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TF-CrossNet: Leveraging Global, Cross-Band,
Narrow-Band, and Positional Encoding for Single-
and Multi-Channel Speaker Separation

Vahid Ahmadi Kalkhorani® and DeLiang Wang ', Fellow, IEEE

Abstraci—We introduce TF-CrossNel, a complex spectral map-
ping approach to speaker separation and enhancement in rever-
herant and noisy conditions. The proposed architeciure comprises
un encoder layer, a global multi-head self-attention module, a
cross-band module, a narvow-band module, and an output layer.
TF-CrossNel captures global, cross-band, and narrow-band cor-
relations in the time-frequency domain. To address performance
degradation in long utterances, we introduce a random chunk posi-
tional encoding. Experimental vesults on multiple datasets demon-
strate the effectiveness and robustness of TF-CrossNet, achieving
state-ol-the-art performance in tasks incuding reverberant and
nolsyv=reverberant speaker separation. Furthermore, TF-Cross™Nel
exhiblis Faster and more stable iraining in comparison o recent
haselines. Additionally, TF-Cross™Net's high performance extends
to mult-microphone conditions, demonstrating its versatilily in
various acoustic scenarios,

Index Terms—Complex spectral mapping. multi-channel, single-
channel, speaker separation, time-frequency domain,

L. INTRODUCTION

N HUMAN and machine speech communication, the pres-
I ence of acoustic interference, such as background noise
or competing speakers, presents a considerable challenge for
speech understanding. To address these challenges, speech sep-
aralion sysiems have been developed Lo separate targel speech
signals from noisy and reverberant environments. Speech sepa-
ration includes speaker separation and speech enhancement [1].

The task of speaker separalion is Lo separale the speech signals
of multiple speakers and speech enhancement aims to separate

a single speech signal from nonspeech background noise. Both
tasks are essential for various applications, including hearing
aids, leleconferencing, and voice-controlled assistants.
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Significanl strides have been made in monaural talker-
independent speaker separation with the introduction of deep
clustering [2] and permutation invariant training (PTT) [3]. By
effectively tackling the permutation ambiguity issuc inherent in
talker-independent training. these approaches have substantially
clevated speaker separation performance. Subsequent develop-
menis have produced impressive performance gains.

Forexample, decp CASA [4] breaks down the speaker scpara-
tion task into two phases: simultaneous grouping and sequential
grouping. Conv-TasNet [5] operates on short windows of signals
and performs end-to-end masking-based separation. DPRENN [6]
segments a time-domain signal into fixed-length blocks, where
intra- and inter-block recurrent neural networks (RNNs) are
applicd ileratively to facilitatc both local and global process-
ing. SepFormer (7] replaces RNNs with a set of multi-head
sclf-attentions (MHAs) and linear layers. Like Conv-TasNet,
SepFormer is a masking approach in the time domain. The avail-
ahility of spatial information from muliiple microphones allows
for location-based training (o resolve the permultation ambiguity
issue, which further improves speaker separation results [8].

While most of the effective monaural speaker separation
algorithms operale in the time domain, recently, deep neural net-
works (DNNs) operating in the frequency domain have gained
prominence by harnessing various forms of spectral information,
including full-band/cross-band and sub-bandmarmmow-band for
both single- and multi-channel speech separation. The repre-
sentative model of TF-GridNet [9] employs cross-band and
narrow-band long shori-term memory (LSTM) networks in
conjunclion with a cross-frame self-atiention module o per-
form complex spectral mapping [10], [11], [12]. [13]. The
mast effective TF-GridNet model comprises a two-stage DNN
wilh a neural beamformer positioned in the intermediate stage.
This model has strongly improved speech separation results in
a variety of single-channel and multi-channel tasks. Spatial-
Net [14] shares a foundational framework with TE-GridNet, but
employs acombination of a Conformer narrow-band block and a
convolutional-linear cross-band block. Notably, SpatialNet ex-
cludes any LSTM or RNN layers. Furthermore, SpatialNet oper-
ales as a single-stage network and exhibits a more stable training
trajectory, especially under conditions involving half-precision
(16-bit) training. SpatialNet demonstrates very competitive re-
sults in mulli-channel speaker separation. But its utility is pri-
marily tailored for multi-channel scenarios, given its substantial
reliance on spatial information afforded by microphone arrays;
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as shown laler, its performance in the single-channel scenario is
limited. Another notable limitation of SpatialNet, in comparison
to TF-GridNel, is its performance degradation with increasing
sequence length, as recently reported in [15].

To overcome the aforementioned shortcomings and further
enhance the performance of complex spectral mapping for
speaker separation, we examine the underlying reasons behind
the observed performance differences between TF-GridNet and
SpatialNet, particularly in scenarios involving monaural separa-
tion and long utlerances. We attribute the observed performance
degradation of SpatialNet relative to TF-GridNet 1o two pri-
mary factors. First, the self-attention module within TF-GridNet
operates as a global attention mechanism, whereas SpatialNet
processes each frequency independently, unable to benelit from
cross-frequency and hidden features. We belicve thal the lack
of such global attention contributes to SpatialNet's diminished
performance in processing long sequences. Second, RNNs as
exemplified by LSTM posscss the capability to implicitly extract
positional information [16], [17], [18]. Therefore, even though
neither SpatialNet nor TF-GridNet architecture explicitly incor-
porates posilional encoding. the use of RNNs caplures positional
cues in TF-GridNet implicitly.

