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Abstract—Point cloud data in the form of LiDAR is often
utilized for its spatial qualities, especially in smart city projects
for tasks involving vehicles and pedestrians. However, the process
in which LiDAR data is acquired can be cumbersome to setup
and automate. In this paper, we introduce a streaming and an
on-demand pipeline for capturing LiDAR data from Velodyne
Ultra Pucks placed along northern Nevada intersections known
as the Living Lab as part of a smart city project for the city
of Reno. The data coming from these intersections consist of
the following formats: ROS 2 bag file, PCD, LAZ, Google Draco,
and PCAP. A streaming point cloud service with PCD, LAZ, and
Draco was implemented to stream any of these formats, as well
as to allow the user to capture the current monitored point cloud.
Additionally, two on-demand web services were implemented for
both the PCAP and ROS 2 bag file to enable a user to start and
stop the acquisition of LiDAR data in these formats. Through
our analysis, it was discovered that Draco provided the best
processing time and had a wider range of options that affected the
quality of the point cloud. To evaluate this pipeline, the features of
existing software were compared and a discussion was provided
with an analysis of the point cloud formats.

Index Terms—MQTT, ROS, data streaming, IoT, data transfer,
big data, smart city, LiDAR, data pipeline, edge computing

I. INTRODUCTION

Smart cities have been an ever-growing concept that has
created a knock-on effect across software research, leading
into fields such as big data, embedded systems, cyberinfras-
tructure, and artificial intelligence. The promise of delivering a
greener, safer, and more aware city infrastructure has captured
the attention of researcher and city planner alike. Especially
through the recent advancements in big data, the Internet
of Things (IoT), and Artificial Intelligence, the vision of
Smart Cities are becoming more and more real. However,
the construction of a smart system governing something so
obscenely massive like a city infrastructure comes with its
own set of issues.

By now, it comes to no surprise that there are numerous
challenges in the movement, storage, and analysis of massive,
high velocity, and/or abstract data. The development of these
software systems often times face considerable constraints
imposed by either physical system restrictions such as limited
broadband, or available computational resources. Typically,
these constraints are imposed on systems that involve deploy-

ments of edge device(s), or endpoints of the larger system, for
data acquisition. Additionally, these larger software systems
are also expected to provide some measure of distributed
computing environment for data processing purposes. It is
because of these compounding constraints that researchers and
other project personnel are forced to carefully fine-tune and
develop a sustainable and scalable data pipeline.

In this paper, we present a multi-format point cloud data
pipeline aimed at serving the smart city infrastructure within
the city of Reno. The pipeline was designed to open up a
gateway for smart city researchers to build software involving
pedestrian, vehicle, and object detection. In our pipeline, we
implemented both Google Draco and Laszip as point cloud
formats with differing Lossy formats [1]. A variety of formats
were included in the pipeline’s design in order to enable
multiple forms of point cloud compression and to allow for
different levels of detail when considering a Lossy format.
Finally, a specialized suite of customized applications and
web services were developed, such as a metadata service that
pulls from the infrastructure, as well as several web download
services for various point clouds formats.

The rest of the paper is structured as follows. Section II
covers the background and related works for this paper. The
systems design and implementation are described in Sec-
tion III. Results pertaining to the system’s data services are
presented in Section IV. Discussion of the results acquired for
this paper is included in Section V. Finally, the overall impact
of this paper is discussed in Section VI.

II. BACKGROUND AND RELATED WORKS

A. Infrastructure Environment

The hardware infrastructure for this project was imple-
mented across nine intersections in Reno, NV as part of
the Living Lab at the University of Nevada, Reno (UNR),
a portion of which is shown in Fig. 1. Each intersection was
deployed with one edge computer and two Velodyne VLP-
32c sensor pucks placed diagonally across one another on
opposite traffic poles. A cross-connection exists in-between
the edge deployments for communication between the edge
deployment network and data center network. Regarding the
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Fig. 1. A subset of the intersections implemented in the Living Lab with the red circles outlining the deployed intersections.

distributed computing needs, the implementation uses a univer-
sity operated on-campus computing cluster for the operation
of message brokers, web services, and orchestration software.
Furthermore, the needs for long-term storage for captured
point clouds is met by an off-campus computing cluster, named
Pronghorn.

