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Learn to Teach: Sample-Efficient Privileged Learning for Humanoid

Locomotion over Real-World Uneven Terrain
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Abstract—Humanoid robots promise transformative capabili-
ties for industrial and service applications. While recent advances
in Reinforcement Learning (RL) yield impressive results in
locomotion, manipulation, and navigation, the proposed methods
typically require enormous simulation samples to account for
real-world variability. This work proposes a novel one-stage train-
ing framework—Learn to Teach (L2T)—which unifies teacher
and student policy learning. Our approach recycles simulator
samples and synchronizes the learning trajectories through
shared dynamics, significantly reducing sample complexities and
training time while achieving state-of-the-art performance. Fur-
thermore, we validate the RL variant (L2T-RL) through extensive
simulations and hardware tests on the Digit robot, demonstrating
zero-shot sim-to-real transfer and robust performance over 12+
diverse terrains without depth estimation modules. Experimental
videos are available at https://lidar-learn-to-teach.github.io.

Index Terms—Reinforcement Learning, Humanoid and
Bipedal Locomotion, Sim2Real, Sample Efficiency

I. INTRODUCTION

EINFORCEMENT Learning (RL) has revolutionized

robotic control by tackling complex tasks such as dy-
namic locomotion [1]-[3]. Despite these achievements, poli-
cies trained in simulators often falter when deployed into the
real world due to the inevitable simulation-to-reality gap [4].
Although domain randomization [5] is widely used to miti-
gate these discrepancies, it incurs significantly higher sample
complexity as agents must explore extensive environmental
variations.

Recently, teacher-student learning methods have demon-
strated promising results by leveraging an expert teacher
to guide students with restricted observation spaces [6]—[8].
However, the conventional two-stage training discards valuable
teacher interactions with the environment and often suffers
from mismatches between independently trained teachers and
students. To address these issues, we propose Learn-to-Teach
(L2T): a unified training framework that co-trains teacher and
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student agents in a single, interactive stage, where the student
fully utilizes the collected samples.

To quantify L2T’s advantages, we implement L2T-RL, an
RL variant, and benchmark its performance on humanoid loco-
motion tasks using the Digit robot in Isaac Lab—a state-of-the-
art GPU-accelerated simulator [9]. Our results show that L2T-
RL can achieve stable and superior performance compared to
the conventional teacher-student learning paradigm, requiring
50% fewer samples. Consequently, we deploy our trained
policy on the robot Digit and conduct extensive hardware
experiments in indoor and outdoor environments. Strikingly,
the resulting student agent, a lightweight LSTM-based policy,
exhibits zero-shot sim2real transfer on the physical Digit
robot across a wide range of terrains, including gravel, sand,
grass, and slopes (Fig. 1). We also test our control policy on
various perturbations such as push recovery, walking under
payload, and walking on slippery or wet terrains or with the
wind blowing (see Fig. 7 and the supplementary video). Our
contributions are as follows:

Efficient training framework: We propose a joint teacher-
student training paradigm that optimizes both policies simul-
taneously. Unlike prior decoupled approaches, our framework
enables cross-agent knowledge transfer to the student policy
by dynamically utilizing the teacher’s training samples directly
within a single training stage, avoiding the need for training
from scratch in a separate stage.

Mitigation of teacher-student imitation gap: We propose
a sample mixing strategy to alleviate the imitation gap between
the teacher and student, which traditional privileged learning
is unable to address [10]. Both agents will contribute to the
replay buffer following a predefined schedule when collecting
samples. Mixing samples enables a joint optimization pro-
cess that mitigates the imitation gap while promoting sample
efficiency by letting both agents explore Out-of-Distribution
(OOD) data.

Humanoid RL agent deployment: We demonstrate real-
world locomotion agility through hardware experiments. Our
policy, trained entirely in simulation, enables a physical hu-
manoid robot to reliably traverse 12+ real-world terrains (con-
crete, gravel, slopes, stairs, etc.) and withstand dynamic pertur-
bations (pushes and payloads) without offline fine-tuning. The
policy achieves high success in unstructured environments,
matching the teacher’s robustness despite using only proprio-
ceptive inputs without depth estimation modules.