In this study, we propose a new DNN architecture, called
TE-CrossNet, for single- and multi-channel speaker separation.
Building upon complex spectral mapping and the SpatialNet
framework, we make the following contributions:

* We present a new DNN architecture for both single- and
multi-channel speaker separation tasks. This architecture
employs a global multi-head self-attention module to cap-
ture cross-frequency and cross-embedding correlations.

* We introduce a novel positional encoding method to TF-
CrossNet 1o address the out-of-distribution problem of
common positional encoding methods.

* TF-CrossNet advances the state-of-the-art speaker sepa-
ration performance on mulliple benchmark datasets. In
addition, superior resulls are achieved with a reduced com-
putational overhead in terms of both inference and training
lime.

The rest of the paper is organized as follows. Section 11 de-
scribes the single- and multi-channel speaker separation problem
in the time-frequency (T-F) domain. The detailed description of
TE-CrossNet is given in Section 111 Section I'V presents the
experimental setup. Evaluation and comparison results are pro-
vided in Section V. Concluding remarks are given in Section V1.

IT. PROBLEM STATEMENT

For a mixture of 7 speakers in a noisy-reverberant environ-
ment captured by an array of M microphones, the recorded
mixture in the time domain y(n) € B can be modeled in terms
of the direct-path signals s.(n) € R™, their reverberations
he(n) € RM, and reverberant background noises v(n) € RM
191 119]

o
¥ln) =Y (se(n) + he(n)) + v{n), (1)

=1
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Fig. I. Diagram of the propmed TF-CrosNet architecture, with 5y and &5
denoting scparated speaker signals.

where n denotes discrele ime and © indexes speakers. In the
gshori-time Fourer transform (STFT) domain. the model is ex-
pressed as:

L

Y(£ f) = Y (Selt. ) + Helt, £)) + V(£ J),

c=1

(2)

where 1 indexes time frames and f frequency bins. Y (i, f),
S.(t. f).H.(t, f).and V¢, f) £ C* denole the complex spec-
trograms of the mixture, the direct-path signal and its reverber-
ation of speaker c, and background noise, respectively.

The goal of complex spectral mapping based speaker separa-
tion is to train a DNN to estimate the real and imaginary parts of
the direct-path signal of each speaker al a reference microphone
from the mixture Y (¢, ). We can turn the general formulation
in (2) to more specific forms by restricting cerain parameters
and terms. In the case of monaural, anechoic speaker separa-
tion, © = 1, M = 1, both H.(2, f) and V(i f) are absent. In
reverberant speaker separation, C' = 1 and V(t, f). if present,
represents a weak noise. In the case of noisy-reverberant speaker
separation, © = 1 and V (¢, f) includes significant background
noise.

Ill. TF-CrossNET

The diagram of the proposed syslem is provided in Fig. 1.
TF-CrossNet comprises an encoder layer, a global multi-head
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self-attention (GMHSA) module. a cross-band module, a
narrow-band module, and a decoder laver. To ensure comparable
energy levels for all signals processed by TF-CrossNel, we nor-
malize the inpul signal by its variance before processing its sam-
ples. In the multi-channel setup, we nommalize the signals from
all microphones by the variance of the reference microphone;
the same variance is applied to restore the scale of a predicted
signal. Then, we apply STFT to the normalized signal and stack
the real and imaginary (RI) parts. For the multi-channel setup,
we stack the RI parts from all microphones as done in neural
spectrospatial fillering [20]. The stacked R1 parts are sent (o the
encoder layer, which learns to extract acoustic features from the
input in the STFT domain. The global multi-head self-attention
module captures global correlations, while the cross-hand mod-
ule captures cross-band corrclations. The narrow-band module
focuses on capturing information at neighboring frequency bins.
Finally, the output layer maps the separated features to a T-F
represenlation, which is then converied hack to the time domain
using inverse short-time Fourier transform (iSTFT).

A. Eacoder Laver

The encoder is a 1D convolutional layer (Conv 1D) layer with
a kernel size of k and a stride of 1. The encoder layer converts
the input T-F domain signal from M =« F «xTw H < F =T
where IT is the number of hidden channels. F is the number of
frequency bins and T" is number of frames.

B. Randeom Chunk Positional Encoding

To address the limitation of separation methods in deal-
ing with long utterances, we introduce a posilional encoding
method, called random-chunk positional encoding (RCPE), o
tackle the out-of-distribution problem in positional encoding
approaches. RCPE is inspired by random positional encoding
recently proposed for natural language processing [21]. Trans-
formers demonstrale impressive generalization capabilities on
learning tasks with a fixed context length. However, their per-
formance degrades when tested on longer sequences than the
maximum length encountered in training. This degradation is
attributed to the fact that positional encoding becomes out-of-
distribution for longer sequences, even for relative posilional
encoding [21]. RCPE selects a contiguous chunk of positional
embedding vectors from a pre-computed positional encoding
malrix during training. For RCPE, we slart by defining PE as a
combination of sine and cosine functions [22] as

) , t
PE(#, 21) = sin (W) . (3a)

) t
PE($,2i 4+ 1) = cos (W) ) (3b)

where 1 € [1, F'- H| and t |1, T index the feature and time
dimensions, respectively.

When the model is in the training mode, we select a random
chunk from index 7 to index v+ 7 — 1, where 7 is drawn
randomly from [1, 7™ — T <+ 1], with T™" denoling the maxi-
mum desired sequence length during inference. When the model

is in test or validation mode, we select the first T embedding
vectors. Finally, we reshape and add the selected positional
embeddings to the input fealures. We obtain positional encoding
vectors as

PE(t+r.1) if training.
PE(t.1) otherwise.

