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Learn to Teach: Sample-Efficient Privileged Learning for Humanoid

Locomotion over Real-World Uneven Terrain

Feiyang Wu1, Xavier Nal2, Jaehwi Jang1, Wei Zhu1, Zhaoyuan Gu1, Anqi Wu1, Ye Zhao1

Abstract—Humanoid robots promise transformative capabili-
ties for industrial and service applications. While recent advances
in Reinforcement Learning (RL) yield impressive results in
locomotion, manipulation, and navigation, the proposed methods
typically require enormous simulation samples to account for
real-world variability. This work proposes a novel one-stage train-
ing framework—Learn to Teach (L2T)—which unifies teacher
and student policy learning. Our approach recycles simulator
samples and synchronizes the learning trajectories through
shared dynamics, significantly reducing sample complexities and
training time while achieving state-of-the-art performance. Fur-
thermore, we validate the RL variant (L2T-RL) through extensive
simulations and hardware tests on the Digit robot, demonstrating
zero-shot sim-to-real transfer and robust performance over 12+
diverse terrains without depth estimation modules. Experimental
videos are available at https://lidar-learn-to-teach.github.io.

Index Terms—Reinforcement Learning, Humanoid and
Bipedal Locomotion, Sim2Real, Sample Efficiency

I. INTRODUCTION

REINFORCEMENT Learning (RL) has revolutionized

robotic control by tackling complex tasks such as dy-

namic locomotion [1]–[3]. Despite these achievements, poli-

cies trained in simulators often falter when deployed into the

real world due to the inevitable simulation-to-reality gap [4].

Although domain randomization [5] is widely used to miti-

gate these discrepancies, it incurs significantly higher sample

complexity as agents must explore extensive environmental

variations.

Recently, teacher-student learning methods have demon-

strated promising results by leveraging an expert teacher

to guide students with restricted observation spaces [6]–[8].

However, the conventional two-stage training discards valuable

teacher interactions with the environment and often suffers

from mismatches between independently trained teachers and

students. To address these issues, we propose Learn-to-Teach

(L2T): a unified training framework that co-trains teacher and
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student agents in a single, interactive stage, where the student

fully utilizes the collected samples.

To quantify L2T’s advantages, we implement L2T-RL, an

RL variant, and benchmark its performance on humanoid loco-

motion tasks using the Digit robot in Isaac Lab—a state-of-the-

art GPU-accelerated simulator [9]. Our results show that L2T-

RL can achieve stable and superior performance compared to

the conventional teacher-student learning paradigm, requiring

50% fewer samples. Consequently, we deploy our trained

policy on the robot Digit and conduct extensive hardware

experiments in indoor and outdoor environments. Strikingly,

the resulting student agent, a lightweight LSTM-based policy,

exhibits zero-shot sim2real transfer on the physical Digit

robot across a wide range of terrains, including gravel, sand,

grass, and slopes (Fig. 1). We also test our control policy on

various perturbations such as push recovery, walking under

payload, and walking on slippery or wet terrains or with the

wind blowing (see Fig. 7 and the supplementary video). Our

contributions are as follows:

Efficient training framework: We propose a joint teacher-

student training paradigm that optimizes both policies simul-

taneously. Unlike prior decoupled approaches, our framework

enables cross-agent knowledge transfer to the student policy

by dynamically utilizing the teacher’s training samples directly

within a single training stage, avoiding the need for training

from scratch in a separate stage.

Mitigation of teacher-student imitation gap: We propose

a sample mixing strategy to alleviate the imitation gap between

the teacher and student, which traditional privileged learning

is unable to address [10]. Both agents will contribute to the

replay buffer following a predefined schedule when collecting

samples. Mixing samples enables a joint optimization pro-

cess that mitigates the imitation gap while promoting sample

efficiency by letting both agents explore Out-of-Distribution

(OOD) data.

