieve the same core density at equivalent scattered mass, while the Spline method achieves
the same core density with less scattering. These results pertain specifically to halos simulated with
adaptive force softening for gravity.

that all interacting particles have a Maxwell-Boltzmann distribution of the form f(v) =
[1/(2m02)]3/2e=(v/v1)*/2 (where v, (x) is the position-dependent 1D radial velocity dispersion
of the halo), which for a constant cross section just gives (ovy) = 4/y/m X ov,. To estimate
Iexp, we spline the density and dispersion profiles for each simulation snapshot, which is
taken every tg to capture the halo’s evolution during core collapse, and numerically integrate
over the entire simulation volume. The expected scattering rate can then be compared to
the scattering rate observed in the simulations. To obtain this rate, we count the number of
scattering events, Ngcat, Within each time interval, ¢y, in the entire simulation volume, and
take Lops = Nscat/tO-

For all simulations run in this study, I'exp and I'gps agree with each other to within
about 10% and are remarkably constant in time. In particular, for the highest-resolution
simulations, the ratios are constant throughout the entire evolution with the exception of
the last few snapshots that are deep in the core-collapse regime (when Igps is extremely
sensitive to the rapid evolution). These ratios are I'ops/Iexp =~ 1.08,1.06, and 1.02 for the
Kernel-Overlap, Spline, and Top-Hat implementations, respectively (see Fig. A1 for additional
details). In this regard, we note that Ref. [52] found larger differences in the scattering rates
between the Arepo and GIZMO codes, and these differences were cross-section dependent.
We are unable to make a direct comparison to these results because GIZMO and Arepo are
different in more ways than just the SIDM implementations. Additionally, the SIDM kernels
we use are adaptive, while Ref. [52] used a fixed softening for SIDM that was a fraction of
the gravitational force softening (which was also not adaptive).

To study whether the different scattering rates contribute to the variations in evolution
for different SIDM implementations, one could think of the cumulative number of scatter-
ing events at any given time in the simulation as a universal clock. Namely, since different
SIDM implementations have different instantaneous scattering rates, it is plausible that evo-
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Figure 3. The collapse time, t,, in units of relaxation time plotted as a function of minimum
core density, normalized to ps. Results are shown for the low- (left panel) and high-resolution (right
panel) simulation of the low-concentration halo with k = 0.002. They are plotted for two different
realizations of the NF'W initial conditions of the halo (IC1 and IC2), shown by the empty/filled circles.
For a given initial condition and SIDM method (indicated by color), each low-resolution halo is re-
simulated three times to test reproducibility. The dominant source of scatter in the minimum core
density and collapse time for the low-resolution simulations is the numerical noise in the generation
of the initial conditions. These results pertain specifically to halos simulated with adaptive force
softening for gravity.

lution would be equivalent if plotted as a function of the cumulative number of scattering
events instead of actual simulation time. To test this, the total number of scattering events
is computed, Ngcat tot(t) = 2;:0 Ngcat (ti) (where t; denotes the time intervals between the
first snapshot and any snapshot at time ¢). These values differ slightly between the different
SIDM implementations. For example, at the time of maximal core (approximately ~ 70t),
Nacat tot (T0t9) = 9.40 x 10°, 9.25 x 105 and 8.69 x 10° for the Kernel-Overlap, Spline, and
Top-Hat implementations, respectively. Halo evolution as a function of Ngcat tot is plotted in
Fig. 2 for the highest-resolution runs and for both high- and low-concentration simulations
with k = 0.002. Using this variable instead of time brings the Kernel-Overlap and Top-Hat
methods into close agreement, while the Spline method still collapses earlier than the others.
This suggests that, while differences in the scattering rates between the SIDM implementa-
tions could explain some of the variations in collapse times, additional factors must also be
affecting the results. In what follows, we study some additional aspects of core-collapsing
SIDM simulations.