B. Fog Computing

One of the popular topics in Smart Cities and Internet
of Things research is the transmission of data from one
point to another point efficiently while allowing the receiving
point to use the data effectively. One popular solution lies a
paradigm known as Fog computing, where computation and
data services are down at the edge rather than the cloud in
order to improve latency and closeness of computation to
the source [2]. Fog computing is becoming more popular in
the Smart Cities and Internet of Things research especially
involving various sub-domains such as: healthcare, smart
conveyance, smart waste management, smart energy handling,
and digital twin [3], [4]. The creation of a fog computing
architecture or paradigm requires special attention to specific
types of software, network protocols, and how data is handled
at any given point. This paper in particular covers the creation
of a streaming pipeline for spatial data in the form of point
clouds.

C. Data Processing

There are a number of different ways of enhancing the
streaming of spatial data that includes improving the hardware,
compression of the data between receiver and sender, selection
of network protocol, and handling of the data between receiver
and sender. The more common hardware adopted by spatial
data pipelines are often times low power and low resource us-
age due to the power, cost, and network constraints. Raspberry
Pi’s and Nvidia Jetson devices have been for several different
Smart City applications regarding point cloud data [5]–[7]. To
further optimize these pipelines, data can be transformed prior
to transmission through Lossy compression algorithms such as
draco, PCL’s compression implementation, or using lossless
compression software like lasZIP and zStandard [1], [8]–[10].
Several protocols within the internet of things space have been

developed to lower the overhead of known internet protocols
at the software level. Some examples of these protocols are
zigbee, MQTT, and LoRaWAN. How the data is handled by
the sender and receiver can be a source overhead and is
something that must be considered especially when adding
compression to the transmission of data. This paper looks
specifically at how to improve the sending and receiving of
point cloud data.

D. MQTT

MQTT is a communication protocol specification and a key
player in our pipeline’s design. MQTT was first introduced
in 1999 with subsequent updates to the protocol with versions
3.1.1 and 5.0 [11]. MQTT is developed on the application layer
using a publisher-subscriber methodology for message transfer
across nodes [12]. A typical MQTT setup contains a series of
clients with one or more brokers. Brokers within a MQTT
setup are used to facilitate the transfer of messages amongst
clients through a series of topics, or streams of data. Clients
can subscribe to one or many topics thus allowing clients to
“listen” for incoming messages from other clients publishing
onto a topic. The protocol offers a level of configuration
defined as ”Quality of Service” (QoS) for operating within
constrained environments, such as those limited in bandwidth
or exhibiting high-latency conditions. MQTT comprises three
levels of QoS in which controls the guarantee of message
delivery between senders and recipients in various network
conditions. MQTT has been used for a variety of IoT applica-
tions that call for the movement of data from edge devices to
either fog or cloud computing environments. Within the area of
monitoring systems, MQTT has been used for facilitating the
transfer of data within a conceptual air pollution monitoring
systems [13], [14].

III. DESIGN AND IMPLEMENTATION

A. Design

In designing the streaming data pipeline for this paper,
there was a significant emphasis on serving spatial data in
a scalable and performance-conscious manner. To this effect,
we designed a system that makes use of existing software,
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Fig. 2. High-level system components and data flow.

while at the same time, implemented significant portions of it
by scratch to strike that fine line between standardization and
meeting project goals. As such, we adhered to the following
requirements:

• The system shall make point clouds available in near real-
time with a resolution within seconds to minutes.

• The system shall allow for PCAP and ROS data to be
available for recording on demand.

• The system shall make it so that the storage, service
availability, and system resource metadata are monitored.

• The system shall provide point cloud data over MQTT
and on demand download over a RESTful API.

• The system shall keep a portion of data available for
download in the form of PCAP and ROS 2 data.

• The system shall perform analytics of the traffic flow
through the Living Lab.

These requirements cover a streaming data pipeline with on-
demand capabilities to record and stream LiDAR in different
formats. These requirements encapsulate a good majority of
the functionality within the system.

In developing the streaming data pipeline for this project,
the following use cases heavily influenced the usability:

• The user is able to start and stop recording of PCAP and
ROS data.

• The user is able to receive or download from a live stream
or from a web service.

• The user is able to get information on the health and state
of edge devices and services.