This technigue allows the TF-CrossNet model (o see all possi-
ble positional embedding vectors during the training stage while
maintaining the relative distance between embeddings. thus im-
proving generalization to longer sequences. Additionally, RCPE
has no learnable parameter and has a negligible computational
COsL

RCPE(t.i) = { )

C. Giobal Multi-Head Self-Attention Module

Fig. 2(a) shows the diagram of the global multi-head
self-attention module. This module resembles TF-GridNet's
cross-frame scll-attention mechanism, bul with modifications
to enhance efficiency. In TF-GridNet [9], the cross-frame
self-attention module employs three point-wise convolution
layers [or frame-level feature extraction of queries. keys, and
values. In contrast, we utilize a single convolution layer with
L(2E + H/L) output channels to extract frame-level features
from T-F embeddings. Increasing the output dimension, rather
than performing sequential convolulions, increases parallel
computation and accelerates the operation. Subsequently,
we split the result into L queries Q'e RE*FT ) keys
Kl e RE*FT and values V'e RF/L*FAT Here, E
represents the output channel dimension of the point-wise
convolution and | indexes the head number. This method avoids
the sequential operations of the three Conv 1D layers, which can
be computationally expensive. Subsequenily, a self-attention
layer is applicd to these embeddings to capure global
correlations. The results of all heads are concatenated and passed
o another point-wise convolution with an output dimension of I
followed by a parametric rectified linear unit (PRelLU) activation
function and layer normalization (LN). We add this value to the
input of the GMHS A module to obtain the output of the module.
Note that. compared to [14] where the MHA module acts on
each frequency bin separately, we first merge all frequency
features into the channel dimension and then apply MHA. This
method allows each frame to attend to any frame of inlerest in
all feature channels, facilitating the exploitation of long-range
correlations in both frequency and hidden feature channels.

. Cross-Band Module

To capture cross-band correlations within the input sig-
nal, we adopt the cross-band module proposed in [14]. This
module, illustrated in Fig. 2(b). integrates two frequency-
convolutional modules and a full-band linear module. The
frequency-convolutional module aims (o caplure correlations
between neighboring frequencies. This module includes an LN
layer, a grouped convolution layer along the frequency axis
(F-GConv1d), and a PReL.U activation function. Tn the full-
band lincar module, we first employ a linear layer followed
by sigmoid-weighted linear unit {SiLU) activation function to
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reduce the number of hidden channels from H w H'. Then,
we apply a sel of lincar layers along the frequency axis to
capture full-band features. Each feature channel has a dedicated
linear layer denoted as Linear; for i = 1,..., H', as shown in
Fig. 2(b). Nole thal the parameters of these layers are shared
among all TF-CrossNet blocks. Finally, the output of the module
is obtained by increasing the number of channels back to H using
a linear layer with SiL1 activation and adding to the original
input of this module.

E. Narrow-Band Module

As illustrated in Fig. 2(c), the narrow-band module is com-
posed of a layer normalization (LN}, a linear layer followed by
a SiLU activation, a time-convolulional (T-Conv) layer, and a
final linear layer. The first linear layer in this module increases
the number of features in the input from H to H" and the last
linear layer converts the feature dimension back to H.

T-Conv is composed of three grouped 1 d convolution (T-
GConv1D) layers followed by a Sil.U activation function. The
second T-GConvID) is followed by a grouped normalization
layer. The narrow-band module is a modified version of the
Conformer convolutional block [23]. Compared to SpatialNet's
narmow-band block, we remove the MHA module as narrow-
hand correlations are captured in the GMHSA module of TF-
CrossNed

FE Chtput Layer

We use a linear output layer to map the processed features
from the final TRE-CrossNet block to the predicted R1 paris of
each talker. Subsequently, we obtain the time-domain separated
speech signals by performing the iSTFT. As mentioned al the
beginning of Section T, we multiply the estimated target signals
by the variance of the inpul mixture Lo ensure that their cnergy
levels are consistent with the mixture level.

¥ g i
[ Prau | [L1-::51L1!] [ rRau |
racemn )| EEE) (Crccmn
Leyer Norm | Layer Ko | Laryer Norm |
FConv module  Full-band linesr module  FCony module
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#
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“‘ Salu
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(€)

TE-CrssMNet building blocks. (a) Global multi-hesd self-attention module. (b) Cross-hand module. (o) Namow-band module.

;. Loss Functions

We use the scale-invariant signal-to-distortion ratio (Sl-
SDR) [24] loss funclion s spg 0 train TF-CrossNet on the
W5J0-2mix dataset [2]). For training on other datascls, we em-
ploy a combination of magnitude loss Ly, and SI-SDR loss
Lsi.5om. similar to [9]). We find that the combined loss function
improves lime-domain metrics such as SI-SDR, as well as more
magnitude-based metrics like PESQ and word error rate (WER).
We use the standard form of S1-SDR where the target signal is
scaled to match the scale of the estimated signal. Also, we scale
the magnitude loss by the L norm of the magnitude of the target
signal in the STFT domain similar to [25]. These loss functions
are defined below

L = Lynag + Lsispr. (5a)
|| STFT(5.)] — | STFT(s.)|l,
£ = . 5b
e ISTFTGsal, O
- leI3
_ | '
Lsisor = gmlﬂgm el (5¢)
Tk,
= H- (5d)

In the above equations. || - ||; is the Ly norm, |- | is the
magnitude operator, o is the scaling factor, and (-)7 denoles
the transpose operation. We employ utterance-level PIT [3] to
resolve the permutation ambiguity problem during training.