3.2 Mass Resolution and Initial Conditions

The total number of particles in a halo must be large enough to ensure that halo properties are
well resolved and that numerical noise does not have an effect on the halo’s evolution. This
subsection explores the effects of reducing the particle count below 10% per halo. The most
dramatic differences occur for the lowest-resolution halos in the suite, the results of which
are indicated by the dashed lines in Fig. 1 (curves for medium-resolution simulations are not
shown because they are nearly identical to those of the high-resolution simulations). These
low-resolution halos exhibit significant variation in both the minimum core density as well as
the core-collapse time. For example, the low-concentration halo has min (pcore) ~ (1.6-2.0)ps
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for the low-resolution runs, while the range narrows to ~ (2.3-2.5)p, for the high-resolution
runs (see Fig. 3).

In general, for cases where the cores are larger and less dense, the low-resolution ha-
los take longer to core collapse than their higher-resolution counterparts. For the low-
concentration halo simulated with x = 0.002, the core-collapse times are t.,; = 450ty for
the Spline and Top-Hat method and t.,; &~ 400% for the Kernel-Overlap case. As mentioned
above, the early-evolution of the halos ultimately impacts its late-time evolution. These
effects are due to numerical noise in the initial conditions and are not physical.

To further test numerical noise, Fig. 3 plots the collapse time and minimum core den-
sity for multiple realizations of the low-concentration halo with x = 0.002. The left panel
corresponds to low resolution and the right panel to high resolution. In each case, open
circles correspond to the baseline NFW initial conditions used in this work (IC1) while the
filled circles correspond to a separate, independent set of initial conditions (IC2). For the
low-resolution case only, and for a given initial condition and SIDM implementation, each
halo is simulated three times to test whether additional numerical effects, such as issues with
random seed generators, are at play. This is not done for the high-resolution simulations due
to computational costs.

As the left panel of Fig. 3 demonstrates, there are at least two sources of variability for
the low-resolution simulations. A dominant source of uncertainty is related to the choice of
initial conditions, which leads to variability of order 30% in both collapse time and minimal
core density. A sub-dominant source of uncertainty, which is likely due to random number
seed generation in the code (although we cannot isolate the effect explicitly), leads to ~ 10%
variations in collapse time and ~ 5% variations in minimal central density. The right panel
shows results for the higher-resolution simulations. Clearly, the spread in these results, cor-
responding to varying initial conditions, is now much smaller, of order 10% for both collapse
time and minimal core density.

As discussed earlier, the minimal core density and collapse times are in fact related
to each other since larger minimal core densities generally correspond to earlier collapse
times. This is somewhat expected since the instantaneous collision timescale in the core
is proportional to (pcorevcore)_l. Numerically, we find that the values of vcoe at the time of
maximal core are approximately constant when varying SIDM methods and initial conditions,
and therefore one might expect that t. oc min(peore) ! which is approximately the scaling
observed in Fig. 3.

Given the results of this section, from this point onward, the analyses focus solely on
the high-resolution simulations.

3.3 Time-Stepping Criterion

Energy non-conservation due to numerical processes plays a key role in SIDM halo evolution.
The top panel of Fig. 4 plots the evolution of the total energy,® normalized to the initial
energy, Fy, of each simulated halo as a function of core density. As the halo evolves in time,
it moves clockwise along each curve, starting from the initial state (marked with an ‘x’), then
moving towards lower core density through core expansion, and then towards higher core
density in the subsequent core collapse. For the x = 0.002 example (top left), the energy is
well-conserved (E/|Ey| =~ —1) while peore < 10ps. Far into the core-collapse regime, though,

~

the different SIDM implementations result in different energy evolution. Simulations run with

1For the following discussion, “total energy” refers to the total potential and kinetic energy of all the
particles in the simulation.
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Figure 4. Top: The evolution of total energy versus core density for the low-concentration halo
with k = 0.002 and 0.02. Plotted in this space, the halo’s energy evolves clockwise with time. This
evolution is characterized by a phase of core expansion at constant energy followed by the halo’s
energy becoming more negative, i.e. losing thermal energy, from the time of core formation to core
collapse. Simulations with x = 0.02 exhibit a critical failure of energy conservation once core densities
reach 50-500ps (depending on SIDM method), where both the kinetic and potential energy is rapidly
lost. Generally, the Spline method experiences this failure at much higher core densities than the
other two methods. Bottom: The evolution of halo energy over time. For comparison, the evolution
of a CDM halo is plotted in black. The Spline method produces energy evolution closest to the CDM
halo at times past the “maximum core”, showing that this method produces the least net energy gain
due to the DM scattering. These results pertain specifically to halos simulated with adaptive force
softening.

the Spline method show the largest energy loss, while the Top-Hat simulations exhibit the
least energy loss. At very late times, some of the halos start to exhibit significant gains in
energy.