II. RELATED WORK

Teacher-student learning: In the robotics learning com-
munity, teacher-student learning [6]-[8] has gained significant
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Fig. 1. We implement our L2T-RL algorithm on our bipedal walking robot Digit and deploy it on diverse terrain with various environmental conditions such

as wet grass, gravel, sandy terrain, and slippery surfaces.

attention due to its applicability and effectiveness in addressing
sim2real challenges. In this framework, the teacher agent is
trained with complete knowledge of the state space. After
obtaining an expert-level teacher, a student agent is trained
in an observation space that follows the available sensor
configurations on hardware, where the goal is to imitate the
teacher’s action [8]. In this work, we extend this learning
framework by training the teacher and the student simultane-
ously in a single stage. Prior work [11] proposed a method
termed Concurrent Teacher Student (CTS) learning, which
also explored the idea of co-training both agents. However,
CTS trains a shared policy across the teacher and the student,
only differentiating the observation encoder and the critic.
This potentially disrupts the training process as the privileged
critic naturally rewards actions that might not seem valuable
to the student. In comparison, L2T trains two separate agents,
with the option of sharing an encoder network or using an
asymmetric learning style critic.

Learning with partial observation: Recent advancements
in RL under partial observability have significantly improved
the ability of robotic systems to operate in complex, uncertain
environments [8]. Contemporary approaches often leverage
deep recurrent architectures, such as [12], to infer latent
state representations from sequential data, effectively bridging
traditional POMDP solvers with modern deep RL frameworks.
In robotics control, practitioners construct history-dependent
policies from a sliding-window style observation or rely on
the recurrent architecture of the policy network. At the same
time, asymmetric learning has emerged as another effective
strategy to bridge the gap between training and execution [13].
In these approaches, the critic network is provided access
to privileged, full-state information during training. Recent
works have demonstrated that such asymmetric actor-critic
frameworks improve sample efficiency and enhance policy

robustness [14]. In this work, we combine these learning
techniques, utilizing a recurrent network and an asymmetric
critic, to solve the underlying POMDP problem efficiently.

Learning from demonstrations: Learning from demon-
strations (LfD) has attracted significant interest in the robot
learning field due to the growing abundance of robot data
and the popularity of simple yet effective imitation learning
(IL) frameworks [15]. LfD has demonstrated impressive results
in controlling robot manipulators for tabletop tasks [16]. A
recent surge of LfD studies in humanoids and bipeds have
shown the promising potential of whole-body control and
loco-manipulation [16]-[19]. However, supervised learning
demands high-quality behavior data, oftentimes through elab-
orate data collection pipelines [16], [19] and/or needs accurate
re-targeting to robot states from datasets with different mor-
phologies On the other hand, the prevalent IL loss is known to
be suboptimal from a learning perspective [20]. Thus, in this
work, we focus on a generic algorithm framework to address
the sim2real gap alone, without the interference of possible
issues brought up by LfD methods. Furthermore, our proposed
framework can be easily extended to the LfD setting, which
we leave as a future direction.

Bipedal locomotion over complex terrain: Humanoid
robots recently have gained increasing interest due to their
applicability and versatility [17]-[19], [21]-[25], ranging from
locomotion [26], to manipulation [27]. Prior bipedal locomo-
tion works [26], [28] have explored the conventional teacher-
student learning paradigm in locomotion tasks. However, the
training process can take significant samples even with an
elaborate training environment design. Concurrent works also
incorporate memory structure into the policy architecture [11],
[26], [29], or learning from demonstrations collected from
various data sources such as human motion [30] or generation
using model-based methods [27]. In comparison, we design
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Fig. 2. Learn to Teach (L2T) training pipeline. The teacher agent utilizes a neural network for the policy, which comprises three fully connected layers with
sizes [512, 256, 128]. The student agent’s policy network deployed on the robot is an LSTM network with a hidden layer of 128 units, followed by fully
connected layers with shape [512, 256, 128]. The teacher learns via conventional RL methods, while the student updates its policy by imitating the teacher.

straightforward and intuitive reward functions for bipeds in
general terrain settings, offering a simple yet effective solution.