• The user is able to see traffic flow along the Living Lab.
Each use case is meant to account for the requirements
described previously. The goal is for users to record data on
demand and watch point clouds in real time for developers to
be able to make apps against existing data streams, and for
traffic engineers to use the existing data flow for smart city
applications.

B. Infrastructure of the Implementation

Fig. 2 illustrates the overall flow of data starting from the
edge devices as it travels to the data center then finally reach-
ing the external hosting server. The edge machine receives
series of UDP packets from a LiDAR sensor which is a VLP-
32c in this case. These packets are then processed capture by
a UDP packet replicator application called Samplicator that
allows for the ROS web service to record the data into a ROS

2 file, and also allows the Point Cloud web service to send
out point cloud data over either a RESTful API or a MQTT
broker. Additionally, a PCAP web service is able to grab the
data from the LiDAR as it is received and store it into a Packet
Capture (PCAP) file.

All of these data services are orchestrated and started using
docker-compose and are set to restart if any of the services
go down. The MQTT data stream from the point cloud web
service is pushed to a three node VerneMQ broker cluster
running in Kubernetes at the data center. This data is then
captured by a external hosting server that forwards traffic
through Nginx to the internet. A software called cAdvisor is
used to monitor the edge computer and the docker containers
for disk and CPU usage. Consul is used both at the edge and in
the Kubernetes workflow in order to monitor the liveliness of
the data services that are present at the edge and Kubernetes.
Apache MiNiFi is used to send any file data, such as ROS
and PCAP files, to Apache NiFi running in Kubernetes. The
collection of these data services and software make up the
infrastructure for the Living Lab.

Nginx was chosen for the external hosting server because
it allowed for the current data services and any future data
services to be served with ease. To be clear, the external
hosting server was meant for developers and researchers to be
near real-time applications for smart cities. This approach was
never meant for critical operations, such as allowing pedestrian
in real-time within milliseconds. However, it was chosen as it
allows for network protocols such as MQTT to be forwarded
with relative ease. For the setup used in this paper, both a web
socket and TCP MQTT were forwarded over TCP to Nginx.

Kubernetes was chosen in order to deploy any number of
applications and to scale the applications up with relative
ease. VerneMQ was chosen to run Kubernetes as it has
support for being scaled up as an MQTT broker, which may
be needed as more intersections are continuously added to
this existing infrastructure. Additionally, Kubernetes is also
supporting other existing infrastructure within the project to
transport PCAP and ROS data over Apache MiNiFi to Apache
NiFi. This infrastructure sends PCAP files zipped as gzip and
that are then compressed to XZ to a storage server in the
data center [15]. Within the Kubernetes cluster, a metadata
information service is active and contains information about
the different deployed LiDAR sensors and their subsequent
edge computers.
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Fig. 3. The PSNR for different levels of compression and quantization. In
the horizontal axis the first number is the quantization level and the second
is the compression level.

C. Streaming and Data Services

Both the PCAP and ROS services were designed with
FastAPI, a framework for deploying RESTful APIs. FastAPI
was chosen for these endpoints due to their robust set of
helper features, such as providing automated documentation
of your API endpoints by default. Internally, the web services
are designed similar in that they have a start, stop, and status
endpoint. Both the start and stop endpoints start the process
for recording. In the case of the ROS service, it utilizes the
ROS 2 record command. For the PCAP service, it will start a
tcpdump command for UDP on ports specific to the LiDAR.
The status endpoint will tell whether a recording is in progress,
what files are currently in the directory, and how much time
has elapsed in the recording.

The point cloud capture service was implemented with
several C++ libraries providing different types of support for
point cloud formats. The most prominent libraries used in this
service is the Point Cloud Library (PCL), Google Draco, and
lasZIP. This web service is able to read from PCAP files and
LiDAR streams from Velodyne sensors. Naturally, it is also
able to write the data from LiDAR streams in several different
formats, namely PCD, Draco, and LAZ. These formats can be
written to a flat file, streamed over MQTT, or downloaded
through the REST API within the application. Additionally,
this service also provides rudimentary machine learning algo-
rithm meant to capture moving vehicles and pedestrians. The
underlying machine learning algorithm uses a voxel map to
filter for the least updating areas of the LiDAR along with the
built-in k-nearest neighbor algorithm implemented in PCL to
detect potential vehicles and pedestrians [16].