Humanoid RL agent deployment: We demonstrate real-

world locomotion agility through hardware experiments. Our

policy, trained entirely in simulation, enables a physical hu-

manoid robot to reliably traverse 12+ real-world terrains (con-

crete, gravel, slopes, stairs, etc.) and withstand dynamic pertur-

bations (pushes and payloads) without offline fine-tuning. The

policy achieves high success in unstructured environments,

matching the teacher’s robustness despite using only proprio-

ceptive inputs without depth estimation modules.

II. RELATED WORK

Teacher-student learning: In the robotics learning com-

munity, teacher-student learning [6]–[8] has gained significant
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Fig. 1. We implement our L2T-RL algorithm on our bipedal walking robot Digit and deploy it on diverse terrain with various environmental conditions such
as wet grass, gravel, sandy terrain, and slippery surfaces.

attention due to its applicability and effectiveness in addressing

sim2real challenges. In this framework, the teacher agent is

trained with complete knowledge of the state space. After

obtaining an expert-level teacher, a student agent is trained

in an observation space that follows the available sensor

configurations on hardware, where the goal is to imitate the

teacher’s action [8]. In this work, we extend this learning

framework by training the teacher and the student simultane-

ously in a single stage. Prior work [11] proposed a method

termed Concurrent Teacher Student (CTS) learning, which

also explored the idea of co-training both agents. However,

CTS trains a shared policy across the teacher and the student,

only differentiating the observation encoder and the critic.

This potentially disrupts the training process as the privileged

critic naturally rewards actions that might not seem valuable

to the student. In comparison, L2T trains two separate agents,

with the option of sharing an encoder network or using an

asymmetric learning style critic.

Learning with partial observation: Recent advancements

in RL under partial observability have significantly improved

the ability of robotic systems to operate in complex, uncertain

environments [8]. Contemporary approaches often leverage

deep recurrent architectures, such as [12], to infer latent

state representations from sequential data, effectively bridging

traditional POMDP solvers with modern deep RL frameworks.

In robotics control, practitioners construct history-dependent

policies from a sliding-window style observation or rely on

the recurrent architecture of the policy network. At the same

time, asymmetric learning has emerged as another effective

strategy to bridge the gap between training and execution [13].

In these approaches, the critic network is provided access

to privileged, full-state information during training. Recent

works have demonstrated that such asymmetric actor-critic

frameworks improve sample efficiency and enhance policy

robustness [14]. In this work, we combine these learning

techniques, utilizing a recurrent network and an asymmetric

critic, to solve the underlying POMDP problem efficiently.

Learning from demonstrations: Learning from demon-

strations (LfD) has attracted significant interest in the robot

learning field due to the growing abundance of robot data

and the popularity of simple yet effective imitation learning

(IL) frameworks [15]. LfD has demonstrated impressive results

in controlling robot manipulators for tabletop tasks [16]. A

recent surge of LfD studies in humanoids and bipeds have

shown the promising potential of whole-body control and

loco-manipulation [16]–[19]. However, supervised learning

demands high-quality behavior data, oftentimes through elab-

orate data collection pipelines [16], [19] and/or needs accurate

re-targeting to robot states from datasets with different mor-

phologies On the other hand, the prevalent IL loss is known to

be suboptimal from a learning perspective [20]. Thus, in this

work, we focus on a generic algorithm framework to address

the sim2real gap alone, without the interference of possible

issues brought up by LfD methods. Furthermore, our proposed

framework can be easily extended to the LfD setting, which

we leave as a future direction.

Bipedal locomotion over complex terrain: Humanoid

robots recently have gained increasing interest due to their

applicability and versatility [17]–[19], [21]–[25], ranging from

locomotion [26], to manipulation [27]. Prior bipedal locomo-

tion works [26], [28] have explored the conventional teacher-

student learning paradigm in locomotion tasks. However, the

training process can take significant samples even with an

elaborate training environment design. Concurrent works also

incorporate memory structure into the policy architecture [11],

[26], [29], or learning from demonstrations collected from

various data sources such as human motion [30] or generation

using model-based methods [27]. In comparison, we design
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Fig. 2. Learn to Teach (L2T) training pipeline. The teacher agent utilizes a neural network for the policy, which comprises three fully connected layers with
sizes [512, 256, 128]. The student agent’s policy network deployed on the robot is an LSTM network with a hidden layer of 128 units, followed by fully
connected layers with shape [512, 256, 128]. The teacher learns via conventional RL methods, while the student updates its policy by imitating the teacher.

straightforward and intuitive reward functions for bipeds in

general terrain settings, offering a simple yet effective solution.