III. METHODS

This section introduces our problem setup and notations
and presents our learning framework. A Markov Decision
Process (MDP), denoted as M, is described by a tuple:
M = (S, A R, P,11,~v), where an agent starts with a given
state so following the initial state distribution p(sg). At any
time step ¢, the agent at the current state s; € S takes
an action a; € A following the agent’s policy m € II,
which defines a probability distribution over action space for
each state. While receiving an instantaneous scalar reward
r(s¢, a;) € R, the state of the agent transitions to a new state
st+1 € S following a transition model P(-|s¢, ar). 7y specifies
the discount factor. The goal of the agent is to maximize
the expected discounted sum of rewards the agent receives
over time max, E[Y ;2 ~'r(s:, a;)], where the expectation
is taken over actions a; ~ 7(+|s;), and transition probabilities
st41 ~ P(|st,a¢) and initial distribution so ~ p(sp). A
Partially Observable Markov Decision Process (POMDP) is
further coupled with an observation model O(-|s;), which is
generally hidden from the agent. At each time step, the agent
only observes o; ~ O(:|s;) sampled from the observation
model. Then, the agent takes an action based on o, following
its policy m(-|o;), and subsequently receives a reward from
the environment 7(s;, a;). To train a policy robust to various
observation models, domain randomization is often applied.
For example, by adding noise to the state s;, the trained agent’s
policy can handle observations o; = s; + €, where € can be
any noise distribution.

We train the teacher with a generic actor-critic method.
During training, the teacher interacts with the environment,
generates samples, and stores them in a replay buffer [31]. In
standard teacher-student frameworks, the teacher’s collected
samples are used solely for training the teacher policy m; and
then discarded. In contrast, our L2T framework co-trains the
student with the teacher, reusing the teacher’s samples across

all iterations. Fig. 2 illustrates our learning framework, and
Algorithm 1 presents the pseudo-code. We employ an MLP
for the teacher because, given privileged access to the full state
(depth scans, root pose, terrain profile, etc.), each observation
is already fully descriptive and Markovian so that there is
no need to model temporal dependencies via recurrence. We
also notice that this architecture has been widely adopted by
concurrent teacher-student learning paradigms [26]. Specifi-
cally, as the teacher interacts with the environment, we record
samples (s,a,r,s’), where s’ denotes the next observation,
the corresponding noisy observations o generated by domain
randomization, and o/, the next observation. In other words, we
store (s,0,a,r,s’,0') as training data in the replay buffer. The
student updates its policy at each iteration by sampling mini-
batches from the replay buffer, but its policy relies solely on
the collected noisy data. This joint training procedure greatly
improves sample efficiency as both agents learn together,
without the need for a separate stage as used in the traditional
set-up.

Another key challenge in the teacher-student framework
is the discrepancy between the teacher’s and the student’s
observation spaces. Traditional teacher-student learning meth-
ods fall short because the teacher does not account for the
limitations of the student’s observations, leading to subop-
timal guidance [10]. To bridge this gap, we introduce a
sample-mixing mechanism in which the student collects its
own samples directly from the environment. These student-
generated samples—including actions and the resulting ob-
servations—are incorporated into the replay buffer as if they
were produced by the teacher. This injection of OOD data
helps reduce the imitation gap between the two agents.

To systematically blend teacher and student experiences,
we define a mixture coefficient au,x. At each time step,
the action a is determined by a probabilistic mixture of the
teacher’s policy 7; and the student’s policy 7. As such,
we collect trajectories si,aq, So, a2, S3,a3 where a; could
either come from the teacher or the student. This sample
mixing mechanism ensures that information from the student
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agent back propagates to the teacher. Specifically, the action
selection is defined as follows:

- sample 74(- | 0), with probability cpiy, 0

sample (- | ), with probability 1 — apix.

Additionally, o is scheduled linearly from O to a predefined
constant over the course of training, which is 0.2 in our
implementation. This formulation ensures that, initially, the
teacher’s guidance dominates the action selection, but as
training progresses, the student’s policy increasingly influences
the learning. The scheduling of anix helps balance the con-
tributions of both policies and guarantees stable training. By
combining these strategies, our framework leverages both the
teacher’s guidance and the student’s explorative capabilities
to achieve more robust learning outcomes. This is in steep
contrast to CTS, where the teacher encoder and the student
encoder trains on independent datasets.