IV. EXPERIMENTAL SETUFP
A. Datasets

We assess the efficacy of the proposed TF-CrossNet model
for speaker separation under anechoic, reverberant, and noisy-
reverberant environments. We use publicly available datasets,
and compare with previously published results to document the

relative performance.
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For single-channel speaker separation in anechoic conditions,
we employ the WSJ0-2mix dataset [2], which is widely used for
benchmarking monaural talker-independent speaker separation
algorithms. The WSI0-2mix dalasetl consists of 20,000 (~-30.4
hours). 5,000 (~7.7 hours), and 3.000(~ 4.8 hours) two-speaker
mixmres for training, validation, and test sets, respectively.
In WSI0-2mix, the two utterances in each mixture are fully
overlapped, and their relative energy level is sampled from the
range of [—35, 5] dB. Speech is sampled at a rate of & kHz. To
make a fair comparison, similar to TE-GridNel, we do not utilize
any data augmentation lechniques such as dynamic-mixing [26]
or speed-perturbation [7].

For joint speaker separation, denoising, and dereverberation,
we employ the WHAMR! dataset [27] and the single-channel
SMS5-W5] dataset |28]. WHAMR! utilizes the Iwo-speaker
mixtures from WSJ0-2mix, but introduces reverberation to each
clean anechoic signal and non-stationary background noises.
The datasel includes 20,000 (~30.4 hours), 5,000 (~7.7 hours),
and 3,000 (~ 4.8 hours) mixtures for training, validation, and
testing, respectively.

Furthermore, for both monaural and multi-channel separa-
tion in noisy and reverberant environments, we employ the
SMS-WSJT dataset [28]. This simulated two-speaker mixture
dataset incorporates clean speech signals from the WSJ0 corpus
and simulales a six-microphone circular array with a radius ol
10 cm. room impulse responsess (RIRs) are generated using
the image method [29], with T6D uniformly sampled between
0.2 5 and 0.5 5. Addilionally, while sensor noise is added w
specch mixiures with signal-to-noise ratios (SNEs) uniformly
sampled in the range of 20 dB to 30 dB. The source positions
are randomly sampled within 1 m to 2 m away from the array
cenler. The signals are sampled at a rate of 8 kHz, and the dalaset
includes a baseline automatic speech recognition { ASR) model
built from Kaldi [307].

We also assess TP-CrossNet on the REVERB challenge
dataset [31], which includes both simulated and recorded signals
of a speaker sampled at 16 kHz. We employ the REVERB
evaluation set including simulated (SimData) and real (Real-
Data) recordings for single- and mulli-channel speech derever-
bration and enhancement assessment. SimData consists of 2176
ulierances from the WSJCAMO corpus [32], convolved with
measured RIRs from three rooms of different sizes and two
near and far microphone distances. The background noise in the
recordings is primarily slationary diffuse noise generaled by the
air-conditioning systems in the rooms. RealData consists of 372
utierances from the MC-WS1-AV corpus [33], recorded in a dif-
ferent room from those is SimData, with speaker-to-microphone
distances of 1.0cm and 2.5 m. For the training sel, similar o [13],
[14], we increase the number of RIRs by simulating reclangular
rooms using the image method [29], [34], with room length and
width randomly chosen between 5 and 10 m, respectively, and
height between 3 and 4 m. An B-channel circular microphone
array is positioned within this space, with its height randomly
chosen between 1 and 2 m. The array's center is displaced from
the room cenler by values randomly sampled between — 1.0 and
1.0m. The array radios is randomly chosen between 3 and 10 cm.
The target speech source is placed at a distance from the array

cenler between (0.5 and 3.0 m. The reverberation time (TH0)
is randomly sampled between 0.2 and 1.5 seconds. Using this
configuration, we generate 40,000 RTRs and convolve them with
source signals (o obtain the reverberated signals. Similar to [13],
we utilize the direct-path signal for both training and metric
compulation. Specifically, we use the samples within a 5-ms
window around the peak from the measured RIRs to estimate
the direct-path signal for metric calculations.

8. Network Configuration

For our proposed TE-CrossNet architecture, we make use of
the hyperparameters in [9] and | 14]. We sct the kemel size of en-
coder layer k, time-dimension group convelution (T-GConv1d),
and frequency-dimension group convolution (F-GConvid) to 5,
5. and 3, respectively. The number of groups for T-GConv 1d,
F-GConvld, and group normalization is all set to 8. The pro-
posed model architecture comprises B = 12 blocks, with hidden
channel sizes set o H = 192, /' =16, and H" = 384. We
employ N = 4 self-attention heads in the GMHSA module with
an embedding dimension of ) = 64 and £ = [512/F], where
[-] denotes ceiling operation.

To process the inpul data, we apply STFT using a Hanning
window with frame length of 256 samples (32 ms) and frame
shift of 128 samples (16 ms). The length of training utterances is
fixed al 3 seconds for the W5J0-2mix and REVERB dataseis and
4 seconds for the WHAMR! and SMS5-WSJ datasets [14]. We
assume a maximum utlerance length of 30 seconds to calculate
™2 introduced in Section I1I-B.

We ulilize the Adam optimizer with a maximum leaming rate
of 0L001. We start with a cosine warm-up scheduler thal increases
the learning rate from 10 ° to 10 over the first 10 epochs.
Following this, we switch to the PyTorch ReduceLROnPlateau
scheduler, setting the patience to 3 epochs and the reduction
factor to (.9. We found that this learning rate scheduler is more
stable and resulls in faster convergence than the exponential
decay or ReducelL ROnPlatean schedulers used in [14] and [9],
respectively. In our experimenis, we employ the half-precision
(mixed-16) raining strategy to reduce the memory footprint and
accelerate training. We train the model until the validation loss
does not improve for 10 epochs consecutively. In each case,
we use the maximum number of batches that fit into the GPU
memory (NVIDIA A 100 GPU with 40 GB).