III. METHODS

This section introduces our problem setup and notations

and presents our learning framework. A Markov Decision

Process (MDP), denoted as M, is described by a tuple:

M = ïS,A, R,P,Π, µð, where an agent starts with a given

state s0 following the initial state distribution p(s0). At any

time step t, the agent at the current state st ∈ S takes

an action at ∈ A following the agent’s policy Ã ∈ Π,

which defines a probability distribution over action space for

each state. While receiving an instantaneous scalar reward

r(st, at) ∈ R, the state of the agent transitions to a new state

st+1 ∈ S following a transition model P(·|st, at). µ specifies

the discount factor. The goal of the agent is to maximize

the expected discounted sum of rewards the agent receives

over time maxπ E [
∑

∞

t=0 µ
tr(st, at)], where the expectation

is taken over actions at ∼ Ã(·|st), and transition probabilities

st+1 ∼ P(·|st, at) and initial distribution s0 ∼ p(s0). A

Partially Observable Markov Decision Process (POMDP) is

further coupled with an observation model O(·|st), which is

generally hidden from the agent. At each time step, the agent

only observes ot ∼ O(·|st) sampled from the observation

model. Then, the agent takes an action based on ot, following

its policy Ã(·|ot), and subsequently receives a reward from

the environment r(st, at). To train a policy robust to various

observation models, domain randomization is often applied.

For example, by adding noise to the state st, the trained agent’s

policy can handle observations ot = st + ϵ, where ϵ can be

any noise distribution.

We train the teacher with a generic actor-critic method.

During training, the teacher interacts with the environment,

generates samples, and stores them in a replay buffer [31]. In

standard teacher-student frameworks, the teacher’s collected

samples are used solely for training the teacher policy Ãt and

then discarded. In contrast, our L2T framework co-trains the

student with the teacher, reusing the teacher’s samples across

all iterations. Fig. 2 illustrates our learning framework, and

Algorithm 1 presents the pseudo-code. We employ an MLP

for the teacher because, given privileged access to the full state

(depth scans, root pose, terrain profile, etc.), each observation

is already fully descriptive and Markovian so that there is

no need to model temporal dependencies via recurrence. We

also notice that this architecture has been widely adopted by

concurrent teacher-student learning paradigms [26]. Specifi-

cally, as the teacher interacts with the environment, we record

samples (s, a, r, s′), where s′ denotes the next observation,

the corresponding noisy observations o generated by domain

randomization, and o′, the next observation. In other words, we

store (s, o, a, r, s′, o′) as training data in the replay buffer. The

student updates its policy at each iteration by sampling mini-

batches from the replay buffer, but its policy relies solely on

the collected noisy data. This joint training procedure greatly

improves sample efficiency as both agents learn together,

without the need for a separate stage as used in the traditional

set-up.

Another key challenge in the teacher-student framework

is the discrepancy between the teacher’s and the student’s

observation spaces. Traditional teacher-student learning meth-

ods fall short because the teacher does not account for the

limitations of the student’s observations, leading to subop-

timal guidance [10]. To bridge this gap, we introduce a

sample-mixing mechanism in which the student collects its

own samples directly from the environment. These student-

generated samples—including actions and the resulting ob-

servations—are incorporated into the replay buffer as if they

were produced by the teacher. This injection of OOD data

helps reduce the imitation gap between the two agents.