We implement a variant of our framework, L2T-RL. We
apply policy gradient methods to update the teacher policy
m. At each iteration k, the critic is updated by estimating the
value functions: V7 (s) := E. [> oo g v (st ai) | s0 = 8],
Q™ (s,a) == Er[> 27 r(se.ar)|so =s,a0 =a), where
V7(s) is the value function, and Q7 (s, a) is the discounted
action-value function. For brevity, we will only use the sub-
script ¢ to denote the teacher from now on and use subscript
s to denote the student. Subsequently, the teacher’s policy is
updated via a Policy Mirror Descent [32] step with a step size

B:
H;ll)itn _5<Qﬂ—t (87 ),pt(|5)> + KL(ﬂ-tht) Vs € 87 (2)

where the optimal p; represents the teacher policy in the next
iteration. Any policy improvement scheme can be fit into the
L2T framework. This formulation encompasses a range of
policy gradient methods [32], such as Proximal Policy Opti-
mization (PPO) [33] and Soft Actor-Critic (SAC) [34]. In our
experiments on the Digit robot, we employ a PPO-style update.
However, our framework can be easily extended to various
learning methods, including imitation learning methods, or
Inverse Reinforcement Learning (IRL) methods such as in
[20]. In practice, we pool samples from both agents to update
the teacher policy using PPO. If we can maintain 7, ~ 7, any
student action as ~ 7s(+|s) satisfies m(as|s) > 0, allowing
us to view these student-generated transitions as valid (albeit
lower-probability) samples from the teacher’s distribution.

For the student policy, we consider two choices for loss
functions. First, we can minimize an imitation loss between
the teacher’s and the student’s policies:

min Ly, = Es,onp [ps(-l0) = me (-]l , )

where D denotes the replay buffer and the optimal p, repre-
sents the student policy in the next iteration. Alternatively, one
may minimize the KL divergence between the two:

n%in Lkt =Es onp KL (ps(-|0) || m(-]5)) , )

or any statistical distance metric that fits the action space.

Besides the imitation loss, the student can be updated
using an asymmetric learning approach [13] that leverages the
teacher’s critic, i.e., the value functions:

n’zl)inLAsym = —B<Q7Tt (5, )7p5(|0)> + KL(psHTrs) (5)

We denote the general loss function for student agents as L.
In our application on the Digit robot, we observed that using
the Ly imitation loss yields the best performance, while the
addition of Lagym does not affect the overall performance by
a large margin. We conjecture that the Ly loss allows the
student policy to have a slightly higher exploration capability
as we observe that Lagym + Ly will reach a training plateau
that is inferior in performance than using Ly alone.

Algorithm 1 Learn to Teach - RL (L2T-RL)
Require: initial teacher policy 7Y, student policy 7, and step
size sequences {3F} and {3%}
1: for k=0 to K do
2:  Sample a mini-batch Dy, from the replay buffer D
3. Update the teacher critic Q™ (s, a), vy (s)
4:  Update the teacher policy:

mitt = argmin [~BHQ™ (s,-), pe(]s)) + KL(rf )|

5.  Update the student policy:
7h T = argmin L (%)
6:  Roll out to collect new samples D’ according to the
scheduling in Eq. 1
7. Update the replay buffer: D «+ DU D’
8: end for

IV. ENVIRONMENT DESIGN

The Digit robot is a bipedal walking robot with 30 degrees
of freedom, which includes 20 actuated joints with 4 per arm
and 6 per leg. All joints are revolute joints except for the shin
and heel joints, which are spring-based. Notably, the Digit
robot features three closed kinematic chains per leg. Two
of these chains involve motors controlling the foot, assisted
by additional rods, while the third chain is responsible for
controlling the heel via a rod extending from the hip. This
leg design makes it a significantly challenging task for RL
algorithms due to the high-dimensional action space and the
complex dynamics of the robot. We highlight a significant
portion of our work is to reconstruct a faithful Universal
Scene Description (USD) model of the robot in IsaacLab [9],
although this is not claimed as an algorithmic contribution. As
a result, we build a velocity-tracking RL task with accurate
dynamics w.r.t the robot hardware.

A. Observation space

The observation space (see table I) is constructed using
data provided by the robot’s sensors, including base linear
velocity, base angular velocity, joint positions, and joint ve-
locities. Additionally, we include the commanded velocity
that the robot will receive from an external controller during
execution, the computed projected gravity based on the IMU
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data, and desired gait phase based on the robot execution
time. Finally, the actions in a previous time step are also
incorporated into the observation space, which allows us to
learn a history-dependent policy using recurrent neural nets.
We model measurement noise as o; = s; + ae where « is the
scale, and e is either Gaussian or uniform noise. We add this
noise to the student’s observation space to mimic the hardware
sensors while keeping the teacher’s observation noise-free,
except for the ones that incorporate the student’s observations
in order to alleviate the imitation gap, which is considered a
common practice. Additionally, privileged information (lower
half of Table I) is provided for the teacher for easier training.
While our locomotion experiments randomize only the base
mass, we include all environment parameters as privileged
information, bundling them simplifies our environment API for
future extensions. Note that the base linear velocity is given
by the low-level software APIs provided by Agility Robotics.