This behavior is even more apparent in the bottom row of Fig. 4, which shows the energy
evolution as a function of time. Changes in energy are driven by two distinct numerical effects
that compete with each other. The first is energy loss from the implementation of gravitational
scattering. This effect should be present even for a CDM simulation, which is indeed the case,
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as demonstrated by the solid black lines in the bottom row of Fig. 4. The second main effect
arises from the implementation of the self interactions. The additional energy gains that
result from this effect are apparent in the bottom panel of Fig. 4, where all three SIDM lines
differ from the black CDM expectation. In the initial stages of core collapse, we observe a
~ 1.0-1.3% change in energy for the x = 0.002 halo. SIDM offsets the energy loss from
gravitational scattering, bringing the halo closer to its initial energy inventory. However, this
does not improve the accuracy of the simulations as artificially adding and removing energy
throughout the halo influences its thermal evolution unpredictably.

While these sub-percent changes to the total energy may seem negligible, any numerical
energy loss during core collapse is effectively an additional heat source in the central region of
the halo where the vast majority of the self interactions take place. As the energy decreases,
the potential well of the halo deepens and mass is dragged towards the center of the halo,
effectively accelerating core collapse. From Fig. 4, it is clear that the Spline method heats
halos the most in the initial stages of core collapse, followed by the Kernel-Overlap and Top-
Hat methods. This explains the behavior noted in Fig. 1, where the Spline method results in
the fastest core-collapse times.

Conversely, any numerical effects that lead to artificial gains in energy will effectively
cool the system, delaying core collapse. At very late times in the halo evolution, all the
simulations begin to gain a lot of energy, which causes the core to expand again and the
entire halo to become less gravitationally bound. For the x = 0.002 halo, this cooling does
not have a noticeable effect on the core’s evolution. However, for the x = 0.02 example,
the degree of numerical cooling is so significant that it causes the core-collapse process to
completely reverse. The right-most column of Fig. 1 shows the case of k = 0.02 for the
low-concentration halo. For all three SIDM implementations, the density growth slows down
and experiences some fluctuations when the core density exceeds ~ 200ps. Looking at the
evolution of the central velocity dispersion, it is clear that something is going wrong because
the dispersion starts to decrease just as the growth of core density begins to fluctuate. Beyond
this point, the core collapse halts and reverses with the density dropping by as much as a
factor of 10 by the end of the simulation run. At the same time, the central velocity dispersion
falls back down to ~ 0.Tvpax, virtually reversing the total heat gain since the start of core
collapse. In general, the Top-Hat method fails at lowest core density, while the Spline method
fails at the highest. From the right panel of Fig. 4, it is clear that the reversal of core collapse
coincides with a rapid turnaround in the halo’s E/|Ep|. In all three SIDM implementations,
there is a decrease of ~ 15% of the total halo energy by the end of the simulation run.

While the energy loss driven by gravitational interactions is tied to adaptive force soft-
ening (as discussed in the next section), the energy gains driven by self interactions likely
result from particles scattering multiple times in a single time step. Specifically, "bad events"
constitute particle multi-scatters with neighbors that reside on other CPUs, which leads to
energy gain since the scattering velocities are not updated between multi-scattering events
(see Ref. [45] for a detailed discussion). Generally the number of bad events is of the same
order as the number of multi-scatters because most of the particle neighbors reside on differ-
ent CPUs. A simple back-of-the-envelope estimate of the double-scattering rate shows these
highly infrequent events can generate a significant change in energy even for well-resolved
halos. The number of double-scattering events, N (), in the halo’s core is