To systematically blend teacher and student experiences,

we define a mixture coefficient ³mix. At each time step,

the action a is determined by a probabilistic mixture of the

teacher’s policy Ãt and the student’s policy Ãs. As such,

we collect trajectories s1, a1, s2, a2, s3, a3 where ai could

either come from the teacher or the student. This sample

mixing mechanism ensures that information from the student
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agent back propagates to the teacher. Specifically, the action

selection is defined as follows:

a =

{

sample Ãs(· | o), with probability ³mix,

sample Ãt(· | s), with probability 1− ³mix.
(1)

Additionally, ³mix is scheduled linearly from 0 to a predefined

constant over the course of training, which is 0.2 in our

implementation. This formulation ensures that, initially, the

teacher’s guidance dominates the action selection, but as

training progresses, the student’s policy increasingly influences

the learning. The scheduling of ³mix helps balance the con-

tributions of both policies and guarantees stable training. By

combining these strategies, our framework leverages both the

teacher’s guidance and the student’s explorative capabilities

to achieve more robust learning outcomes. This is in steep

contrast to CTS, where the teacher encoder and the student

encoder trains on independent datasets.

We implement a variant of our framework, L2T-RL. We

apply policy gradient methods to update the teacher policy

Ãt. At each iteration k, the critic is updated by estimating the

value functions: V π(s) := Eπ [
∑

∞

t=0 µ
t r(st, at) | s0 = s] ,

Qπ(s, a) := Eπ [
∑

∞

t=0 µ
t r(st, at) | s0 = s, a0 = a] , where

V π(s) is the value function, and Qπ(s, a) is the discounted

action-value function. For brevity, we will only use the sub-

script t to denote the teacher from now on and use subscript

s to denote the student. Subsequently, the teacher’s policy is

updated via a Policy Mirror Descent [32] step with a step size

´:

min
pt

−´ïQπt(s, ·), pt(·|s)ð+ KL(Ãt∥pt) ∀s ∈ S, (2)

where the optimal pt represents the teacher policy in the next

iteration. Any policy improvement scheme can be fit into the

L2T framework. This formulation encompasses a range of

policy gradient methods [32], such as Proximal Policy Opti-

mization (PPO) [33] and Soft Actor-Critic (SAC) [34]. In our

experiments on the Digit robot, we employ a PPO-style update.

However, our framework can be easily extended to various

learning methods, including imitation learning methods, or

Inverse Reinforcement Learning (IRL) methods such as in

[20]. In practice, we pool samples from both agents to update

the teacher policy using PPO. If we can maintain Ãs ≈ Ãt, any

student action as ∼ Ãs(·|s) satisfies Ãt(as|s) > 0, allowing

us to view these student-generated transitions as valid (albeit

lower-probability) samples from the teacher’s distribution.

For the student policy, we consider two choices for loss

functions. First, we can minimize an imitation loss between

the teacher’s and the student’s policies:

min
ps

LIL = Es, o∼D ∥ps(·|o)− Ãt(·|s)∥2 , (3)

where D denotes the replay buffer and the optimal ps repre-

sents the student policy in the next iteration. Alternatively, one

may minimize the KL divergence between the two:

min
ps

LKL = Es, o∼D KL (ps(·|o) ∥ Ãt(·|s)) , (4)

or any statistical distance metric that fits the action space.

Besides the imitation loss, the student can be updated

using an asymmetric learning approach [13] that leverages the

teacher’s critic, i.e., the value functions:

min
ps

LAsym = −´ïQπt(s, ·), ps(·|o)ð+ KL(ps∥Ãs). (5)

We denote the general loss function for student agents as Ls.

In our application on the Digit robot, we observed that using

the LIL imitation loss yields the best performance, while the

addition of LAsym does not affect the overall performance by

a large margin. We conjecture that the LIL loss allows the

student policy to have a slightly higher exploration capability

as we observe that LAsym + LIL will reach a training plateau

that is inferior in performance than using LIL alone.