C. Evaluation Metrics

We employ a set of widely used objective metrics to assess the
performance of TF-CrossNet. These metrics include, SI-SDR
and its improvement (S1-SDRi) [24]. SDR and its improvement
(SDRi) [35], narrow-band percepiual evaluation of speech qual-
ity (PESQ) [36], and extended short-time objective intelligibility
(eSTOT) [37]. To compute these metrics, we utilize the Torch-
Metrics[audio] package [38], which offers a comprehensive set
of evaluation tools specifically designed for andio tasks.
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TABLET
ARLATION STUDY 0N THE WHAMR! DIATASET

For assessment on the REVERB challenge dataset, we em-
ploy the official objective measures.” These include three in-
trusive speech metrics: cepstrum distance (CD), log likelihood
ratio (LLR), frequency-weighted segmental signal-to-noise ra-
tio (FWSegSNR), and one non-intrusive metric, speech-to-
reverberation modulation energy ratio (SRMR). As done in[14],
we use the best pre-trained model? from ESPact [39] to evaluate
the ASR performance on the Reverb challenge dataset.

V. EvaLuaTiON RESULTS
A, Ablation Study on WHAMR!

Table I presents an ablation study conducted on the single-
channel WHAMR! dataset. Each row represents a different con-
figuration of the model. The columns in this table provide infor-
mation about the presence of RCPE, GMHS A, and narrow-hand
multi-head self-atiention (NB-MHSA). along with the number
of trainable parameters in millions or Params (M), and the
number of Giga floating point operations (GFLOPs) per second
of input audio, as well as the separation performance metrics
of 5I-5DR, SDR, and PES(Q). For the computation of GFLOPs,
we use the official tool provided by PyTorch®. The absence of
RCPE and GMHSA (Row 1) results in lower 51-5DR and PESQ
scores compared to the configurations where these components
ar¢ present. Note that Row 1 corresponds (o the architecture of
SpatialNet [14). Adding the GMHSA module in Row 2 improves
SI-SDR by 1.3dE and PESQ by 0.31, highlighting the important
role of GMHSA. In the third row, we include an LSTM encoder
before TF-CrossNet blocks, which performs positional encoding
implicitly. The LSTM encoder comprises two bidirectional long
short-term memory (BLSTM) layers similar o TF-GridNel's
intra-frame full-band and sub-band temporal modules. Although
this configuration exhibits the highest SI-SDR and PESQ values
among the tested configurations, it has the largest number of
parameters and the lowest computational efficiency. In the fourth
row, we exclude the GMHSA module. This decreases both
SI-SDR and PESQ) scores, demonstraling the contribution of
GMHSA even with the LSTM encoder. Including RCPE in
the fifth row improves SI-SDR by 0.3 dB and PESQ) by 0.07
compared to the second row, demonstrating the utility of the
proposed positional encoding. Finally, in Row 6, we remove

[online].  Awailable:  hipss/ireverb201 4. audiolabs-erlanpen. deitools/
REVERB-SPEENHA Relesse0MOct. mp

Mransformer ASR + Transformer LM + SpeedPerturhation + SpacAug +
applying RTR and noise data on the fly

Jtorch.utils. Aop_counter. FlopCounterMode

Row Posional encoding  GMHSA  NB-MHSA Params (M), GFLOPs) SISDR*  PESQT
1 X x s 6.50 118,84 102 2.54
2 X f v ] 143.51 1.5 185
3 L5TM s s 941 159.59 119 294
4 LSTM X v 756 135.05 1.6 189
] RCFE o o B35 14350 1.8 292
3 RCPE 7 X 657 96 14 s 291

TAELE Il

ApLanon STupy Comraring DurerENT Posimional ENCopiNG METHODS

Row  Positional encoding SI-SDRT  PESQT
1 x 114 184
2 SPE 1.4 184
3 LST™ 11.9 192
4 RCPE 1.8 an

NB-MHSA and obtain speaker separation results with only a
0.01 PESQ reduction compared to Row 5. Bul the configuration
with no NB-MHSA has about 20% fewer trainable parameters
and 33% fewer GFLOPs. This shows that the narrow-band
correlations are already captured in the GMHSA module and
there is little need (o include both modules in the network.

Table Il presents an ablation study comparing different posi-
tional encoding methods, evaluating their impact on SI-SDR and
PES() metrics. The baseline model without positional encoding
achieves 11.4dB S51-SDR and 2.84 PES(). similar to the perfor-
mance using standard positional encoding (SPE) with no random
selection. Both RCPE and LSTM outperform the baseline and
SPE. Specifically, LSTM improves S1-SDR 1o 11.9dB and PESQ
to 292, while RCPE yields 11.8dB SI-SDR and 2.91 PES(Q.
Note that RCPE achieves comparable performance to LSTM,
wilh far fewer paramelers, which require no training.