N® = NOp ~ ND | (3.2)

where N is the number of single-scattering events and P; can be approximated as s far
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into core collapse when the interactions are very frequent. Assuming each double-interaction
event adds kinetic energy comparable to a core particle of mass m, with velocity vcore, the
relative change in a halo’s kinetic energy is

AE _ N@mpZ , —NO N

core
~ K

~~ ~ R
EO,kin Ajhalov2 N N

core

(3.3)

where Ejyi, is the halo’s initial kinetic energy, and we approximate the average speed of
a halo particle as being O(1)veore. Clearly, the gain in kinetic energy becomes appreciable
as N®) approaches the total number of particles in the halo, N. For the high-resolution
simulations with N = 10 particles, approximately N2 = 106 double-scattering events are
needed to change the halo’s kinetic energy by Ej yi,. During the last ~ 1 Gyr of the simulation
concurrent with the rapid changes in the halo’s energy, the high-resolution simulations with
k = 0.02 go through NV ~ O (107) single-scattering events and N ~ O (105) double-
scattering events. This results in an energy change of approximately

AE 107
~0.02 x — ~0.1 3.4
Eo xin * 106 ’ (3:4)

which is comparable to the energy change during this time of the simulation (=~ 15%FEj).
Since AF « k, reducing x by an order-of-magnitude greatly improves energy conservation.
However, k = 0.002 does not, in general, guarantee the absence of artificial heating. Instead,
reducing « allows the simulation to reach higher densities, where the energy error per double
scattering event increases due to the rising temperature of the core.

Refs. [45, 63|, implemented several features in their N-body codes to reduce the impact of
bad multiple scattering events. In order to reduce the probability of bad scattering, Ref. [45]
enforced a particle communication direction between every pair of the CPUs, while Ref. [63]
additionally enforced a communication queue such that a single particle is only actively scat-
tering on a single CPU at a time, which completely eliminates the possibility of simultaneous
multi scattering. Not unlike simply lowering the scattering rates in individual particle time
steps, this latter approach does come with a significant impact on computational efficiency
of the simulation.

A key take-away is that without implementing a numerical scheme that reduces the rate
of multi scattering, the time-stepping parameter, s, must be chosen judiciously to minimize
energy non-conservation. For a given x, we find that the Spline method minimizes energy
gain or loss compared to the other two methods for the halos simulated here. It is not clear
why the Spline method exhibits smaller energy gains, but it could be due to the neighbor
sorting when choosing which particle to scatter with, which is a major difference from the
other two methods.

3.4 Adaptive Gravitational Force Softening

All analyses until this point have focused on simulations that were run using adaptive force
softening for the gravitational interactions. Here, we explore the effects on the halo evolution
by instead using a fixed force-softening length, €, and different tolerance parameter, 1. Because
the goal is to maximize energy conservation, we focus on the Spline method in the following
discussion. Figure 5 shows the results of re-simulating the low-concentration x = 0.002 halo
for the Spline method. The previously described adaptively-softened simulation is plotted in
solid red for comparison. As shown in the right panel of Fig. 5, reducing n while using adaptive
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Figure 5. The evolution of core density and energy of the low-concentration halo with fixed and
adaptive force softening for gravity, using the Spline implementation. The particle smoothing hg
is adaptive. Additionally, the tolerance parameter, 7, is varied. The simulation with fixed force
softening and 1 = 0.002 exhibits much improved energy conservation relative to the others. The
black line corresponds to the best-fit fluid model solution with C' = 0.84, obtained by fitting to the
simulation with best energy conservation.

softening increases energy loss over the course of the simulation. However, the combination
of fixing the force-softening length and decreasing the tolerance parameter to n = 0.002
essentially removes the numerical heating observed in all other simulations. By comparing
the evolution of this simulation with the rest, it is clear that the gain of E//|Ep| ~ 1-2% results
in roughly a 10% acceleration in core collapse. Because it is unpredictable how much of an
effect numerical heating/cooling will have on core evolution in general, adaptive softening for
gravity is undesirable for DM particles in core-collapsing simulations.