Algorithm 1 Learn to Teach - RL (L2T-RL)

Require: initial teacher policy Ã0
t , student policy Ã0

s , and step

size sequences {´k
t } and {´k

s }
1: for k = 0 to K do

2: Sample a mini-batch Dk from the replay buffer D

3: Update the teacher critic Qπ
k+1

t (s, a), V π
k+1

t (s)
4: Update the teacher policy:

Ãk+1
t = argmin

pt

[

−´k
t ïQ

πk

t (s, ·), pt(·|s)ð+KL(Ãk
t ∥pt)

]

5: Update the student policy:

Ãk+1
s = argmin

πs

Ls(Ã
k
s )

6: Roll out to collect new samples D′ according to the

scheduling in Eq. 1

7: Update the replay buffer: D ← D ∪D′

8: end for

IV. ENVIRONMENT DESIGN

The Digit robot is a bipedal walking robot with 30 degrees

of freedom, which includes 20 actuated joints with 4 per arm

and 6 per leg. All joints are revolute joints except for the shin

and heel joints, which are spring-based. Notably, the Digit

robot features three closed kinematic chains per leg. Two

of these chains involve motors controlling the foot, assisted

by additional rods, while the third chain is responsible for

controlling the heel via a rod extending from the hip. This

leg design makes it a significantly challenging task for RL

algorithms due to the high-dimensional action space and the

complex dynamics of the robot. We highlight a significant

portion of our work is to reconstruct a faithful Universal

Scene Description (USD) model of the robot in IsaacLab [9],

although this is not claimed as an algorithmic contribution. As

a result, we build a velocity-tracking RL task with accurate

dynamics w.r.t the robot hardware.

A. Observation space

The observation space (see table I) is constructed using

data provided by the robot’s sensors, including base linear

velocity, base angular velocity, joint positions, and joint ve-

locities. Additionally, we include the commanded velocity

that the robot will receive from an external controller during

execution, the computed projected gravity based on the IMU
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data, and desired gait phase based on the robot execution

time. Finally, the actions in a previous time step are also

incorporated into the observation space, which allows us to

learn a history-dependent policy using recurrent neural nets.

We model measurement noise as ot = st +³ϵ where ³ is the

scale, and ϵ is either Gaussian or uniform noise. We add this

noise to the student’s observation space to mimic the hardware

sensors while keeping the teacher’s observation noise-free,

except for the ones that incorporate the student’s observations

in order to alleviate the imitation gap, which is considered a

common practice. Additionally, privileged information (lower

half of Table I) is provided for the teacher for easier training.

While our locomotion experiments randomize only the base

mass, we include all environment parameters as privileged

information, bundling them simplifies our environment API for

future extensions. Note that the base linear velocity is given

by the low-level software APIs provided by Agility Robotics.

TABLE I
OBSERVATION TERMS FOR TEACHER AND STUDENT

Observation Terms Dim Noise Student πs Teacher πt

Clock input 2 ✓ ✓

Base lin. vel. 3 ✓ ✓ ✓

Base ang. vel. 3 ✓ ✓ ✓

Projected gravity 3 ✓ ✓ ✓

Velocity command 3 ✓ ✓

Joint pos. 30 ✓ ✓ ✓

Joint vel. 30 ✓ ✓ ✓

Last action 20 ✓ ✓

Root state (w) 7 ✓

Base lin. vel. (w) 3 ✓

Base ang. vel. (w) 3 ✓

Base pos. (w) 3 ✓

Base quant. (w) 4 ✓

Env params 316 ✓

Height scan 187 ✓

B. Action space

The action space is designed as the target full-body joint

positions qtarget, which a Proportional Derivative (PD) con-

troller will aim to track during execution. At a frequency of 50
Hz, the policy predicts the current targeted joint based on the

current observation, and then at a higher frequency (1 kHz),

the PD controller computes the torque Ä as inputs to the motors

to control the robot’s joints. The target velocity is set to zero,

which is commonly employed in legged robot research. The

PD gains are determined through empirical tuning to ensure

stable joint control. We use a standard PD control law for

computing the torque, i.e, Ä = Kp(qtarget− q)+Kd(q̇target− q̇),
where q represents the measured joint positions and q̇ repre-

sents the measured joint velocities.

C. Reward functions

Our reward function design is summarized in Table II. We

adopt some of the existing reward functions in IsaacLab across

other velocity command tasks for bipeds and quadrupeds,

including termination penalty, action rate, joint deviation, etc.

In addition, we design specific reward functions for training

the Digit robot, for which we highlight two of them. For

implementation details, please refer to our code.