A metadata service, also implemented through FastAPI,
was created to help keep track of what hardware is available
at each intersection, along with what files are currently in
storage at the data center. The database used to track this
information was a Mongo database, since the collected data
did not constitute much in terms of relational needs, and to
ensure some level of scalability in the future. A GraphQL API
was added to this data service in order to interact with the
ROS and PCAP service to get information about their status,
along with the edge machine’s storage from the cAdvisor
API. This web service runs on the Kubernetes cluster and is
meant to provide information about the existing hardware, data

Fig. 4. The compression size for different levels of compression and
quantization. On the horizontal axis, the first number is the quantization level
and the second is the compression level.

consistency across web services, and information regarding the
status of the web services.

IV. RESULTS

A. Streaming Pipeline Comparison

The handling of LiDAR and point cloud is not necessarily
uncommon and a fair amount of software platforms tailored
to these technologies have been developed over the years, and
each have a wide array of features. Throughout the last decade,
many of these platforms utilized specialized data pipelines
with designs that use software such as Point Data Abstrac-
tion Library (PDAL) that has several plugins to transform
point cloud data or even implementing custom algorithms to
classify/filter the data from the ground up. Another similar
software designed to work with Velodyne LiDAR sensors is
VeloView, which has the capability for visualizing LiDAR
data, slam data analysis, and export LiDAR data out in various
different formats. Finally, Geographic Information Systems
(GIS), such as QGIS or ArcGIS, are a common staple among
many envirosensing groups and the tool of choice when
visualizing LiDAR geospatially, possessing a fair variety of
processing algorithms built-in.

Regarding the streaming pipeline presented in this paper,
the main focus was on making data available for researchers
and without much pre-processing. Like VeloView or PDAL,
this pipeline offers a number of different point cloud formats
such as PCD, LAZ, and draco. Additionally, the pipeline also
provides on-demand formats are either PCAP or ROS 2 file.
Regarding analytics, while this streaming pipeline does not
provide any real-time analytics on the point cloud data, it
does provides a voxel classification machine learning service
implemented in the streaming point cloud service. Finally,
although the machine learning algorithm was designed to
capture moving pedestrians and vehicles, it outputs trajectories
of the pedestrians and vehicles as a JSON.

B. Point Cloud Format Comparison

When developing the pipeline presented in this paper, heavy
consideration was put into the point cloud formats to make as
close as possible a near real-time transmission rate. All three
formats were analyzed by looking over their average sizes
over time. It was found that a PCD file gathered from the

979-8-3503-9134-3/24/$31.00 ©2024 IEEE
SERA 2024, May 30-June 1, 2024, Honolulu, USA

270
Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on July 22,2025 at 20:21:32 UTC from IEEE Xplore.  Restrictions apply. 



intersection deployments had an average size of 669293 bytes.
Similarly, Draco files with settings of compression level set at
5 and quantization level of 5 was 74360.7 bytes. Interestingly
enough, LAZ files on average had a size of 126642 bytes.

On average, a PCD file took about 6.1 milliseconds to
process since PCL can convert directly into this format. LAZ
had a average processing time of 24 milliseconds and Draco
had a average processing time of 11 milliseconds. Draco was
faster than LAZ, but was either a tad shorter or comparative
to PCD’s processing time. Both Draco and Laz formats are
smaller in size than the PCD due to both being formats
with compression. LAZ is a Loseless format that is prevalent
in many GIS softwares and was implemented to allow for
future integration with GIS software. Draco itself is a Lossy
format where it uses several different parameters along with
quantization to reduce the size of the point cloud. By setting
the compression level parameter at 5 and quantization at 5,
we found that Draco was a superior choice as the format to
be streamed in real-time, due to it being the smallest in size,
but still being rather quick to encode and decode.

In order to evaluate the effectiveness and quality of the
Draco format the peak signal to noise ratio (PSNR), encoding,
and decoding were recorded then computed at different levels
of compression and quantization. The peak signal to noise ratio
was computed with the following formula:

PSNR(x, y) = 10 log10
MAX2

MSE
[dB] (1)

The mean squared error was computed with the following
formula:

MSE(x, y) =
1

Nx

NxX

i=1

(xi � ynearest)
2 (2)

The MSE is the mean squared error of two point clouds with
ynearest being the nearest point to the point xi and Nx being
the number of points in point cloud x. The MAX is defined as
the maximum of the nearest neighbor point pairs in relation
to point cloud x, but that requires finding the average point
density of point cloud x first. These definitions are based on
Sato et al [1].