4 Comparison to the Fluid Model

The hydrodynamical evolution of SIDM halos is captured by the gravothermal fluid model,
extensively explored in several key studies [6, 9, 11-15, 17, 18, 34, 62]. The set of partial
differential equations describing the evolution of the local density p(r,t) at location r and
time ¢, velocity dispersion v(r,t) and luminosity L(r,t), are the fluid-momentum equation
in the hydrostatic limit, the first law of thermodynamics, and a heat transport equation
with an effective heat transport coefficient that is typically used in both the short and long
mean-free-path regimes. The heat transport equation is given by

L 3 o (4nG  a /oN\2\ ' ov?
=——cav— | 5——5 + + (—) -, (4.1)

47r2 2 m\Cpv?> b\m or
where a = 4/7 and b = 25,/7/32. For almost all cases of interest, the entire halo initially
evolves in the long mean-free-path regime during which the first term in parenthesis domi-
nates. When the core density and velocity dispersion become large, the second term can begin
to dominate and the core enters the short mean-free-path regime. Eq. (4.1) is an approxi-

mation because there is no ab initio derivation of heat transport in the long mean-free-path
regime. In that regime, the parameter C has been used as a constant (in space and time) O(1)
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fudge-factor in an attempt to calibrate the conductivity using N-body simulations of isolated
and idealized halos. Several studies have evaluated this constant and there exist discrepan-
cies of order 25% between different studies with some finding values of C' ~ 0.6 [12, 62| while
others find larger values of C' ~ 0.75 [6] and C' ~ 0.82 [15]. The various derivations have used
different simulation suites with most focused on either the Pippin halo run of Ref. [64] with
various cross sections, or isolated halos run by Refs. [6] and [15]. Additionally, the various
studies use different methods to fit the fluid model to these simulations. Given the findings
of our study, it is plausible that at least some of these discrepancies arise from numerical
variations between the simulations.

For completeness, we evaluate our own value of C' by comparing the fluid solution of
Ref. [62]’s run #1 to our high-concentration, high-resolution, x,n = 0.002 simulation, with the
Spline method and fixed gravitational softening (which exhibits good energy conservation).
We choose the value of C' for which the fluid method and simulation reach pcore = 100ps at
the same time and find C' = 0.84. The fluid result is shown by the solid black curve in the
left panel of Fig. 5.

After setting C', one can then compare the entire simulated halo evolution to the variables
that are solved for in the fluid approach. For example, the fluid model predicts that the core
density reaches its minimal value at approximately 60ty for an initial NFW halo in isolation.
At that time, the core density is predicted to be peore = 2.4ps, the core radius is reore = 0.457,
and the core velocity dispersion is veore & 0.64vmax. As shown in Fig. 1, the results for both
the low- and high-concentration simulations are consistent with the fluid predictions. In
particular, the minimum core density in the high-resolution simulations® is min (Peore) &
(2.4-2.5)ps and is reached around ¢ ~ 70tp, regardless of SIDM implementation. There is
particularly good agreement in the central velocity dispersion with veore & (0.64-0.65)vmax-
There are no systematic differences in the core sizes between SIDM implementations, with
Teore =~ 0.427¢ for all resolutions simulated, as shown in Fig. A2.

5 Conclusions

This paper explores the uncertainties in modeling DM self interactions in N-body simulations,
focusing on the regime where the core size is shrinking and the core density is increasing with
time. As a concrete case study, we focused on a high- and low-concentration variant of a
1.15 x 10° M, halo. We assumed a constant cross section of 50 cm?/g and implemented the
self interactions using three common modeling methods found in the literature: the Spline,
Kernel-Overlap, and Top-Hat techniques. Additionally, we also varied the number of particles,
time-stepping criteria, and gravitational force softening used to simulate the halos. For the
isolated dwarf halos considered in this work, we showed that:

e (lear differences arise in the halo evolution depending on the SIDM implementation.
Halos evolved using the Spline method collapse fastest, followed by those evolved using
the Kernel-Overlap and then the Top-Hat method. These differences result from the
interplay of at least two effects. First is that the different SIDM implementations
yield different scattering rates, which can be between ~ 2-8% larger than the expected
theoretical value. Second is that the specific numerical implementation of gravitational