TABLE II
REWARD FUNCTIONS AND THEIR WEIGHTS

Reward Weight Reward Weight

Termination penalty -200.0 Foot contact 2.0
Being alive 0.01 Track foot height 0.5
Action rate -0.015 Foot clearance 0.5

DOF velocity -5e-4 Track lin vel XY 0.5
Undesired contacts -1.0 Track ang vel Z 1.0

Flat orientation -10.0 Lin vel XY -2.0
Feet air time 0.25 Ang vel Z -0.1
Feet sliding -1.0 DOF torques -1.0e-5

DOF pos limits -0.5 DOF acc -2.5e-7
Joint deviation hip -5.0 Joint deviation toes -0.1

Joint deviation arms -0.3

Track Foot Height: We reward the agent for following

a desired foot height trajectory, which is precomputed as a

quintic polynomial.

rfoot−track = exp{−∥hfoot traj − hfoot traj target∥2}, (6)

hfoot traj is the actual foot height and hfoot traj target is the target

foot height. We adjust the desired foot height based on the

current CoM position to adapt to uneven terrains. Specifically,

instead of tracking the absolute height of the foot, we track

the relative distance of the foot and the CoM position to

compensate for the terrain height, which is hard to obtain at

run time. This reward produces significantly different motions

than rewarding foot clearance alone and it is one of the most

important reward term, without which we are unable to train

an agent robust to uneven terrains. Note that, this reward is

different from the foot clearance reward as the latter rewards

the foot to reach a desired height relative to floor. On flat

ground, the desired height is consistent with the peak of the

reference foot trajectory.

Foot Contact Matching:

rcontact =

{

c1, sign(ϕ(t)) = sign(FGRF > 0)

−c2, otherwise.
(7)

where ϕ(t) = sin(2Ãt/h), h = 0.68 is the gait cycle duration,

c1, c2 ∈ R
+ are constants. We reward the agent when the foot

contact matches the desired gait cycle. For example, if ϕ(t) >
0 (indicating the foot should be in contact with the ground) and

FGRF > 0 (indicating the foot is actually in contact), we assign

a positive reward c1. Otherwise, a penalty −c2 is applied.

TABLE III
EVENT TERMS FOR DOMAIN RANDOMIZATION

Name Name

Rand. friction coeff Add base mass
Rand. gravity Add external force
Rand. base location Push robot
Rand. robot joints

D. Domain randomization and curriculum

We dynamically change the observation space and perturb

the physical dynamics of the environment in the hope of

capturing the randomness and variation of the real world. We

list all the domain randomization schemes used in the training

in Table. III. In practice, we find that randomizing friction

coefficients and adding external pushes can greatly improve

the robustness of the trained policy.

This article has been accepted for publication in IEEE Robotics and Automation Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LRA.2025.3592131

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 25,2025 at 03:15:12 UTC from IEEE Xplore.  Restrictions apply. 



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2025

0 1e8 2e8 3e8 4e8 5e8
Samples

2

4

6
Te

rr
ai

n 
Le

ve
l

5e8 6e8 7e8 8e8 9e8 10e8
Samples

2

4

6

Te
rr

ai
n 

Le
ve

l

L2T Teacher
L2T Student
CTS Teacher
CTS Student
ROA
DWL
TSL Teacher
PPO
TSL Student

L2T CTS ROA DWL TSL
Methods

0

20

40

60

80

100

S
tu

de
nt

 S
uc

ce
ss

 R
at

e 
(%

)

96

74 73

27

94

Fig. 3. Training curve against baselines. Left: We plot the difficulty of the terrain the agent can successfully traverse during training. Middle: we show the
student training curve in TSL after obtaining a teacher. Right: average success rate of the student agents across 4096 training environments with randomly
sampled velocity commands.

Additionally, we adopt the curriculum training setup imple-

mented by IsaacLab. We utilize the existing terrain map, which

includes seven different terrains: flat ground, slopes, stepping

stones, and pyramid stairs up and down.