Fig. 3, 4, and 5 were recorded and computed with quantiza-
tion levels at 0, 6, 12, 18, 24, 30 and with compression levels
at 0, 5, 10 with collected values being collected three times
and averaged on the same point cloud. Fig. 3 shows that as
quantization is increased, the quality of the point cloud that
is decompressed is higher when looking at the PSNR due to
more bits being used to represent the original point cloud. The
level of compression was altered from 0, to 5, and then to 10
to show that the PSNR is not affected by the compression
level. At the zero quantization level, the original point cloud
was used for compression. It can be seen that at a quantization
level of 30 the quality of the point is essentially the same as the
original. Fig. 4 shows that the compression size at compression
levels 0 and 10 were comparable, with compression level 5
being the worst at almost all recorded quantization levels.
In Fig. 5, the decompression time was remotely the same

Fig. 5. The compression and decompression time for different levels of
compression and quantization. In the horizontal axis, the first number is the
quantization number and the second is the compression level.

across all quantization and compression levels. However, the
compression time seems to be much higher at level 0 for lower
quantization and higher at level 10 for higher quantization.

V. DISCUSSION

At present, docker-compose was used at the edge and within
the Kubernetes instance deployed at the data center so that
services may be spun up or spun down with ease. This setup
enables for our pipeline a level of robustness in that most
errors can be resolved with restarting a container. Nginx was
used due to its scalability, to host the various data streaming
services to external clients. VerneMQ was implemented within
the Kubernetes cluster and can scale if the number of MQTT
clients were to increase and by default, was set to retain the
last message for any topics sent to VerneMQ.

Regarding the streaming point cloud service, Draco was set
as the main point cloud format for streaming over MQTT, as
it was the superior means to save bandwidth and processing
time. Aside from Draco, LAZ was added for its compatibility
with existing GIS applications to enable future integration
with the streaming pipeline. LAZ by itself has a number
of configurations that affect the compression amount and
rate. While we have LAZ configured for only one of these
options, additional configurations would allow for improved
flexibility and versatility. Ultimately, both LAZ and Draco
were supported in this pipeline due to their popularity as
formats and the functionality that both carry.

A comparison of PSNR was included to show that a point
cloud will lose quality at different levels depending specifica-
tion of compression and quantization levels. At present, Draco
had the best compression and processing time in comparison
to LAZ, while PCD had the best time due to PCL being able to
convert to the format without any extra processing. Breaking
down the total operation time, the prototype machine learning
algorithm that classified pedestrians took around 6 millisec-
onds, and the most slowest format’s (LAZ) processing time
was 24 milliseconds. This means that the machine learning
in combination with point cloud format generation is greater
than 30 milliseconds. Unfortunately along with the bandwidth
over MQTT, this workflow may not be suitable for realtime
applications, but it still works rather well for near-realtime
applications.
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VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a data streaming data pipeline
that supported: handling and exportation of point cloud data
in multiple different formats, on-demand recording of PCAP
files and ROS bags, and handling of infrastructure from edge
deployment to/from data center. Primarily, these services were
created to provide a level of cyberinfrastructure to researchers
to build applications against the available data. Draco, after
being tested among the other formats was set as the default
streaming format due to its considerable compression potential
and having the availability to configure the quality of the point
cloud. Both Kubernetes and docker-compose made it so that
the pipeline could scale horizontally and recover from failure
with ease. Finally, an early prototype of a machine learning
algorithm was implemented to test the viability of sending
trajectory data over MQTT along with the point cloud data.

At present, the different settings of Draco are being evalu-
ated in order to find the best trade-off for quality versus size.
Draco enabled the compressing of point cloud data to a low
size, but at the cost of different analytics algorithms running
poorly. Experimenting with optimizations in the infrastructure
or even trying out another format may alleviate this issue.
Another improvement that could be made to our pipeline is to
use other network protocols such as gRPC or use DDS (the
underlying message protocol of ROS 2). In Particular, gRPC
has the ability to reduce size of messages through flatbuffers.
It may be possible to even cache the contents of messages in
Redis and/or store messages for later use in a database. DDS
would allow for focus on the pipeline to better integrate with
robotics research, such as the various smart vehicles being
developed in Reno.
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