B. WSJ0-2mix Results

We first evaluate the performance of TE-CrossNet for monau-
ral anechoic speaker separation. The mixture SI-SDR is 0dB. and
the mixture SDR is (.2dB. The results are provided in Table T11
along with 16 other basclines. The table includes two versions
of TF-GridNet, one with 8.2M parameters and another with
14.5M parameters. The original study [9] reports the 145M
parameter version on the WSJ0-2mix dataset. To compare mod-
¢ls of comparable sizes. we include the 8.2M variant as well.
The performance of this smaller TF-GridNet model is based
on a model checkpoint trained by its original first author [40].
CrossNet surpasses the performance of state-of-the-art methods,
including TF-GridNet (8.2M) [9] by 0.5dB SI-S5DR and 0.6dB
SDR. Moreover, our proposed model has around 200 fewer
trainable parameters compared (o TF-GridNet and faster training
and inference as presented in Section V-G later. Furthermore,
our proposed model underwent half-precision floating-point
iraining rather than full-precision training done in TE-GridNet,
effectively reducing memory requirements and expediting the
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TABLE T
EPEAKER SEPARATION RESULTS OF TF-CROSSNET AND COMPARISON
METHODS ON THE WSI0-TMIK DMTASET

Meithod Params (M))  SI-SDRit SDRit
Conv-TasMet [5] 5.1 153 156
Decp CASA [4] 12.8 17.7 18.0
FurcaNeXt [41] 514 - 184
SUDD BM-RF [42) 16 189 -
DPRENN [6] 15 0.1 204
DPINe [17) 27 202 20.6
DPFTCH-ATPP [43] 47 19.6 199
SepFormer [T] 2610 204 20.5
Sandpglassel [44] 23 20.8 210
Wavesphi [26] 9.0 210 212
TFPSNet [45] 27 21.1 21.3
DI INen [17) 4.0 21.5 2.7
SFSRMel [46] 0.0 20 221
QDPN [47] 20000 21 -
TF-GridNet* [9] a2 218 219
TF-GridNet [9] 145 235 236
TF-CrossNel 6.6 232 234
*checkpoint from [40]
TABLE IV

SPEAKER SEPARATION RESULTS OF TP-CROSSNET AND COMPARISON
METHOOS ON THE WHAMR! DATASET

Method SL.SDRT SDRt PESQt eSTOI
Unprocessed 6.1 15 141 0317
Sepformer [7) 79 - N N
MossFormer [48] 02 - . .
SpatialNet (large) [14] 02 112 2154 0T
TF-GridNet (1-stage) [9] 06 117 275 0793
CrasFormer [49] 1z 1zz - .
TF-GridNet (2-stape) [9] 1.2 123 279 0808
TF-CrossNet (2-smage) 120 131 281 0824
TF-CrossNet 1.5 129 291 0823
TABLEV
SPEAKER SEPARATION AND ASR RESULTS ON SINGLE-CHANNEL SMS5-WS5J
DATASET
Method SI-5DHT SDRT PESQY eSTONT WER]
Unprocessed -55 44 150 0441 TRAO
Oracle direct-path se oo 450 1000 616
DIPRNN-TasNet [6] a5 - 228 N7M .00
SI80q 19 57 - 24 0748 2870
DNN; HFCP+DNN21 2 [19] 127 141 325 0EF 1280
DMN = msPCP+<DMNNg) =2 [50] 134 - 341 - 10.90
TF-GrdMet [9] {1-stage) 162 172 345 0934 949
TF-GiridMet [9] (2-stage) 124 196 370 0952 791
TF-CrossNet 192 202 374 0953 835

C. Resuits on WHAMR! und Single-Channel SMS-WSJT
Datasets

The single-channel WHAMR! resulls are summarized in
Table I'V. TE-CrossMNet achieves an SI-SDR of 11.8dB, an SDR

best of TF-GridNet (1-stage) [9] and TF-GridNet (2-stage) [9]
by 0.16 and 0.12 PESQ), respectively. The 2-stage TF-GridNet
consists of the first DNN followed by a single-channel multi-
frame Wiener filier (SCMFWF) and then the second DNN.
This comparison is significant as TF-CrossNet is a single-stage
model, and a 2-stage model not only has more parameters but
also takes more effort to train and deploy. Our advantage can be
attributed to the use of more convolutional layers, which enables
TF-CrossNet to learn filtering operations. Note that SpatialNet
is not designed for single-channel separation lasks even though
it can be applied 1o monaural separation. We include its resulls in
Table IV for reference purposes only. Without spatial cues, the
performance of SpatialNet is reduced significantly. TF-CrossNet
leverages Lhe strengths of both SpatialNet and TF-GridNet while
avoiding LSTM layers in TF-GridNet. RCPE in our model serves
to capture the positional information encoded in the recurrent
layers of TF-GridNet. Consequently, TF-CrossNet remains ef-
fective for single-channel separation without compultationally
expensive recurrent connections. Compared to the results in
Table TIT, these resulls underscore the advantage of TF-CrossNet
over TE-GridNet for single-channe] speaker separation in noisy-
reverberant conditions.

To examine the impact of SCMFWF on model performance,
we train TF-CrossNel with a similar setup to the two-stage
TF-GridNet, and 2-stage TF-CrossNet results are included in
Table IV. We observe a very small improvement. Thus, we
conclude that two stages are not necessary and will not be
further assessed for TF-CrossNel. This observation shows that,
compared to TE-GridNet where SCMFWF improves the perfor-
mance, Wiener filtering is not essential for TF-CrossNet.

Table V presents evaluation and comparison results on the
single-channel SMS-WS5J dataset, including ASR resulis in
terms of WER in percentage (%) evaluated on the official
ASR model [28], [30]. TF-CrossNet outperforms TF-GridNet
(1-stage) [9] by the substantial margin of 3.0 dB in S1-SDR and
0.2%9 in PES(). Notably, TF-CrossNet outperforms the two-stage
TF-GridNet aside from the WER score. The better WER score
of the two-stage TF-GridNet is likely due to its use of neural
beamformers which can significantly redoce WERs in both
single- and multi-talker scenarios [14].

