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I would like to commend the authors for this insightful and
thought-provoking paper on “Data Fission:Splitting a Single
Data Point.” The idea of splitting a data point using random noise
to create two parts with specific distributional properties is both
innovative and widely applicable, particularly in post-selection
inference.The purpose of post-selection inference is to draw
conclusions about the parameters selected through a statistical
procedure, denoted S(y). The selection set can be chosen based
on the full dataset, data splitting, or data fission. In this discus-
sion, we would like to comment on the interplay between various
selection rules and post-selection inference methods from the
perspective of the Bayes/empirical Bayes framework.

In post-inference problems,the main challenge is dealing
with “selection bias,” or the “winner’s curse.” For example, con-
sider the normal mean problem discussed in Section 3 of this
article,

yi ∼ N(μ i , σ2), i = 1, 2, . . . , p. (1)

The parameter corresponding to the largest statistic,y(n) , is of
particular interest and is selected for further inference. Directly
using the largestobserved value,y(n) , tends to overestimate
this selected parameter,leading to low coverage probabilities
when constructing confidence intervals of the form y(n) ±z α/2 σ .
Benjamini and Yekutieli (2005) addressed this issue by adjusting
the confidence intervalto account for the number of selected
parameters, R = |S(y)|, and using a modified confidence coeffi-
cient, αR/p, which tends to be conservative, especially when R is
small. In contrast, Dawid (1994) argued that Bayesian inference
is immune to selection bias,as conditioning on the selection
becomes redundant when the conditioning already applies to the
full dataset. In particular, when assuming the prior distribution

μ i ∼ N(θ , δ2), (2)

it is seen that

μ i |y, S(y) = μ i |y ∼ N(My i + (1 − M)θ, Mσ 2),

M =
δ2

σ2 + δ2 .
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The interval Myi + (1 − M)θ ± z α/2
√

Mσ 2 ensures a good
coverage probability for μi , for any i ∈ S(y), given this specific
choice of θ and δ2.

When these two hyperparameters are unknown,Zhao and
Hwang (2012) and Hwang and Zhao (2013) estimated them
from the data and derived empirical Bayes confidence intervals
such that

EP(μ i ∈ CIEB|y) ≤ 1 − α, for any normal prior N(θ , δ2).

In this article, the authors introduce the conceptof data
fission,where the data is split into f (yi) and g(yi), with f (yi)
used for variable selection and g(yi) for further inference.For
the normal mean modeldiscussed above,the data is split as
f (yi) = y i + τ zi and g(yi) = y i − 1

τ zi , where zi ∼ N(0, σ 2) is
used for inference. The constructed confidence interval is given
as

g(yi) ± zα/2 σ 1 +
1
τ 2 .

As demonstrated in this article, these intervals provide
good coverageprobabilities when S(y) dependssolely on
f (yi), which is independentof g(yi). However, it remains
unclear how the method performs under arbitrary selection
rules.

I would like to propose an empirical Bayes interpretation of
this approach. Assuming a prior distribution of

μ i ∼ N(θ , δ2), π(θ ) ∝ 1. (3)

Then it is seen that

E(μ i |yi , θ ) = yi + (1 − M)(θ − y i),

Note that yi |θ ∼ N(θ , σ2 + δ2). If we replace θ − yi by σ2+δ2
σ2 zi

where zi ∼ N(0, σ2), then

E(μ i |yi , θ ) ≈ yi −
σ2

δ2 + σ 2
zi ,
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which can be viewed as g(yi) in the data fission approach when
setting τ = 1 + δ2

σ2 . Based on this connection and the argu-
ment of Dawid (1994), it seems that the intervals based on g(yi)’s
would provide a valid method for an arbitrary selection rule
when assuming the prior distribution (3). In summary,

• When S(y) is chosen arbitrarily,Benjamini and Yekutieli
(2005) (BY) method works for any prior distribution, though
it requires a longer interval. A much shorter empirical Bayes
confidence interval (CI) proposed in Zhao and Hwang (2012)
and Hwang and Zhao (2013) guarantees good coverage prob-
abilities for the normal prior (2).

• When S(y) is chosen arbitrarily,the above discussion sug-
gests that the interval centered around g(yi) and its empirical
Bayesian counterpartcould be valid for the class of prior
distributions (3) that is broader than (2).

• If S(Y) depends on y through the f (yi)’s which are indepen-
dent of g(yi)’s, then inference based on the g(yi) terms is valid
for any prior distribution.

The connection between the proposed approach and the
Bayes/empiricalBayes framework offers valuable insights into

its generalization and potential extensions. I would like to once
again congratulate the authors on this exciting paper.I look
forward to the authors’rejoinder and to seeing further devel-
opments in this area.
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