TABLE 1
OBSERVATION TERMS FOR TEACHER AND STUDENT

Observation Terms Dim  Noise Student 74 Teacher m;
Clock input 2 v v
Base lin. vel. 3 v v v
Base ang. vel. 3 v v v
Projected gravity 3 v v v
Velocity command 3 v v
Joint pos. 30 v v v
Joint vel. 30 v v v
Last action 20 v v
Root state (w) 7 v
Base lin. vel. (w) 3 v
Base ang. vel. (w) 3 v
Base pos. (w) 3 v
Base quant. (w) 4 v
Env params 316 v
Height scan 187 v

B. Action space

The action space is designed as the target full-body joint
positions Giarget, Which a Proportional Derivative (PD) con-
troller will aim to track during execution. At a frequency of 50
Hz, the policy predicts the current targeted joint based on the
current observation, and then at a higher frequency (1 kHz),
the PD controller computes the torque 7 as inputs to the motors
to control the robot’s joints. The target velocity is set to zero,
which is commonly employed in legged robot research. The
PD gains are determined through empirical tuning to ensure
stable joint control. We use a standard PD control law for
computing the torque, i.e, 7 = K} (Gureet — ¢) + Ka(Grarget — 4),
where ¢ represents the measured joint positions and ¢ repre-
sents the measured joint velocities.

C. Reward functions

Our reward function design is summarized in Table II. We
adopt some of the existing reward functions in IsaacLab across
other velocity command tasks for bipeds and quadrupeds,
including termination penalty, action rate, joint deviation, etc.
In addition, we design specific reward functions for training
the Digit robot, for which we highlight two of them. For
implementation details, please refer to our code.

TABLE II
REWARD FUNCTIONS AND THEIR WEIGHTS
Reward ‘Weight Reward Weight
Termination penalty -200.0 Foot contact 2.0
Being alive 0.01 Track foot height 0.5
Action rate -0.015 Foot clearance 0.5
DOF velocity -5e-4 Track lin vel XY 0.5
Undesired contacts -1.0 Track ang vel Z 1.0
Flat orientation -10.0 Lin vel XY -2.0
Feet air time 0.25 Ang vel Z -0.1
Feet sliding -1.0 DOF torques -1.0e-5
DOF pos limits -0.5 DOF acc -2.5e-7
Joint deviation hip -5.0 Joint deviation toes -0.1
Joint deviation arms -0.3

Track Foot Height: We reward the agent for following
a desired foot height trajectory, which is precomputed as a
quintic polynomial.

Tfoot—track — exp{*thoot_lraj - hfoot_traj_larget”Q}; (6)

Pfoot_raj 18 the actual foot height and Afoor_raj_tareer is the target
foot height. We adjust the desired foot height based on the
current CoM position to adapt to uneven terrains. Specifically,
instead of tracking the absolute height of the foot, we track
the relative distance of the foot and the CoM position to
compensate for the terrain height, which is hard to obtain at
run time. This reward produces significantly different motions
than rewarding foot clearance alone and it is one of the most
important reward term, without which we are unable to train
an agent robust to uneven terrains. Note that, this reward is
different from the foot clearance reward as the latter rewards
the foot to reach a desired height relative to floor. On flat
ground, the desired height is consistent with the peak of the
reference foot trajectory.
Foot Contact Matching:

c1,  sign(¢(t)) = sign(Forr > 0)
Tcontact = . (7)

—co, otherwise.
where ¢(t) = sin(2nt/h), h = 0.68 is the gait cycle duration,
c1,co € RT are constants. We reward the agent when the foot
contact matches the desired gait cycle. For example, if ¢(t) >
0 (indicating the foot should be in contact with the ground) and
FGrr > 0 (indicating the foot is actually in contact), we assign
a positive reward c;. Otherwise, a penalty —cy is applied.