D. Results on Multi-Channel SMS-WSJ

Table VT reports the performance of the six-channe] speaker
separation and ASR on the SMS-WSJ corpus. along with the
oracle WER results. The table reveals large improvements in
speech quality and ASR performance thanks to speaker sepa-
ration. The time-domain end-lo-end models FaSNel+TAC [51]
and MC-ConvTasNet [52] show inferior performance compared
to other methods, especially on the ASR task. Time-frequency
methods such as MISO, -BF-MIS0; [19] and TFGridNet [9] in-
corporale neural beamforming and post-processing, and demion-
strate significantly better separation and ASR performances.
Among the comparison methods. SpatialNet is the top per-
former, and it leverages an advanced full-band and sub-band
combination network and extensively employs convolutional

of 12.9dB, and a PESQ of 2.91, outperforming the previous and linear layers that can act as a large filter. TF-CrossNet
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TABLE VI
SPEAKTR SEPARATION AND ASR RESULTS ON THE 6-CHANNEL SMS-WS]
DIATASET
Method SI-SDRT SDR+ PESQT STOM WERL
Unprocessed -55 44 150 0441 TEAD
Oracle direct-path o oo 450 100 616
FasMNet+TAC [51] BE - 237 0771 2980
MCConvTasNer [52) 108 278 0844 2110
MISOH [19] 102 . M5 NS 140
LBT [8) 132 148 332 0910 960
MISO,-BR-MIS0; [19] 156 . 476 0942 R0
TE-GridMet (1-stage) [9] 199 212 380 0966 602
TF-GridMet (2-stage) [9] 228 249 408 0980 4676
SpatialNet [14] 2501 270 408 0980 6.70
il Met® ME 69 405 0985 666
TFR-CrossMet 258 276 420 0987 630

® Traincd with the same setup as TF-CrossMNet

surpasses SpatialNet and TRGridMNet in speaker separation per-
formance, ¢.g. by larger than 0.1 PESQ improvement. Since the
original SpatialNet is trained using a different setup, to make
a fair comparison, we also train the SpatialNet with the same
setup a8 TE-CrossNel, including the loss function and learning
rate scheduler, and report the results in Table V1. Even though the
use of the same training selup improves SpatialNet performance
in terms of PESQ, WER., and eS5TOL, it stll underperformiers
TF-CrossNet, e.g. by 1 dB in SI-SDR and 5.7% relative WER.
TF-CrossNet's WER of 6.30% is remarkably close 1o the oracle
score of 6.16%. As TF-CrossNet has a similar architecture to
SpatialNet, the superior performance of TF-CrossNel can be
attributed to the proposed positional encoding and the GMHSA
module.

E. Resulis on REVERB Challenge

Tahle VII reports the performance of speech dereverberation,
enhancement, and recognition on the single- and 8-channel
REVERSB datasel. On the single-channel SimData, TF-CrossNet
shows notable gains, achieving a PESQ score of 3.80 and sub-
stantially outperforming Wang and Wang [13] (3.29) and WPE
(2.51). Additionally, it obtains the best scores in FWSegSNR
(17.26) and SEMR (6.85). surpassing comparison methods. On
the 8-channel SimData, TF-CrossNet exhibits strong perfor-
mance, putperforming all the other methods in terms of CD
(1.39) and LLR (0.16). Iis PESQ score (4.04) is very close to that
of SpatialMNet (4.05), and its FWSegSNR score (19.95) is a little
lower than that of SpatialNet (21.80). TF-CrossNet demonstrates
superior dereverberation performance on the RealDala, achiev-
ing the highest SRMR scores in both single- and B-channel cases,
representing large improvements over the unprocessed signals
from 3.18 to 6.85 and 7.035 in single- and 8-channel respectively.

In lerms of ASR resulis on SimData, TF-CrossNet produces
strong performance on both single- and 8-channel datasets. On
the single-channel SimDala, it achieves a WER of 3.6/3.6 for
far/near subsets, outperforming WPE (4.6/3.7). On the 8-channel
dalaset, TF-CrossNet further improves WER (o 3.4/3.4, sur-
passing all other methods including SpatialNet (3.6/3.6) and
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4

Fig. 3. Effects of sequence length on the performance of TF-CrossiNet amd
SpatialNet. Speaker separation performance is plomed for different intervals of
minture lengths (in seoonds).

WPE+Beamformit (3.7/3.5). Our WER scores of 3.4/3.4 are
close o those on the clean datasetl [14]. On RealDala, TF-
CrossNet also achieves the best WER scores of 3.1/3.0 on the
far/near 8-channel subsets, outperforming all other methods
including SpatialNet (3.1/3.2), as well as the best WERs of
3.7/3.8 for the far/ncar single-channel datasets.

The strong performance on both SimData and RealData
indicates TF-CrossNet's generalizability and effectiveness in
real-world conditions.

F. Performance Over Different Utterance Lengths

To assess the impact of ulterance length on TF-CrossNet's
performance, we plot the SI-SDR and PES() scores across
various sequence lengths on the 6-channel SMS-WS] dataset.
The results are depicted in Fig. 3. Note that, as described in
Section TV-B, the length of training uilerances is fixed al 3 sec-
onds for this dataset. So the evaluated lengths are unirained. TF-
CrossNet yields better performance than SpatialNet [14] across
all sequence lengths. Both models have relatively consistent
PES() scores across different utterance lengths. TF-CrossNet
also shows stable, even increasing, SI-SDR performance as
sequence lengths increase, whereas SpalialNet exhibils slight
degradation for sequences longer than 10 seconds, in line with
the findings reported in [15].