V. COMPUTATIONAL RESULTS

A. Rough terrain difficulty progression

First, we show the progression of terrain difficulty (curricu-

lum progression) throughout training, representing the overall

task completion, i.e., the level of terrain difficulty the agent can

walk over with the CoM velocity maintained within a specific

range from the velocity command. This metric is calculated

as the average difficulty level across the 6 terrain setups

mentioned earlier. In essence, faster learning corresponds

to a steeper curve in terrain difficulty progression. Fig. 3

illustrates the terrain progression during training. We represent

the teacher policy with a solid blue line and the student policy

with a dashed blue line. We compare our approach against

three baseline methods based on the asymmetric learning

framework: CTS [11], ROA [35], and DWL [36]. In addition,

we include comparisons with the conventional teacher-student

learning (TSL) paradigm and a vanilla recurrent PPO trained

directly in the student’s environment. Notice that in TSL,

the student agent can only be trained after the teacher. The

TSL teacher has an MLP-based policy, while the student

is LSTM-based, sharing the same network architecture and

hyperparameter as in L2T. It is noteworthy to mention that

we can only obtain a reasonable training result by using data

aggregation (DAgger) [37], i.e., when training the student,

periodically use the teacher to predict the action.

Discussion: First, Fig. 3 shows that L2T significantly outper-

forms asymmetric learning baselines, including CTS, ROA,

and DWL. We are unable to reproduce competitive perfor-

mance with DWL due to missing implementation details.

However, as DWL follows a similar framework to ROA,

learning an encoder to reconstruct privileged states, we believe

its potential for improvement over ROA is limited. Since

these (single actor) methods lack a separate teacher policy,

the student must discover high-reward states with a suboptimal

student encoder in order to learn from them, which leads to

poor sample efficiency. Furthermore, we observe a substantial

imitation gap between the teacher and student in CTS. This

arises because CTS processes teacher and student samples
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Fig. 4. Ablation studies on sample mixing and loss functions.

independently, relying solely on a reconstruction loss to align

the two encoders. In contrast, L2T mixes samples from both

agents, allowing the teacher to observe and evaluate the

student’s behavior. From a data-driven viewpoint, CTS distills

knowledge using two agents trained on disjoint datasets, while

L2T actively injects out-of-distribution student trajectories into

the teacher’s training, enabling more effective guidance of the

student policy.

Second, compared to the conventional teacher-student learn-

ing (TSL) paradigm, we find that L2T enables the student to

achieve comparable performance without requiring a separate

teacher pretraining stage. That is, the time spent training the

teacher in TSL is sufficient for jointly training both teacher and

student in L2T, making it a drop-in replacement. While we do

not claim that L2T outperforms TSL in final policy quality, we

save equivalently 50% training time, or roughly 12 hours of

GPU time, a significant improvement in reducing development

cycles. Ultimately, both approaches are upper-bounded by the

performance of the teacher policy.

B. Mitigation of imitation gap

We observe that mixing samples can alleviate the imitation

gap, which is caused by the teacher having access to privileged

information that is unavailable to the student. This privileged

information is marginalized during imitation learning for the

student agent, resulting in the student agent requiring more

exploration and acting more conservatively. For example, since

the student does not know if it is at the edge of the stairs, they

will act less confidently when walking downstairs. However,

a trained expert teacher agent might act more confidently

as it knows the structure of the stairs due to the privileged

information of a local depth map. This is generally true due

to the existence of observational noise. In the presence of

the imitation gap, the teacher agent might generate desirable
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Fig. 5. Our method can mitigate the imitation gap, enabling accurately track
teacher policy behavior.

demonstrations only for the teacher itself, but not necessarily

desirable ones for the student agent [10].

In L2T, imitation learning and sample mixing create a

bidirectional feedback loop. The teacher policy benefits from

student-generated samples, while the student continuously

tracks the evolving teacher. This approach resembles tech-

niques that augment training data [38] in supervised learning

works such as computer vision, where randomization injects

out-of-distribution data into the training set. In the context of

our approach, the out-of-distribution data, with respect to the

teacher policy, are from the student. We show that in Fig. 5, the

walking gait of the student trained by DAgger is significantly

different from the teacher policy, while L2T can faithfully

imitate the teacher. Notice the shape of the toe pad from

the L2T student, which slightly tilts up from the horizontal

plane, accurately mimicking the teacher’s toe. In contrast, the

DAgger-trained student agent has a flat-ground walking gait,

with the toe pad parallel to the horizontal plane. Details of the

walking motions can be found in our video.