TABLE III
EVENT TERMS FOR DOMAIN RANDOMIZATION

Name

Add base mass
Add external force
Push robot

Name

Rand. friction coeff
Rand. gravity
Rand. base location
Rand. robot joints

D. Domain randomization and curriculum

We dynamically change the observation space and perturb
the physical dynamics of the environment in the hope of
capturing the randomness and variation of the real world. We
list all the domain randomization schemes used in the training
in Table. IIl. In practice, we find that randomizing friction
coefficients and adding external pushes can greatly improve
the robustness of the trained policy.
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sampled velocity commands.

Additionally, we adopt the curriculum training setup imple-
mented by [saacLab. We utilize the existing terrain map, which
includes seven different terrains: flat ground, slopes, stepping
stones, and pyramid stairs up and down.

V. COMPUTATIONAL RESULTS
A. Rough terrain difficulty progression

First, we show the progression of terrain difficulty (curricu-
lum progression) throughout training, representing the overall
task completion, i.e., the level of terrain difficulty the agent can
walk over with the CoM velocity maintained within a specific
range from the velocity command. This metric is calculated
as the average difficulty level across the 6 terrain setups
mentioned earlier. In essence, faster learning corresponds
to a steeper curve in terrain difficulty progression. Fig. 3
illustrates the terrain progression during training. We represent
the teacher policy with a solid blue line and the student policy
with a dashed blue line. We compare our approach against
three baseline methods based on the asymmetric learning
framework: CTS [11], ROA [35], and DWL [36]. In addition,
we include comparisons with the conventional teacher-student
learning (TSL) paradigm and a vanilla recurrent PPO trained
directly in the student’s environment. Notice that in TSL,
the student agent can only be trained after the teacher. The
TSL teacher has an MLP-based policy, while the student
is LSTM-based, sharing the same network architecture and
hyperparameter as in L2T. It is noteworthy to mention that
we can only obtain a reasonable training result by using data
aggregation (DAgger) [37], i.e., when training the student,
periodically use the teacher to predict the action.

Discussion: First, Fig. 3 shows that L2T significantly outper-
forms asymmetric learning baselines, including CTS, ROA,
and DWL. We are unable to reproduce competitive perfor-
mance with DWL due to missing implementation details.
However, as DWL follows a similar framework to ROA,
learning an encoder to reconstruct privileged states, we believe
its potential for improvement over ROA is limited. Since
these (single actor) methods lack a separate teacher policy,
the student must discover high-reward states with a suboptimal
student encoder in order to learn from them, which leads to
poor sample efficiency. Furthermore, we observe a substantial
imitation gap between the teacher and student in CTS. This
arises because CTS processes teacher and student samples
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(a) Imitation gap ablation. (b) Loss function ablation.

Fig. 4. Ablation studies on sample mixing and loss functions.

independently, relying solely on a reconstruction loss to align
the two encoders. In contrast, L2T mixes samples from both
agents, allowing the teacher to observe and evaluate the
student’s behavior. From a data-driven viewpoint, CTS distills
knowledge using two agents trained on disjoint datasets, while
L2T actively injects out-of-distribution student trajectories into
the teacher’s training, enabling more effective guidance of the
student policy.

Second, compared to the conventional teacher-student learn-
ing (TSL) paradigm, we find that L2T enables the student to
achieve comparable performance without requiring a separate
teacher pretraining stage. That is, the time spent training the
teacher in TSL is sufficient for jointly training both teacher and
student in L2T, making it a drop-in replacement. While we do
not claim that L2T outperforms TSL in final policy quality, we
save equivalently 50% training time, or roughly 12 hours of
GPU time, a significant improvement in reducing development
cycles. Ultimately, both approaches are upper-bounded by the
performance of the teacher policy.

B. Mitigation of imitation gap

We observe that mixing samples can alleviate the imitation
gap, which is caused by the teacher having access to privileged
information that is unavailable to the student. This privileged
information is marginalized during imitation learning for the
student agent, resulting in the student agent requiring more
exploration and acting more conservatively. For example, since
the student does not know if it is at the edge of the stairs, they
will act less confidently when walking downstairs. However,
a trained expert teacher agent might act more confidently
as it knows the structure of the stairs due to the privileged
information of a local depth map. This is generally true due
to the existence of observational noise. In the presence of
the imitation gap, the teacher agent might generate desirable
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Fig. 5. Our method can mitigate the imitation gap, enabling accurately track
teacher policy behavior.

demonstrations only for the teacher itself, but not necessarily
desirable ones for the student agent [10].