Given a density profile at every snapshot, we fit a cubic polynomial to peore(t/to) in the time span (50—
200)to when core collapse is expected to be occurring. From this, we determine the density at maximum core,
min (peore) /ps, by finding the minimum of the resulting curve. This procedure reduces numerical noise in
determining these quantities, which can be significant depending on the resolution.
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and DM scattering can result in the halo’s total energy not being conserved. Small
differences in the energy conservation can translate to large differences in the maximum
core densities reached before evolution stalls. We find that the Spline method has the
best energy conservation for the halos simulated.

e An inadequate choice of time step can result in core evolution that stalls or reverses
entirely, reducing the observed density and dispersion profiles. Therefore, an appropri-
ate choice of the time-stepping criterion is critical for minimizing the effects of energy
non-conservation—e.g., one must ensure that the probability of DM self-scattering in
a single time step is very small. For our simulated halos, we found that limiting this
probability to 0.2% (x = 0.002) was sufficient to prevent spurious cooling during a halo’s
core collapse. This choice for k is about an order-of-magnitude lower than the default
values used in GIZMO (x = 0.2) and Arepo (x = 0.02).

e Numerical heating that arises from adaptive gravitational softening can accelerate the
core-collapse process, even if it only results in a few-percent change in the halo’s total
energy. We showed that using a fixed gravitational softening, along with an appro-
priate choice of tolerance parameter (n = 0.002), maximized the accuracy of energy
conservation for the case of the Spline method.

e The evolution of low-resolution halos with 3 x 10* particles is dominated by noise in the
generation of initial conditions. In particular, stochastic noise in different realizations
of identical ~ 109M, NFW halos introduces a ~ 30% scatter in the core density and
collapse time. This is a larger systematic uncertainty than the choice of SIDM method.
The highest-resolution halos considered here, which have 10° particles, are more robust
to changes in the initial conditions, but still lead to 10% level uncertainties in collapse
time. This highlights that a certain level of uncertainty persists across our simulations
even after attempting to optimize the SIDM implementation.

This work underscores the challenges encountered when simulating the SIDM gravother-
mal collapse process and comparing results across the literature that may start from different
sets of simulation parameters, initial conditions and methods. While we have only focused on
an isolated ~ 109 Mg halo here as a concrete example, the results already demonstrate that
the detailed implementation of the gravitational and self interactions can significantly alter
a halo’s evolution into the core-collapse regime. These results motivate further convergence
studies for an expanded range of halo masses and should also be generalized to a cosmological
setting. Such work will help minimize numerical mis-modeling effects and ensure that spu-
rious energy gains or losses in SIDM simulations are not misattributed to genuine physical
effects.

Note Added

As this paper was being completed, we became aware of Ref. [65], which also studies numerical
uncertainties on SIDM halo evolution. Both works consider the convergence of SIDM halos
in terms of both mass and time resolution, for which the results are in general agreement.
However, our paper additionally explores the systematic differences that may stem from
different SIDM implementations and adaptive force softening.
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Figure A1l. The observed scattering rate, I'ons, as a fraction of the expected rate, I'eyp, plotted
as a function of number of particles, N,. The left, middle and right columns correspond to the
Kernel-Overlap, Spline, and Top-Hat results, respectively. Results for the low-concentration halo
with £ = 0.002 and 0.02 are shown by the filled black and red circles, respectively. Results for the
high-concentration x = 0.002 halo are shown by the black crosses. In general, I'ops/I'exp approaches
a common value as the resolution improves. At the highest resolution simulated here, there are still
systematic offsets between the observed and expected scattering rate, with the magnitude depending
on the specific SIDM implementation.
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Figure A2. The evolution of the halo’s core size, rcore, rescaled to its scale radius, rs. Results are
shown for the low- and high-concentration halos and for different time-stepping criteria. Solid (dashed)
lines correspond to the highest (lowest)-resolution simulations run here. The Spline, Kernel-Overlap,
and Top-Hat results are shown by the red, blue, and green lines, respectively. The simulations with
k = 0.02 (right panel) show a visible stalling of the core collapse as the core size grows more slowly
at late times in the halo’s evolution.
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