Additionally, we compute the LIL between the teacher and

student policies under three settings: L2T, TSL, and L2T

without sample mixing (³mix = 0) denoted as L2T w/ No

Mix as shown in Fig. 4a. This highlights the discrepancy

between the two agents across methods and demonstrates that

L2T effectively reduces the imitation gap.
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Fig. 6. (a) Ablation study on the mixture coefficient. (b) CoM velocity versus
command using student policy. (c) xy trajectory with x direction command
using student policy.

C. Ablation study

We conduct an ablation study on the critical components

to further explore key design choices within our algorithm

framework. Fig. 6(a) demonstrates the importance of the mix-

ture coefficient ³mix in the training process. We observe that

while the algorithm becomes unstable with a large ³mix, which

is caused by letting a highly suboptimal student agent inject

too many samples, an appropriate chosen ³mix can benefit the

overall training process. We hypothesize that the discrepancies

between the student and teacher promote exploration within

the action space, enabling both agents to learn from a broader

region around the teacher’s actions. Additionally, we show in

Fig. 4b that choosing LIL slightly outperforms LIL +LAsym in

our training setup.

VI. HARDWARE EXPERIMENTS

A. Locomotion over real-world uneven terrain

We report the results of deploying our policy in various

outdoor environments, as illustrated in Fig. 1 and the supple-

mentary video. These experiments were conducted around a

university campus, including walkways, wooden bridges, grass

hills, beach volleyball courts, and gravel paths.

Surprisingly, the policy shows generalization ability to sce-

narios not included in the training. For example, on grass

hills, due to rain, the grass and the soil underneath exhibit

a certain level of deformation upon impact, which increases

the difficulty of state estimation and thus further increases

the observation noise. Moreover, the policy can walk on the

beach volleyball court with sandy terrain, as shown in Fig. 1.

Despite the robot not being calibrated or trained for such

conditions, the policy adapts to the environmental changes

without additional training. Next, we examine the policy’s

performance on terrains with obstacles. The first test involves

a crate of gravel shown in Fig. 7(b). The robot consistently

performs stepping-in-place actions with a stable motion. Even

when the robot occasionally strikes the crate’s edge, it recovers

and resumes normal a stepping gait. In the second test, we

deploy the robot on a slippery terrain, where we distribute

poppy seeds on a whiteboard shown in Fig. 1. Surprisingly,

our robot does not exhibit any perceptible shaking motions. In

contrast, the company controller provided by Agility Robotics

fails to walk over.

Fig. 7. (a) we perturb the robot with a harness. (b) we test the step-in-place
motion on a crate of gravel. We let the robot walk over (c) high stairs (7cm
+ 9cm). (d) hill with gravel.

B. Perturbation experiments

We evaluate the policy’s response to external perturbations

during locomotion. Two scenarios are considered: pushing the

robot’s center of mass (CoM) from the front, and back using a

stick. The policy demonstrates robustness to withstand frontal

and rearward pushes while maintaining a stable walking gait.
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Additionally, we apply a more substantial perturbation using

a harness to pull the robot with an impulsive force (see

Fig. 7(a)). The robot adapts dynamically, exhibiting agile

adjustments to compensate for the pulling.

VII. CONCLUSION

We introduced L2T-RL, a novel single-stage learning frame-

work that unifies teacher and student training to address

sample inefficiency and enhance real-world performance. Our

extensive simulation and hardware experiments demonstrate

that L2T-RL achieves robust, and agile locomotion while

reducing sample complexity by 50% and thus dramatically

saving training time. These results highlight our contributions

to redefining teacher-student learning paradigms and paving

the way for practical RL-based robotic systems.
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