In L2T, imitation learning and sample mixing create a
bidirectional feedback loop. The teacher policy benefits from
student-generated samples, while the student continuously
tracks the evolving teacher. This approach resembles tech-
niques that augment training data [38] in supervised learning
works such as computer vision, where randomization injects
out-of-distribution data into the training set. In the context of
our approach, the out-of-distribution data, with respect to the
teacher policy, are from the student. We show that in Fig. 5, the
walking gait of the student trained by DAgger is significantly
different from the teacher policy, while L2T can faithfully
imitate the teacher. Notice the shape of the toe pad from
the L2T student, which slightly tilts up from the horizontal
plane, accurately mimicking the teacher’s toe. In contrast, the
DAgger-trained student agent has a flat-ground walking gait,
with the toe pad parallel to the horizontal plane. Details of the
walking motions can be found in our video.

Additionally, we compute the Ly between the teacher and
student policies under three settings: L2T, TSL, and L2T
without sample mixing (amix = 0) denoted as L2T w/ No
Mix as shown in Fig. 4a. This highlights the discrepancy
between the two agents across methods and demonstrates that
L2T effectively reduces the imitation gap.
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Fig. 6. (a) Ablation study on the mixture coefficient. (b) CoM velocity versus
command using student policy. (¢) xy trajectory with x direction command
using student policy.

C. Ablation study

We conduct an ablation study on the critical components
to further explore key design choices within our algorithm
framework. Fig. 6(a) demonstrates the importance of the mix-
ture coefficient apix in the training process. We observe that
while the algorithm becomes unstable with a large auix, which
is caused by letting a highly suboptimal student agent inject
too many samples, an appropriate chosen apix can benefit the
overall training process. We hypothesize that the discrepancies
between the student and teacher promote exploration within
the action space, enabling both agents to learn from a broader

region around the teacher’s actions. Additionally, we show in
Fig. 4b that choosing Ly slightly outperforms Ly, + Lagym in
our training setup.

VI. HARDWARE EXPERIMENTS
A. Locomotion over real-world uneven terrain

We report the results of deploying our policy in various
outdoor environments, as illustrated in Fig. 1 and the supple-
mentary video. These experiments were conducted around a
university campus, including walkways, wooden bridges, grass
hills, beach volleyball courts, and gravel paths.

Surprisingly, the policy shows generalization ability to sce-
narios not included in the training. For example, on grass
hills, due to rain, the grass and the soil underneath exhibit
a certain level of deformation upon impact, which increases
the difficulty of state estimation and thus further increases
the observation noise. Moreover, the policy can walk on the
beach volleyball court with sandy terrain, as shown in Fig. 1.
Despite the robot not being calibrated or trained for such
conditions, the policy adapts to the environmental changes
without additional training. Next, we examine the policy’s
performance on terrains with obstacles. The first test involves
a crate of gravel shown in Fig. 7(b). The robot consistently
performs stepping-in-place actions with a stable motion. Even
when the robot occasionally strikes the crate’s edge, it recovers
and resumes normal a stepping gait. In the second test, we
deploy the robot on a slippery terrain, where we distribute
poppy seeds on a whiteboard shown in Fig. 1. Surprisingly,
our robot does not exhibit any perceptible shaking motions. In
contrast, the company controller provided by Agility Robotics
fails to walk over.

(1) slopes

(e) stairs

Fig. 7. (a) we perturb the robot with a harness. (b) we test the step-in-place
motion on a crate of gravel. We let the robot walk over (c) high stairs (7cm
+ 9cm). (d) hill with gravel.

B. Perturbation experiments

We evaluate the policy’s response to external perturbations
during locomotion. Two scenarios are considered: pushing the
robot’s center of mass (CoM) from the front, and back using a
stick. The policy demonstrates robustness to withstand frontal
and rearward pushes while maintaining a stable walking gait.
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Additionally, we apply a more substantial perturbation using
a harness to pull the robot with an impulsive force (see
Fig. 7(a)). The robot adapts dynamically, exhibiting agile
adjustments to compensate for the pulling.

VII. CONCLUSION

We introduced L2T-RL, a novel single-stage learning frame-
work that unifies teacher and student training to address
sample inefficiency and enhance real-world performance. Our
extensive simulation and hardware experiments demonstrate
that L2T-RL achieves robust, and agile locomotion while
reducing sample complexity by 50% and thus dramatically
saving training time. These results highlight our contributions
to redefining teacher-student learning paradigms and paving
the way for practical RL-based robotic systems.
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