To further assess the impact of positional encoding on TF-
CrossNet's performance, we plot the SI-SDR and PES() scores
across different utterance lengths on the WHAMR! dataset in
Fig. 4. Like in Fig. 3. the evaluated lengths are not included dur-
ing training except for the shortest range of 1-4 seconds. The fig-
ure shows that TF-CrossNet with RCPE (black bars) consisiently
outperforms the model without positional encoding (white bars)
across all utterance length ranges. Notably, the performance gap
between the two models becomes more pronounced for longer
utterances, with RCPE providing more benefit, particulary in
SI-SDR. With LSTM (hatched bars), the model shows slightly
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TABLE VTl
SPEECH DEREVERTBERATION, ENHANCEMENT AND RECOGNTTION HESULTS ON THE SINGLE- AND B-CHANNEL. HEVERE DATASETS

SimData RealData
Method D) LLE| FWS5eeSNRT PESQT WER| SEMRt WER.
Unprocessed 508 D67 332 237 49737 318 63739
Resuls on single-channe] REVERD dataser
WPE |53]. [54] 495 0.63 9.38 131 46737 3B 38B/355
Wang and Wang [13] 316 053 15.61 3.29 - I - 669 - -
TF-CrossMed 218 016 17.26 380 36/136 685 37/33
Results on E-channcl REVERB datasct
WPE [53). |54] 475 0.33 11.421 183 3B/35 304 ab/49
WPE+ Beamformlt [39) 194 049 1252 312 3.T/33 562 44716
WPD [55], [56] 415 049 10.50 180 38735 572 45740
Wang and Wang [13] 278 039 1875 EN )| <1 - 6.30 < -
SpatialNet [14] 236 01 21.80 4105 316/16 GER 11712
TF-CrossNel 138 016 19.95 404 34734 105 31730
In WER columne the first namber 15 for the far subset and the second 15 for the near subsel
ez with LSTM s with ROPE 1 without RCPE TABLE VTl
oy . CoMPUTATIONAL COMPLEXITY AND MODEL 5T7F OF THE PROPOSED MODE
7, ,/ 7 AND COMPARISON METHODS
~ 2.5
T 8 kHz 16 kHz
s Model GFLOPs, Params (M)l GFLOPs] Params (M)}
1.51 FasNet+ TAC [51] 26.7 27 7.9 28
MIS0y [19] E 819 8.58
e LET [K] . . 2216 655
12 DasFormer [49] EEE 22 To4 132
- TFGmdNer [9] g4 1.0 695.6 1.2
E 11 ?,r' SpatialNet [14] 1190 6.5 2379 13
if_l- 10 TF-Cross™et 06 13 i 1917 B2
on
y Z g a
AT [, 61 6, 91 TR N As clear from the table, TF-CrossNet exhibits much lower com-
Unierance lengih [sec] plexity than TF-GridNet. Compared to SpatialNet, TF-CrossNet
has smaller GFL.OPs and comparable numbers of trainable
Fig. 4. Effects of positionsl enooding with respect to uttersnce lengths on the parameters.

periormance of TP-CrossNel on WHAME! datasel.

better results. Both RCPE and LSTM exhibit relatively stable
performance across various ullerance lengths. This performance
profile highlights the contribution of the proposed positional
encoding, and is important for real-world applications where
the length of mixture utlerances may vary significantly.

G. Compatational Complexity

Finally, we document computational load in terms of GFLOPs
and the number of trainable parameters in millions (Params)
of TF-CrossMel and several other methods. The complexities
are tabulated in Table VI1II for two sampling rates of 8 and
16 kHz. The computation of GFLOPs is as outlined in [14],
where GFLOPs are quantified based on a four-second audio
signal captured by a 6-channel microphone array speaker. The
complexities of the comparison methods are obtained from [14].

In terms of actual time, training TF-GridNet on the SMS-WSJ
dataset lakes approximately 14 days on a single NVIDIA A100
GPU, whereas TF-CrossNet 1akes around 6 days. In terms of
inference time, we measure the real-time factor (RTF), defined
as the ratio of processing time to input signal duration, for a
6-channel, 4-second uiterance on an NVIDIA V100 GPU. The
resulting RTF values are 0.192 for SpatialNet, 0.657 for TF-
GridNet, and 0.155 for TF-CrossNeL

V1. CONCLUDING REMARKS

We have introduced TF-CrossNet, a novel DNN architec-
lure for single- and multi-channel speaker separation in noisy-
reverberant environmenis. TF-CrossNel includes an encoder
layer. a global multi-head self-attention module, cross-band and
narrow-band modules, and an output layer, to leverage both
global and local information in an audio signal o enhance
speaker separation and speech enhancement performance. The
global multi-head self-attention module allows the model to
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attend to any frame of interest in all feature and frequency
channels, facilitating the exploitation of long-range dependen-
cies. We introduce a novel random chunk positional encoding
technique to improve generalization o longer sequences. The
cross-band module captures cross-band correlations within the
input signal, while the nacrow-band module focuses on capturing
comelations at neighboring frequency bins, The evaluation ex-
periments conducied on multiple open datasets demonstrale that
TF-CrossNet achieves state-of-the-art performance for single-
and multi-channe] speaker separation tasks. Moreover, TF-
CrossNet exhibits stable performance in separating multi-talker
mixtures of variable lengths, and is computationally efficient
compared to recently-established strong baselines.
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